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Abstract The space–time fractional coupled modified equal-width equation and the coupled

Boussinesq equation are a category of fractional partial differential equations, which might be cru-

cial mathematical feathers in nonlinear optics, solid-state physics, vibrations in the nonlinear string,

ion sound waves in plasma, hydro-magnetic waves in cold plasma and many more. To assemble

such new exact solutions of the mentioned equations, the Sine-Gordon expansion (SGE) technique

has been proposed with inside the sense of conformable derivative and the fractional order partial

differential equation that is capable to change into an ordinary differential equation by using the

traveling wave transform. In this article, the SGE technique has been employed to search the

higher-dimensional fractional nonlinear evolution equations and hooked up consistent soliton solu-

tions to the faster thought fractional nonlinear evolution equations through installing use of the

prolonged higher-dimensional SGE technique. The compatibility of the extended SGE technique

confirms through the scoring of soliton solutions. Moreover, we explored a couple of varieties of

solutions over the maple calculations, including soliton, kink types, bell types, single soliton type,

dark soliton, singular kink type, and anti-bell type solutions for distinct values of constants, which

have been illustrated by the usage of 3D, list-point, contour analysis, and vector plotting. It is far

incredible to understand that the feature of the solutions relies upon the selection of the parameters

from the figures. This takes a look at an impactful position in studying higher-dimensional frac-

tional nonlinear evolution equations through the prolonged SGE technique.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

The fractional derivatives and integrals have been discovered
over three hundred years ago, but it has not always been a

new discerning. In a couple of decades, large efforts were paid
with inside the fields of nonlinear fractional partial differential
equations (NLFPDEs) and drawn interest for their common

applications in the latest medical and engineering arenas, con-
trolled thermonuclear fusion, for instance, plasma physics,
acoustics, solid-state physics, stochastic dynamical process,
diffusive transport, electric network, electromagnetic theory,

astrophysics, in fluid mechanics, fractional dynamics, geo-
chemistry, manipulate theory, system identification, chemical
kinematics, optical fibers, bio-genetics, solid-state physics,

chemical physics, and many others fields [1-5]. The terms
related to engineering standpoint including dispersion, convec-
tion, diffusion, and response are carefully related to the above

cited topics, and NLFPDEs might be used to assess them cor-
rectly. Fractional calculus is the key technique of standard dif-
ferentiation and integration in arbitrary order, and can be

utilized to formulate and interpret the different physical nature
of a non-stop transition from stationary to oscillation phe-
nomena. For large-scale research in various sectors of engi-
neering and physical sciences, currently, FNLEEs have

turned out to be pretty famous. Some of the techniques had
been evolved with the aid of using numerous researchers to
perform genuine and specific stable soliton solutions of nonlin-

ear physical models, inclusive of the modified Kudryashov
method [6,7], the hyperbolic ansatz technique [8], the general-
ized exponential rational function method [9], the extended

simple equation method [10], the sub-equation method [11],
the modified Khater method [12], the Chelyshkov polynomial
technique [13,14], the reproducing kernel technique [15], the

two variables ðG0=G; 1=GÞ-expansion technique [16-18], the
generalized logistic equation method [19], the SGE technique
[20-23], the F-expansion technique [24] and numerous sort of
soliton [25,26] manner. The popular SGE technique became

evolved primarily based on wave transformation only, and it
works best for lower-dimensional FNLEEs. There are many
higher-dimensional FNLEEs regarding physical mathematical

problems in day-to-day life, and the understanding of them
explicitly in similar soliton solutions is desired. However,
new solutions of higher-dimensional FNLEEs have no longer

been investigated with the aid of the SGE extending technique.
Therefore, the goal of this study is to increase the computable
SGE technique for higher-dimensional FNLEEs, and the
implication of this approach is to set up broad-ranging stable

soliton solutions to the CMEW equation [27] and the coupled
Boussinesq equations [28]. These equations are converted to
ODE with the help of a fractional complex transform

approach to a few beneficial formulations of conformable
derivatives.

