
Hex-Mesh Generation and Processing: a Survey

NICO PIETRONI, University of Technology Sydney, Australia
MARCEL CAMPEN, Osnabrück University, Germany
ALLA SHEFFER, University of British Columbia, Canada
GIANMARCO CHERCHI, University of Cagliari, Italy
DAVID BOMMES, University of Bern, Switzerland
XIFENG GAO, Tencent America, USA
RICCARDO SCATENI, University of Cagliari, Italy
FRANCK LEDOUX, CEA, France
JEAN-FRANÇOIS REMACLE, Université catholique de Louvain, Belgium
MARCO LIVESU, CNR IMATI, Italy

Regular
8 irregular vertices
1 block

Semi-Regular
56 irregular vertices
33 blocks

Valence Semi-Regular
56 irregular vertices
61 blocks

Irregular
3.7K irregular vertices
9.7K blocks

Fig. 1. Hex-meshes can be categorized according to their structural regularity, which depends on the amount of irregular edges and vertices present in the
mesh (red dots) and on how they are connected to each other (bold lines). Irregularities and their connectivity imply a decomposition of the mesh into regular
blocks. The first three meshes were computed with a polycube method [Livesu et al. 2013], the latter with an octree method [Gao et al. 2019].

In this article, we provide a detailed survey of techniques for hexahedral
mesh generation. We cover the whole spectrum of alternative approaches
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to mesh generation, as well as post processing algorithms for connectivity
editing and mesh optimization. For each technique, we highlight capabilities
and limitations, also pointing out the associated unsolved challenges. Re-
cent relaxed approaches, aiming to generate not pure-hex but hex-dominant
meshes, are also discussed. The required background, pertaining to geomet-
rical as well as combinatorial aspects, is introduced along the way.
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1 INTRODUCTION
Volume meshes explicitly encode both the surface and the interior of
an object, thus offering a richer representation than surface meshes.
They are primarily used in industrial and biomedical applications,
where volume elements are exploited to encode various information,
such as structural and material properties, permitting to simulate
and precisely estimate the physical behavior of an object, subject
to external or internal forces, or the dynamics involving multiple
objects interacting in the same environment. Alongside tetrahedra,
hexahedral elements are the most prominent solid elements used to
represent discrete volumes in computational environments. Meshes
entirely or partially made of hexahedra have been used for many
years as the computational domain to solve partial differential equa-
tions (PDEs) that are relevant for the automobile, naval, aerospace,
medical and geological industries to name a few, and are at the core
of prominent software tools used by such industries, such as [Altair
2022; ANSYS 2022; CoreForm 2022a; CUBIT 2022; Distene SAS 2022;
Tessaels 2022].

In academic research, the algorithmic generation and processing
of hexahedral meshes have been studied for more than 30 years
now. Despite the huge effort that various scientific and industrial
communities have spent so far, the computation of a high-quality
hexahedral mesh conforming to (or suitably approximating) a target
geometry remains a challenge with various open aspects for which
no fully satisfactory solutions have been provided yet. Some of the
known methods are extremely robust and scale well on complex
geometries; some others produce high-quality meshes; some others
are fully automatic. But no known method successfully combines
all these properties into a single product. The hex-meshing problem
had been so elusive that it was even once termed the “holy grail” of
mesh generation [Blacker 2000]. Ever since, many advancements in
the field have been made, while major challenges still remain.

In the last decade, the Computer Graphics community has con-
tributed significantly to this field, proposing seminal ideas, theoret-
ical insights, and practical algorithms. In this survey, we wish to
summarize this work, also reporting on previous methods developed
by other scientific communities. The engineering community has
already produced a few surveys on this topic, but they are either
no longer up to date [Blacker 2000; Owen 1998; Schneiders 2000;
Tautges 2001] or focus just on a particular subset of the available
techniques [Armstrong et al. 2015; Sarrate Ramos et al. 2014; Shep-
herd and Johnson 2008]. We wish to create a comprehensive entry
point for researchers and practitioners dealing with hexahedral
meshing. We therefore embrace the whole field, revisiting and struc-
turing a vast amount of literature, and covering basic topological
(Sec. 2) and geometrical (Sec. 3) concepts, all kinds of approaches
to hexahedral mesh generation (Sec. 4), operators to edit mesh con-
nectivity and to perform refinement or coarsening (Sec. 5), mesh
optimization and untangling (Sec. 6), visual exploration (Sec. 7),
and also addressing the recent trend of methods for hex-dominant
meshing (Sec. 4.9). Last but not least, in the final part of the survey,
we highlight the current challenges the field is facing and indicate
interesting directions for future work (Sec. 8).

2 HEX-MESH STRUCTURE
A hexahedral mesh has structural aspects (concerning the connec-
tivity of mesh elements) and geometric aspects (concerning the
elements’ shape and their embedding or immersion in space). In
this section we focus on the diverse set of structural aspects, and
consider geometry in Sec. 3.

2.1 Primal Structure
In terms of connectivity, a hexahedral mesh is a 3-dimensional cell
complex, H = (𝑉 , 𝐸, 𝐹,𝐶), consisting of vertices 𝑉 (0-cells), edges 𝐸
(1-cells), facets 𝐹 (2-cells), and cells 𝐶 (3-cells). The facets 𝐹 are also
often referred to as faces, and the 3-cells 𝐶 are, given the context,
often referred to as hexahedra or hexes. In a pure hexahedral mesh,
each facet is a topological quadrilateral (i.e., incident to four edges)
and each cell is a topological cube (i.e., incident to six such facets).
If a relatively small number of facets and cells are of different type
(e.g., tetrahedra, prisms, or pyramids) a mesh is called hexahedral
dominant.

On top of this connectivity structure, a mesh is equipped with a
geometric structure, typically an embedding (or immersion) in R3

(Sec. 3).
Often, instead of assuming fully generic CW or Δ cell complexes

[Hatcher 2000], more restricted connectivity definitions are used
for practical purposes [Erickson 2013]. A very common one is to
assume that each cell has eight distinct vertices, i.e., no hexahedron
is self-adjacent at a vertex, edge, or facet. Similarly, pairs of edges,
facets, or hexes being adjacent via more than one vertex, edge, or
facet, respectively, may be ruled out. This simplifies data structures
and algorithms; furthermore, many applications assume each hex
to be embedded in a geometrically simple way (e.g. straight edges,
ruled facets, cf. Sec. 3) which rules out such self-adjacency and multi-
adjacency anyway. Sec. 4.2 discusses further application-dependent
structural assumptions and requirements.

2.1.1 Singularities. The most regular hexahedral mesh is an (infi-
nite) Cartesian grid, where each vertex, edge, and facet is incident
to 8, 4, and 2 hexahedra, respectively. General hexahedral meshes
contain elements of different local connectivity, which are accord-
ingly called irregular or singular. Irregular facets simply correspond

Fig. 2. Left: Singular edges of valence 𝑘 = {3, 4, 5}. Right: There is a 1:1-
correspondence between configurations of vertices in a hexahedral mesh
and triangulations of the sphere. Image from [Liu et al. 2018].
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Fig. 3. The singularity graph is formed by interior singular edges of valence
𝑘 = 3 (green) and 𝑘 = 5 (blue) and boundary edges of valence 𝑘 = 1 (green).
Chains of edges with homogeneous type connect or terminate at singular
vertices (red). Image from [Liu et al. 2018].

to the boundary of the mesh, i.e., all facets that are incident to a
single hexahedron.
Since interior facets cannot be irregular and vertex singularities

are never isolated [Liu et al. 2018], structurally most interesting
is the set of irregular edges, which forms the so-called singularity
graph.

Singularity Graph. The fundamental building block of the sin-
gularity graph is a singular edge of valence 𝑘 , i.e., an interior edge
incident to 𝑘 ≠ 4 hexahedra, or a boundary edge incident to 𝑘 ≠ 2
hexahedra (cf. Fig. 2). While a single integer 𝑘 is sufficient to char-
acterize the structural type of an edge, the specification of vertex
types is more complex. As observed by Nieser et al. [2011] there is a
1:1-correspondence between vertex configurations in a hexahedral
mesh, and triangulations of the 2-sphere. This can be understood
by observing that the intersection of a cube with a sphere centered
at one of it’s corners results in a triangular patch (Fig. 2). Hence,
different vertex types can be specified by enumerating all triangu-
lations of the sphere. Restricting to (the practically most relevant)
edge valences {3, 4, 5}, it turns out that only 11 different configu-
rations of interior vertex types exist [Liu et al. 2018; Sabin 1997].
Specifically, for an interior vertex it is impossible to be incident to a
single singular edge, and in case of two incident singular edges they
can only be of identical type. Consequently, the singularity graph
is formed by singular arcs, which are chains of singular edges with
identical type. These singular arcs either terminate at the boundary,
or connect to other singular arcs at singular vertices, cf. Fig. 3.

2.2 Dual Structure
In a hexahedral mesh, regardless of its level of structural regularity
(Sec. 2.4), each cell has a constant number of 6 facets and each facet
has a constant number of 4 edges. Conversely, however, each vertex
may have a varying number of incident edges, and each edge a
varying number of incident facets.

One may consider the (polyhedral) cell complex that is dual to
a hexahedral mesh: For each 𝑘-cell of the primal mesh there is a
(3 − 𝑘)-cell in 1:1-correspondence in the dual mesh and incidence

Fig. 4. Two examples of the relation between primal and dual representa-
tions. Top: two alternative hexmesh connectivities. Bottom: their correspond-
ing dual cell complexes, formed by arrangements of 2-manifold sheets.

relationships are adopted. The above regularity of cells and facets
in the primal mesh translates into regularity of vertices and edges
in the dual. Concretely, except at the mesh’s boundary, each dual
vertex has a constant number of 6 incident dual edges, and each dual
edge has a constant number of 4 incident dual facets. Conversely,
dual facets and dual cells are polygons and polyhedra of varying
structure. Further details and facts about the dual complex can be
found in [Tautges and Knoop 2003].
Depending on the algorithmic context, it may be advantageous

to consider the primal or this dual view of a hexahedral mesh. A
key reason is the following: While vertices and edges of the primal
mesh may be regular or singular, the vertices and edges of the dual
mesh are all regular; this is due to the fact that all primal facets
are quadrilaterals and all primal cells are hexahedra. The following
useful definition of opposite edges at a regular vertex and opposite
facets at a regular edge therefore applies everywhere in the dual
mesh.

Opposite Elements. At each regular interior vertex 𝑣 , there are 6
incident edges. For each edge 𝑒1 of these, there is exactly one edge
𝑒2 among these 6 that does not share a facet with 𝑒1; the edges 𝑒1
and 𝑒2 are called opposite at 𝑣 . At each regular interior edge 𝑒 , there
are 4 incident facets. For each facet 𝑓1 of these, there is exactly one
facet 𝑓2 among these 4 that does not share a cell with 𝑓1; the facets
𝑓1 and 𝑓2 are called opposite at 𝑒 . In the primal setting, this concept
of opposite edge is relevant for algorithms that trace internal arcs
in the mesh, e.g., connecting pairs of singular vertices. Similarly,
opposite facets are useful to flood internal facet sheets bounded by
singular arcs, e.g., to perform a coarse block decomposition of a
given mesh (Sec. 2.3).
In the dual setting, this opposite relation can be used to define

the following:

Sheets. Consider the transitive closure of the dual facets’ opposite-
relation. Its equivalence classes are called sheets (also referred to as
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twist planes [Murdoch et al. 1997] or (pseudo-)hyperplanes [Taut-
ges and Knoop 2003]). These sheets are 2-manifold surfaces (with
boundary, possibly self-intersecting) formed by dual facets.

Chords. Analogously, the equivalence classes of the dual edges’
opposite-relation’s transitive closure are referred to as chords [Bor-
den et al. 2002a; Murdoch et al. 1997] (or polychords [Daniels et al.
2008]).

The combinatorial “continuity” of opposite dual facets across dual
edges has inspired the early name spatial twist continuum for this
dual sheet based perspective.
It follows that the entire dual complex can be viewed as an ar-

rangement of intersecting manifold surfaces (sheets): dual vertices
are formed by three intersecting sheets, chords are formed by two
intersecting sheets and split into dual edges by transversely crossing
sheets, sheets are split into dual facets by crossing sheets, and dual
cells are the spatial compartments enclosed by sheets. Conceptually,
a sheet corresponds to one layer of hexahedra in the primal mesh;
how this layer is composed of individual hexahedra, however, is
not defined by this sheet itself but by sheets that cross this sheet
transversely. Fig. 4 illustrates this primal-dual relationship.

All this is in close analogy to dual complexes in the case of quadri-
lateral meshes. These can be viewed as arrangements of intersecting
1-manifolds [Campen et al. 2012; Campen and Kobbelt 2014]. Quite
differently, though, sheets can be topologically quite complex, they
may have arbitrary genus and an arbitrary number of boundary
loops, whereas in the quadrilateral mesh case each 1-manifold may
only be either a closed loop curve, or an open-ended curve starting
and ending at the mesh boundary.

2.3 Block Structure
Each hexahedral mesh can be decomposed into disjoint blocks,
where each block is a regular grid of hexahedra. Conversely, the
mesh can be viewed as disjoint union of such blocks. As an extreme
example, each hexahedron could be considered an individual block
(of size 1×1×1).We can distinguish conforming and non-conforming
block decompositions: a block decomposition is conforming iff each
side of each block coincides with one other block side (except at the
mesh boundary).

Of particular practical relevance are decompositions that are con-
forming, and among these those that are coarse, i.e., that consist of
a small number of blocks. Meshes rarely have a unique conforming
block decomposition. The coarsest conforming block decomposi-
tion is sometimes referred to as the mesh’s base complex [Bommes
et al. 2011; Brückler et al. 2022b; Gao et al. 2015; Razafindrazaka and
Polthier 2017].
It is worth pointing out that the term base complex is some-

times used with alternative meanings [Dong et al. 2006; Eck and
Hoppe 1996; Hormann et al. 2008; Livesu et al. 2013], for instance
to refer to a coarse cell complex that is used as a domain for (cross)-
parametrization. Note that this is not entirely unrelated though: a
common use case of these parametrizations is structured remeshing;
the resulting meshes typically exhibit a block structure induced by
the underlying domain complex.
The base complex has the following defining property: a facet

is part of a block side if and only if it is transitively incident to

a singular edge via opposite facets (as defined in Sec. 2.2). This
suggests a simple way to extract the base complex of a given hexa-
hedral mesh: starting from all facets incident to any singular edge,
iteratively expanding through opposite facets across regular edges
until termination [Brückler et al. 2022b; Gao et al. 2015]. Due to
the practical relevance of semi-regular hexahedral meshes (Sec. 2.4)
mesh generation algorithms that take the coarseness of the implied
base complex into account are of particular interest.

2.4 Structural Regularity
Similarly to quad-meshes [Bommes et al. 2013b], hex-meshes can
be roughly organized into four classes depending on the degree of
regularity of their topological structure. The concept of mesh regu-
larity is closely related with the relative amount of irregular vertices
present in the mesh and with how these vertices are connected to
each other.

• regular (or structured) meshes have the topology of a grid-
ded cube (Fig. 1 left). These meshes are extremely convenient
for storing and processing because of their simple connec-
tivity: each internal vertex has exactly the same number of
neighbors, with a consistent ordering. This allows for efficient
storage and optimal query time, and also makes the computa-
tion of local quantities (e.g., finite differences) straightforward.
There are, however, severe limits in the class of shapes they
can represent adequately: mapping the grid into an object
containing long protrusions or deep cavities likely results in
a mesh with little practical utility due to the poor shape of its
distorted elements. Moreover, the rigid global structure does
not allow for localized refinement: if more vertices are neces-
sary around a specific area, the entire grid must be refined in
order to maintain the regular structure;

• semi-regular (or semi-structured, also block-structured) hex-
meshes are obtained by gluing in a conforming way several
regular grids (also called blocks). All vertices that are internal
to a block are regular; only vertices that lie at the edges or
corners of a block may be irregular. Semi-regular meshes rep-
resent a particularly important class in terms of applications,
and today are often the result of a manual or semi-manual
meshing process. Differently from regular meshes they allow
for higher flexibility and can be used to represent shapes of
arbitrary complexity. At the same time, they contain a limited
amount of irregular vertices, connected to each other so as
to define a coarse block layout (Fig. 1, middle left) which can
be exploited by dedicated data structures for cheaper storage
and fast querying [Tautges 2004], and is also useful in a vari-
ety of applications that exploit the tensor product structure
of its elements (e.g., IGA [Hughes et al. 2005]);

• valence semi-regularmeshes also contain a limited amount
of irregular vertices, but they are not connected in a way that
induces a coarse block decomposition into few regular blocks
(Fig. 1, middle right). Meshes of this kind are often produced
by modern hex-meshing algorithms such as frame field based
methods, which introduce few singularities, thereby creating
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meshes with many regular regions, but do not specifically
address their connectivity pattern;

• irregular (or unstructured) hex-meshes contain a large frac-
tion of irregular vertices (Fig. 1, right). Meshes of this kind
are, for instance, produced via voxelization or other grid-
based methods: portions of the object that do not align with
the ambient Cartesian grid exhibit a typical staircase effect,
triggering a proliferation of irregular vertices on the surface.
Meshes of this type are most limited in terms of their practical
utility and benefits relative to, e.g., tetrahedral meshes.

As for the quad-mesh case [Bommes et al. 2013b] the boundaries
between semi-regular, valence semi-regular, and irregular meshes
are blurred. Nevertheless, from an applicative perspective there is a
substantial difference between these three classes and there exists a
variety of structure enhancement algorithms that are specifically
designed to improve mesh regularity (Sec. 5.5). The whole taxon-
omy can be understood in terms of the ratio between the number of
irregular vertices and the total amount mesh vertices (𝑟𝑉 ), and the
ratio between the number of blocks and the total number of mesh
elements (𝑟𝐵 ). If both 𝑟𝑉 and 𝑟𝐵 are high, the mesh is irregular; if
𝑟𝑉 is low but 𝑟𝐵 is high, the mesh is valence semi regular; if both
𝑟𝑉 and 𝑟𝐵 are low the mesh is semi-regular. Finally, if the number
of blocks is exactly 1, the mesh is regular. Providing actual thresh-
olds to precisely define what high and low mean, is an application
dependent matter.

2.5 Integer-Grid Maps
Integer-grid maps (IGM) are a class of maps which by construction
induce (at least) valence semi-regular meshes. The central idea, as
illustrated in Fig. 5, is to embed an 𝑛-dimensional shape into an
𝑛-dimensional voxel grid such that the inverse map deforms the
set of covered voxels into a shape-aligned hexahedral mesh. So far,
integer-grid maps have been studied for 2-manifolds to generate
quadrilateral meshes [Bommes et al. 2013a; Kälberer et al. 2007]
and for 3-manifolds to generate hexahedral meshes [Liu et al. 2018;
Nieser et al. 2011]. Similar to the parametrization of a general mani-
fold, an integer-grid map can be decomposed into multiple charts.
However, in order to guarantee that the inversely mapped voxels
stitch conformingly, it is necessary to require specific transition
functions that preserve the voxel grid. Assuming that the vertices
of the voxel grid are given by integer coordinates Z𝑛 , the grid-
preserving transition functions are exactly (i) integer translations
and (ii) symmetry transformations of an 𝑛-cube. Such transition
functions are essential to generate meshes with interior singularities,
as for instance, the singular vertex (red) in Fig. 5.

Mathematically, a map requires three properties to be an integer-
grid map: (i) grid-preserving transition functions, (ii) local injectiv-
ity, and (iii) singularities and boundaries mapping to integer-grid
entities. A thorough definition can be found in [Liu et al. 2018].
Integer-grid maps are sufficiently expressive to describe all po-

tential hexahedral meshes. We can trivially generate a chart for
each hexahedron that maps it to the voxel [0, 1]3. In this sense,
integer-grid maps can be seen as an alternative representation of

singularities via grid-preserving cutssingularities via grid-preserving cuts

Fig. 5. An integer-grid map 𝑓 deforms the shape (left) such that its boundary
aligns with a Cartesian grid of integer isolines (right). Consequently, its
inverse 𝑓 −1 deforms the covered grid cells into a structure-aligned mesh.
Grid-preserving cuts (dashed green) enable irregular vertices (red) in the
mesh.

hexahedral meshes that has proven highly valuable for designing
powerful generation algorithms.
Reformulating the hexahedral mesh generation task as a map

optimization problem offers many advantages. First of all, the op-
timization of low-distortion maps is a well-studied topic with a
rich body of theory and algorithms that serve as a strong founda-
tion. Moreover, the map optimization perspective enables multiple
geometrically motivated continuous relaxations that are crucial
for efficiently finding good approximate solutions of the hard un-
derlying mixed-integer problem, e.g. frame-fields to find suitable
singularities (cf. Sec. 4.8), or seamless maps to estimate the required
integer translations (cf. [Brückler et al. 2022a; Nieser et al. 2011]).
While a naive direct optimization formulation for a hexahedral

mesh needs to explicitly encode and deal with the full set of (inher-
ently discrete) elements and their connectivity, most of that becomes
implicit in the map formulation, enabling not only straightforward
continuous relaxations but moreover a reduced set of discrete vari-
ables. A simple but instructive example consists of a regular block
covering 𝑛 ×𝑚 × 𝑜 voxels in the IGM image. Stretching the image
along the first coordinate axes corresponds to a continuous relax-
ation of the discrete action of changing the integer dimension 𝑛.
Note that from the map perspective, the block is indeed fully char-
acterized by only three integers 𝑛,𝑚, and 𝑜 , while a direct mesh
optimization would need to deal with (𝑛 + 1) × (𝑚 + 1) × (𝑜 + 1)
(discrete) vertices and their nontrivially-constrained connectivity.
The number of integer degrees of freedom of a general integer-grid
map is proportional to the number of singularities and topological
handles. Consequently, in case of pre-determined singularities the
resulting discrete search space is comparatively small since typically
highly regular meshes with only few singularities are desired.
Optimizing for a low-distortion map has two positive effects, (i)

it directly promotes well-shaped elements of high quality in the
output hex-mesh, and (ii) it demotes the occurrence of spurious
singularities.

A conceptual overview of interpreting mesh optimization as map
optimization is shown in Fig. 6. The advantages related to superior
continuous relaxations and compact discrete search spaces explain
the popularity and success of integer-grid map based approaches in
the automatic generation of structured meshes.
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Variational

!(#) → &'(
Mixed-Integer

Problem

less discrete since
elements implicit 

in the map

Optimize Map
1. alignment of map
2. grid volume
3. map distortion
4. map distortion
5. metric of map

Optimize Mesh

highly discrete

1. geometric fidelity
2. element count
3. regularity
4. element quality
5. anisotropy & sizing

translates into

Fig. 6. Integer-grid map optimization algorithms turn the highly discrete
mesh optimization task into a more tractable mixed-integer map optimiza-
tion. All mesh quality criteria are directly related to properties of the map,
as indicated by blue dashed arrows.

A special case of integer-grid maps with no interior singularities
are polycube maps, which are discussed in more detail in Sec. 4.7.
The generation of a polycube map, therefore, can be viewed as de-
forming the input shape such that its surface aligns with a blocky
surface from the voxel grid – a polycube. While this deformation
can be pictured as a continuous process, the underlying optimiza-
tion problem is nonetheless of mixed-integer type [Mandad et al.
2022]. The discrete degrees of freedom include the choice, per piece
of the shape’s surface, which of the six oriented coordinate axes
{±𝑥,±𝑦,±𝑧} it shall align to.
Frame-field based methods, which are discussed in more detail

in Sec. 4.8, target the generation of an integer-grid map (whether
general or restricted to polycubes) in two stages. From a high-level
perspective, the first stage estimates the rotational part of the Ja-
cobian of an integer-grid map, i.e., a frame-field, while the second
stage constructs the map by inheriting the frame-field singularities.
The decomposition is beneficial because the first stage can be for-
mulated in a representation that more easily deals with the discrete
symmetry of the hexahedron.