The proposed fractional coupled Boussinesq equations

emerge in real applications, for instance, vibrations in nonlin-
ear string and nonlinear framework waves iron sound waves in
plasma. The equation given in [29] had been advanced through

Hosseini and Ansari. The authors observed its result with the
use of the modified Kudryashov method [30], Hoseini et al. [31]
defined it with the help of exp (-/(e))-expansion technique.
Yaslan and Girgin identified the solution through the use of

the first integral method [30]. Additionally, the CMEW
equations can be emerged inside the research of drinks flow
in depicting the engendering of shallow-water waves in a
dynamic framework.

The present study determines the modern solutions to the
above mentioned equations with the SGE method. The
space–time fractional coupled Boussinesq equation and

space–time fractional CMEW equations are yet to be investi-
gated in the use of SGE technique [32,33]. This strategy has
the advantage of allowing us to gather extra arbitrary con-

stants and additional types of solutions than the above men-
tioned technique. It will additionally help numerical solvers
in checking the correctness of the outcomes, and it can also
explain the instability analysis.

The article has been organized in the following ways: In
Section 2, the primary definitions and homes for conformable
derivatives have been described. Section 3 illustrates the prin-

ciple steps of the SGE technique. In Section 4, the precise solu-
tions of fractional Boussinesq equation and fractional CMEW
equations are given in detailed mathematical forms as they can

be implemented in different commercially available mathemat-
ical software tools to see the solutions. In Section 5, the
graphical illustration and discussion in different plotting tools

are presented; Section 6 has been showing the comparisons of
results. Finally, the conclusion of this paper has been described
in Section 7.

2. Meaning and foreword

Recently, Khalil et al. [34] in 2014 introduced a new easy obe-
dient definition of the fractional derivative known as con-

formable derivative. Let us consider, f: [0, 1) ? R, is a
function. The order ‘‘conformable derivative’’ of f is defined
as [35]:

Ka fð Þ tð Þ ¼ lim
e!0

f tþ et1�að Þ � f tð Þ
e

ð2:1Þ

supposed for all t > 0; a 2 ð0; 1Þ: If lim
t!0þ

fðaÞðtÞ be real and f

be a-differentiable in the domain nearlyð0; aÞ; a > 0, then

expressf að Þ 0ð Þ ¼ lim
t!0þ

fðaÞðtÞ..

Theorem 1. Assume a 2 ð0; 1� and at a point t > 0 as well
supposed f; g be a-differentiable. Hence.

� Ka xf þ ygð Þ ¼ xKa fð Þ þ yKa gð Þ, for allx; y 2 R.

Ka tzð Þ ¼ htK�a, for allz 2 R.

Ka uð Þ ¼ 0, for all constant functionf tð Þ ¼ u.
Ka fgð Þ ¼ fKa gð Þ þ gKa fð Þ.
Ka

f
g

� �
¼ gKa fð Þ�fKaðgÞ

g2 .

Additionally, if f is differentiable, thenKT a fð Þ tð Þ ¼ t1�a df
dt .

Some diverse properties just like the chain law, Gronwall’s
inequality, integration procedures, the Laplace transform the

exponential function, and Tailor series expansion in terms of
the conformable derivative [35].

Theorem 2. Assume f is an a-differentiable feature in con-
formable differentiable further presume that g is likewise

differentiable and demarcated in variety of f, so that.
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Ma f � gð Þ tð Þ ¼ t1�ag
0
tð ÞfgðtÞ: ð2:2Þ
3. The Sine-Gordon expansion method

Recently, many analytical and numerical approaches are being

advanced with the aid of using many researchers. One of those
crucial and powerful methods that can offer precise solutions
with significant physical conduct is the SGE technique. The

SGE technique is a really useful and crucial device for figuring
out closed-shape soliton solutions to FNLEEs. In the study,
the SGE technique can be defined to set up standard and

wide-spectral soliton solutions to FNLEEs with admire to
space and time.

The fractional Sine-Gordon equation of one dimension of

the shape is reduced from the conformable shape
uðx; tÞ ¼ UðnÞ with n ¼ aðx� vta=aÞ of the classical wave
transform [36,37]:.