3 HEX-MESH GEOMETRY
Besides its combinatorial and topological structure (Sec. 2), a hexa-
hedral mesh’s geometry, i.e., its embedding or immersion, typically
in R3, plays an essential role in most applications.
This concerns the question of geometric fidelity (to what extent

the mesh conforms to the target shape) and the question of ele-
ment quality. This latter question is concerned with the shape of
a mesh’s individual hexahedra or the distortion of maps defining
these hexahedra as deformations of an ideal (reference or master)
element.

Depending on the application context, various geometric require-
ments may be in place: the mesh may be required to conform to a
given boundary mesh or to interpolate it within some prescribed
tolerance; facets may be required to be planar or to be convex; the
above maps may be required to be locally injective or even to have
bounded distortion in some particular sense. In the context of mesh
generation (Sec. 4) the concrete requirements can have a significant
influence on the hardness of the meshing problem. Many meth-
ods so far are unable to provide strict guarantees regarding such
requirements, especially when they are asked for in combination.
Also the relevant notion of element quality, and the effect of

low or high-quality elements, are application dependent. In the
context of simulations by means of finite element methods (FEM),

element quality can have a crucial impact on error estimates and
convergence rates, thus simulation speed and accuracy [Ciarlet 2002;
Zlámal 1968], and relevant quality measures depend on the type
of simulation. In Sec. 4.2 these varying requirements are discussed
further.

The Trilinear Element. The geometry or embedding of hexahedral
meshes is often represented by means of coordinates assigned to
their vertices. This alone is sufficient only for simple applications.
More commonly, the geometry of edges, faces, and cells has to be
defined as well. A particularly simple (and common) scenario is
the assumption of trilinear elements (linear edges, bilinear faces,
trilinear cells), as this does not require the specification of any fur-
ther information—all other mesh elements’ geometric embedding
in R3 are derived from the vertex positions via multilinear interpo-
lation. Precisely, a hexahedron’s embedding (with vertex positions
𝑝𝑖 𝑗𝑘 ) is defined via a geometric map 𝜏 : [0, 1]3 → R3 (also called
isoparametric map) as follows:

𝜏 (𝑢, 𝑣,𝑤) =
1∑

𝑖=0

1∑
𝑗=0

1∑
𝑘=0

𝑝𝑖 𝑗𝑘𝐵𝑘 (𝑤)𝐵 𝑗 (𝑣)𝐵𝑖 (𝑢),

where
𝐵0 (𝑡) = 1 − 𝑡 and 𝐵1 (𝑡) = 𝑡 .

The hexahedral element effectively is the image of an ideal cube
[0, 1]3 under this map. Note that the edges are straight line seg-
ments under this map; the faces are ruled surfaces (planar iff the
four corner vertices are coplanar). More generally, this definition
can be extended to higher-order elements using higher-order basis
functions 𝐵𝑛

𝑖
(e.g., Bernstein polynomials of degree 𝑛, giving rise

to tensor-product Bézier elements [Prautzsch et al. 2002]). In these
higher-order cases, additional control points (besides the vertex
points) come into play as coefficients for a higher number of basis
functions.

The assessment of these elements’ quality (or even just validity)
is an application-dependent matter. In some cases it may be just the
shape of the region 𝜏 ( [0, 1]3) ⊂ R3 that is of relevance, in others its
concrete parametrization, given by the map 𝜏 , is crucial.

3.1 Geometric Map
A particularly common measure of quality is the determinant of
the geometric map’s Jacobian 𝐽𝜏 . It quantifies to what extent the
hexahedron, defined through 𝜏 , deviates (in terms of volume distor-
tion) from the cube [0, 1]3. Note that det 𝐽𝜏 depends on parameters
(𝑢, 𝑣,𝑤). Due to this dependence, the quality of an element (in con-
trast to the quality at a particular point) rather needs to be assessed
by the extremal value min[0,1]3 det 𝐽𝜏 .
Note that det 𝐽 , while measuring volume distortion, is blind to

angle distortion; it cannot distinguish sheared cubes from cubes.
Additional angle-aware measures are thus often taken into account
(Sec. 3.2).

3.1.1 Element Validity. If min[0,1]3 det 𝐽𝜏 ≤ 0, the geometric map
𝜏 is non-injective and the implied element is said to be irregular.
Sometimes a distinction is made between degeneration (det 𝐽𝜏 = 0)
and inversion or fold-over (det 𝐽𝜏 < 0).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.



Hex-Mesh Generation and Processing: a Survey • 7

In the context of the finite element method, irregular elements
must be considered invalid [Knupp 2000; Mitchell et al. 1971]; with
such elements, depending on the concrete setting, one may yield
“inaccurate solutions or no solutions at all” [Barrett 1996], solu-
tions are “invalidated” [Roca et al. 2012], or “calculations cannot
be continued” [Salagame and Belegundu 1994]. Due to this crucial
importance, specialized untangling methods for the purpose of ir-
regular element removal in hexahedral meshes have been proposed
(Sec. 6), that attempt to achieve min[0,1]3 det 𝐽𝜏 > 0.

3.1.2 Computation. The evaluation of det 𝐽𝜏 at a concrete parame-
ter point (𝑢, 𝑣,𝑤) is quite easy. For the computation of the extrema
min/max[0,1]3 det 𝐽𝜏 , however, there is no closed-form expression.
As this is particularly relevant to certify regularity, simply probing
at a number of well-distributed parameter points is a risky approach.

Determinant Bounds. Like 𝜏 , the Jacobian determinant is a poly-
nomial in (𝑢, 𝑣,𝑤). It can thus be expressed in the Bernstein basis
as well:

det 𝐽𝜏 (𝑢, 𝑣,𝑤) =
∑
𝑖 𝑗𝑘

𝑑𝑖 𝑗𝑘𝐵𝑘 (𝑤)𝐵 𝑗 (𝑣)𝐵𝑖 (𝑢).

Due to this basis’ implied convex hull property (due to 0 ≤ 𝐵𝑖 (𝑡) ≤ 1
for 𝑡 ∈ [0, 1]) the function value is bounded from below by the
smallest coefficient min𝑖 𝑗𝑘 𝑑𝑖 𝑗𝑘 and from above by the largest coef-
ficient max𝑖 𝑗𝑘 𝑑𝑖 𝑗𝑘 . The coefficients 𝑑𝑖 𝑗𝑘 are easily computed from
the vertex points 𝑝𝑖 𝑗𝑘 . For the particular case of trilinear hexahedral
elements, this is discussed in [Johnen et al. 2017]. The same principle
applies to higher-order elements as well as to simplicial (rather than
tensor-product) elements [Dey 1999; Gravesen et al. 2014; Johnen
et al. 2013; Luo et al. 2002; Mandad and Campen 2020].

These bounds can be quite loose. They can, however, be tightened
arbitrarily by re-expressing det 𝐽𝜏 piecewise over subdomains of
[0, 1]3 [Hernandez-Mederos et al. 2006]. This is accomplished (via
affine reparametrization) using Bézier subdivision [Prautzsch et al.
2002]. Under repeated subdivision, the coefficients (and thus the
derived bounds) converge to the actual function value [Leroy 2008;
Prautzsch and Kobbelt 1994].
For use cases where precise knowledge of the Jacobian deter-

minant’s value range is not relevant but only injectivity is to be
certified, simpler (possibly loose) conservative tests can be employed
[Zhang 2005]. Various even simpler hypothetical tests (trying to
derive bounds from determinant values at vertices or along edges)
were shown to be false [Knupp 1990; Zhang 2005].

Relaxation. Through sum-of-squares (SOS) relaxation, the non-
convex problem of finding the Jacobian determinant polynomial’s
global minimum (i.e., min[0,1]3 det 𝐽𝜏 ) can be replaced by a convex
problem [Marschner et al. 2020]. If a sufficiently high degree is
chosen for the formulation of this replacement problem, the global
minima coincide. A sufficient degree was determined empirically; a
formal guarantee is outstanding.

3.2 ShapeQuality
Besides metrics based on the pointwise assessment of the geometric
map, there exist a variety of metrics based simply on the vertex
positions that have been proposed in the literature to assess the

Table 1. List of alternative metrics for hexahedral elements, from the Verdict
library [Stimpson et al. 2007]. Normal ranges are intended for elements not
having degeneracies.

Metric Overall Acceptable Value for
range range unit cube

Diagonal [0, 1] [0.65, 1] 1
Dimension [0,∞) app. dep. 1
Distortion [0, 1] [0.5, 1] 1
Edge Ratio [1,∞) — 1
Jacobian (−∞,∞) [0,∞) 1
Max. Edge Ratio [1,∞) [1, 1.3] 1
Max. Asp. Frobenius [1,∞) [1, 3] 1
Mean Asp. Frobenius [1,∞) [1, 3] 1
Oddy [0,∞) [0, 0.5] 0
Relative Size Squared [0, 1] [0.5, 1] —
Scaled Jacobian [−1, 1] [0.5, 1] 1
Shape [0, 1] [0.3, 1] 1
Shape and Size [0, 1] [0.2, 1] —
Shear [0, 1] [0.3, 1] 1
Shear and Size [0, 1] [0.2, 1] —
Skew [0, 1] [0, 0.5] 0
Stretch [0, 1] [0.25, 1] 1
Taper [0,∞) [0, 0.5] 0
Volume (signed) (−∞,∞) [0,∞) 1

quality of hexahedral elements or have been exploited in specific
applications. The documentation of the Verdict library [Stimpson
et al. 2007] – a de facto standard for finite element mesh quality
assessment – exhaustively reports per-hex metrics, as well as as-
sociated bounds and commonly acceptable ranges. We succinctly
report these metrics in Tab. 1. For more details on how each metric
is formulated, we point the reader directly to the original source.
It must be noted, though, that the question whether an element is
good or at least acceptable can be highly application dependent; in
FEM, for instance, elements far from being cube-shaped (in partic-
ular anisotropically stretched elements) can be ideal – if they are
aligned suitably, in a PDE-guided or even solution-adaptive manner
[Knupp 2007].

4 HEX-MESH GENERATION
In this section, we survey the variety of mesh generation techniques
present in the literature to date. We firstly provide a general intro-
duction about input and output requirements. Then, algorithms will
be organized according to the meshing paradigm they implement.
The generation of hybrid, in particular hex-dominant, meshes con-
taining spurious non-hexahedral elements is also discussed (Sec. 4.9).
Finally, Tab. 2 summarizes the main properties of each class of hex-
meshing algorithms reported in this survey.

4.1 Input
Input data can be either a surface or a volume mesh describing the
target geometry. Methods that take a surface mesh or other surface
description and produce a conforming hexahedralization are often

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.



8 • N. Pietroni, M. Campen, A. Sheffer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

called direct [Shepherd and Johnson 2008], as opposed to indirect
methods, which typically operate on a supporting tetrahedral mesh
and produce hexahedra by modifying this mesh (through splitting,
clustering, etc.) or by computing some volumetric mapping encoded
on the vertices of this supporting mesh.

The most trivial form of indirect hex-meshing consists of splitting
each tetrahedron into four hexahedra via midpoint refinement [Li
et al. 1995]. This technique is trivial to implement and always guar-
antees a correct result. However, it produces an unstructured mesh
with an overly dense singular structure, also containing four times
more elements than the input mesh. Therefore, this approach is
unsuitable for real applications. As will come clear in the remain-
der of this section, indirect hex-meshing has evolved significantly
since these early days and now comprises highly advanced tools
to convert a tet-mesh into a much coarser hex-mesh with cleaner
singularity structure. Notably, indirect approaches that cluster tetra-
hedra to form hexahedra are quite predominant in hex-dominant
meshing (Sec. 4.9).

Most of the techniques discussed in this sectionmake assumptions
on the topology and geometry of the input mesh and are not able
to operate on meshes containing topological (e.g., open boundaries,
holes, or non-manifold elements) or geometric (e.g., intersecting or
degenerate elements) defects. Methods that operate on a supporting
tetrahedral mesh may leverage robust tetrahedralization techniques
such as [Diazzi and Attene 2021; Hu et al. 2020, 2018]. Methods that
operate on surface meshes can sanitize their inputs with known
robust surface processing algorithms, such as [Attene 2010; Attene
et al. 2013; Cherchi et al. 2020; Zhou et al. 2016].

In addition to the target geometry, algorithmsmay optionally take
as input a variety of other desiderata, such as target edge lengths or
density fields to control local element size and anisotropy, or a list of
features that the outputmesh should conform to. Typical features are
geometric curves on the outer surface (i.e., sharp creases), but there
may also be additional ones – both internal and external – such as
separation membranes between different materials, or other forms
of semantic attributes. Finally, methods based on guiding fields (see
Sec. 4.8) may also take as input some additional parameters that
control the field generation, or may even assume the whole guiding
field as an input by itself.

4.2 Output
Output meshes must satisfy a variety of requirements, some of
them strictly, some others loosely. In the following we list the most
important topological and geometric requirements, also connecting
them with specific applications that demand their fulfillment. The
main topological desiderata are:

• element type: methods that strive for pure hexahedral mesh-
ing must ensure that all their cells are topological cuboids
made of 8 vertices, 12 edges, and 6 quadrilateral faces. This
requirement is loosened for hex-dominant methods, where
spurious non-hex elements may be present in the output
mesh. This topological freedom is not unlimited, and may be
bounded by the specific application. In fact, methods for the
numerical solution of PDEs often require non-hex elements
to belong to a restricted class of polyhedra. For example, the

Poly-Spline Finite Element Method [Schneider et al. 2019] de-
mands that all mesh elements (non-hexahedra included) have
quadrilateral faces, and enforces this property through mesh
subdivision if the input mesh does not fulfill this requirement.
Similar restrictions are also imposed by alternative methods;

• local structure: topological limitations may apply not only
at a local (per element) level, but also involve clusters of
adjacent cells. For instance, the Poly-Spline Finite Element
Method [Schneider et al. 2019] requires that two non-hex
cells are not face-, edge-, or vertex-adjacent, and also that
non-hex cells are not exposed on the boundary. More gener-
ally, many methods that employ higher order basis functions
can handle just a few local configurations, and put constraints
on the local mesh patterns. This holds for both hex and hex-
dominant meshes. For example, the blended spline method
for unstructured hexahedral meshes proposed in [Wei et al.
2018] embraces only a small fraction of the possible singu-
larities that are created by the meshing methods surveyed
in this section. To this end, the intricate mesh connectivity
generated by grid-based methods can be extremely challeng-
ing [Livesu et al. 2021];

• global structure: depending on how the singular elements
align, the mesh may or may not have a coarse block struc-
ture (Sec. 2.4). While basic numerical schemes like the Finite
Element Method operate at a local (per element) level and
may not exploit this property, block-structured meshes may
be highly important for methods that employ tensor product
constructions per block, for multi-grid solvers that rely on
a hierarchy of nested meshes, and also for mesh compres-
sion [Tautges 2004];

• conformity: some hex-dominant methods restrict their out-
put to a narrow class of alternative polyhedra (e.g., permitting
only tetrahedra and hexahedra). On the positive side, this re-
stricts the alternative types of cells that applications must
handle. On the negative side, the resulting meshes may be
non-conforming, meaning that structural discontinuities arise
between elements that are geometrically but not topologi-
cally adjacent (due to T-junctions). Topological continuity can
be restored using special connector elements of zero volume.
Nevertheless, the resulting meshes (with or without connec-
tors) are not supported by all numerical solvers, and dedicated
numerical schemes (e.g., Discontinuous Galerkin [Chan et al.
2016]) must be used.

From the geometric point of view, the output meshes should faith-
fully represent the target shape, preserve its prescribed features (if
any), and be composed of well-shaped elements. More precisely, the
main geometric desiderata are:

• fidelity: geometric fidelity is achieved by construction by
methods that generate hex meshes conforming to an input
quadrilateral surface mesh. Conversely, many other meth-
ods typically deviate from the target geometry and may only
produce a geometric approximation of it. Just a handful of
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Fig. 7. Topology and geometry are tightly coupled: the number of hexahedra incident to a singular edge directly bounds the inner angles, thus affecting the
geometric quality of the elements (numbers below each configuration refer to the Scaled Jacobian of the geometric map). Image from [Livesu et al. 2021].

methods provide strict guarantees on the maximum (Haus-
dorff) distance from the reference geometry, whereas in many
cases an approximation of the input geometry without strict
error control is produced. Depending on the complexity of the
input shape, significant deviation from the target geometry
may be present;

• features: special care must be taken for input features such
as sharp creases. While the general requirement is the same
as for geometric fidelity, imprecision in the geometric approx-
imation of features is both aesthetically much more evident
and may also have a significant impact in the solution of
the PDE (e.g., when studying the aerodynamic flow around
creased objects). Feature alignment requires that sequences of
edges of the hex-mesh conform to feature curves, otherwise
some deviation is inevitable, regardless of resolution (Fig. 8);

• quality: the assessment of the quality of a mesh is a major
topic by itself [Knupp 2007] that is only touched upon in
this survey (Sec. 3). It is important to note that the relation
between mesh quality and, e.g., the quality of a numerical so-
lution of a PDE may heavily depend on the concrete problem
as well as on the solver at hand. While a common require-
ment is that all mesh elements are valid (everywhere positive
Jacobian determinant of the geometric map), different nu-
merical schemes may demand the fulfillment of additional
requirements. Shape regularity criteria for the Finite Element
Method (FEM) are mostly concerned with star-shapedeness
and avoidance of large angles [Ciarlet 2002; Shewchuk 2002;
Zlámal 1968]. As recently shown, these methods can be modi-
fied in order to even cope with badly shaped elements, locally
selecting higher order basis that compensate for the lack of
geometric quality [Schneider et al. 2018]. In Computational
Fluid Dynamics (CFD) it can be beneficial to use meshes that
are orthogonal, meaning that the interface between two shared
elements and the line connecting their centroids form a right
angle [Aqilah et al. 2018; Moraes et al. 2013]. The Virtual
Element Method [Beirão da Veiga et al. 2014] assumes that all
mesh faces are planar. Considering this jungle of metrics that
are relevant for one numerical method or the other, general
purpose algorithms are often not suited to address these spe-
cific criteria at the mesh generation stage, but mainly strive
to create meshes with valid elements, possibly attempting to
address further quality concerns in post processing (Sec. 6).

Fig. 8. Incorporating an input feature network (left, bold lines) into the out-
put hex-mesh is not possible if the connectivity does not align to it (middle
left), even refining the mesh (middle right). Key to feature preservation is
the ability to align surface edges to the input network, carefully positioning
mesh singularities (right). Image from [Livesu et al. 2020].

Themethods surveyed in the following typically aim to create “good”
meshes according to a subset of the criteria above. Fully and equally
embracing both topological and geometric requirements at once can
be a huge challenge, and many methods put a stronger focus on one
aspect over the other. Some methods focus more on the topological
aspects and may produce well structured meshes containing (near)
degenerate or even invalid elements. Some others may guarantee
valid elements or even lower bounds on certain geometric quality
measures but produce meshes with a highly irregular topological
structure. Both flaws can potentially be alleviated to some extent
in post-processing, using dedicated algorithms for structure sim-
plification (Sec. 5.5) or geometric enhancement (Sec. 6). Certainly,
topology and geometry are coupled to some extent. For instance,
a mesh with poor topological structure often inevitably contains
poorly shaped elements as well (Fig. 7).

4.3 Advancing/Receding Front
First attempts to algorithmically generate hexahedral meshes were
made by extending 2D advancing-front algorithms that generated
full quadrilateral meshes. Starting from a quad-meshed boundary,
algorithms like [Blacker 1996; Blacker and Meyers 1993] incremen-
tally insert hexahedra starting from the boundary. The volume is
progressively filled until final small voids are solved with simple
patterns made of a few hexahedral cells. Such an approach is chal-
lenging on two main points. First, fronts can collide during their
generation, and geometrical intersection must be performed. Owen
and Sunil [2000] solve this issue by preserving a hybrid mesh during
the whole process. Every created hex is inserted into this mesh,
and front collisions are easily detected. The second point is much
more problematic: there is no guarantee that the process will even-
tually generate a usable full hexahedral mesh. Starting from an even
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number of quads on the boundary of a remaining void, a structural
decomposition into a set of hexahedral elements is guaranteed to ex-
ist [Mitchell 1996], but the geometrical quality of hexes can be very
low. And if one ends up with an odd number of quads surrounding
a remaining void, one cannot fill it up with hexahedral elements
at all, necessitating a backtracking of the front propagation (with
no general guarantee to perform better the next time). The main
reason for this inflexibility lies rooted in the fact that one cannot
easily perform structural modifications on a 3D hexahedral mesh in
a local manner (cf. Sec. 5).

Considering the problem as being over-constrained, the next gen-
eration of advancing-front algorithms do not start from a quadrilat-
eral boundary mesh, but rather from the geometric surfaces [Staten
et al. 2006, 2010a, 2005]. Complete layers of hexahedral cells are
inserted in the domain until they collide. Final cavities are easier
to fill, but this process can fail, too. In [Ruiz-Gironés et al. 2012],
the authors adopt the advancing-front technique. Considering that
the final cavities that remain may be difficult to mesh, they use an
inside-outside mesh generation approach that requires as an extra
input an inner seed, which is a hexahedral mesh of a possible final
cavity. Two solutions of the Eikonal equation are then computed:
one going inward from the boundary of the geometric domain;
another one going outward starting from the surface mesh of the
inner seed. Both solutions are then combined to define a smooth
distance function, and an advancing-front algorithm is performed
to expand the quadrilateral surface mesh of the inner seed towards
the unmeshed external boundary using the distance function to
locate points of each layer of cells. This process is used in practice to
mesh the outside of objects like aircraft (for aerodynamics problems,
for instance). But it remains limited to geometric domains that are
homeomorphic with the sphere, and the domain must not have
sharp features.

In general, advancing-front approaches are not reliable enough to
generate a good quality hexahedral mesh for general domains. They
strongly depend on the boundary mesh structure and the compati-
bility of this structure with the restrictive structure of hexahedral
meshes. Often, this compatibility is not given, since the boundary
mesh generation process is unaware of the structural and geometric
constraints imposed by the to-be-created hexahedral mesh. As a
consequence, they, e.g., fail to connect fronts when they collide (see
Figure 9). Moreover, most of the proposed works deal with the extra
constraint of starting from a pre-meshed boundary. This constraint
is strongly related to the meshing process, which consists of mesh-
ing a complex assembly of parts where meshes must be conforming
along part interfaces.

4.4 Dual Approaches
Taking a dual perspective in the context of mesh generation, i.e.,
focusing on the dual representation of a hexahedral mesh (Sec. 2.2),
has proven to offer certain benefits.

Dual Advancing Front. For one, the interpretation of the advanc-
ing front approach (discussed in Sec. 4.3) in the dual domain can
reveal interesting structures, simplify the formulation of constraints
and rules, and provide additional intuition. This dual view is taken in
the so-called Whisker Weaving [Tautges et al. 1996] method and its

Fig. 9. Example of advancing-front progression to fill in a geometric 3D
shape starting from different pre-meshed boundary. On the left, it succeeds
in getting a valid hex-mesh, while it fails on the right. Image from [Ledoux
and Weill 2008].

variants [Folwell and Mitchell 1999; Kawamura et al. 2008; Ledoux
and Weill 2008]. These start from a prescribed surface quad-mesh
that is to be matched by the hexahedral mesh to be constructed.
Accordingly, the quad-mesh’s dual loops form the prescribed bound-
aries of the hex-mesh’s dual sheets. The algorithms’ objective thus is
to determine the dual sheets – in particular their mutual intersection
combinatorics – inside these prescribed boundary curves.

The addition of a next hexahedron in the course of an advancing
front approach can be interpreted in the dual as (combinatorially)
fixing the intersection of three dual sheets [Tautges et al. 1996] or
as locally (combinatorially) contracting one of the sheet boundary
loops, conceptually fixing part of the dual sheet and leaving the
loop as the boundary of that part of the sheet that is yet to be
determined [Folwell and Mitchell 1999]. The dual view enables the
formulation of local and semi-local rules and heuristics to more
favorably steer the incremental mesh construction process [Folwell
and Mitchell 1999; Ledoux and Weill 2008]. Nevertheless, issues
such as poorly shaped elements, inverted elements, or high valence
vertices in the result are not easy to avoid in general, even with this
dual perspective.
A particular challenge for this approach is posed by the (very

common) existence of self-intersecting dual loops in the prescribed
boundary quad-mesh. While there is no general theoretical obstacle
to the successful meshing of these, such loops need to be brought
into pairwise or manifold correspondence and be filled by common
sheets of non-trivial topology. It is unclear how the process can
be steered to naturally establish this required structure in general;
therefore, degenerate elements (so-called knives, Fig. 32) and in-
verted elements are common in the result in these cases. Various
strategies (with more or less severe negative side effects on quality)
have been proposed to modify the quad-mesh to get rid of such
self-intersections in advance [Folwell and Mitchell 1999; Kawamura
et al. 2008; Müller-Hannemann 2001; Müller-Hannemann 2002].

Dual Sheet-by-Sheet. Besides these alternative interpretations of
advancing front methods, the dual perspective gives rise to a further
class of methods, less local and incremental. A general challenge
faced by algorithms that attempt to construct hex-meshes in an
incremental fashion (like those discussed in Sec. 4.3) is to ensure
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that “things work out in the end”. Without careful look-ahead, one
may easily end up in intermediate configurations that cannot be
completed in either a valid or a qualitatively reasonable manner.
Algorithms that, by contrast, approach the problem of mesh genera-
tion in a global manner, e.g., via global optimization formulations
(cf. Sec. 4.8), on the other hand, can be computationally much more
intensive.

The dual perspective permits an interesting incremental approach
on a semi-local level. Instead of individual cells, entire dual sheets
can be considered as the atomic entities for incremental mesh gen-
eration in the dual domain. For the case of quadrilateral mesh gener-
ation, which is in close analogy to the hexahedral mesh generation
scenario, the advantages of this semi-local dual view for the purpose
of incremental construction have been discussed in depth [Campen
et al. 2012; Campen and Kobbelt 2014]. Similar properties hold in
the hexahedral case, as is exploited by a number of algorithmic
approaches. However, while in the quad case the dual is formed by
chords, which are 1-manifolds (i.e., either a loop or a curve with two
endpoints, possibly self-intersecting in points), in the hex case the
dual consists of sheets, which are 2-manifolds of arbitrary genus
and with an arbitrary number of holes, possibly self-intersecting in
curves. Therefore, the problem is of significantly higher complexity
and algorithms often restrict to sub-classes of problem instances for
simplicity, such as objects of genus 0, sheets with a single boundary
loop, or dual loops without self-intersections. An idea of inserting
dual sheets in a divide-and-conquer manner was outlined by [Calvo
and Idelsohn 2000]. A concrete algorithm for incremental hex-mesh
construction based on sequential dual sheet generation is described
by [Müller-Hannemann 2001]. The boundary geometry along an
entire candidate sheet is assessed in the decision-making process. In
contrast to related methods that can be interpreted as operating in a
sheet-by-sheet manner [Folwell andMitchell 1999; Ledoux andWeill
2008], this algorithm preserves an invariant through all intermediate
stages that strictly avoids combinatorially invalid configurations.
This obviates the need for intermediate repair operations and guar-
antees the absence of degenerate elements such as knives or wedges
(Fig. 32). On the downside, the more restrictive sheet selection rules
that are in place to ensure the invariant can bring the algorithm to
an early halt. Rather expensive back-tracking strategies can be used
as a remedy to some extent. By the introduction of additional rules
for the selection of sheet operations [Kremer et al. 2014] in particu-
lar non-convex shapes can be handled in a more geometry-aware
manner, commonly leading to less distorted (or less inverted) mesh
elements.

Free Boundary. The above methods assume that a quadrilateral
mesh of the domain boundary is given, effectively as a starting
point for the incremental construction. The ability to prescribe a
boundary mesh can be seen as an advantageous feature in some
scenarios (e.g., when adjacent domains are to be meshed separately
but compatibly). In others, it rather is a limitation: it restricts the
meshing algorithm from the set of all hex-meshes suitable for the
domain to a (small) subset. Recently there have been first attempts
to construct hex-meshes on a sheet-by-sheet basis without prede-
termined boundary structure. Instead, they exploit interactive user
guidance along the domain boundary [Takayama 2019] (Fig. 10), or

Fig. 10. Interactive sheet-based hex-mesh modeling. Image from [Takayama
2019].

loosely follow principal curvature directions [Livesu et al. 2020] to
construct loops which then serve as sheet boundaries. It is worth
remarking that the latter method essentially outputs a subdivided
version of the primal mesh that is implied by the sheets; this has
the effect that the sheets appear as primal facet sheets in the output
mesh. Nevertheless, conceptually both methods are to be viewed as
dual approaches.
Due to the larger search space compared to methods with pre-

scribed boundary mesh, they conceptually have the potential to
achieve results of better quality – but at the same time are compu-
tationally more expensive and require a user in the loop [Takayama
2019] or make simplifications sometimes leading to meshes that
contain some non-hex elements [Livesu et al. 2020].
In this context, the interesting question is that of efficient geo-

metric sheet representation – while in the above methods assuming
a prescribed boundary-mesh, a non-geometric combinatorial repre-
sentation was employed for simplicity. An implicit representation
by means of a level set formulation has proven efficient [Takayama
2019]. It, however, does not support self-intersecting sheets, which
would grant higher flexibility and enable better mesh quality in
various cases. Another, discrete sheet representation space is de-
scribed by [Roca and Sarrate 2008], embedding sheets in the facets
of a particular tessellation of the domain; a concrete algorithm that
operates in this space has not been addressed yet.

Dual Validity. Generally, when constructing hex-meshes out of
dual sheets, it needs to be considered that not any arrangement of
intersecting sheets implies a primal hex-mesh. A number of condi-
tions need to be satisfied so as to avoid non-manifold configurations
and self-adjacent elements, as detailed by [Mitchell 1996]. Violating
sheet arrangements can be modified, often through the insertion
of additional sheets, to ensure these conditions are met [Folwell
and Mitchell 1999]. As these modifications not rarely have a nega-
tive impact on (geometrical and structural) mesh quality, a relevant
challenge is to avoid the need for them right from the start.

4.5 Domain Decomposition
Early proposals for automatic domain decomposition relied on sim-
ple topological operations like submapping and sweeping [White
et al. 1995], that were mainly trying to incorporate the knowledge
of the users upon the two-dimensional domain to expand the de-
composition to the third dimension with a sweeping step.

Sweeping. Given a volume represented by a closed surface, by
identifying two patches where one serves as the source and the other
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one as target, a hexahedral mesh can be generated through “sweep-
ing” the quad-meshed source over the volume to the target [Shih
and Sakurai 1996]. This simple idea is very suitable for CAD models
since many shapes are formed by extrusion. The first batch methods
using such an idea focus on shapes that can be easily meshed by
identifying one source and one target, which are called one-to-one
methods [Blacker 1996; Liu and Gadh 1997; Liu et al. 1999]. However,
for slightly complex CAD models, more source or target patches
have to be involved in decomposing the extrusion geometry into
simpler one-to-one sub-volumes for easy processing.
A step ahead towards automatic decomposition is presented by

Lu and colleagues [2001] that suggest recognizing in a CAD model
the characteristics of portions that can be treated as submappable.
The pipeline uses first a feature recognition, then a cutting plane
identification, and, finally, a decomposition to mesh each portion
with predetermined schemes. Along this direction, a set of many-to-
one and many-to-many approaches are developed [Lai et al. 2000;
Scott et al. 2006; White et al. 2004; Wu and Gao 2014; Wu et al. 2018].
These methods often rely on specific rules to detect line and planar
features, such as various angle thresholds, so that the 3D model
can be decomposed into sub-volumes having the same sweeping
direction. If the decomposition is successful, various node inser-
tion tricks for the sweeping can be employed to ensure the high
quality of the generated hex-mesh [Knupp 1998; Ruiz-Gironés et al.
2011; Staten et al. 1999]. There are also approaches that allow multi-
ple sweeping directions by computing a hierarchical sub-geometry
structure [Miyoshi and Blacker 2000].

Kowalski and colleagues [2012] introduce the notion of fundamen-
tal sheets (fun-sheets), noticing that a hexahedral mesh is layered,
in opposition to the lack of reference surfaces typical of tetrahedral
meshes. Starting from a tet-mesh, converted in a hex mesh and
identifying these fun-sheets, using topology and geometry of the
shape, they obtain a better decomposition that catches the intrin-
sic characteristics of the shape. This approach is further enhanced
in [Wang et al. 2017].
An interesting approach to the problem is the one presented by

Lu and colleagues [2017]. They design and implement a sketch-
based decomposition tool and evaluate its performance on a group
of beginners and experienced users. They conclude that visual assis-
tance and a geometric reasoning engine can help to obtain excellent
results from a semi-automatic decomposition.

Medial Descriptors. Medial descriptors are a valid proxy in help-
ing to realize a domain decomposition. Both mechanical objects and
free-forms are possible to identify characteristics, mainly the skele-
ton catching the crucial elements of the shape’s mutual relations. A
three-dimensional shape’s skeleton is, in fact, a topological represen-
tation of the shape capable of providing information regarding the
various boundary entities’ relative positions. The skeleton has been
used in multiple methods to help in generating a hexahedral mesh
inside the shape (see e.g., Fig. 11). When dealing with mechanical
objects, usually containing boxes, it is vital to use the general skele-
ton (or medial object), including surfaces. Shapes more related to
biology which can be approximated with a collection of generalized
cones can be easily represented by their curve-skeleton (or medial
axis). Both these proxies have been used to guide the hex-meshing.

Fig. 11. Skeleton driven hex-meshing starts from an input surface mesh
and line skeleton (left), around which a tubular structure composed of
hexahedral boxes is initialized (middle left). Refining this structure and
projecting it on the target surface yields a hexahedral mesh (middle right)
where the distribution of the mesh elements aligns with the skeleton guiding
curves (right closeup). Image from [Livesu et al. 2016].

Price and colleagues introduced the possibility to use the topolog-
ical skeleton of the shape to produce a hex-mesh. They apply it first
on convex shapes [Price et al. 1995], and then on solids with flat and
concave edges [Price and Armstrong 1997]. The idea is to decom-
pose the domain so that each sub-domain can be hex-meshed using
a midpoint subdivision scheme [Li et al. 1995]. Each sub-domain is
meshed using basic primitives that can be placed using the skeleton
and used as elementary blocks to mesh the original domain. The
topological information guides the choice of the correct primitive.
There are limitations in the approach since high-valence boundary
vertices do not have elementary schemes placing them.

Instead of using the skeleton, Sheffer and colleagues [1999] start
from the embedded Voronoi graph of the domain, which is simpler
to create. Using a set of configurations that include the Voronoi
graph’s local topology, it can decompose the domain in sweepable
subdomains that can be combined and smoothed to yield the final
decomposition of the whole domain. Through the computation of
a harmonic field, a general 3D model can be decomposed into 2D
curved slices where quad-mesh templates can be used to form a
large structure decomposition of the 3D model [Gao et al. 2016].
Zhang and colleagues [2007] exploit the particular shape of the

vascular structure to devise a method that uses the curve skeleton
as a basis for the meshing. It is the first proposal in which there is
decomposition in tubular subdomains that are quite simple to mesh
via sweeping. The uniform diameter of the typical vases treated in
the application does not pose the problem of resolution in the ele-
ments. Usai and colleagues [2015] use the curve-skeleton to derive
a quadrilateral base complex given the triangular mesh of shape.
The surface decomposition can be expanded to the domain’s inte-
rior and lead to a method for hex-meshing [2016]. In this work, a
scheme for keeping the mesh elements uniform while the diame-
ter of the subdomains changes is introduced and applied. Another
similar approach [Livesu et al. 2017] employs solid cylindrical pa-
rameterizations to map from the curve-skeleton to the cylindrical
subdomains. This choice allows a simple but effective way to use
the topological information to generate the hex-mesh.
All the methods described in the previous paragraph work fine

only for models resembling collections of generalized cones.
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Quadros [2014] also uses the skeleton as a starting point for
meshing and, combining it with an advancing front approach, can
create hex-dominant meshes. The surface and the skeleton jointly
contribute to form what the author calls corridors that are the basis
for meshing the domain with an advancing front method.
Cai and Tautges [2015] propose an approach that heavily relies

on integer programming due to the classification of the edges for
their parameterization. It is in line with the topological methods
since it introduces a new set of templates that, once applied to the
class of objects they use in their experiments: mechanical parts.

Another interesting approach [Liu et al. 2015] mixes skeletal rep-
resentation of the shape and polycubes to guide the creation of
the hex-mesh. The resulting meshes are non-conforming, including
T-junctions. Another type of non-conforming decomposition, the
so-called motorcycle complex [Brückler et al. 2022b], can be con-
structed guided by a seamless parametrization (cf. Sec. 2.5). This
decomposition has hexahedral subdomains only, and can be refined
into a conforming hexahedral mesh.

Once a suitable decomposition is computed, submapping or sweep-
ing approaches can likely generate hex-meshes with satisfactory
quality. For example, [Wu et al. 2017] can be employed to first
generate a quadrilateral mesh for interfacing surfaces while ensur-
ing conformity among adjacent sub-volumes, and then apply the
straightforward sweeping to generate the final hex-mesh. However,
up to now, the critical issue still lies in how to robustly decompose a
3D model into sweepable sub-volumes while ensuring the necessary
conformity and feature preservation at the interfaces of different
parts. Industry resolved this issue by putting the user in the loop, re-
lying on manual block decomposition and automatic sweeping as a
workhorse for hex mesh generation in commercial software [Altair
2022; ANSYS 2022]. Automatizing the process and freeing the user
from tedious critical work is an open challenge for future methods
in this family.

4.6 Grid based
A hex-mesh can be trivially created by voxelizing the interior of
a closed surface and then projecting its boundary onto the target
geometry [Schneiders 1996a]. Geometric fidelity can be controlled
by tuning the resolution of the voxelization. Since the size of regular
grids grows cubically, to reduce element count a set of adaptive spa-
tial partitioning approaches that rely on hierarchical structures have
been proposed. However, adaptive grids do not define a conforming
hex-mesh because adjacent grid elements may have different size,
generating spurious (hanging) nodes. Grid-based methods differ to
each other for the refinement policy they use, for the technique
used to suppress hanging nodes, or for the method used to project
the mesh on the target geometry.
Methods in this class are among the firsts that were introduced in
the field. From a mesh quality standpoint, they are typically con-
sidered inferior to other methods because: (i) the grid is fixed in
space and the result depends on the orientation of the model; (ii)
the connectivity they generate is intricate and rich of singular edges
with high valence [Livesu et al. 2021]; (iii) the meshes they generate
are highly unstructured and do not endow a coarse block decompo-
sition (see Fig. 1 and Fig. 21 in [Livesu et al. 2020]). Nevertheless,

when compared with alternative options grid-based methods really
stand out in terms of robustness. To date, they are the only fully
automatic methods capable of successfully hex-meshing any input
shape, regardless of its geometric or topological complexity. For this
reason, they are the only automatic methods currently implemented
in professional software [CoreForm 2022a; CUBIT 2022; Distene SAS
2022]. Despite the most prominent methods were developed more
than 10 years ago and the field remained quiet for some years, major
improvements have been proposed in recent years, also opening
avenues for further research.

Refinement. Grids should satisfy both local and global criteria.
At a local level, cell size must be compatible with the local size of
the input object, ensuring geometric fidelity. At a global level, it
must be possible to select a subset of grid elements (e.g., the ones
completely internal to the input shape) such that the topology of
this arrangement matches the one of the original object. In case the
grid and the input mesh are not homotopic, a bijective mapping
between them is not possible. Local criteria are easier to enforce.
The most typical split rules used in the literature are normal simi-
larity [Ito et al. 2009], local thickness [Livesu et al. 2021; Maréchal
2009; Pitzalis et al. 2021], surface approximation [Gao et al. 2019]
or a combination of these and other indicators [Bawin et al. 2021].
The fulfillment of global criteria is more complex and demands to
preprocess the input shape [Mitchell and Vavasis 1992]. For this
reason, the vast majority of methods do not guarantee that the out-
put hex-mesh will have the same genus and number of connected
components of the input model [Livesu et al. 2021; Maréchal 2009;
Pitzalis et al. 2021], or ensure this property at the cost of severe
over refinement (e.g., iteratively splitting all grid elements until
topological equivalence is obtained [Gao et al. 2019]). Refined cells
can be split in two alternative ways: 2-refinement splits each edge
in two, thus obtaining 8 sub-cells for each adjacent hexahedron;
3-refinement splits each edge in three, thus obtaining 27 sub-cells.
In both cases, the sequence of splits is encoded in a hierarchical tree
structure, which corresponds to an octree for the 2-refinement, and
to a 27-tree for the 3-refinement. Approaching this body of literature
for the first time may be confusing, because all methods generally
refer to these data structures as “octrees”, even though this is not
always correct. The use of 27-trees for 3-refinement is explicitly
mentioned in [Schneiders et al. 1996] and a few other articles, and
is only implicitly assumed in other articles that refer to these ones.

Hanging Nodes. The removal of hanging nodes is obtained by
substituting elements of the grid with templated topological tran-
sitions that locally restore mesh conformity (Fig. 12). If adjacent
grid elements differ by at most one level of refinement there exist 28

alternative configurations which, discarding symmetries, reduce to
20 unique cases [Weiler et al. 1996]. Existing methods can be broadly
categorized into two families: primal methods aim to directly incor-
porate the hanging nodes in the output hex-mesh; dual methods
aim to modify the input grid such that its dual mesh contains only
hexahedral cells.
Primal methods often operate on 3-refined grids and 27-trees, be-
cause it is easier to suppress their hanging nodes [Schneiders et al.
1996]. However, handling all the possible 20 configurations is prov-
ably impossible, because many concave transitions are bounded by

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.



14 • N. Pietroni, M. Campen, A. Sheffer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

hanging
nodes

Primal
polyhedral

grid

Dual
hexahedral
mesh

FR
O
N
T

B
A
C
K

Fig. 12. Dual methods regularize the valence of hanging nodes (black dots) by connecting them pairwise along triangular bridges, so that the dual is a
hex-mesh. Top: the flat transition firstly introduced in [Maréchal 2009]. Bottom: the set of atomic schemes introduced in [Livesu et al. 2021] to handle all
possible transitions in strongly and weakly balanced grids. Images partly from [Livesu et al. 2021].

Fig. 13. A subset of the 3-refinement schemes introduced in [Schneiders
1996b]. The leftmost and rightmost elements correspond to the unrefined
and fully refined cubes, respectively. The other templates are used tomanage
the transition between them.

an odd number of quadrilateral elements, a condition for which
it is known that a hexahedralization of the interior does not ex-
ist [Mitchell 1996]. Transition schemes for 4 flat and convex tran-
sitions (see Fig. 13) appeared in multiple articles [Schneiders 1997,
1999, 2000; Tack et al. 1994] and were successfully used to compute
hexahedral meshes, prescribing additional refinement to convert
unsupported transitions into the supported ones. Over the years ad-
ditional schemes were introduced to handle concave edges [Elsheikh
and Elsheikh 2014; Ito et al. 2009; Zhang and Bajaj 2006], but a cor-
rect handling of concave corners remains elusive. Several works, like
[Ebeida et al. 2011; Owen et al. 2017; Zhang et al. 2013], exploit the 2-
refinement schemes introduced in [Schneiders et al. 1996] to remove
hanging nodes. Unlike from the 3-refinement approaches, the grid
needs to satisfy more strict constraint as those described below for
dual methods. Note that, as for the 3-refinement case, the schemes
in [Schneiders et al. 1996] do not allow to address all the possible
configurations, often leading to an excessive over-refinement of the
grid.
Dual methods operate on 2-refined grids and octrees, and are supe-
rior to primal methods because they can handle all possible transi-
tions. All known schemes operate on balanced grids, that is, grids

where the refinement mismatch between adjacent elements is at
most one. However, not all methods agree on the definition of “ad-
jacent”. For the majority of methods two cells are adjacent if they
share one face, edge or vertex (strong balancing). In [Livesu et al.
2021] the authors relaxed this formulation, enlarging the class of
balanced grids and limiting restrictions to size mismatch only for
cells sharing a face (weak balancing). Weakly balanced grids permit
to greatly reduce refinement (up to 64% less elements in their exper-
iments), but require a slightly more complex scheme set. Maréchal
was the first to observe that if all grid vertices have valence 6 and all
grid edges have valence 4, the dual of the grid is a pure hexahedral
mesh [Maréchal 2009]. Based on this observation he proposed a set
of cutting schemes that, regularizing the valence of grid elements,
allow to obtain a pure hexahedral mesh via dualization (Fig. 12).
Since the valence of hanging nodes is fixed pairwise, dual meth-

ods also require that the grid is pair, that is, for each cluster of grid
elements with same amount of refinement the number of hanging
nodes must be even across all grid directions. Differently from bal-
ancing, the pairing condition is non local, hence difficult to enforce.
Pairing is typically enforced directly in the octree, fully splitting par-
ent nodes if their siblings have been split [Gao et al. 2019; Hu et al.
2013; Livesu et al. 2021; Maréchal 2009]. As shown in [Pitzalis et al.
2021] all these methods operate in a restricted space of solutions
and tend to severely over refine the input grid, even if it is already
pair. The authors showed that pairing can be enforced directly in
the grid by solving a sequence of linear problems, obtaining coarser
grids that approximately halve the number of elements. Despite
superior to tree-based methods, also this method does not cover the
whole space of solutions, and may occasionally refine an already
pair input grid (see Sec. 7 in [Pitzalis et al. 2021]). Even though
dual approaches exist since 2009, the transition schemes they use
were only vaguely described in the literature, making these methods
hardly reproducible. Maréchal [2009] pioneered this technique, but
his paper describes in detail only one specific transition (Fig. 12,
top). Gao and colleagues proposed three alternative schemes based
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Fig. 14. 2D pipeline of the feature preservation octree-based hex-meshing. Top row: adaptive quadtree constructed from the input, dual of the quadtree, and
quadrilateral (quad-) mesh including a scaffold mesh. Bottom row: topological matching of feature graphs, variational padding of both the target mesh and
the scaffold, mesh deformation to fit the input, and the final pure quad-mesh. Image from [Gao et al. 2019].

Fig. 15. If a quad maps two of its four edges onto a linear feature line
it becomes locally degenerate (left). Splitting it into 5 sub-quads ensures
enough degrees of freedom to produce all valid mesh elements. Similar
configurations may also occur on 3D meshes, and can be resolved with a
special padding scheme that splits a hexahedron into 6 sub elements (right).
Image from [Gao et al. 2019].

on similar ideas [Gao et al. 2019], also releasing their code, but these
schemes were recently shown to be not fully exhaustive and may
fail to produce a conforming hex-mesh starting from a balanced
and paired grid [Livesu et al. 2021]. In [Livesu et al. 2021] the au-
thors propose a comprehensive study of dual schemes, clarifying
ambiguities and implementative choices, and ultimately deriving an
exhaustive optimal set of transitions for both strongly and weakly
balanced grids (Fig. 12, bottom). CinoLib [Livesu 2019] hosts an
open source implementation of all such schemes, as well as the code
necessary to install them in a given adaptive grid.