@2u

@x2
�D2a

t u ¼ m2sinu; m is constant: ð1Þ

to the ODE,

d2U

dn2
¼ m2

a2ð1� v2Þ sinU; ð2Þ

where v denotes velocity of the traveling wave described
with inside the transformation. Some generalizations lead to

the following form,.

dðU=2Þ
dn

� �2

¼ m2

a2ð1� v2Þ sin
2U=2þ C; ð3Þ

where C denotes the constant of integration, C is expected

zero for simplicity. Let w nð Þ ¼ UðnÞ=2 and b2 ¼ m2=

ða2ð1� v2ÞÞ. Then (Eq. 3) is converted to.

dðxÞ
dn

¼ bsinx: ð4Þ

Set b ¼ 1 in (Eq. 4). Then from (Eq. 4) we have two impor-
tant relations,

sinx nð Þ ¼ 2den

d2e2n þ 1
¼ sechn; for d ¼ 1 ð5Þ

cosx nð Þ ¼ d2e2n � 1

d2e2n þ 1
¼ tanhn; for d ¼ 1 ð6Þ

where d is the constant of integration. The form of the frac-
tional PDE.

P u;Da
t u; ux;D

2a
tt u; uxx; ::

� � ¼ 0; ð7Þ
can be reduced to an ODE.

G ¼ U;U
0
;U

0 0
; � � �� � ¼ 0: ð8Þ

A compatible wave transform is used uðx; tÞ ¼ U nð Þ where
the transform variable n is defined as a x� vta=að Þ: Then the
predicted solution to (Eq. 8) takes the following form.

U nð Þ ¼ A0 þ
Xs

i¼1

tanhi�1ðnÞðBisechnþ AitanhnÞ; ð9Þ

can be written as.
U xð Þ ¼ A0 þ
Xs

i¼1

cosi�1ðxÞðBisinxþ AicosxÞ: ð10Þ

Owing to (Eq. 5), (Eq. 6), the process starts by determining

index limit s with the aid of homogenous balance of the terms
in (Eq. 8). Following the substitution the coefficients of powers
of sinx; cosx of the anticipated solution (Eq. 10) into (Eq. 8)

are assumed to zero. Next, the ensuing algebraic implement is
attempted to be solved for the coefficientsA0;A1;B1; � � � ; a; m.
Then, the solutions are raised, if exists, via way of means of

using (Eq. 5)-(Eq. 6) andn.

4. Investigation of the solutions

In this area, we talk about the solitary wave solutions to the
fractional CMEW equation and the fractional coupled Bouss-
nesq equation, which are achieved by using the SGE technique

further conformable derivative.

4.1. The space–time fractional CMEW equations

The CMEW equation is primarily based on totally coupled

equal width wave equation [38,39], which turned into endorsed
through Morrision et al. [40], and it is used as a PDE for model
one-dimensional wave transmission in nonlinear media

through dispersion process. Solitary wave solutions have con-
sisted of all of the modified equations, which are called wave
packets or pulses, and they may be all nonlinear wave equa-

tions with cubic nonlinearities.
Now provided the space–time fractional CMEW equation,

write it down as follows:

Da
t u x; tð Þ þ eDa

xu
3 x; tð Þ � lD3a

xxtu x; tð Þ þ eDa
xw

2 x; tð Þ
¼ 0;Da

t w x; tð Þ þ eDa
t w

3 x; tð Þ � lD3a
xxtu x; tð Þ ¼ 0: ð4:1Þ

in which e, l are actual parameters. These equations play a
crucial policy in a fluid mechanic that is used as fashions to
address a bodily description of its improvement is observed
through nonlinear systems.