Projection. Considering the axis-aligned nature of grid-basedmeth-
ods, to approximate the input object well the boundary vertices
have to be projected onto the target geometry. To this end, main-
taining the inversion-free property of a hex-mesh poses a great
challenge. While [Lin et al. 2015; Maréchal 2009] rely on iterative
vertex smoothing to slowly move the vertices onto the boundary so
that a local smoothing can be backtracked if it causes flipped hexa-
hedra, [Gao et al. 2019] presents a global deformation method that
can robustly align the generated hex-mesh with the input surface
(including sharp features) within a distance bound. Fig. 14 shows
the 2D pipeline of the method presented in [Gao et al. 2019]. After
grid refinement and removal of hanging nodes, the grid is parti-
tioned into two sub-meshes: an inside “target” mesh that will be
optimized to be the final output, and an outside “scaffold” mesh

that ensures the bijectivity of the map throughout the optimization
process. Geometric fidelity is achieved by first building a topologi-
cal bijectivity mapping between the input mesh and the boundary
of the target mesh, and then geometrically deforming the target
mesh towards the input surface shape using a locally injective map-
ping technique [Rabinovich et al. 2017]. Note that a variational
padding technique (see Sec. 5.4) is also introduced for both the tar-
get mesh and the scaffold, so as to increase the number of degrees
of freedom for optimization. The approach can robustly produce
an all-hexahedral mesh with several guarantees: 1) the output is
manifold and its boundary surface has the same genus with the
input, (2) all hexahedral elements have positive scaled Jacobian
(3) the boundary of the hex-mesh is error-bounded, i.e., within 𝜖

distance from the input mesh, and (4) the boundary of the mesh
has no self-intersections thanks to the scaffold mesh. All of this is
obtained by trading robustness for efficiency, thus computational
cost and memory resources can be prohibitive for commodity hard-
ware. On the other hand, iterative methods such as [Lin et al. 2015;
Maréchal 2009] are quite efficient, although may occasionally fail
to preserve the shape well. Further research is needed to devise
an algorithm that optimally combines robustness, efficiency and
geometric fidelity.

Features. The preservation of sharp surface features is both geo-
metrically and topologically challenging for grid-based approaches.
First of all, since the mesh connectivity is derived by the underly-
ing grid, surface vertices may not have enough incident edges to
reproduce high valence feature points in the target mesh. There-
fore only a subset of all possible feature networks can be faithfully
reproduced. Moreover, hexahedra that have more than one facet
exposed on the surface may easily be traversed by feature lines
across more than one edge, becoming ill-shaped or even degenerate
once projected onto the target geometry. To make sure that each
element has at most one feature edge, specific padding schemes are
used (Fig. 15 and Sec. 5.4). Finally, despite the fact that it works well
in most cases, current algorithms for feature mapping are heuristic
and do not offer guarantees. The most recent methods are based
on ideas expressed in [Gao et al. 2019], and operate by iteratively
processing each feature separately, projecting its endpoints to the
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Fig. 16. The pipeline for polycube based hexmeshing generates a locally injective simplicial map through volumetric deformation, and then uses it as a
medium to transfer a regular grid sampling of the polycube to the target shape.

closest vertices in the hex-mesh, and then finding the discrete path
that connects them with a Dijkstra search that operates on a scalar
field that encodes the euclidean distance from the input feature.
Depending on the ordering of the features and the combinatorial
structure of the hex-mesh, there can be conflicting configurations
where a path that connects the two endpoints of a feature and does
not conflict with any previously inserted feature does not exist. Fur-
thermore, even if such a path exists, there may be cases in which
the previously inserted features force a path to deviate from its
geometric target significantly.

Assemblies and Multiple Materials. While all methods described
so far assume as input a single model composed of a single mate-
rial, grid-based techniques have been successfully extended to the
multi material case [Su et al. 2004; Zhang et al. 2010], and can also
handle complex non manifold CAD assemblies [Qian and Zhang
2012]. From a grid processing perspective, these methods rely on
the processing techniques described in the previous paragraphs.

4.7 Polycube Maps
A successful line of algorithms works by volumetrically mapping
a shape into an orthogonal polyhedron (or polycube [Tarini et al.
2004]) embedded in R3 whose corners align with the integer grid
Z3. The integer grid inside the polycube then defines an (interior-
regular) hexahedral mesh connectivity. Its nodes can be pulled back
into the input object following the inverse map (Fig. 16), defining
a hex mesh for the object. In this sense, this approach considers
a special case of integer-grid maps (Sec. 2.5), further discussed in
Sec. 4.8: the interior of the shape is restricted to be free of map
singularities, thus free of irregular edges and vertices in the implied
hexahedral mesh.

Polycube methods are therefore based on two fundamental build-
ing blocks: the definition of the polycube domain shape, and the
generation of the volumetric map onto it. These two objectives
can be pursued separately (i.e., defining a valid polycube domain
structure first, and then computing the map) or together, letting the
domain shape evolve while optimizing the map for low distortion

and boundary alignment with the coordinate planes. The latter can
be viewed as (incrementally) deforming the shape in a volumetric
manner, aiming to find the polycube domain shape best fitting the
input object.

Structure. The structure of the polycube can be defined by assign-
ing to each surface element of the input (tetrahedral) mesh a label
that represents one of the six global axes (±𝑋,±𝑌,±𝑍 ). Clusters of
adjacent elements with the same label identify the facets of the poly-
cube. Various approaches have been pursued to assign labels, from
purely local approaches, assigning to each surface element the axis
closest to its normal [Gregson et al. 2011], over approaches taking
context into account, e.g. using a modified centroidal Voronoi tessel-
lation in the space of normals [Hu and Zhang 2016], to incremental
approaches [Mandad et al. 2022]. The idea is to, afterwards, volu-
metrically deform the input mesh such that each surface element
attains an orientation that corresponds to its assigned label.
However, not every labeling permits a corresponding polycube.

Some correction procedures have been proposed, to be used as a
postprocess or interleaved with the labeling [Gregson et al. 2011;
Livesu et al. 2013]. A set of local conditions is known that allow
checking whether the graph formed by a labeling corresponds to the
graph of some orthogonal polyhedron [Eppstein andMumford 2010];
they can be used to design label modification strategies [Livesu
et al. 2013]. However, these conditions are neither necessary (they
focus on a restricted set of polycubes) nor fully sufficient: suitability
of the graph formed by the labeling does not imply suitability of
the labeling itself, because the graph’s embedding is ignored, as
pointed out, e.g., by Mandad et al. [2022]. Sufficient conditions are
of inevitably global nature, such as those considered by Sokolov
[2016], who describes a complex post-process procedure to modify a
labeling into a state structurally suitable for a polycube. Interactive
tools for user assisted polycube construction or modification also
exist [Li et al. 2021; Yu et al. 2022; Yu and Wei 2020].

Mapping. The volumetric map can be obtained using dedicated
deformation energies that iteratively deform the object such that
surface normals rotate until they snap to the global coordinate
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Fig. 17. Top: a set of pathological shapes with exemplary surface labelings
that will push polycube deformation energies towards the generation of
locally or globally inconsistent states, not defining a proper polycube. Bot-
tom: after strategically modifying the labeling, a deformation into polycube
shape is successful. Image from [Sokolov 2016].

axes. These methods may take a pre-computed polycube labeling
as input [Gregson et al. 2011; Livesu et al. 2013], freely deform the
shape until the polycube structure reveals itself [Fang et al. 2016;
Huang et al. 2014; Mandad et al. 2022], or interleave the two opera-
tions, updating the reference labeling after each iteration [Fu et al.
2016]. These pipelines often include heuristic post-processing steps
that aim to remove structural artifacts (e.g., removing label regions
with less than 4 neighboring regions). In [2015] Sokolov and Ray
point out that there are local as well as global conditions regarding
structural validity, hence complete sanitization can be difficult. In
particular, since axis-aligned features are quite naturally preserved
during deformation, the presence of long, slightly diagonal creases
may easily result in globally inconsistent configurations which are
hard to recover from (Fig. 17). Tiny features such as protuberances,
tunnels, and handles are also critical, and may even require input
mesh refinement to enable any valid labeling.
Polycube deformation operates on a supporting tetrahedraliza-

tion of the object. Early deformation energies defined in [Gregson
et al. 2011; Huang et al. 2014] did not sufficiently penalize distorted,
degenerate and flipped elements, producing maps that are not lo-
cally injective, especially in the vicinity of concavities. Fu and col-
leagues [Fu et al. 2016] introduced a deformation energy that incor-
porates the AMIPS term [Fu et al. 2015], which grows to infinity in
the presence of degenerate or inverted elements. Various similarly
flip-preventing energies have been introduced in recent years [Fu
and Liu 2016; Rabinovich et al. 2017], and could be adopted in this
setting. It is important to note, however, that the strict prevention of
flips may reduce the deformation space to an extent that no map that
respects the boundary-alignment constraints can be found, unless
further mesh refinement capabilities are introduced.
Alternatively to volumetric deformation, one can in principle

use a surface-based method to define a polycube-surface map (e.g.,
with [Yang et al. 2019]) and then solve for a compatible volumetric
mapping between the two shapes. Again, however, despite the high
level of practical robustness showcased by recent approaches [Du
et al. 2020; Garanzha et al. 2021], the fully reliable automatic gener-
ation of constrained volumetric maps without flips remains an open
problem [Fu et al. 2021]. Motivated by this difficulty, an interactive
polycube construction pipeline that puts the user in the loop has
been recently proposed [Li et al. 2021]. Users are allowed exten-
sive control over each stage, such as editing the polycube structure,

positioning vertices, and exploring the trade-off among competing
quality metrics, while also providing automatic alternatives. The
flip-averse mapping energy proposed in [Garanzha et al. 2021] is
internally used to discourage the generation of flipped elements.
The use of alternative mesh representations has also proved useful
to robustly construct volumetric mappings. In [Paillé et al. 2015]
the authors represent a tetrahedral mesh as a collection of dihe-
dral angles, and propose a robust spectral reconstruction method to
generate an explicit mesh up to a global similarity transformation.
The use of reduced coordinates to represent and manipulate meshes
(e.g. via curvature or edge lengths) is a broad topic and has been
widely studied, especially for the surface case [Campen et al. 2021;
Crane et al. 2011]. Specifically, the aforementioned paper shows
that any input polycube segmentation can be translated into a set of
prescribed dihedral angles that encode the change of normal orien-
tation along the surface. Using the proposed reconstruction method
allows to convert such angles into an explicit mesh, obtaining a
locally injective polycube map.

Quantization. Beyond piecewise aligning the object’s surfacewith
the coordinate axes, these pieces furthermore need to be aligned
specifically with integer coordinates. Only then does each cubical
cell of Z3 lie either entirely within or without the polycube domain,
thereby implying a proper hexahedral mesh. The selection of the
integer coordinates is sometimes referred to as quantization. A com-
mon strategy is to, in a first phase, generate a map ignoring the
integer requirement, and then determining integer choices based on
this relaxed solution, followed by a further deformation to match
these choices. A classical approach for the determination of rea-
sonable integers is rounding: for each planar surface region of the
relaxed solution, select the integer closest to its constant coordinate.
As this simple approach is fragile (especially for coarse target reso-
lutions, incompatible integers obtained by rounding may force the
map into degeneration), dedicated quantization strategies have been
devised [Chen et al. 2019; Cherchi et al. 2016; Protais et al. 2022].
A recent quantization method [Brückler et al. 2022a], based on the
so-called motorcycle complex [Brückler et al. 2022b], prevents de-
generation altogether and is formulated for general integer-grid
maps, of which polycube maps are a special case. It can therefore
also be used in the context of frame-field based map generation
methods, discussed in Sec. 4.8.
After quantization, the integer grid cubes contained in the poly-

cube domain can be mapped into the input object via the inverse
map, obtaining a hexahedral mesh. Depending on the curvature of
the map, the individual hexahedra may undergo severe deformation.
For instance in the common setting of trilinear hexahedra (cf. Sec. 3),
this can lead to elements with flipped orientation, even if the poly-
cube map is injective. Untangling techniques may be applied in
such cases (Sec. 6), albeit without guarantees of correctness. The
resolution of the integer grid inside the polycube (the “sampling
frequency”), which can be controlled by appropriately scaling the
map before quantization, of course has a significant effect on the
likelihood of such issues.

Adaptive Resolution. While a regular grid of constant resolution
(i.e. Z3) is typically used, adaptive sampling schemes can be used to
control hexahedral element size and anisotropy. Adaptively sampled
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Fig. 18. Adaptively sampling a coarse polycube allows to restore major
features that are not explicitly encoded in parametric space (right), and that
could not be obtained with a regular sampling (left), not even with a dense
one (middle). Image from [Pitzalis et al. 2021].

polycubes can be used to improve geometric fidelity while keep-
ing the mesh resolution low, and to better capture regions of high
distortion or curvature in the polycube map, restoring major sur-
face features that are missed when using a regular sampling, unless
extremely dense (Fig. 18). In recent literature there are attempts
to address size control, obtained either by thickening a region of
interest in polycube space prior to sampling [Xu et al. 2017] or
adapting octree-based meshing to polycube space [Hu and Zhang
2016]. Pitzalis and colleagues [2021] showed how adaptive sampling
can be unlinked from rigid octree hierarchies and extended to gen-
eralized grids of any shape or topology. These preliminary results
suggest that a tighter integration of adaptive sampling in polycube
space could benefit the whole pipeline. Current methods heavily
rely on the ability of the polycube generation module to capture all
the features of the object (at all scales) so as to secure a high quality
mesh structure. Finding a better balance between features that are
explicitly encoded in the polycube and features that will be repro-
duced with adaptive sampling, algorithms may be able to better
distribute the complexity throughout the whole pipeline, possibly
increasing their robustness. On the negative side, any non-regular
sampling introduces additional irregularities in the mesh, so as to
enable the transition between regions of different resolution. This
reduces the level of structural regularity (Sec. 2.4) and can make the
resulting hexahedral mesh unusable for applications that exploit a
regular interior, or a coarse block decomposition endowed in the
mesh connectivity, such as IGA methods [Hughes et al. 2005].

Features. Desirable properties such as curvature and feature align-
ment depend on how the polycube map orients these entities in Z3.
In particular, since sharp creases are preserved only if they map to
integer isolines in polycube space, there are intrinsic topological
limitations to the class of feature networks that can be correctly
reproduced (e.g., a convex vertex with more than three incoming
feature lines cannot be correctly meshed). Since geometric features
are often characterized by surface normal discontinuities, labeling

methods such as [Hu and Zhang 2016; Livesu et al. 2013] intrinsi-
cally promote their positioning along polycube edges. Neverthe-
less, these methods do not explicitly handle surface features, and
may often fail to preserve them [Guo et al. 2020]. To our knowl-
edge, the only method that explicitly promotes feature alignment is
CE-PolyCubeMaps [Guo et al. 2020]. Given an input network, the
authors attempt to transform each feature into a piece-wise linear
curve that aligns with the global axes. Features that do not align (or
conflict with other features) are discarded; the others are included in
the polycube structure generation, with a feature-aware variant of
PolyCut [Livesu et al. 2013]. While practically superior to previous
approaches, also this method does not provide strict guarantees.
Furthermore, features are only mapped to polycube edges, and the
possibility to align to integer isolines that are internal to polycube
faces is not exploited.

Maturity. Polycube methods have received increasing attention
from the meshing community and have now reached a decent ma-
turity level. The most recent algorithms allow to blindly process
datasets composed of more than a hundred shapes, producing hex-
meshes of good quality [Fu et al. 2016]. In terms of mesh structure,
these methods typically produce valence semi-regular meshes, and
may occasionally produce semi-regular meshes if singularities (i.e.,
polycube corners) align [Cherchi et al. 2016]. The singular structure
of a polycube-based hex-mesh is fully exposed on the surface, and
consists of all polycube edges and corners. This inability to position
singularities in the interior inherently limits the map, and may occa-
sionally be the source of unnecessary distortion. A recent work of
Guo and colleagues [2020] proposes to enhance the singular struc-
ture with diagonal cut surfaces that penetrate the interior of the
polycube, permitting further distortion reduction. Intuitively, these
cuts can be thought of as analogous to cone singularities in sur-
face mesh parameterization [Soliman et al. 2018], although they are
more constrained because the two copies of each cut surface must
still obey to the constrained polycube structure. Another typical
improvement consists in pushing the external singular structure one
layer inside the volume, adding a global padding layer that avoids
over-constrained hexahedra with more than one facet exposed on
the surface (see Sec. 5.4). More sophisticated padding schemes that
directly exploit the polycube map to optimally balance distortion
with mesh growth are also available [Cherchi et al. 2019a].

Abstract Polycubes. Various techniques use segmentation (e.g.
based on a shape skeleton) to partition a shape, generating an atlas
of maps to a set of face-adjacent cuboidal domains [Li et al. 2010,
2013; Liu et al. 2015; Livesu et al. 2016; Usai et al. 2015] (closely
related to domain decomposition approaches Sec. 4.5), or a map to a
single but self-adjacent polycuboidal domain [Fang et al. 2016; Man-
dad et al. 2022], related by rigid transition functions. The latter can
be viewed as an integer-grid map (Sec. 2.5) that may have transitions
across parameter chart cuts, but these are restricted such that no
interior singularities are implied. This provides additional degrees
of structural freedom on shapes of higher genus. Sometimes these
structures are referred to as abstract or generalized polycubes, em-
phasizing that these structures may not have a (continuous global)
embedding inR3, due to the transitions. In contrast to standard poly-
cubes, these – at least conceptually – enable the generation of any
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hexahedral mesh with regular interior. For the generation of such
non-embeddable polycubes, extrinsic deformation techniques, as
described above, are typically ill-suited. Instead, intrinsic frame-field
based integer-grid map generation (Sec. 4.8) may be used, restricted
to the interior-regular setting [Fang et al. 2016; Mandad et al. 2022].

4.8 Frame Fields
Frame fields offer a promising research direction for general hexahe-
dral mesh generation. A prototypical algorithm (see Fig. 19) consists
of three major steps: (i) synthesis of a boundary-aligned frame field
(Secs. 4.8.1 and 4.8.2), (ii) generation of an integer-grid map that
resembles the frame field (Sec. 4.8.5), and (iii) extraction of the inte-
ger level-sets which form an explicit hexahedral mesh [Lyon et al.
2016].
The ultimate goal of such an algorithm is to find a valid integer-

grid map (cf. Sec. 2.5) that minimizes a distortion objective while
satisfying alignment constraints induced by boundaries or other
features of the input geometry. Conceptually, it would be prefer-
able to synthesize or optimize an optimal integer-grip map directly,
without any intermediate frame field. Unfortunately, the underly-
ing non-convex mixed-integer problem is too hard for available
optimization techniques such that direct optimization without a
good starting point inevitably results in a poor local minimum. Note
that the first derivative of an integer-grid map 𝑓 : R3 ↦→ R3 is a
frame field of Jacobian matrices 𝐽 : R3 ↦→ R3×3. The idea of frame
field based methods is to search for approximations of 𝐽 , which are
sufficiently accurate for identifying appropriate singularities (one
discrete aspect of IGMs), while being significantly easier to optimize
by ignoring various other difficulties of IGMs, e.g. integer quantiza-
tion (another discrete aspect of IGMs), local injectivity, integrability,
and element sizing. Consequently, a frame field can be understood
as a relaxation of an integer-grid map.

One important goal when designing frame field schemes consists
in finding a good tradeoff between faithfulness of the relaxation
and ease of optimization. In fact, most frame field schemes further
decompose the optimization task into different stages, e.g. first ini-
tializing the field with a rough but convex relaxation, and only
subsequently continuing the optimization with a more accurate but
non-convex formulation. State-of-the-art frame field methods differ
in (i) the required input data (e.g. domain as triangle or tetrahe-
dral mesh, or manual specification of singularities), (ii) the space of
frames (e.g. octahedral, odeco, or general), (iii) the parametrization
of frames (e.g. Euler angles, quaternions, 3 × 3 matrices, spherical
harmonics coefficients, possibly in differential form), (iv) handling
frame symmetries explicitly by matchings, or implicitly by lifting
frames to a space with built-in symmetry, (v) the objective function
(e.g. Dirichlet energy, or Ginzburg-Landau type energy), (vi) the
optimization scheme (e.g. Gauss-Seidel relaxation, manifold opti-
mization, or MBO with alternating diffusion/projection). All these
variants are equipped with different advantages and drawbacks,
which we will survey in more detail in the following while intro-
ducing the required background on-the-fly.

4.8.1 Frame Field Representations. A frame field can be seen as a
generalization of a vector field to a quantity that locally describes
the shape of a (linearly deformed) cube. Locally, a frame consists of

three linearly independent vectors, which represent a parallelepiped,
i.e., the orientation and shape of a linearly deformed cube. It is im-
portant to understand that globally a frame field is significantly
more complex than three superimposed vector fields since it can
contain singularities where topologically the vector fields are non-
trivially interconnected on a branched covering [Nieser et al. 2011].
As a consequence, the connection induced by a frame field might
exhibit nonzero monodromy, i.e., a vector does not return to itself
when transported along a cycle around a singularity.

Space of Frames. There are various different representations to lo-
cally encode a frame. A straightforward choice that is capable of fully
describing the shape of a linearly deformed hexahedron are three ex-
plicit vectors𝑢, 𝑣,𝑤 ∈ R3 bundled into a matrix 𝐹 = (𝑢, 𝑣,𝑤) ∈ R3×3,
called a general frame. The local shape of the hexahedron then
simply corresponds to the parallelepiped formed by 𝑢, 𝑣 and 𝑤 .
Usually, the space of frames is restricted to non-degenerate and
orientation-preserving configurations, imposing the non-convex
constraint det 𝐹 > 0. In practice, often subspaces of general frames
are chosen, where additionally 𝐹 is orthonormal (octahedral frame)
or orthogonal (odeco frame), meaning that only rotations or rotations
and scaling along the principal axes are possible.

Parametrization of Frames. For each space of frames – octahedral,
odeco, or general – there are different parametrizations available,
besides the matrix 𝐹 . So far, octahedral frames have been investi-
gated most extensively. They correspond to rotations, which can
be parametrized by unit quaternions [Gao et al. 2017b; Liu et al.
2018], Euler angles, or an axis-angle representation. Euler angles
have been used either w.r.t. a global coordinate system [Huang et al.
2011], or alternatively a local coordinate system [Palmer et al. 2020;
Ray et al. 2016] to avoid gimbal locks. Adding three positive scaling
factors to any of the octahedral frame parametrizations turns them
into odeco frame representations.

Handling Cube Symmetries. The explicit representation of frames
via linear transformations has one major disadvantage; it is not
unique. For example, the matrix (𝑢, 𝑣,𝑤) transforms the unit-cube
into an identical parallelepiped as the matrix (𝑣,𝑤,−𝑢). Since there
are 6 potential permutations of the three vectors and 23 potential
choices of sign, in total, there are 48 different matrices, which encode
a single frame. Formally, equivalence is established by the binary
octahedral group 𝐵𝑂 with 48 symmetry transformations. Since the
octahedron is dual to the cube, their symmetry transformations
are identical. By fixing the orientation (the sign of the determi-
nant of 𝐹 ), it is possible to reduce the elements in one equivalence
class to 24 elements with octahedral symmetry. This explains the
term octahedral field [Solomon et al. 2017], which is often used for
frame fields restricted to rotations, while 3D cross field is yet another
common name. The non-uniqueness of the (𝑢, 𝑣,𝑤)-representation
significantly complicates the optimization of frame fields by in-
ducing discrete variables ^ , called matchings, between neighboring
frames, with values from the octahedral group O. With explicit
matchings a frame field algorithm needs to simultaneously opti-
mize discrete matchings in addition to continuous frame degrees of
freedom, e.g. [Gao et al. 2017b].
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Fig. 19. Frame field based hexahedral mesh generation: Given an input tetrahedral mesh (left), first a boundary aligned and smooth frame field is generated
(middle, yellow). The frame field serves as a proxy for the local orientation of hexahedra and thus enables the efficient generation of an integer-grid map
(middle, red), which induces a hexahedral mesh (right). Image from [Liu et al. 2018].

An alternative to matchings are representations with a built-
in symmetry, which offer a unique representation of equivalent
frames. The work of Huang and colleagues [2011] expresses octa-
hedral frames as rotations of the polynomial 𝑥4 + 𝑦4 + 𝑧4, which
are by construction invariant under transformations by elements
of O. By restricting the polynomial to a sphere, it can be expressed
in the spherical harmonics basis, lifting a single octahedral frame to
a 9-dimensional representation vector. Since rotations only possess
three degrees of freedom, it is clear that the spherical harmonics
representation is a relaxation, i.e. not all 9-dimensional vectors cor-
respond to a rotation of the polynomial 𝑥4 + 𝑦4 + 𝑧4. An identical
representation can be derived from the perspective of 4th-order
symmetric tensors [Chemin et al. 2018; Golovaty et al. 2021], which
have been further generalized to a 15-dimensional representation
of odeco frames offering independent scaling of axes [Palmer et al.
2020], or even general, non-orthogonal frames [Desobry et al. 2021].
All these representations lift the frame representation to a (non-
linear) sub-manifold embedded in a higher-dimensional coefficient
space, which imposes challenges from the optimization perspective.