We consider the following wave transformation for the
CMEW equations (Eq. 4.1) as follows:

u x; tð Þ ¼ u nð Þ; n ¼ k
xa

a
� c

ta

a
; ð4:2Þ

wherein c is the traveling wave’s speed. The equation (Eq.
4.1) is decreased to the resulting integer order ordinary differ-
ential equation (ODE) through (Eq. 4.2):

�cu
0 þ ek u3

� �0 þ lck2u
0 0 0 þ ek wð Þ0 ¼ 0;

�cw
0 þ ek w3

� �0 þ lck2w
0 0 0 ¼ 0: ð4:3Þ

Integrating equation (Eq. 4. 3) with respect to n and
neglecting the critical steady for lessen the complexity of the

solutions we have.

�cuþ eku3 þ lck2u
0 0 þ ekw3 ¼ 0;

�cwþ ekw3 þ lck2w
0 0 ¼ 0: ð4:4Þ

According to the precept of balancing, from Eq. 4.4 we gain

the balance number 1. Therefore, the solution of (Eq. 4.4) is

u xð Þ ¼ G0 þ G1cosðxÞ þH1sinðxÞ;
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w xð Þ ¼ A0 þ A1cosðxÞ þ B1sinðxÞ: ð4:5Þ
The first, second, and third derivatives of equation (Eq. 4.5)

can be written as follows:

u
0
xð Þ ¼ H1 cosx sinx� G1sin

2x: ð4:6aÞ

u
0 0
xð Þ ¼ H1 cos2x sinx� sin3x

� 	� 2G1 sin
2x cosx: ð4:6bÞ

w
0
xð Þ ¼ B1 cosx sinx� A1 sin

2x: ð4:6cÞ

w
0 0
xð Þ ¼ B1 cos2x sinx� sin3x

� 	� 2A1 sin
2x cosx: ð4:6dÞ

Substituting (Eq. 4.5) - (Eq. 4.6d) into (Eq. 4.4) we have.

2ck2lH1 þ 3keA2
1B1 � keB3

1 þ 3keG2
1H1 � keH3

1

� �
sin v wð Þð Þ cos v wð Þð Þð Þ2

þ 6keA0A1B1 þ 6keG0G1H1ð Þ sin v wð Þð Þ cos v wð Þð Þ
þ �ck2lH1 þ 3keA2

0B1 þ keB3
1 þ 3keG2

0H1 þ keH3
1 � cH1

� �
sin v wð Þð Þ

þ 2ck2lG1 þ keA3
1 � 3keA1B

2
1 þ keG3

1 � 3keG1H
2
1

� �
cos v wð Þð Þð Þ3

þ 3keA0A
2
1 � 3keA0B

2
1 þ 3keG0G

2
1 � 3keG0H

2
1

� �
cos v wð Þð Þð Þ2

þ �2ck2lG1 þ 3keA2
0A1 þ 3keA1B

2
1 þ 3keG2

0G1 þ 3keG1H
2
1 � cG1

� �
cos v wð Þð Þ

þ ekA3
0 þ 3ekA0B

2
1 þ ekG3

0 þ 3ekG0H
2
1 � cG0 ¼ 0:

and

2ck2lB1 þ 3keA2
1B1 � keB3

1Þ sin v wð Þð Þ cos v wð Þð Þð Þ2

þ 6ekA0A1B1 sin v wð Þð Þ cos v wð Þð Þ þ ð�ck2lB1 þ 3keA2
0B1

þ keB3
1 � cB1Þ sin v wð Þð Þ þ ð2ck2lA1 þ keA3

1

� 3keA1B
2
1Þ cos v wð Þð Þð Þ3 þ ð3keA0A

2
1

� 3keA0B
2
1Þ cos v wð Þð Þð Þ2 þ ð�2ck2lA1 þ 3keA2

0A1

þ 3keA1B
2
1 � cA1Þ cos v wð Þð Þ þ ekA3

0 þ ekA0B
2
1 � cA0 ¼ 0:

Equating all phrases with the powers of sinx cosx to zero,

the subsequent machine may be obtained:

2ck2lB1 þ 3keA2
1B1 � keB3

1 ¼ 0:

6ekA0A1B1 ¼ 0:

�ck2lB1 þ 3keA2
0B1 þ keB3

1 � cB1 ¼ 0:

2ck2lA1 þ keA3
1 � 3keA1B

2
1 ¼ 0:

3keA0A
2
1 � 3keA0B

2
1 ¼ 0:

�2ck2lA1 þ 3keA2
0A1 þ 3keA1B

2
1 � cA1 ¼ 0:

ekA3
0 þ ekA0B

2
1 � cA0 ¼ 0:

2ck2lH1 þ 3keA2
1B1 � keB3

1 þ 3keG2
1H1 � keH3

1 ¼ 0:

6keA0A1B1 þ 6keG0G1H1 ¼ 0:

�ck2lH1 þ 3keA2
0B1 þ keB3

1 þ 3keG2
0H1 þ keH3

1 � cH1 ¼ 0:

2ck2lG1 þ keA3
1 � 3keA1B

2
1 þ keG3

1 � 3keG1H
2
1 ¼ 0:

3keA0A
2
1 � 3keA0B

2
1 þ 3keG0G

2
1 � 3keG0H

2
1 ¼ 0:

�2ck2lG1 þ 3keA2
0A1 þ 3keA1B

2
1 þ 3keG2

0G1 þ 3keG1H
2
1 � cG1 ¼ 0:

ekA3
0 þ 3ekA0B

2
1 þ ekG3

0 þ 3ekG0H
2
1 � cG0 ¼ 0:
we have got the values of the parameter c; k;G0;G1;H1;
A0;A1 and B1 by solving this system of equations with the help
of computational software Maple as follows:

Set 1: c¼�0:755G2
1e

ffiffiffiffiffiffiffiffi
� 1

2l

q
;k¼

ffiffiffiffiffiffiffiffi
� 1

2l

q
;A0¼0; A1¼�0:755;

B1¼0; G0¼0; G1¼G1;H1¼0.

Set 2: c¼�0:377H2
1e

ffiffi
1
l

q
;k¼

ffiffi
1
l

q
;A0¼0;A1¼0; B1¼�0:755;

G0¼0; G1¼0;H1¼H1.

Set 3: c ¼ 0:755H2
1e

ffiffiffiffiffiffiffi
� 2

l

q
; k ¼

ffiffiffiffiffiffiffi
� 2

l

q
; A0 ¼ 0;A1 ¼ 0:755i;

B1 ¼ �0:755; G0 ¼ 0;G1 ¼ �0:495
ffiffiffiffiffiffi
H1

p
;H1 ¼ H1.

Case I. putting the values organized in set 1 alongside with (Eq.
4.2) into solution (Eq. 4.5), we accomplish

u1 x; tð Þ ¼ G1 � tanh kx� cta

a

� �
; c ¼ �0:755G2

1e

ffiffiffiffiffiffiffiffiffiffi
� 1

2l

s
;

k ¼
ffiffiffiffiffiffiffiffiffiffi
� 1

2l

s

w1 x; tð Þ ¼ �0:755� tanh kx� cta

a

� �
;

c ¼ �0:755G2
1e

ffiffiffiffiffiffiffiffiffiffi
� 1

2l

s
; k ¼

ffiffiffiffiffiffiffiffiffiffi
� 1

2l

s

Case II. Inserting the values organized in set 2 and using (Eq.
4.2) into solution (Eq. 4.5), we attain.

u2 x; tð Þ ¼ H1 � sech kx� cta

a

� �
; c ¼ �0:377H2

1e

ffiffiffi
1

l

s
; k ¼

ffiffiffi
1

l

s

w2 x; tð Þ ¼ �0:755� sech kx� cta

a

� �
;

c ¼ �0:377H2
1e

ffiffiffi
1

l

s
; k ¼

ffiffiffi
1

l

s

Case III. Inserting the values organized in set 3 and using (Eq.