Differential Frame Representation. Instead of representing a frame
field by pointwise specification of frames, one valuable alternative
consists in encoding its derivative, i.e. the change of frames. Af-
ter specifying one frame in the domain, the entire frame-field can
then be re-constructed by integration. Such integration is path-
independent given that the specified derivative is integrable, i.e. all
fundamental monodromies are elements of the octahedral group
when expressed in the coordinate system of the frame itself. Cor-
man and Crane [2019] employ such a differential representation
in a frame-field optimization setting with prescribed singularities.
They extend the theory of moving frames to frame-fields with cube
symmetry. Conceptually, the setting is analogous to the 2D setting
addressed by Crane et al. [2010]. In both cases, all singularities and
thus all fundamental monodromies need to be specified as input.
However, while in the 2D setting a simple linear solve is sufficient
to solve the optimization problem, the non-commutativity of 3D
rotations requires a (continuous) non-linear least-squares optimiza-
tion. Interestingly, despite the non-convex objective function, ex-
periments suggest that the resulting field is independent from the
chosen initial configuration. Leveraging a differential frame-field
representation for optimizing fields with unconstrained singular-
ities has not been done so far but is an interesting direction for
future work. It would require replacing the fixed monodromies by
the feasible set of discrete choices from the octahedral group.

4.8.2 Frame Field Optimization. The optimization problem usu-
ally consists in finding the “best” frame field, which aligns to the
boundary of the domain. Best in this context is often interpreted as
as-smooth-as-possible and is specified by an objective function. This
objective on the frame field level essentially serves as surrogate for
the actual objective of low distortion on the integer-grid map level,
as well as, indirectly, for the objective of integrability of the frame
field. Note that a good choice of objective function, constraints,
discretization, and optimization scheme strongly depends on the
frame representation at hand. Different combinations can lead to
very different trade-offs between the faithfulness of the relaxation
and the ease of optimization, as will be discussed in the following.

Objective Function. Smoothness of the frame field is the most
widely employed objective function to approximately minimize
the distortion of the integer-grid map. Consequently, most algo-
rithms are based on a discretization of the Dirichlet energy 𝐸𝐷 =∫
Ω | |∇𝜙 | |2𝑑𝑥 , where𝜙 is a frame representation. The space of frames
and the chosen parametrization matter in this context. For instance,
similarly to the 2D setting (cf. [Vaxman et al. 2016]) one observes
different behavior when solely optimizing rotations (angle-based
representations in 2D) in comparison to a mix of rotations and mag-
nitudes (Cartesian representations in 2D). Typically, rotation-based
objective functions are observed to lead to superior singularities
in the sense of enabling lower distortion of the resulting integer-
grid map. However, on the downside, rotation-based objectives are
usually more difficult to optimize (due to a higher level of non-
convexity), and they suffer from an energy blow-up at singularities,
making them tessellation dependent (cf. [Knöppel et al. 2013]). A
beneficial middle ground is offered by Ginzburg-Landau type en-
ergies. The idea is to work with a (convex) Cartesian representa-
tion 𝜙 ∈ R𝑛 , which relaxes the (non-convex) manifold of intended
frames F , and to add a penalty term 𝐸𝑃 =

∫
Ω 𝑑𝑖𝑠𝑡 (𝜙, F )𝑑𝑥 , which

limits unintended behaviour in the relaxed space. The total objective
𝐸𝐺𝐿 = 𝐸𝐷 + 1

2𝜖2 𝐸𝑃 behaves like an angle-based scheme for 𝜖 ap-
proaching zero, while at the same time offering a convex relaxation
when 𝜖 approaches ∞. Hence, 𝜖 continuously trades faithfulness of
the relaxation versus ease of the optimization. Another advantage
of Ginzburg-Landau type energies is that they can be optimized by
the efficient and easy-to-implement MBO scheme, which will be
discussed below.

Another important objective is the control on sizing of the hexa-
hedral elements. The optimization of a smooth frame field typically
results in singularities that are appropriate for uniform sizing. Non-
uniform and anisotropic sizing can be added to frame-field-based
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methods by either pre-deforming the domain[Xu et al. 2017] or by
synthesizing a Riemannian metric field, and then optimizing the
frame field w.r.t. this metric field [Fang et al. 2021]. Again, the de-
coupling of the metric field synthesis from the actual frame field
optimization is suboptimal from an accuracy perspective, however,
highly beneficial to ease the optimization in absence of a good start-
ing point.

Constraints. Some earlier methods constrain the complete bound-
ary field to a pre-computed solution [Kowalski et al. 2016; Li et al.
2012]. However, in general, it is preferable to only require boundary
alignment and let the rest of the field emerge freely, including the
frame directions tangential to boundaries [Huang et al. 2011; Palmer
et al. 2020; Ray et al. 2016].

Discretization. Typically, the domain is discretized into a tetrahe-
dral mesh, where frames are located at vertices [Gao et al. 2017b;
Palmer et al. 2020; Ray et al. 2016], faces [Huang et al. 2011], or
cells [Liu et al. 2018]. Alternatively, boundary element discretiza-
tions have been explored [Solomon et al. 2017], where a triangula-
tion of the boundary, as opposed to a tessellation of the volume, is
sufficient.

Optimization Scheme. Algorithms that are based on a lifted frame
representation (9- or 15-dimensional) need to ensure that they do
not leave the sub-manifold of desired frames. This is done either
with a projection operator, or with some kind of manifold opti-
mization. More specifically, Huang et al. [2011] compute an initial
field by optimizing a convex relaxation of the actual problem, i.e.,
minimization of the Dirichlet energy in R9, followed by a local pro-
jection onto closest frames. The boundary alignment of the field
is approximated by a single linear constraint per boundary face.
The initial field is further improved by a nonlinear optimization
restricted to the frame-manifold via Euler angles. Ray et al. [2016]
follow a very similar strategy but discretize the field on vertices,
tighten the boundary constraints and improve the performance
of the projection. Palmer et al. [2020] observed that a modified
Merriman−Bence−Osher (MBO) algorithm is beneficial because it is
often able to avoid local minima that induce global inconsistencies
in the singularity graph. The MBO algorithm alternatingly diffuses
the 9- or 15-dimensional coefficient space and locally projects the
coefficients onto frames. In 2D it is known that the MBO algorithm
optimizes the Ginzburg-Landau energy [Beaufort et al. 2017; Viertel
and Osting 2019], where the diffusion parameter is directly related to
𝜖 of 𝐸𝐺𝐿 . The 3D version behaves similarly, however, the mathemat-
ical theory has not been fully developed yet. Instead of the constant
diffusion kernel of the standard MBO algorithm, the modified MBO
algorithm starts with a large diffusion kernel and then iteratively
shrinks it in subsequent steps. The rationale behind this strategy is
that large diffusion steps sufficiently leave the (non-convex) mani-
fold of frames and thus avoid local minima, while small diffusion
steps are required for the accuracy of the solution. The diffusion
parameter is directly related to 𝜖 of the Ginzburg-Landau energy
discussed above. Hence, the modified MBO algorithm can be under-
stood as slowly traversing from an easy-to-solve but less accurate
relaxation to one that requires a good initialization but is more
accurate. This explains the empirical observation that among all

available option the modified MBO scheme of [Palmer et al. 2020]
behaves best. The projection of frames in such an MBO framework
can be done approximately with gradient descent [Ray et al. 2016],
or exactly with a semidefinite relaxation [Palmer et al. 2020]. More
rapid convergence than the MBO algorithm is offered by Riemann-
ian trust-region manifold optimization [Palmer et al. 2020], which
on the downside has a higher risk of getting trapped in local minima.
Similarly to other highly non-convex schemes, it requires a careful
initialization, e.g. by a convex relaxation.

4.8.3 Generality. Besides providing directional guidance for hexa-
hedral mesh elements, a key property of a frame field is its network
of singularities – which one commonly aims to adopt for a hexahe-
dral mesh generated based on the frame field. In this context, frame
fields are general enough that the singularity network of any hexa-
hedral mesh can be expressed. This means that, in contrast to many
other approaches, e.g. polycube mapping, sweeping, or grid-based
approaches, the output is not a priori restricted to a subclass of hex-
ahedral meshes. Therefore superior mesh quality can be achieved,
specifically if complex feature alignment is required. In particular,
frame field-based methods are able to express alignment not only to
the boundary of a domain but also to arbitrary internal structures,
which is, for example, important in multi-material applications or
in the simulation of fluid-structure interaction.

4.8.4 Non-Meshability. The main drawback, on the other hand, is
the fact that frame fields are actually over-general for the purpose
of mesh generation: Frame fields may exhibit additional types of
singularities that cannot occur in hexahedral meshes, cf. [Liu et al.
2018; Viertel et al. 2016]. Such singularity configurations are said
to be “non-meshable”. A key example are 3-5 singularities [Reberol
et al. 2019], which frequently appear in smooth frame fields but
are not meshable. Existing approaches are able to automatically
repair some locally non-meshable configurations [Jiang et al. 2014;
Li et al. 2012] or involve the user to manually repair the singular-
ity graph [Liu et al. 2018] and then generate a frame field with a
prescribed singularity network [Corman and Crane 2019; Liu et al.
2018]. Another option is to optimize a general frame-field in such
a way that all singularities are pushed towards the boundary in
order to generate a generalized polycube as done in [Fang et al.
2016]. Additional research is required to enable complete repair or
to restrict the frame field generation and optimization to the space
of meshable configurations in the first place. Little can be learned
in this regard from the analogous 2D problem, as the gap, in terms
of singularity structure, between 2D frame fields and quad-meshes
is significantly smaller.

4.8.5 Field-Guided Integer-Grid Map. Given a (meshable) frame
field, one then aims to conceptually integrate it to obtain a parametriza-
tion, a map (in particular an integer-grid map) onto part of R3. As
the frame field typically is not integrable, a map whose isocurves
are precisely aligned with the frame field’s directions does not exist.
Approximate alignment, e.g. least-squares alignment, is thus aimed
for, as in the Poisson approach described by [Nieser et al. 2011],
generalizing the cross-field guided mapping used in the 2D case for
quadrilateral meshing [Bommes et al. 2013a, 2009; Kälberer et al.
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2007]. The frame field’s singularities are adopted in this process and
define the implied hexahedral mesh’s singularity structure.

Unfortunately, this field-guided mapping approach does not guar-
antee a valid resulting map without flips. While there are heuristics
[Lyon et al. 2016] to recover a valid hexahedral mesh even from
some invalid integer-grid maps with flips, no general guarantees
are available. In the 2D setting, aiming at quadrilateral mesh gener-
ation, a stream of recent work has shown ways to reliably generate
flip-free maps with prescribed singularities (for instance implied by
frame fields) and boundary alignment [Campen et al. 2021, 2019;
Campen and Zorin 2017; Gillespie et al. 2021; Shen et al. 2022b]. It is
based on phrasing the problem as a constrained metric computation
problem; in a specific discrete conformal setting and formulated in
per-vertex scale variables, the problem becomes convex and can be
solved reliably. Most importantly, these methods employ on-demand
mesh refinement (or modification) to ensure feasibility, in the sense
that the mesh offers sufficient degrees of freedom to support a valid
map, represented in a piecewise-linear manner. Note, however, that
field guidance is considered in these works only in the form of
adopting the singularities, not in the form of dedicatedly following
the field’s directions. Generalization of this general approach to
the 3D setting is not straightforward; the space of 3D conformal
maps too restricted to be useful. The work by [Paillé et al. 2015]
may be viewed as a first step: It describes the representation and
optimization of discrete metrics on 3D tetrahedral meshes in in-
trinsic variables (dihedral angles). Using linear constraints in these
variables, boundary alignment and singularities can directly be pre-
scribed, for instance those adopted from an optimized 3D frame
field. However, the resulting problem in this 3D case is non-convex,
and the issue of potentially required mesh refinement is unsolved.
While there are known ways to reliably generate flip-free maps in
3D [Campen et al. 2016], they do not support the prescription of
arbitrary singularities.
An alternative reliable approach proposed for the 2D setting is

based on decomposing the domain into regular pieces based on
stream lines of a 2D frame field [Myles et al. 2014]. Also this does
not generalize to a 3D stream surface based approach [Kowalski
et al. 2016] with similar guarantees.

Finally, the aspect of quantization, as discussed for polycube maps
in Sec. 4.7, is relevant for general integer-grid maps as well, in order
to ensure the required integer alignment of boundaries, singularities,
and other features.

4.9 Hex-Dominant Meshing
Automatic methods for all-hex meshing are only applicable to a sub-
set of all the possible inputs. In contrast, the grid-based approaches
(Sec. 4.6) can operate on intricate shapes and guarantee all-hex
meshes; unfortunately, they produce inferior quality results. High-
quality, feature-aligned all-hex meshes are still elusive, so industry
still relies on semi-manual block decomposition, a time-consuming
process [Lu et al. 2017].

For this reason, other methods focus on the hexahedral-dominant
meshing instead of full-hex, aiming to reach the highest possible
proportion of hexahedra. Hexahedral-dominant meshing is a relax-
ation of the problem to significantly improve robustness at the cost

of introducing a small number of generic polyhedra. The generation
of hex-dominant meshes boosted the use of those datasets in practi-
cal contexts such as FEM [Wicke et al. 2007]. Moreover, the recent
advancement in the construction of higher-order bases [Schneider
et al. 2019] may foster the adoption of hex-dominant meshes in the
mechanical analysis.
The first approach to produce hex-dominant meshes agglomer-

ates neighboring tetrahedrons to assemble hexahedral cells. The
problem of finding a globally optimal solution is NP-complete; hence
the clustering process is usually driven by local heuristics. Meshkat
and colleagues [2000] have proposed the first method following this
idea. The clustering process relies on an undirected graph represent-
ing tetrahedra and their connectivity. The graph is enriched with
particular arcs and labels on nodes to calculate the agglomeration
heuristic. Given the initial tetrahedral mesh, the algorithm detects
and replaces subgraphs with hexahedral nodes.

The method proposed by Yamakawa et al. [2002] takes as input a
general 3D mesh and distributes a set of nodes into the volume by
the physical simulation of crystal pattern formation. Then nodes
are used to produce a mesh composed of hexes, prisms, and tets,
with around 50% hexahedral cells. This method allows controlling
element size and primary orientation. Since it does not require a
tetrahedral mesh as input, this method is less sensitive to the input
discretization than the approach of Meshkat and Talmor [2000].

Vyas and Shimada [2009] proposed a more sophisticated method
that starts by generating a volumetric tensor field to specify the
anisotropy and directionality of the elements. Then, such a field
induces an advancing front process where several hexahedral fronts
contribute to cover the entire volume.

Lévy and Liu [2010] generalized Centroidal Voronoi Tessellation
[Faber and Gunzburger 1999] for hex-dominant meshing, introduc-
ing Lp-Centroidal Voronoi Tessellation. Unlike the standard Voronoi
diagram, Lp-CVT favors the formation of cubical cells by using a dis-
tance metric that takes into account a predefined background tensor
field. The resulting method excels in robustness and controllability.
Despite the considerable advancements in performances, the

methods mentioned above cannot obtain a high hex ratio for the
general case. The approach proposed by Sokolov et al. [Sokolov et al.
2016] produces higher hex ratios by using a guiding frame field. A
sampling process generates a point set organized as a regular grid
and locally aligned with the frame field. A constrained Delaunay
triangulation of the volumetric samples makes a tetrahedral mesh
and is finally clustered into hex elements. They obtain hex-dominant
meshes with up to 95% hexahedral cells (although in the worst case
they earned less than 30%). Despite the result’s quality, this method
might produce non-conforming meshes containing configurations
where a quadrilateral face is adjacent to two separate triangular
faces. This issue has been solved by [Ray et al. 2018].
The approach by Pellerin et al. [2017] explores the space of all

possible agglomerations of tets. Then a greedy process selects the
configurations to agglomerate tets into hexes. Their approach pro-
duces hex-dominant meshes with a 60% ratio of cuboidal elements
across all shown examples.
Gao et al. [2017b] directly generate conforming hybrid meshes

using polyhedral agglomeration. This method starts from tetrahe-
dral mesh obtained by sampling a guiding frame-field. An iterative
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Fig. 20. Some challenging examples of hex-dominant re-meshing using [Gao
et al. 2017b].

Fig. 21. Some CAD models remeshed by [Livesu et al. 2020]. In this case
the meshes are hex-only.

process modifies the connectivity utilizing a set of local operators
to compose hexahedral cells. The local operators grant the confor-
mity of the final mesh. While this method excels in robustness (as
demonstrated by the complex example shown in Fig. 20), it cannot
control the class of created polyhedrons (they might have up to 40
facets in some cases, see Table 1 in [Gao et al. 2017b]).
The recent method proposed by Livesu et al. [2020] produces

strongly hex-dominant meshes, conforming meshes with less than
2% non-hexahedral cells. In most cases (76% of the models tested),
this method derives pure hex-meshes. It mimics manual block de-
composition. It extracts first a set of well-distributed loops on the
surface following a feature-aligned cross-field. Each loop defines a
cutting surface that decomposes the volume into simpler polyhedral
blocks. The cutting surfaces are added one by one until the quality
requirements of the polyhedral blocks are satisfied. These blocks are
finally converted into hex-dominant mesh via midpoint subdivision.
As shown in Fig. 21, this method excels in the preservation of sharp
features, which are directly incorporated in the output connectivity.
Similarly to LoopyCuts [Livesu et al. 2020], HexDom [Yu et al.

2022] produce a block decomposition where each block is either
hex, prism, or tetrahedral cell. This method extends the approach
for polycube generation proposed in [Hu and Zhang 2016] based
Voronoi tessellation (CVT) to include non-hex elements. The cells
are embedded in 3D using a variation of [Yu and Wei 2020]. The seg-
mentation and polycube definition process requires manual work.

The methods proposed in [Zhan et al. 2018] and the one used by the
commercial package Cubit [Meyers and Tautges 1998] uses advanc-
ing front approaches to produce meshes composed of hexahedral
and tetrahedral elements. To improve the quality of the final mesh
Cubit use some sophisticated cleanup operation based on connec-
tivity editing and geometric measures.

The recent approach proposed by Bukenberger and colleagues
[Bukenberger et al. 2021] generates At-Most-Hexa Meshes. At-Most-
Hexa Meshes are meshes composed mainly of hexahedral elements,
where no cell hasmore than six faces, and no boundary face hasmore
than four sides. Similarly to tetrahedral and hexahedral meshes, the
volume of each cell can be defined by trilinear interpolation from its
corners. At-Most-Hexa Meshes meshes are generated by extending
to the volume the 2D approaches that use Lloyd relaxation with non-
euclidean distance measures [Hausner 2001]. Using the 𝐿∞ norm
(instead of the simple euclidean distance), the cells emerging from
the volumetric Lloyd relaxation process become more cubical, con-
verging to a hex-dominant mesh. Similarly to most of the meshing
methods based on Lloyd relaxation, this method is very permissive
on the required input. It works on point clouds, triangular meshes
and can be guided by an input orientation field if available.

The hex-dominant mesh allows sufficient degrees of freedom to
adapt the grid-basedmethods to conform to sharp features. Trimmed
hexahedral meshes are created by intersecting a grid with a closed
surface. Non-hexahedral elements emerge along the surface where
the surface is not aligned with the edges of the grid. The tech-
nique recently proposed by Kim and colleagues [Kim and Kim 2021]
extends the trimmed hexahedral methods by creating particular
vertices where sharp features intersect with the grid. A feature sim-
plification schema is used when multiple features are concentrated
in the same cell.

Another class of methods transforms hex-dominant meshes to
increase the number of hexahedral elements in the mesh. The ap-
proach proposed in [Yamakawa and Shimada 2003] increases the
number of hexahedral and prism elements by applying sequences
of local operations that modify the connectivity. Unfortunately, this
method can generate non-conformal meshes. Instead, HexHoop
[Yamakawa and Shimada 2002] converts a mesh composed of hexa-
hedrons, prism and tetrahedrons into a conformal pure-hex mesh.
The conversion process is based on the local application of two
particular refinement schemas, called core and caps. Unfortunately,
this method tends to insert a high number of irregular vertices dete-
riorating the regularity of the tessellation.

5 TOPOLOGICAL OPERATORS
Scientific computing often demands to edit a given hexahedral mesh,
e.g. to improve the accuracy of a solution with a posterior refine-
ment [Shen et al. 2022a], to generate boundary hex layers for CFD
applications [Reberol et al. 2021], to ensure mesh conformity across
surface membranes [Staten et al. 2010b] or to constrain the mesh
size [Maréchal 2009]. Unlike tetrahedral meshes, where changes
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Table 2. Summary of the main properties for each class of hex-meshing algorithms reported in Sec. 4. Some of the columns in this table correspond to items
also listed in [Blacker 2000]. As a rough indicator for the extent of (ongoing) research activity, we list the number of overall works and recent (published within
the last 5 years) works (referenced in this survey) dealing with each class.

Method Type User
interaction

Shape
class

Feature
preserv.

Size
contr.

Mesh
structure

Element
quality Robustness Orient.

sensitive
Total
works

Recent
works Open problems

Advancing
front Direct Automatic CAD

oriented

Surface
features
only

No Unstructured

Good at
border,
poorer
inside

Poor No 7 0
Improve handling
colliding fronts,
complex topologies

Dual
methods Both

Automatic,
semi-
automatic

CAD
oriented

Surface
features
only

No
Unstructured,
semi-
structured

Good at
border,
poorer
inside

Poor No 13 2 Robust handling of self-
intersecting sheets

Sweeping,
decomp. Both Semi-

automatic
CAD
oriented

Surface
features
only

No Semi-
structured Good Good (manual) No 35 11 Automatic definition of

sweepable sub-volumes

Grid based Indirect Automatic Any
shape

Yes,
(limited
valence)

Yes Severely
unstructured

Poor at
border,
optimal
inside

Great
(commercial
product,
demonstrated
on many
datasets)

Yes 18 3 Feature preservation,
mesh size, mapping

Polycube
maps Indirect

Automatic,
semi-
automatic

Any
shape

Yes,
(limited
valence)

Yes Valence semi-
structured

Good
(depends
on map)

Good
(demonstrated
on medium
datasets)

Yes 18 8
Polycube topology,
mapping, feature
preservation

Frame
fields Indirect

Automatic,
manual
fixing

Any
shape Yes Yes Valence semi-

structured

Good
(depends
on map)

Poor No 17 12
Generation of hexable
fields, field aligned
mapping

Hex-
dominant Both Automatic Any

shape Yes Yes
Valence semi-
structured,
hybrid

Often
good

Good
(demonstrated
on medium
datasets)

No 20 11
Hybrid elements
(topological control,
amount, quality)

of the mesh connectivity always have a local footprint, editing the
topology of a hexahedral mesh is often a global operation. This
makes hexmesh editing significantly more difficult than tetmesh
editing. In this section, we revise the most prominent operators for
editing the topology of a hexahedral mesh.

5.1 Sheet Operators
As shown in Sec. 2.2, the dual of a hexahedral mesh is a simple
arrangement of surfaces. Each surface, i.e., a sheet, corresponds
to a layer of hexes in the primal mesh and two surfaces intersect
along a chord, which is a column of hexes in the primal mesh. Sheet
operators consist in inserting or removing a complete sheet or chord
from the mesh. They are used to refine [Ko-Foa Tchon and Camarero
2002; Parrish et al. 2007] or coarsen meshes [Benzley et al. 2005a;
Shepherd et al. 2010], to capture analytic features [Merkley et al.
2007], or to make conforming meshes involved in the assembly of
parts. Those parts can result from a volume decomposition during a
user-assisted meshing process [Borden et al. 2002b; Jankovich et al.
1999] or can correspond to two adjacent models sharing contact
surfaces [Staten et al. 2010b].

Using sheet operations to refine a mesh mainly involves inserting
sheets, which is quite easy to control if you avoid self-intersecting

and self-touching sheets (see Fig. 22). The remaining difficulty is
to control the mesh quality, which is connected to the edge va-
lence [Staten and Shimada 2010]. The simplest way of inserting a
sheet consists in padding a region of hexahedra by inserting a layer
of hexes around it. It is a common post-process to improve meshes
obtained with overlay-grid [Maréchal 2009; Qian and Zhang 2010],
where a global padding is performed, or Polycube-based [Cherchi
et al. 2019a] techniques, where the region to pad is selected in such
a way that the mesh quality is optimized (see Sec. 5.4).
Coarsening is much more tricky since some sheets cannot be

collapsed without loosing a part of the geometry - resulting in a
non-manifold configuration for instance - and one might have to
deal with self-intersecting and self-touching sheets, which are much
more complex to remove. In [Gao et al. 2017c], such coarsening
is performed to simplify the base complex structure. Generating
a hexahedral block structure can also be seen as coarsening an
existing hexahedral mesh. In [Wang et al. 2017], authors extend
the preliminary work of [Kowalski et al. 2012] where a hexahedral
mesh, obtained from converting a tetrahedral mesh by splitting each
tetrahedron into four hexahedra, is coarsened by removing all non-
funda-mental sheets. They extend the greedy approach proposed
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Fig. 22. Examples of self-intersecting sheet (green) and self-touching sheet
(red).

in [Kowalski et al. 2012] by providing much more quality control
and sheet selection procedures.
In order to make two hexahedral meshes of two geometrical

parts sharing a surface conforming, the authors of [Staten et al.
2010b] interleave sheet insertions and collapses in both parts. The
locality is controlled by performing chord collapses to avoid the
propagation of mesh modifications too far from the interface (see
Fig. 23). Chord collapsing is done by taking care of mesh quality,
considering edge valences as an appropriate indicator [Staten and
Shimada 2010]. In [Chen et al. 2016], the sheet insertion is enhanced
to provide more flexibility, in particular, to handle self-intersecting
sheets within a local region while assuring the mesh quality. It
was successfully applied to mesh matching and mesh boundary
optimization.

Eventually, in most recent works, like [Shen et al. 2021], the chord
collapse operation is enhanced to avoid generating poor quality
elements, and the chord insertion process is described and used
for editing the singularities of a hex-mesh while maintaining its
connectivity. In [Wang et al. 2018], sheet operations are used in
combination with frame fields to improve mesh quality with the
ability to handle self-intersecting and self-touching sheets.

5.2 Flipping Operators
Among the many difficulties of hexahedral meshing, there is one
that is unexpected, to say the least. The generation of conforming
hexahedral meshes of complex 3D domains is definitively a hard
problem. Yet, finding hexahedrizations for small quadrangulations
of the sphere is also hard.

Existence. Thurston [1993] and Mitchell [1996] have shown inde-
pendently that a ball bounded by a quadrangulated sphere could be
meshed with hexahedra if and only if the number of quadrangles
on the boundary, 𝑛, is even.

Linear Complexity Meshing. Mitchell’s construction can necessi-
tate up to O(𝑛2) hexahedra. In [1999], Eppstein proposed a “semi-
constructive” alternative which guarantees the use of O(𝑛) hexa-
hedra. The algorithm of Eppstein extends the quad-mesh in input
into a buffer layer of hexahedra. Then it triangulates the inner of
the layer with O(𝑛) tetrahedra, applies the midpoint subdivision to
split each tetrahedron into four hexahedra, and eventually refines
the cubes in the buffer into smaller cubes that consistently meet
the previously subdivided tetrahedra. The inserted buffer layer is
mandatory to provide much degrees of freedom to topologically and

Fig. 23. Two meshes generated using sweeping are not conform along a
contact surface (top); Performing sheet operations on the green mesh allows
to get a conforming interface (bottom).

geometrically modify the inner mesh. It must be remeshed at the
end to ensure mesh conformity. The last stage “only” requires find-
ing a solution of 20 or 22 quadrilaterals buffer cubes. At that point,
an explicit solution is required for the buffer cubes. In [2010], Car-
bonera and Shepherd give the first completely explicit construction
of the hexahedrization of the ball. This method, however, requires
up to 5396𝑛 hexahedra. Using [Shepherd et al. 2010], a solution for
the buffer cubes has been found by Weill and Ledoux [2019] that
involves 76881 hexes! In [2019a], Verheltsel introduced an efficient
quad flip-based algorithm that allows finding hexahedral meshes
for both the types of buffer cells previously described. Furthermore,
as depicted in Fig. 24, it provides geometric realizations with a max-
imum number of 72 hexahedra, thus proving that it is possible to
mesh any ball-shaped domain that is bounded by 𝑛 quadrangles
with a maximum number of 78𝑛 hexahedra.

Schneiders’ Pyramid andOctahedral Spindle. The pyramid of Schnei-
ders is square-based, with 8 additional vertices at the edgemidpoints,
5 additional vertices at the face midpoints, and its triangular and
quadrangular faces divided respectively into 3 and 4 quadrangular
faces. To build the Schneiders’ pyramid, we can use the octagonal
spindle, or tetragonal trapezoid, and add 4 hexahedra to form the
pyramid base. Meshing this pyramid with all-hexahedral elements
is a problem introduced by [Schneiders and Bünten 1995] to show
a boundary mesh for which no one hexahedral subdivision was
identified. A good solution to Schneiders’pyramid is considered as
the missing piece to transform a hex-dominant mesh into a full un-
structured hex-mesh. To understand this, it is helpful to think at the
Schneiders’pyramid as a squared pyramid with one step of midpoint
refinement. In this regard, due to the presence of both quadrilateral
and triangular faces such an element can be considered as a topo-
logical bridge between tetrahedra and hexahedra, with midpoint
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Fig. 24. The set of the hexahedrizations of the buffer cubes that the [Er-
ickson 2014]’s algorithm uses to mesh arbitrary domains. (top) Cells with
20 quadrilaterals are meshed with 37 hexahedra. (bottom) Cells with 22
quadrilaterals are meshed with 40 hexahedra. Elements are colour codeded
to show the different sides of the original cubes (top-left and bottom-left).
Image from [Verhetsel et al. 2019b].

subdivision being the step that allows to convert all elements into
hexahedra. [Shimada and Yamakawa 2002] introduced, in 2002, the
hexhoop template family and built a hexahedral subdivision for the
pyramid of Schneiders, composed of 118 hexahedra. Later, in 2010,
they improved their solution by creating a new hexahedral subdi-
vision of 88 elements [Yamakawa and Shimada 2010]. Recently, in
2018, a hexahedral subdivision of 36 elements was built by finding a
set of flipping operations allowing to turn the cube into Schneiders’
pyramid, by interpreting each operation as the addition of a new
hexahedron [Xiang and Liu 2018]. Verheltsel [2019a] used quad flips
to find another solution with 44 hexahedra.

Shellings. In mesh generation, flipping (or swapping) operators
convert small cavities of elements into alternative collections of
elements having the same boundary. Flips are used extensively in
tetrahedral meshing with the aim of improving the mesh. The “bistel-
lar flips”, the most basic operations, operate on a cavity of 5 vertices
produced by removing two or three tetrahedra. Instead, the “edge re-
moval” operation, a more general transformation 𝑛-to-𝑚 flip, works
on a cavity produced by the set of tetrahedra enclosing an edge.
Rather than adding more and more operations to the already big set
of topological transformations, the “small polyhedron reconnection
(SPR)” [Liu et al. 2007] provides an operation that can generalize all
the flips. The SPR considers the problem of finding all the possible
triangulations of a cavity and choosing the best one.

Flipping operators in cubical meshes were introduced by M. Bern,
D. Eppstein and J. Erickson in [2002] and are analogous to the
flipping operators for simplicial meshes. Those authors prove that
each domain that is simply-connected and has an even number of
quadrilateral faces also has a pseudo-shelling. A pseudo-shelling is
defined as a particular kind of hex-mesh built by adding elements
one by one such that the remaining elements always make a ball-
shaped domain.

5.3 Atomic Operators
Atomic operators form a set of irreducible local operations which
could be composed to described any topological modification [Taut-
ges et al. 2008; Tautges and Knoop 2003]. It consists of three very
local atomic operations, which are the atomic pillow, the face shrink
and the face open-collapse. An important feature of those opera-
tions is that applying just a single atomic operation does not provide
a valid hex-mesh. But it has been demonstrated that flipping op-
erations [Tautges et al. 2008] and sheet operations [Ledoux and
Shepherd 2010] can be obtained as a sequence of atomic operations.
Unfortunately, the completeness of this set of operations is not
proved, and they are very difficult to be used for writing meshing
algorithms in practice.

For instance, those operators do not capture a parity change in the
number of hexahedra. Therefore, an extra operator was presented
in [Jurkova et al. 2008], where a Boy’s surface is added in the dual
mesh representation. The surface of Boy has the interesting property
of having a single vertex. Thus, introducing it, in an appropriate
way, into the dual mesh representation, the parity of the hexahedra
number changes in the primal mesh. In [Jurkova et al. 2008], a
sheet diagram is provided, but the primal mesh realization from
this insertion is incomplete. Interestingly, utilizing the Carbonera’s
algorithm [2006] on a single hexahedron, it is possible to perform
a parity change. Regardless of the template set of the Carbonera’s
method, it always replaces a hexahedron with an even number of
hex-elements without altering the boundary of the input hex.

5.4 Padding
Sometimes hexahedral meshes (as well as quad-meshes) can contain
doublets. As described in [Mitchell and Tautges 1995], a doublet is
defined as two quad faces sharing two edges, and, in the hex-meshes
case, this means that two hexahedra share two faces (Fig. 25a). If
doublets occur in a mesh, any kind of geometric embedding of the
faces forming the doublet has a low quality, even if we try to optimize
it with some smoothing/untangling step. In fact, one of the involved
faces will always have an angle of at least 𝜋 . The local connectivity
of the mesh requires a refinement step to remove doublets. The
padding refinement operation, also known as pillowing, refines the
mesh structure in order to provide additional elements, and hence
degrees of freedom, for existing approaces of mesh optimization
(e.g. untanglers). In quad-meshes, this step is trivial. Removing the
two shared edges forming a single quadrangular face is sufficient.
It is not possible to apply the same for hexahedral meshes because
we can not ensure that the hexahedra with doublet faces can be
matched in a conformal configuration. In this case, it is required to
increase the connectivity of the vertex shared by the two edges that
form the doublet.

In [Mitchell and Tautges 1995], the authors propose a pipeline to
face the problem in three steps. First of all, a shrink set is defined
as a set of hexahedra containing one (and only one) of the doublet
faces. Then, the set is separated from its boundary by reducing the
size of its elements. In this way, an empty space is created (Fig. 25b).
Finally, each of the shrink set elements is connected to the boundary
through a new layer of hexahedra, filling the previously created
empty space (Fig. 25c). After the padding, the original doublet’s faces
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(a) doublets (b) divided shrink set

(c) padding layer (d) optimized hexahedra

Fig. 25. A summary of the padding pipeline: (a) The hexahedra H1 and H2
share two faces forming two doublets. (b) The shrink set is disconnected
to the other elements in the mesh. (c) The elements of the shrink set are
linked to the mesh forming the padding layer. (d) The hexahedra involved
in the refinement can now be optimized with a smoothing/untangling step.

are contained in two different hexahedra, doublets are no longer
present in the mesh, and the dihedral angles between faces can now
be improved (Fig. 25d).

The padding is basically a sheet insertion on a mesh. As described
in [Shepherd 2007; Shepherd and Johnson 2008], it is a fundamental
step in many applications. Starting from the mesh generation [Gao
et al. 2019; Ito et al. 2009] or the generic refinement of hexahedral
meshes [Benzley et al. 2005b; Malone 2012; Qian and Zhang 2010;
Tchon et al. 2004; Zhang et al. 2013], it becomes an essential in-
gredient in operations like grafting [Jankovich et al. 1999], mesh
cutting [Borden et al. 2002b].
In [Gregson et al. 2011] the padding is identified as a key post-

processing step for the hex-meshes obtained from polycubes (see
Sec. 4.7). In this mesh category, the surface edges belonging to the
polycubes structure can create configurations similar to doublets.
The degrees of freedom of the surface elements are then increased
with a padding step performed all around the mesh (all the inner
volume becomes the shrink set and is separated from the surface). In
this way, a geometric optimization step can enhance the quality of
the elements placed in the smooth object parts. Notice that, in almost
all polycube-based hex-meshing works, the padding operation is
applied as a unique hexahedral layer all over the surface. In the same
context, in [Cherchi et al. 2019a], a smart and localized padding for
this hex-mesh category is proposed. The authors demonstrate that
selective padding in sporadic surface areas can significantly improve
the whole mesh quality compared to the global padding application.

5.5 Structure Enhancement/Simplification
Hex-meshes with simple structures are preferred for isogeometric
analysis [Hughes et al. 2005] since large components allow the
fitting of high-order splines without breaking their smoothness so

Fig. 26. Without controlling of alignment, the same set of singularities can
introduce two hex-meshes having base complexes with different complexity.
Image from [Gao et al. 2015].

Fig. 27. Removing either a base complex sheet (left) or a chord (right) on
the global structure of a hex-mesh monotonically reduce the number of
components of the base complex. Image from [Gao et al. 2017c].

that accurate PDE solving and fast convergence can be achieved.
Note that the base complex of a hex-mesh is not only determined by
its singularities, but also the connections between them. Therefore,
without careful control, the same set of singularities can lead to
dramatically different base complexes (Fig. 26). Gao et al. [2015]
propose the first solution to reduce the number of components of
the base complex by correcting misalignments of singularities. The
misalignment correction is achieved by removing hexahedral sheet
defined within the base complex. To maintain singularities, specific
conditions are posed for choosing the proper hexahedral sheets for
removal. After obtaining the hex-mesh with corrected misalignment
issue, they employ an extended version of the parameterization-
based optimization from quad-meshes [Tarini et al. 2011] to hex-
meshes to improve the geometric quality of the hex-meshes. To
specifically handle misalignment issue for polycube hex-meshes,
[Cherchi et al. 2016] proposes an approach by alternating two steps:
(1) computing polycube corner pairs in the integer lattice, and (2)
aligning corner pairs through mixed-integer programming.
Robustly producing valid hex-meshes with a simple structure

remains to be a challenging task. Gao et al. [2017c] propose a sim-
plification algorithm that can iteratively reduce the structure (i.e.,
number of components and singularities) complexity of a hex-mesh,
while providing several guarantees during the simplification pro-
cess: (1) topology consistency, (2) inversion-free, (3) the preservation
of corner, line, and planar features, and (4) a bounded, user-defined
Hausdorff distance from the input surface. The core idea of their
approach is to extend the sheet and chord operations on hex element
level to the structural level, as illustrated in Fig. 27. The input to this
approach can be an arbitrary hex-mesh. Especially, this approach
can be paired with octree-based methods discussed in Sec. 4.6 to
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Fig. 28. Turn an octree-based hex-mesh with a highly complex structure
into a hex-mesh with a coarse structure. Image from [Gao et al. 2017c].

robustly generate valid (i.e., with no flipped elements) and accurate
hexahedral meshes with coarse structures, without user-interactions
(Fig. 28). A follow-up work [Xu et al. 2021] is conducted to improve
the ranking scheme of the sheets and chords to be removed. The
experiments show that, while being more complex, the introduced
ranking leads to better simplification results.

Through proving the equivalence between colorable quad-meshes
and Strebel differentials on a manifold closed surface, Lei et al [2017]
propose to first construct a colorable quad-mesh and then partition
the surface into sub-volumes where each of them can be swept to
generate a hex-mesh. While the theory is elegant, there are several
limitations of the work, prohibiting its adoption for practical appli-
cations. For example, the required special user inputs are non trivial,
only quad vertices with even valences are allowed, and distortions
of the hexahedra could be arbitrarily large.

By adapting the editing operations of singularity pairs for quadri-
lateral meshes [Peng et al. 2011] to hexahedral meshes, Shen et al.
[2021] propose to employ chord collapse and insertion to flexibly
control the singularities of a hexahedral mesh. The main limitation
of this approach is that chord insertions are not always feasible
when the structure of the mesh is complex. The authors demon-
strate that the proposed editing operations can be used to clear some
connectivity inconsistency issues for sweeping based hex-meshing.

6 GEOMETRIC OPTIMIZATION OF ELEMENT QUALITY
The vast majority of hexahedral meshing algorithms employ a two-
step process where the first step generates an initial mesh which
is expected to be dominated by well-shaped elements, but often
also contains some poorly-shaped and even inverted, or negative
Jacobian determinant, elements (cf. Sec. 3). This step is typically fol-
lowed by an optimization step whose goal is to maximize the quality
of the mesh elements and specifically to produce an inversion-free
mesh, while preserving the meshed domain boundary surface intact.
Improvement methods that keep the mesh connectivity fixed while
changing only the locations of the mesh vertices, are commonly
referred as geometric optimization, smoothing, or untangling meth-
ods [Owen 1998; Shepherd and Johnson 2008]. The latter terms are
commonly used to describe the methods that specifically focus on
reducing, ideally to zero, the number of inverted elements. As noted
by Knupp [2001b], for hexahedral meshes there can be more than

one definition of inverted elements. He identifies four different sce-
narios: (a) the integral of the Jacobian determinant over the element
is non-positive; (b) the Jacobian determinant is non-positive at any
of the Gaussian integration points (used, e.g., in FEM) inside the
element (c) the Jacobian determinant is non-positive at any of the
element’s corners, or (d) the Jacobian determinant is non-positive
at some other specific point(s) inside the element. The vast majority
of optimization and untangling methods, described below, focus on
the scenario (c). The general scenario, seeking for positive Jacobian
determinant at every point, is tackled by a fewmethods [Johnen et al.
2017; Marschner et al. 2020] based on optimization formulations
attempting to maximize lower bounds of the Jacobian determinant,
cf. Sec. 3.1.2. As with mesh generation itself, geometric optimization
methods for hex-meshes face some distinctly different challenges
from methods for tet-mesh optimization such as [Erten et al. 2009;
Freitag Diachin et al. 2006; Kelly et al. 2013; Sastry and Shontz 2014;
Scherer et al. 2010], motivating a distinct line of research dedicated
to optimizing hex-mesh geometry.
One can easily define an objective function whose global min-

imum (or maximum) constitutes the best quality mesh possible
for a given fixed connectivity (and either hard or soft constraints
that hold the surface vertices on the surface of the meshed object).
However, essentially all such known objective functions are highly
non-linear and do not allow for robust global optimum computation.
Thus the core challenge in mesh geometry optimization is to obtain
a function and a corresponding optimization method such that the
optimum obtained has no inverted elements and maximizes as much
as possible the mesh Jacobian or other proxy quality metrics (see
Sec. 3).

Consequently, the main difference between the methods is in the
optimization strategy used. A few attempts tried to develop generic
global optimization strategies which directly optimize the quality
across all mesh vertices (Sec. 6.1); however existing methods are not
widely used and exhibit inferior performance compared to existing
alternatives. Most existing and widely used methods are based on
Gauss-Seidel iterations (Sec. 6.1.1), where vertices are relocated one
at a time. The advantage of this strategy is that one can explic-
itly prevent the quality from dropping locally, e.g., preventing the
formation of new inverted elements. The drawback is in increased
likelihood of converging to a purely local minimum. Recent research
investigates different local-global approaches for mesh optimization
(Sec. 6.2). This line of research shows great promise, with several
methods significantly outperforming prior art. Below we review
these three families of methods in more detail.

6.1 Global Optimization
Several authors aim to optimize mesh quality by simultaneously
updating all vertex positions, e.g. [Gao and Chen 2016; Yilmaz and
Kuzuoglu 2009]; however they only demonstrate results on simple
inputs. It is not clear if these approaches can be extended to a more
general setting. The use of global non-linear methods for optimizing
mesh quality was investigated in depth by Sastry et al [2009] and
Wilson [2011] for tetrahedral and hexahedral meshes respectively.
Both concluded that global methods that directly optimize hex shape
metrics as a function of vertex positions are typically less robust than
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the Gauss-Seidel approach, discussed next, and frequently converge
to poorer solutions.

6.1.1 Gauss-Seidel Iterations. Older optimization approaches, re-
viewed by [Frey and George 2008], iteratively relocate interior mesh
vertices to some weighted average, or center, of their neighbors, one
vertex at a time. Earlier methods used simple geometric averages,
e.g., positioning vertices so as to minimize the Laplacian energy
around each vertex

min
𝑖

| |𝑣𝑖 − 1/𝑁𝑖

∑
𝑗 ∈𝑁 (𝑖)

𝑣 𝑗 | |2

where 𝑣𝑖 are mesh vertex positions, 𝑁𝑖 is vertex valence, and 𝑁 (𝑖)
are the vertices adjacent to 𝑖 . This basic framework is often sufficient
to produce quality outputs given meshes with simple connectivity
and low-detail surface geometry, with quality surface quad-mesh.
Recentmethods, e.g., [Knupp 2003; Vartziotis and Papadrakakis 2017;
Zhang et al. 2009], use more sophisticated local energy formulations
that aim to optimize the size of the solid angles at each vertex. For
example, Knupp [2003] encode each hex corner geometry via the
condition number of a matrix describing the coordinate system at
the corner vertex

𝑀 = (𝑒0, 𝑒1, 𝑒2)
where 𝑒𝑖 are the hex edges emanating from the vertex. The smaller
the condition number, the better-shaped the hex is locally (corner
solid angle closer to 90◦). His method uses line-search to move
the vertices one at a time so as to minimize the worst or average
condition number impacted by the position of this vertex. Such
iterative methods are fairly efficient and can be easily parallelized.
Unfortunately, applied as-is, such methods do not guarantee an
inversion-free output. Specifically, they are often unable to untangle
previously inverted element, and when applied as-is are known to
frequently introduce new inverted elements near concave features
along the boundaries of the meshed domain [Owen 1998]. Sev-
eral researchers advocate employing these vertex-relocation based
methods either pre or post untangling [Knupp 2003; Vartziotis and
Papadrakakis 2017]. Specifically, they suggest to constrain each ver-
tex move so as to avoid new inversions, and rely on the untangling
methods to resolve all inverted elements. For example, the widely
used Mesquite library [Brewer et al. 2003] uses the algorithm of
Knupp [2001b] to first untangle a hex-mesh and then improves its
quality iteratively moving one vertex at a time using the method
of [Knupp 2003]. Constraining all intermediate solutions to remain
in the inversion-free space, can produce sub-optimal, local minimum
outputs.

Vartziotis and Himpel [2014a] have proposed new formulations of
vertex-by-vertex optimization designed for mixed element meshes;
while these formulations were successfully demonstrated in 2D
space, they have yet to demonstrate those on a hexahedral or hex-
dominant input.

Knupp [2001b] proposed an untanglingmethod that focuses solely
on correcting inverted hex-elements, while allowing the quality
of the non-inverted ones to deteriorate. The energy function he
employs is based on the observation that non-negative numbers
are equal to their absolute values. Thus requiring the local volume
𝛼 = (𝑣1 − 𝑣0) · (𝑣2 − 𝑣0) × (𝑣3 − 𝑣0) at a hex corner 𝑣0 (where

𝑣𝑖 , 𝑖 = 1 . . . 3 are the corners adjacent to 𝑣0) to be non-negative can
be cast as minimizing the sum∑

𝑣

( |𝛼 | − 𝛼)

over the eight corners of each hexahedron and over all mesh hex-
ahedra. Notably, the optimum of this function can be minimized
while the mesh contains zero volume elements. To prevent this
configuration, the author suggests minimizing a modified energy∑

𝑣

( |𝛼 − 𝜖𝑉 | − (𝛼 − 𝜖𝑉 ))

where 𝑉 is the expected average mesh element size (computed
as total mesh volume divided by the number of elements), and
𝜖 is a user defined parameter. This approach demonstrated that
this optimized energy is convex as a function of a single vertex
position. If a valid solution can be achieved by moving these center
vertices, thus using an appropriate convex optimization strategy, this
method is guaranteed to untangle all clusters of inverted elements
centered around individual vertices. This method fails on many
inputs with clusters of connected tangled elements, where only a
tandem movement can result in a valid solution.
In some more recent works, e.g. [Ruiz-Gironés et al. 2014, 2015;

Wilson 2011; Wilson et al. 2012], iterative local Gauss-Seidel ap-
proaches are employed to correct the inverted elements and improve
the overall quality of the elements. In these works, the authors use
a specifically designed shape metric to avoid convex elements be-
coming inverted elements and explicitly encouraging untangling of
inverted elements. Specifically, they start from a metric introduced
by [Knupp 2001a] and modify it to avoid division by zero in the
presence of zero volume elements. Given the Jacobian matrix𝑀 , the
point-wise distortion is defined via the matrix condition number,

a =
|𝑀 |2

𝐹

3𝐷 (𝑀)2/3

Here | |𝐹 is Froebenius norm and 𝐷 (·) is the determinant. Notably
this value goes to infinity as the determinant approaches zero. To
avoid instability near zero the authors replace 𝐷 (𝑀) with 1

2𝐷 (𝑀) +√
𝐷 (𝑀)2 + 4𝛿2 where 𝛿 is a user specified small value. They propose

several different strategies for optimizing the resulting energy. In
particular [Ruiz-Gironés et al. 2015] indicates that an approach
where each Gauss-Seidel update performs only one step of gradient
descent toward the local minimum performs best in terms of output
quality. Intuitively, this observation is consistent with avoiding
premature convergence to a local minimum. Gauss-Seidel methods
such as the ones above are widely used in industry.

6.2 Local-Global Optimization
Multiple recent methods employ local-global approaches for mesh
optimization. They conceptually break the mesh into a collection of
local, overlapping sub-meshes, and use those in an iterative optimiza-
tion process. In each iteration, they first optimize each sub-mesh
independently, aiming for a solution that is both sufficiently good
(inversion free and high quality) and maximally close to the current
sub-mesh geometry. They then update the vertex positions globally
while striving tomaximally retain the geometry of the just computed
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Fig. 29. Corner-based approaches optimize hex shape by considering the
set of eight tetrahedra formed by each corner and its three incident edges.

individual local sub-meshes. The two steps are then repeated until
no further improvement is possible. The main difference between
these approaches is in the choice of the local sub-meshes.

6.2.1 Corner-based. Corner-based approaches consider the eight
overlapping simplices formed by the corners of each mesh hexa-
hedron (Fig. 29). These methods were originally proposed for com-
putation and optimization of maps between simplicial complexes
e.g. [Aigerman and Lipman 2013; Schüller et al. 2013], but can be
applied as-is for hex-mesh optimization, by treating these meshes as
consisting of overlapping corner tetrahedra. These methods iterate
between optimizing each tet’s geometry individually, so as to satisfy
a lower bound on quality, and solving for vertex positions that best
preserve the resulting individual tet shapes. The global optimization
step balances tet shape preservation and preservation of the coor-
dinates of the vertices on the outer surface of the input mesh. As
discussed by [Livesu et al. 2015], onmany input this approach fails to
adequately control the trade-off between boundary surface preserva-
tion and quality optimization: holding the boundaries tightly results
in poor quality meshes, while relaxing the boundary constraints so
as to obtain adequate quality leads to excessive surface drift (Fig. 30).

6.2.2 Hex-based. Marechal [2009] proposes a local-global method
that is well suited for grid or octreemeshes (with orwithout padding).
At first, a best matching perfect cube is computed for each individual
hexahedron. Since each mesh vertex is shared between multiple
hexahedra, each vertex receives as target position the average of
all the target positions computed for each of its incident elements.
Vertices are then carefully moved towards their target position. Geo-
metric fidelity is balanced with per element quality, and surface
vertices are allowed to deviate from the nominal surface to avoid
introducing flipped elements. To avoid excessive deviation from
the input boundaries or corruption of surface features, the method
frequently terminates with barely convex meshes, with minuscule
minimum scaled Jacobian ( ≈ 0.01). Further quality improvement
using this approach leads to significant boundary drift.

6.2.3 Cone-based. Livesu et al [2015] introduce the notion of cones,
sets of hex-mesh corners that surround an oriented mesh edge
(Fig. 31). They then describe an optimization method that iterates
between a local step that optimizes each cone independently to
satisfy a minimal quality threshold with minimal changes in cone
shape, and a global step that seeks to position all mesh vertices so
as to maximally preserve these updated local cone shapes. Both the

Fig. 30. A degraded hex-mesh obtained by randomly displacing interior
vertices (left, first two columns), optimized with a state-of-the-art corner
based approach [Aigerman and Lipman 2013]. Hard constraining the surface
does not allow to fully untangle the mesh (middle right, see red elements
and spikes at the bottom and top). Relaxing it yields a mesh with positive
minimum Jacobian, but introduces excessive surface deviation (right). Scaled
Jacobian is color coded, from pure red (SJ ≤ 0) to pure blue (SJ = 1).

Fig. 31. Cone-basedmethods castmesh untangling as the problem of finding
a valid axis for pairs of oppositely oriented cones associated to mesh edges.
If the axis of each cone stays on the positive half space w.r.t. its base, then the
Jacobian at the corners of each element incident to such edge is guaranteed
to be strictly positive. Image from [Livesu et al. 2015].

global and the local steps allow feature vertices to move along the
underlying features, and surface vertices to move on the object’s
surface. The method had been shown to provide better balance
between surface preservation and quality optimization than prior
approaches. Xu et al. [2018] introduce a cone-based two-step op-
timization strategy whose first step focuses on mesh untangling,
potentially at the expense of surface preservation. Their second
step then improves surface fidelity and overall mesh quality while
preventing the formation of new inverted elements.

6.3 Non-Linear Meshes
The method of Paille et al. [2013] aims to compute low-distortion
maps between 3D domains and hexahedral meshes with near-perfect
element shape. The method progressively increases the order of the
hex elements to improve quality and surface fitting. This approach
can be used to optimize the quality of polynomial-basis meshes
but is not applicable to standard linear hex-meshes. In particular,
while the higher-order elements in the meshes it obtains may be
inversion-free and high quality, the underlying linear mesh elements
may remain inverted. Most recently, Knupp et al. [2021] proposed a
high-order hex-mesh optimization method that targets objects with
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no underlying CAD representation but using on the fly computed
implicit surface representations. It specifically targets conforming
meshes with interior surfaces and is advertised as well suited for
computations with dynamically changing geometry. The authors
demonstrate the method on a range of simple to medium complexity
inputs.

6.4 Simultaneous Geometry and Topology Optimization
Changing mesh geometry and connectivity in parallel can poten-
tially significantly improve the output quality. However, robustly
changing the topology of meshes with general connectivity can be
challenging due to the global impact of such topological changes
(cf. Sec. 5). Thus such research often focused on meshes with near-
regular connectivity. For instance Sun et al. [2012] propose an op-
timization method specific for grid-based meshes that employs a
combination of modified Laplacian smoothing and topological op-
erations on the padding layer of the input mesh. The method is
demonstrated to work on simple inputs; thus its applicability in the
general case remains to be tested. Guided by a frame field generated
from an existing hex-mesh, Wang et al. [Wang et al. 2018] propose
to identify the hexahedral sheets containing hexahedra with the
worst scale Jacobian quality, collapsing the identified sheets, and
inserting new sheets with possibly higher quality indicated from
the frame field. The insertion of new sheets relies on a stream quad
surface extraction which may have robustness issues when the mesh
structure is complex.

6.5 Meshes Containing Hybrid Elements
Meshes containing spurious (non-hexahedral) elements demand
geometric optimization schemes that are able to improve the qual-
ity of arbitrary polyhedral cells. Different from standard finite ele-
ments, such as tetrahedra and hexahedra, the literature on general
polyhedra is scarce. The manual of the Verdict Library [Stimpson
et al. 2007] is a prominent reference for quality metrics of finite ele-
ments, and briefly reports only about pyramids, wedges, and knives
(Fig. 32), proposing the signed volume as a unique metric, obtained
as the sum of the signed volumes of a tetrahedral decomposition of
each element. In a recent work, Lobos and colleagues proposed a
novel extension of the scaled Jacobian that applies to pyramids and
prisms [Lobos et al. 2021]. These elements often occur in hybrid
meshes because they are used as topological bridges between tetra-
hedra and hexahedra, or arise when collapsing edges from a regular
grid. Nevertheless, some hex-dominant meshing algorithms do not
offer any control on the topology of the hybrid elements they create
(Sec. 4.9), and may even produce cells for which a tetrahedralization
does not exist [Goerigk and Si 2015]. To date, we are not aware of
any mesh smoothing or untangling algorithm that can operate on
general polyhedral meshes containing elements that do not admit a
tetrahedralization.

Restricting to elements for which a tet decomposition exists, mesh
optimization algorithms are based around the ideas expressed in
[Vartziotis and Himpel 2014b]. The authors start from the consid-
eration that per element volume is not a good metric, because it is
scale-dependent, and proposed an alternative metric – called mean

volume –which is defined on the tetrahedralization of a general poly-
hedron. The mean volume metric exhibits some desirable properties.
In fact, it is scale-independent and is maximized by regular tetra-
hedra, hexahedra, octahedra, pyramids and prisms. Consequently,
following the gradient of the mean volume allows optimizing hybrid
meshes made of these elements [Vartziotis and Papadrakakis 2017].
Also, more general elements can be deformed following the gradi-
ent, but it remains unclear whether this improves the mesh or not,
because of the lack of a canonical reference element. Alternatively,
one could tetrahedralize each element and smooth the resulting sim-
plicial mesh, optimizing the shape of each tet. Schemes to convert
pyramids, hexahedra and prisms in a globally consistent manner are
reported in [Dompierre et al. 1999], and are implemented in open-
source tools like CinoLib [2019]. Also in this case, it is not clear to
what extent optimizing the tetrahedralization of a hybrid mesh im-
proves the original elements. The topic is indeed under-investigated,
and with the proliferation of hex-dominant meshing techniques we
expect more andmore contributions to be released in the near future.

A parallel line of works is devoted to the study of shape reg-
ularity criteria for general polyhedral elements. Shape regularity
plays a central role in FEM analysis, as it allows to define precise
error estimates on the solution of a PDE, which depends solely
on geometric properties of mesh elements. These criteria are well
known for triangles, quads, tetrahedra and hexahedra, but the prob-
lem hasn’t been taken into consideration for general polygons and
polyhedra until recently. As of today, shape regularity for arbitrary
polygonal and polyhedral elements is relatively strict: concavities
are admitted, but elements must have a bounded number of faces
and edges, and be star shaped [Lipnikov 2013; Mu et al. 2015]. Some
numerical schemes for hybrid meshes (e.g., the Virtual Element
Method [Beirão da Veiga et al. 2014]) have empirically shown to be
resilient to meshes containing even large amounts of elements that
spectacularly violate these criteria, suggesting that more permissive
shape regularity criteria could be devised. The problem is still open,
and various research groups are working on it. Note that shape regu-
larity criteria are not quality metrics, and involve the assessment of
geometric properties that are computationally expensive to evaluate
(e.g., being star-shaped) hence they can hardly plugged into mesh
optimization schemes. Recent studies are trying to discover new
connections between basic geometric properties of mesh elements
and the performances of PDE solvers (e.g., approximation error, the
condition number of the stiffness matrix), with the ultimate goal to
isolate geometric quantities that can be used to drive mesh genera-
tion and optimization algorithms in a PDE-aware manner [Attene
et al. 2021].

7 VISUALIZATION
Researchers involved inmesh generationmade extensive use of tools
to explore the structure of a volumetric mesh interactively. There
are several reasons for the volumetric investigation of hex-meshes:

Evaluation Finite Element analysis often requires the visual-
ization of the result of an experiment, such as the stress dis-
tribution or heat propagation.
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Fig. 32. From left to right: pyramid, wedge, and knife – the only hybrid
elements listed in the Verdict Library [Stimpson et al. 2007], a popular
reference for the computation of quality metrics of finite elements.

Visualization An interactive visualizer of volumetric meshes
is a powerful tool for the visual inspection of a model. Hence,
researchers might use it to assess meshing algorithms’ per-
formance in terms of element quality or global element ar-
rangement. Interactivity becomes more challenging for high-
resolution datasets or meshes with intricate 3D structures.

Assessment Secondarily, automated techniques might perform
numerical measurements and plotting histograms to assess
the quality of a hex model or some 3D field embedded in the
elements.

Presentation Finally, if the produced images are of high quality,
they constitute a valuable resource for dissemination, e.g.,
scientific publications.

Visualizing a volumetric dataset in an effective and user-friendly
way is a challenging task. The main challenge is to render the
internal elements efficiently, even if the external shell occludes
them. Volumetric rendering [Balsa Rodríguez et al. 2014] overcomes
this limitation by integrating the inner field along a particular view
direction. However, besides their practical use in the exploration of
biomedical data or FEM, they cannot be effectively used to visualize
the mesh’s connectivity and the quality of its elements.
An alternative trend enables an interactive user-guided visual

exploration of hex-meshes directly via cell filtering or using trans-
parency to reveal mesh internal structure. This approach allows
for a detailed analysis of the mesh structure, isolating weak points,
or degenerate elements. Some basic library offers a set of essential
tools to filter and visualize the elements selectively [Livesu 2019].
Other advanced geometry processing [Levy 2022b] or mesh gener-
ation [Geuzaine and Remacle 2009; Zheng et al. 1995] tools offer
necessary instruments to examine the internal cells, such as sweep-
ing planes. Similarly, Paraview [Ayachit 2015] and [ANSYS 2022]
provide some methods for the visualization and exploration of vol-
umetric datasets, including additional tools to plot and elaborate
statistics on volumetric fields embedded in the elements. Besides
their use in most application contexts, none of the tools mentioned
above is tailored to hexahedral meshes. A different generation of
software like Hexalab [Bracci et al. 2019] or the method presented
in [Xu and Chen 2018] have been designed explicitly for hexahedral
mesh visualization.

Hexalab offers a set of interactively controlled tools to reveal the
internal structure of the mesh. The user can either use an interac-
tively controlled sweeping plane (see Fig. 33 a) or peel the object
surface layer-by-layer from the outside (see Fig. 33 b). Even if re-
moved from the visualization, the outer surface can be visualized
with some transparency effect. Hexalab also provides a high-quality

(a) (b) (c)

Fig. 33. The interactive visualization tools offered by Hexalab: Internal
exploration using a sweeping plane (a) or the peeling tool (b); Coloring
elements by their quality and the resulting histogram (c).

rendering, including non-photorealistic effects on the GPU, like
ambient occlusion, to enhance the internal structure and the ar-
rangement of the elements and better communicate the shape of the
cells. It also implements all the quality measures in [Gao et al. 2017a],
offering automated techniques to numerical assess the quality of a
mesh and plot histograms for the inspected model (see Fig. 33 c).
Hexalab is also an easily accessible portal online repository of hex-
meshes, including a variety of results from various state-of-the-art
techniques. This characteristic makes this tool an excellent platform
to compare the performance of the different meshing techniques.
While Hexalab provides essential tools to visualize the global

connectivity, such as the location and valence of singularities, the
approach of [Xu and Chen 2018] provides a sophisticated method
for the exploration and the visualization of the volumetric struc-
ture. This method exploits the connectivity between base complexes
composing the hex-mesh. The structure and connectivity of base
complexes provide an excellent overview of the hexahedral ele-
ments’ underlying flow. The base complexes are groups of cells
delimited by the sheets emanating from singularities (Fig. 34 a).
Adjacent base complexes following the same frame field directions
compose dual-sheets (Fig. 34 b). A global optimization process uses
the connectivity between the dual-sheets to select the most signif-
icant ones and finally provide an efficient instrument to navigate
the high-level overview of the underlying structure (Fig. 34 c). The
recent approach proposed by Neuhauser and colleagues [Neuhauser
et al. 2021] makes use of GPU shader functionality to generate an
advanced volumetric rendering that focuses on a subset of elements.

(a) (b) (c)

Fig. 34. The pre-processing pipeline of [Xu and Chen 2018]: (a) Extracting
the base complex; (b) One Dual sheet layer; (c) The final visualization.
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This strategy allows, for example, to visualize poorly shaped ele-
ments or the elements surrounding a singularity and, at the same
time, gradually blend the visualization with the surrounding struc-
ture.

Most of the current visualization tools specialize in exploring the
mesh connectivity and assessing elements’ quality and arrangement.
However, most of the tools presented in this section show their limits
when employed in an actual industrial application.

The volumetric visualization systems discussed in this section do
not scale directly to massive datasets composed of millions of ele-
ments. As the opposite, the industrial systems (such as Paraview [Ay-
achit 2015] and Ansys [ANSYS 2022] ) allow for the visualization of
meshes composed of millions of elements. However, the rendering
quality provided by such commercial packages is usually not as
informative as the one provided by the recent tools proposed in
academia. Because meshes composed of millions of elements are
the standard in several FEM contexts, open-source tools like Hex-
alab must bridge this gap to have a chance of significant impact in
industry.

When a dataset becomes massive, current exploration tools based
on transparency, ambient occlusion, or slicing planes might become
inadequate to ensure full visual access to the volume. We believe
that future visualization tools could overcome these limitations by
exploiting current VR developments and possibly interactive gesture
tracking.
Finally, most application scenarios require the visualization of

complex fields defined over each volume element (such as stress or
tensor fields), exploring their variation, and doing some statistics.
While Paraview [Ayachit 2015] offers already some advanced tools
to this scope, renderings are still not adequate to the state-of-the-
art techniques. The modern GPU architecture that supports real-
time ray-tracing can trace a new path for the advanced volumetric
rendering of hexahedral meshes with complex embedded fields.

8 CURRENT TRENDS AND FUTURE PERSPECTIVES
In this section, we report on the status of hex-meshing as a whole
and its future perspectives. Specifically, in Sec. 8.1 we discuss open
theoretical problems that are relevant for hex-mesh generation al-
gorithms. In Sec. 8.2 we report on algorithmic issues of existing
approaches. Unlike the previous section, in this case, the theoret-
ical formulation of the problem is clear, but current solutions are
unsatisfactory, mainly for the intrinsic complexity of the problem
tackled. In Sec. 8.3 we indicate various activities that, even though
they do not directly advance the state of the art, may foster new
research and facilitate the development of better techniques.

8.1 Theoretical Challenges
Characterization and Synthesis of Hex-Meshable Frame Fields. The

fully automatic applicability of frame field based techniques (Sec. 4.8)
is currently limited to rather simple shapes. User intervention to cure
imperfections in the guiding field are required to handle general
shapes. As reported in the dedicated section, the space of frame
fields is topologically larger than the space of hexahedral meshes.
This raises two fundamental theoretical questions:

Fig. 35. Two polycubes having non 3-connected graphs. The red nodes at
the left is 6-connected; the one at the right is 4-connected. These orthog-
onal polyhedra are not included in the graph characterizations provided
in [Eppstein and Mumford 2010] and [Zhao et al. 2019].

(1) Given a frame field, how to algorithmically verify whether a
valid hexahedral mesh of identical topology exists?

(2) How to restrict frame field synthesis algorithms to operate
in the space of fields that admit a hexahedralization?

As a variant of the latter question, one may consider a restriction to
a subspace of that space – which raises the question what subspace
is simple enough to enable an efficient restriction, yet large enough
to enable high-quality hexahedralizations (with proper boundary
and feature alignment, sizing, adequate levels of regularity, etc.).
Unfortunately, both questions are still unanswered and demand
further research to understand these geometrical entities at a deeper
level. For the characterization of hex-meshable fields, in [Liu et al.
2018] the authors enumerate all local conditions for hex-meshes
having singular edges with valence 3 and 5. Also they report a global
condition which is a discrete version of the Poincaré-Hopf index
formula. While their characterization can be easily extended to a
broader set of singular edges, as reported by the authors, the global
condition is necessary but not sufficient, meaning that there may
still exist fields that obey all these criteria but do not admit a valid
mesh (e.g., due to limit cycles [Viertel et al. 2016], or other global in-
consistencies [Sokolov and Ray 2015]). The second question cannot
be answered at this point either, due to a limited understanding and
a lack of simple sufficient and necessary conditions characterizing
hex-meshable fields. To sidestep this issue, many authors start by
computing an unconstrained frame field, then cure it with manual
fixing [Liu et al. 2018] or adopting local heuristics [Jiang et al. 2014;
Li et al. 2012; Reberol et al. 2019; Viertel et al. 2016], and then use
the corrected singular graph to bootstrap methods such as [Corman
and Crane 2019; Liu et al. 2018] which produce a smooth field that
conforms to a prescribed singularity structure. Not only is this a
cumbersome pipeline, but considering the inability to precisely state
whether a field is hex-meshable or not, failure is still possible, even
for semi-automatic methods that put the user in the loop.

Characterization of Polycube Surface Structures. Various existing
polycube methods (Sec. 4.7) exploit a graph characterization of or-
thogonal polyhedra [Eppstein and Mumford 2010] in attempts to
ensure that the domain structures they generate actually correspond
to polycubes. This characterization, however, is unnecessarily lim-
iting. For instance, it is restricted to 3-connected graphs, meaning
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that each polycube corner will have exactly three incident polycube
edges. As a result, valid polycubes such as the ones shown in Fig. 35
are not considered valid. An even more restrictive aspect is the
limitation to genus zero polycubes, though this can be alleviated
to an extent [Zhao et al. 2019]. Extending this characterization to
4- and 6-connected graphs, as in Fig. 35, has high practical impor-
tance, especially for the purpose of meshing CAD shapes, where
more than three sharp features not rarely meet at one point and
the inability to reproduce this layout in the generated polycube
would inevitably result in a lack of feature preservation and – most
likely – in severe and unnecessary geometric distortion. At the same
time, as pointed out in Sec. 4.7, the purely graph-based approach
is not sufficient to recognize structural issues, as it ignores the fact
that in the polycube context one operates with a surface-embedded
graph structure. The approach of [Sokolov 2016] goes further in
this regard, but inherently does not support abstract, generalized,
chart-based polycubes. A fully satisfactory, necessary and sufficient
criterion and associated method to (i) detect (or even right away
prevent) invalidities, e.g., in surface labelings and (ii) perturb them
into the nearest valid solution is still elusive, and this remains an
open problem not only for practitioners in mesh generation.

8.2 Algorithmic Challenges
Volume Mappings. Many indirect methods that operate on a sup-

porting tetrahedral mesh rely on a mapping between the input
object and a parametric space embedding the mesh connectivity.
A common desideratum to promote element validity is that this
mapping is (globally or locally) injective. The generation of injective
volumetric maps is a broad topic that finds application in many
fields. While there are reliable approaches for the computation of
such maps [Campen et al. 2016], they are not versatile enough for
hex-mesh generation. In recent years some more flexible methods
with improved success rates have been introduced [Du et al. 2020;
Garanzha et al. 2021] but none of them can actually guarantee an
injective result and failure cases are easily encountered in the hex-
meshing context. Besides injectivity, it is also important that the
map has low geometric distortion. Elements should preserve their
good shape through the map so that a regular grid in parametric
space translates into a well-shaped uniform hex-mesh of the target
object. To this end, current relatively robust methods such as [Du
et al. 2020] fall short, because they are focused more on the validity
of the solution than on the distortion of the map, and may therefore
produce valid meshes that are unusable in practice. Recent litera-
ture has shown that adaptively sampling the parametric space can
be used to counterbalance map distortion, even in extreme cases
(Fig. 18). Nevertheless, devising new algorithms that provide guar-
antees of robustness and minimize geometric distortion (possibly
editing mesh connectivity) will be highly beneficial for many hex-
meshing algorithms.
Volume mappings become even more complex when integer con-
straints are added to the formulation, leading to a mixed-integer
problem. These problems typically arise in frame-field based meth-
ods (Sec. 4.8) due to the presence of integer transition functions and
integer alignment conditions, but may also arise in certain polycube
methods (Sec. 4.7), to ensure that input features and polycube edges

map to integer isolines in parametric space. As the resulting mixed-
integer problems are very hard to solve to the optimum [Bommes
et al. 2010], heuristics are commonplace, e.g. based on rounding
[Jiang et al. 2014; Li et al. 2012; Nieser et al. 2011] or reduction to
linearly constrained integer programs [Brückler et al. 2022a,b; Cher-
chi et al. 2016]. Yielding a map that is not only of low distortion on
average, but strictly locally injective can be even more challenging
in this integer-constrained setting.
Regardless of the presence of integer constraints, the generation
of the hexahedral connectivity is a discrete sampling, hence the
fulfillment of map injectivity (or lack thereof) does not guarantee a
success or a failure. A lucky enough sampling of an invalid map may
yield well-shaped hexahedra as much as a coarse enough sampling
of an injective map may produce inverted elements with negative
Jacobian determinant. Nevertheless, valid maps with no inverted
elements and low geometric distortion are a good proxy for the
generation of well-shaped hexahedral elements, and this is what
existing methods strive for. Moreover, from a theoretical standpoint,
injectivity guarantees the existence of a (dense enough) sampling
where the so generated hexahedra are valid, even though the result-
ing sampling density may be so high to become impractical for real
applications.

Feature Transfer. By their very definition, direct methods are guar-
anteed to conform to the input geometry and all its features. Con-
versely, indirect methods can only produce an approximation of the
target shape. Many indirect methods insert all (or a part) of the input
features after the mesh generation stage, resolving a feature transfer
problem. This happens for all grid-based methods, but may also
happen for methods based on domain decomposition or polycube
methods (e.g., to restore features that do not map to polycube edges).
Feature transfer is primarily a topological problem because feature
lines must be assigned to chains of edges in the hex-mesh, ensuring
that no spurious overlaps or intersections are introduced. Known
methods operate heuristically, inserting one feature curve at a time
along some pre-computed sequence (e.g., sorting features by their
length). While the first insertion is free to occupy any mesh edge,
the subsequent ones are constrained by previous insertions, clearly
designing a combinatorial problem with exponential complexity.
Recent literature has shown that a greedy processing sequence may
lead to catastrophic results (see, e.g. Figs. 1,2,11 in [Born et al. 2021]).
Besides the intrinsic complexity of the general problem, the sparse
hex-mesh connectivity and impossibility to apply local refinement
to increase the valence of a vertex (e.g. to accommodate more incom-
ing arcs) makes this problem much more challenging on structured
meshes than on unstructured ones. Current methods such as [Gao
et al. 2019] are limited to simply discarding a feature line if a non-
intersecting chain of edges can be computed, and insert it otherwise,
regardless of its geometric deviation from the target curve. The use
of more sophisticated heuristics such as [Born et al. 2021] may sig-
nificantly increase the number of features successfully transferred
and also help reduce the geometric distortion due to a wiser choice
of the feature edges. Alternative methods tailored to operate on
the connectivity of hexahedral meshes may also be developed, and
coupled with (as local as possible) hex-mesh refinement techniques
to resolve intricate configurations. Considering the limitations of
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the hex connectivity application-aware de-featuring may also play
an important role [Buffa et al. 2022].

Volumetric Modeling. The prominent idea at the basis of Isogeo-
metric Analysis (IGA) is to establish a unified geometric representa-
tion for both modeling and simulation, thus avoiding the need to
iteratively convert from one representation to the other throughout
the product development cycle [Hughes et al. 2005]. Differently from
Computer-Aided Design (CAD), which is historically concerned
with boundary representations (B-Rep), numerical simulation often
necessitates an explicit volumetric representation of the product
(V-Rep), which typically comes in the form of a finite tetrahedral or
hexahedral mesh. Therefore, the fulfillment of the IGA principles
passes through the adoption – also for the design part – of V-Reps.
Not only IGA, but also modern manufacturing techniques call for
this transition: composite materials and internal microstructures
do not scale well with B-Reps, and would benefit from an explicit
volumetric representation. Volumetric modeling that operates with
tensor products [Antolin et al. 2019b,a; Massarwi and Elber 2016]
has close analogies with the definition of structured hexahedral
meshes that endow a coarse block decomposition. To this end, ad-
vances in this field will go hand in hand with advances in user
interactive tools for the generation of semi-structured hexahedral
meshes. A few proposals already exist in the literature, but the topic
is quite new and under-investigated.

User Interaction. Since no existing hex-meshing method combines
robustness, quality, and generality in a fully satisfactory way, man-
ual or semi-manual hexahedral mesh generation is still a prominent
approach in industry [Lu et al. 2017]. Professional software such
as [ANSYS 2022; CUBIT 2022] and many others are based on inter-
active pipelines where the user provides a high-level understanding
of the object, and is required to instruct the program on how the
shape can be split into simpler parts. If and when parts become
sufficiently simple, direct methods such as sweeping and advancing
front are launched to complete the discretization. Parts that are not
sufficiently simple will remain empty, and the user is required to
modify the current partitioning or split the non-meshed elements
into simpler sub-components. This process is extremely tedious, and
requires the user to “understand” (and overcome) the limitations
of direct meshing approaches, in order to provide a decomposition
that nicely combines the necessity to keep the number of parts low
and at the same time simple enough to be processed separately in
an automatic fashion [CoreForm 2022b]. Since these tools follow
a divide-and-conquer approach, direct hexmeshing techniques are
preferred to indirect ones, because they ensure that the meshes of
all sub components will be conforming. In recent years, academic lit-
erature has started to explore the possibility to couple user guidance
with indirect approaches that operate on a supporting tetrahedral
mesh [Li et al. 2021; Takayama 2019; Yu et al. 2022; Yu andWei 2020].
These methods are not based on the typical divide-and-conquer par-
adigm, and their ability to scale on complex shapes it yet to be
demonstrated.
The usefulness of interactive approaches is twofold: from the per-
spective of mesh users, they allow to hex-mesh objects that would
not be possible to produce automatically. From the perspective of

practitioners mesh generation, these interactive pipelines often per-
mit to spot the weak parts of the pipeline, isolate corner cases, and
interactively explore alternative solutions. To this end, these tools
may be highly important for the development of better (i.e., more
robust) fully automatic methods.

Hex-Mesh Booleans. In medicine, the simulation of human organs
often relies on templated hexahedral or hex-dominant meshes that
well capture biological structures such as separation tissues or the
alignment of muscular fibers, effectively reproducing their activa-
tion [Buchaillard et al. 2009; Gérard et al. 2006; Rohan et al. 2017;
Schonning et al. 2009; Takhounts et al. 2008]. Considering the im-
portant information encoded in the connectivity of these meshes,
when simulating complex body dynamics that involve multiple or-
gans it becomes important to create composite simulation domains
that preserve as much as possible the connectivity of each original
mesh. Blending multiple meshes into a single one is a widely studied
problem in the literature, especially for the case of unstructured
meshes composed of triangles or tetrahedra [Cherchi et al. 2020;
Diazzi and Attene 2021; Hu et al. 2018; Zhou et al. 2016]. For struc-
tured meshes made of quads or hexahedra, the problem is more
complex because the necessary changes of the local connectivity
have a global footprint. Recently, in [Nuvoli et al. 2019] the authors
introduced a method to blend quadrilateral meshes with minimal
topological impact. Extending this idea to volumetric hex-meshes
remains an appealing avenue for future research with a significative
potential impact for bio-medical applications.

Scalability. With the recent advancement of additive manufac-
turing and topology optimization strategies, mechanical shapes are
rapidly growing in complexity. Consequently, hex-meshingmethods
need to comply with this trend by providing the ability to process
large datasets at a reasonable computational overhead. Scalability
has not been a central point for most of the proposed methods, but
it will increase in importance in the years to come.

8.3 Practical Challenges
PDE-aware VolumeMeshing. As discussed in Sec. 4.2, a deeper fun-

damental understanding of the connection between a hex-mesh and
the final application is required. Most of the hex-meshing methods
strive to ensure every element to have a positive Jacobian deter-
minant. While this is already hardly achievable reliably with most
of the proposed methods, even a positive Jacobian determinant
throughout the entire mesh only avoids the presence of degenerate
elements. Still, it does not ensure the mesh fits with the target ap-
plication. The precise connection between a hex-mesh and its final
application is usually elusive. In Sec. 3, we presented several quality
measures for individual hexes. Still, even for Finite Element Analysis,
it is not clear how those metrics impact the accuracy of the simula-
tion in detail. Other applications might prefer the alignment of the
elements to a particular vector field over their individual quality.
Recent literature has started to investigate the correlation between
geometric quality and the accuracy of numerical solvers at a deeper
level. A whole line of research is devoted to the evaluation of the
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Virtual Element Methods for polygonal and polyhedral meshes [At-
tene et al. 2021; Cabiddu et al. 2021; Sorgente et al. 2022, 2021]. More
related to the topic of this survey is the study published in [Gao
et al. 2017a], who conducted a statistical correlation analysis be-
tween hexahedral meshes obtained with various techniques, and the
resolution of a few representative PDEs. While it remains difficult
to design mesh generation algorithms that can address geometric
quality criteria at the mesh generation stage, a few exceptions exist.
For example, the VoroCrust algorithm [Abdelkader et al. 2020] is
designed to intrinsically satisfy the orthogonality criterion required
by CFD solvers, obtained with a wise positioning of the Voronoi
seeds that fully avoids the necessity to cut (or clip) Voronoi cells. It
would be interesting to investigate similar ideas to obtain a tighter
coupling of mesh generation and its downstream applications.

Tets vs Hexes. Meshes made of hexahedral elements were tradi-
tionally considered superior to tetrahedral meshes, both in terms
of performance and accuracy. Tuchinsky and Clark observed that
since a hexahedral mesh can cover the same volume of a tetrahe-
dral mesh with roughly one-quarter of the elements, there is a 75%
saving in terms of computational cost [Tuchinsky and Clark 1997].
This estimate is based on the assumption that “analysis setup and
pre-processing requires the same time for hex- and tet-based work”,
which does not reflect the current state of mesh generation because
creating and processing tetrahedral meshes is significantly easier
and more robust than creating hexahedral ones [Diazzi and Attene
2021; Hu et al. 2020, 2018]. Regarding accuracy, it seems to be well
understood and established that linear tetrahedra are to be avoided
because they introduce artificial stiffness in the problem (i.e., they
“lock”) [Wang et al. 2004], whereas linear hexahedral elements do not
introduce such artifact. Typically locking depends on the number of
degrees of freedom [Frâncu et al. 2021] and disappears when higher
order bases are used [Wang et al. 2004]. This makes hexahedral
meshes particularly suited for problems where linear elements are
used, such as in the interactive simulation of hyper-elastic and plas-
tic phenomena (e.g. in surgical simulation [Gao and Peters 2021])
and in fast transient dynamic phenomena that employ explicit time
integration (e.g. crash and impact simulation) [Gravouil et al. 2009]
because higher-order basis functions would necessarily demand a
reduction of the time step to achieve numerical stability, according
to the Courant−Friedrichs−Lewy condition [Courant et al. 1967;We-
ber et al. 2021]. In recent years some scientists have questioned the
superiority of hexahedral elements over tetrahedra and advocate the
use of tetmeshes with quadratic basis functions as general purpose
simulation domains [Schneider et al. 2022]. The topic is somewhat
orthogonal to this survey, which focuses only on hex-mesh gen-
eration aspects. Whether it is for their (uncertain) superiority or
because of the presence of highly trusted legacy code that runs only
on hexahedral grids, the interest for hexahedral meshes is still high
both in industry and in academia. This is witnessed by the growing
number of scientific articles published in recent years [Beaufort et al.
2022], by the central role that hexahedral grids occupy in industrial
and commercial software, and ultimately by the interest that the in-
dustry manifests for each advancement in hex-mesh generation. It is
worth noting that, despite their importance, tetrahedra and hexahe-
dra cover just a fraction of the possible simulation domains. General

polyhedral meshes made of Voronoi [Lévy 2022] or cut [Tao et al.
2019] cells are a valid alternative and are particularly appreciated
in Lagrangian setups, where the mesh evolves over time and must
be quickly generated to track features in a simulated domain. For
obvious reasons, this survey does not cover this body of literature.

File Formats. Many algorithms for hex- and hex-dominant mesh
generation necessitate the ability to process general polyhedral
meshes, either at the intermediate steps of the pipeline [Gao et al.
2019; Livesu et al. 2021; Maréchal 2009] or directly in the output
mesh [Gao et al. 2017b; Livesu et al. 2020]. In general, these methods
put no constraints on the topology of each cell, which can there-
fore contain any amount of vertices, edges and faces. While data
structures capable of handling these entities exist (Sec. 9), we are
not aware of any widely accepted file format that allows to save
and load output hexahedral dominant meshes or intermediate steps
of hex-meshing pipelines. To our knowledge, popular tools such
as VTK [2022] only support file IO of canonical finite elements,
such as tetrahedra, hexahedra, pyramids and wedges, while meth-
ods that produce meshes with more complex elements all rely on
ad-hoc formats that were released alongside the algorithms them-
selves [Gao et al. 2017b; Livesu et al. 2020], thus limiting the possi-
bility to exchange material and ultimately triggering a proliferation
of alternative proposals. Considering the growing importance of
hex-dominant meshes, it would be important to define a file format
for general polyhedral meshes, so that groups working in the field
can store and release their data in a way that is intelligible by the
other groups, and that can be easily supported by third party soft-
ware such as [Bracci et al. 2019] (e.g., for visualization, comparison,
and analysis).

Datasets & Benchmarks. In recent years the computer graph-
ics community has released multiple databases that have been ex-
tremely useful for practitioners in the field, raising the bar for new
algorithms in terms of scalability and ability to handle a variety
of inputs with different complexity, from easy ones to highly chal-
lenging. To make a practical example, the Thingi10K [Zhou and
Jacobson 2016] dataset has quickly become a popular means to em-
pirically validate the robustness of surface mesh generation and
processing algorithms [Hu et al. 2018; Pietroni et al. 2021] and some
of its models are so pathological that being able to process them
is an achievement by itself, with authors reporting both running
times and memory consumption (see e.g. Fig. 17 in [Hu et al. 2020]
and Fig.1 in [Cherchi et al. 2020]). To this end, new methods for
hexahedral and hex-dominant meshing can greatly benefit from
the release of similar databases. The Hexalab project [Bracci et al.
2019] collects output data from the most prominent mesh genera-
tion methods in the literature, but it is not meant to be a validation
database for novel methods. A few contributions in this direction
have been proposed very recently: [Ledoux 2022; Reberol et al. 2019]
propose input CAD models, while [Beaufort et al. 2022] offers input
tetrahedral meshes with tagged feature entities. Specifically, hard
constraints on the preservation of feature curves and (boundary and
interior) surfaces can be very challenging for meshing algorithms.

Beyond PDEs: Novel Applications. The numerical resolution of
Partial Differential Equations (PDEs) is by far the most prominent
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application of volumetric meshes in general, and of hexahedral
meshing in particular. Nevertheless, in recent years both meshes
of this kind and techniques that were originally developed in the
field have been used in alternative applications, such as topology
optimization and advanced manufacturing [Arora et al. 2019; Stutz
et al. 2022; Wu et al. 2021]. To this end, current themes in auto-
matic hex-mesh generation are beneficial not only for the numerical
resolution of PDEs, but may also reach a broader audience.

9 AVAILABLE RESOURCES
Besides various professional and semi-professional tools such as
VTK [Schroeder et al. 1998] and its front end ParaView [Ayachit
2015], Cubit [CUBIT 2022], MeshGems [Distene SAS 2022], Gmsh
[Geuzaine and Remacle 2009], CoreForm [CoreForm 2022a], CGAL
[Fabri and Pion 2009] and many others, over the years academics
have released both data and a variety of open-source tools to aid
not only their research, but also the activities of other practitioners
in the field. This section summarizes the most prominent available
resources for hexahedral and hex-dominant meshing. Note that the
list of authors releasing their data, code and toolkits is in constant
evolution.

Datasets. In Tab. 3 we list datasets released by authors of the
methods surveyed in Sec. 4. This includes in particular sets of exam-
ple hexahedral meshes generated by these various methods, but also
hex-dominant meshes (e.g., [Gao et al. 2017b]) as well as challenging
input models (e.g., [Beaufort et al. 2022; Ledoux 2022; Reberol et al.
2019]). The HexaLab project [Bracci et al. 2019] is a unified portal to
visualize hexahedral meshes directly in a web browser as well as to
download them. It collects meshes produced with the most recent
techniques in the field, with a focus on pure hexahedral meshes,
and includes most of the output data listed in Tab. 3.

Algorithms. In recent years, more and more authors are releasing
their source code, either through activities for the reproducibility
of scientific experiments, such as [Bonneel et al. 2020; GRSI 2022],
or simply by publishing their code on Github or similar portals. In
Tab. 4 we report on all the implementation of algorithms surveyed in
this article, both in the form of source code or pre-compiled binaries.

Toolkits. While there exist countless open source libraries for the
processing of surface (e.g. triangular) meshes, the number of tools
that offer data structures for volume meshes is scarce. Besides, most
of these tools are dedicated to tetrahedral meshes only. They do not
support alternative cells, such as hexahedra or general polyhedral
elements that may arise at the intermediate steps of the meshing
pipeline [Livesu et al. 2020; Maréchal 2009; Pitzalis et al. 2021], or in
hex-dominant methods. In Tab. 5 we report on the most prominent
existing software tools for volume mesh processing, summarizing
their main features w.r.t. the scope of this survey.
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Table 3. List of input/output datasets for the hex and hex-dominantmethods
surveyed in this article available at the time of writing. Meshes that are
included also in the HexaLab database [Bracci et al. 2019] are flagged
accordingly.

Method Data
Available

File
Formats

On
Hexalab URL

[Gregson et al. 2011] output hex-meshes .MESH yes zip
[Li et al. 2012] output hex-meshes .VTK yes link

[Livesu et al. 2013] output hex-meshes .VTU
.MESH yes webpage

[Huang et al. 2014]
input tet-meshes
polycube maps

output hex-meshes
.VTK yes zip

[Livesu et al. 2015] input hex-mesesh
output hex-meshes .MESH yes zip

[Fang et al. 2016] input tet-meshes
output hex-mesh .VTK yes zip

[Fu et al. 2016]
input tet-meshes
polycube maps

output hex-meshes
.VTK yes link

link

[Cherchi et al. 2016]

input polycubes (hex)
output polycubes (hex)
intput hex-meshes
output hex-meshes

.MESH yes zip

[Livesu et al. 2016]
input surface meshes
input curve-skeletons
output hex-meshes

.OBJ
.SKEL
.MESH

yes zip

[Gao et al. 2016] input surface meshes
output hex-meshes

.OFF
.MESH yes zip

[Wu et al. 2017] output hex-mesh .MESH yes –
[Livesu et al. 2017] output hex-meshes .MESH yes zip
[Shang et al. 2017] output hex-meshes .VTK yes link

[Gao et al. 2017c] input hex-meshes
output hex-meshes .VTK no zip

[Gao et al. 2017b] output hex-dominant meshes .HYBRID no zip
[Wu et al. 2018] output hex-meshes .MESH yes –
[Cherchi et al. 2019a] output hex-meshes .MESH yes zip
[Corman and Crane 2019] output hex-meshes .VTK yes zip
[Takayama 2019] output hex-meshes .VTK yes zip

[Gao et al. 2019]
input surface mesh

input features
output hex-meshes

.OBJ
.FGRAPH
.MESH
.VTK

yes zip

[Reberol et al. 2019] input CAD models .GEO no zip
[Yang et al. 2019] output hex-meshes .VTK no link
[Palmer et al. 2020] input tet-mesh .OVM no zip

[Livesu et al. 2020]

input surface meshes
input rosy fields
input features
cutting loops

refined surface meshes
output hex-meshes

.OBJ
.ROSY
.SHARP
.TXT
.MESH

yes github

[Guo et al. 2020]

input surface meshes
input features

polycubes (surface)
polycubes CE (surface)
output hex-meshes

.OBJ
.FEA
.VTK

yes link

[Xu et al. 2021] output hex-meshes .MESH yes github
[Bukenberger et al. 2021] output hex-meshes .MESH yes –
[Pitzalis et al. 2021] output conforming grids .MESH yes –
[Ledoux 2022] input CAD models .STEP no gitlab

[Beaufort et al. 2022] input tet-meshes
input features .VTK no webpage
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Table 4. List of available implementation of hex-mesh processing algo-
rithms.

Method Type
Sample
Input

Available
License URL

[Lévy and Liu 2010] C++ yes – link
[Huang et al. 2011] executable yes – zip

[Baudouin et al. 2014] C++
(Gmsh branch) no GPL 2 gitlab

[Gregson et al. 2011]
[Livesu et al. 2013]
[Livesu et al. 2015]

executable yes patented,
one month trial webpage

[Fang et al. 2016] C++ yes – zip
[Lyon et al. 2016] C++ yes GPL 3 webpage

[Fu et al. 2016] C++
(incomplete) no – zip

[Gao et al. 2017b] C++ yes – github
[Gao et al. 2017a] C++ no – github
[Gao et al. 2017c] C++ no MPL 2 github
[Xu and Chen 2018] C++ no GPL 3 github
[Xu et al. 2018] C++ yes – github
[Liu et al. 2018] C++ yes GPL 3 gitlab
[Yang et al. 2019] C++ yes – link

[Bracci et al. 2019] C++
Javascript yes MIT github

[Takayama 2019] C++ no BSD 3 bitbucket
[Gao et al. 2019] C++ yes – github

[Reberol et al. 2019] C++
(Gmsh branch) no GPL 2 gitlab

[Palmer et al. 2020] Matlab yes MIT github
[Verhetsel et al. 2019b] C no GPL zip
[Livesu et al. 2020] C++ yes GPL 3 github
[Guo et al. 2020] C++ yes MIT github
[Marschner et al. 2020] Matlab yes MIT github
[Yu and Wei 2020] C++ yes – github
[Pitzalis et al. 2021] C++ no MIT github

[Livesu et al. 2021] C++
(inside Cinolib) no MIT github

[Neuhauser et al. 2021] C++ yes BSD 2 github
[Xu et al. 2021] executable yes – github
[Li et al. 2021] C++ no MIT github
[Yu et al. 2022] C++ yes – github
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Table 5. List of existing open source toolkits for visualization and processing of hex and hex-dominant meshes. Note that while some of these tools endow a
broader set of facilities (e.g. for surface mesh processing), the table summarizes only the aspects that are relevant for the scope of this article.

Name Type Supported
geometries

File
formats

Rendering
facilities

Visual
inspection

Mesh
attributes

Tools for
volume

processing
License URL

CinoLib
[Livesu 2019]

C++ library
(header only)
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hexahedra,
general

polyhedra
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.VTU,
.VTK,

.HEDRA1,

.HEXEX2,
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Tetgen4

yes

plane slicing
(axis aligned),
thresholding,

manual selection,
ambient occlusion

generic
attributes
for all
mesh

elements

grid hex-meshing
facilities

(schemes [Livesu et al. 2021],
surface mapping,

faeture mapping [Gao et al. 2019]),
hex-to-tet
conversion

[Dompierre et al. 1999],
extraction of

coarse block layouts,
volume smoothing,
subdivision schemes,

padding,
all quality metrics in
[Stimpson et al. 2007]

MIT github
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.VTK yes
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thresholding,
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github
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C++ library
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2 https://www.graphics.rwth-aachen.de/media/resource_files/hexex_input_examples.zip 5 http://alice.loria.fr/software/geogram/doc/html/geofile_8h_source.html
3 https://github.com/gaoxifeng/robust_hex_dominant_meshing/blob/master/src/meshio.cpp 6 https://www.graphics.rwth-aachen.de/media/openvolumemesh_static/Documentation/OpenVolumeMesh-Doc-Latest/file_format.html
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