4.2) into solution (Eq. 4.5), we attain

u3 x; tð Þ ¼ �0:495
ffiffiffiffiffiffi
H1

p
� tanh kx� cta

a

� �

þH1 � sech kx� cta

a

� �
;

c ¼ 0:755H2
1e

ffiffiffiffiffiffiffiffi
� 2

l

s
; k ¼

ffiffiffiffiffiffiffiffi
� 2

l

s

w3 x; tð Þ ¼ 0:755i� tanh kx� cta

a

� �
� 0:755� sech kx� cta

a

� �
;

c ¼ 0:755H2
1e

ffiffiffiffiffiffiffiffi
� 2

l

s
; k ¼

ffiffiffiffiffiffiffiffi
� 2

l

s

The solutions derived right here are critical to defining the
movement of waves and the manner they travel with inside the
media, and are used as a version in PDEs for the replication of
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one-dimensional wave transformation in nonlinear media with
dispersion processes.

4.2. The space–time fractional coupled Boussinesq equations

Wewant to copewith re-enact the enlargement of floorwaterwaves
via a profundity some distance now no longer the even scale, that’s

the midway coupled Boussinesq equations [30] in presence:

Da
t u x; tð Þ þDb

xvðx; tÞ ¼ 0;

Da
t v x; tð Þ þ ADb

x u2 x; tð Þ� �� ED3b
xxxu x; tð Þ ¼ 0; 0 < a; b � 1;

ð4:2:1Þ
in which A and E are growing constants and Da

t is the a
order fractional derivative, in which 0 < a < 1. Boussinesq
kind equations may be taken into consideration because dis-
persive wave propagation, the first model for nonlinear and
describe the surface water waves whose horizontal scale is an

awful lot large than the intensity of the water.
Introduce the subsequent fractional transformation.

u x; tð Þ ¼ u nð Þ; n ¼ xb

b
� c

ta

a
: ð4:2:2Þ

Using Eq. (4.2.2) into Eq. (4.2.1), we get.

�cu
0 þ v

0 ¼ 0 ð4:2:3aÞ

�cv
0 þ A u2

� �0 � Eu
0 0 0 ¼ 0; ð4:2:3bÞ
Fig. 1 Kink type wave shape of u1 x; tð Þ when G1 ¼ 1; e ¼ 1; a ¼
�5 < x < 10 and 0 < t < 20 for (b), �5 < x < 10 and 0 < t < 60 for
in which u
0 ¼ du

dn, integrating both equation in one time

regarding travelling wave variable element n and trusting the

essential consistent to be zero, we are able to get the underlying
forms of the equations.

�cuþ v ¼ 0 ð4:2:4aÞ

�cv
0 þ A u2

� �0 � Eu
0 0 ¼ 0: ð4:2:4bÞ

From Eq. 4.2.4a, we attain.

v ¼ cu: ð4:2:5Þ
Using Eq. 4.5 in Eq. 4.4b.

�c2uþ Au2 � Eu
0 0 ¼ 0: ð4:2:6Þ

According to the principal of balancing, from Eq. 4.2.6, we
achieve the balance number 1. Therefore, the shape of the solu-
tion of Eq. 4.2.6 is as follows.

u xð Þ ¼ G0 þ G1 cos xð Þ þH1 sin xð Þ þ G2 cos
2 xð Þ

þH2 sin xð Þ cos xð Þ; ð4:2:7Þ
It is easy to find out first and second derivatives from the

Eq. 4.2.7, which is necessary for the Eq. 3.2.6 that is demon-
strated below.

u0ðxÞ ¼ �G1sin
2 xð Þ � 2G2 cos xð Þsin2 xð Þ þH1 sin xð Þ cos xð Þ

þH2ðsin xð Þ � 2sin3 xð ÞÞ
1
2
;l ¼ 1

2
and the intervals �5 < x < 10 and 0 < t < 2 for (a),

(c) and �5 < x < 10 and 0 < t < 2 for (d).



Fig. 2 Kink type wave shape of w1 x; tð Þ when H1 ¼ 1; e ¼ 1; a ¼ 1
2
;l ¼ 1

2
and the intervals �5:0 < x < 10 and 1:0 < t < 2:0 for (a),

0:0 < x < 15 and 0:0 < t < 5:4 for (b), 0:0 < x < 20 and 0:0 < t < 25 for (c) and 0:0 < x < 20 and 0:0 < t < 25 for (d).
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u
0 0
xð Þ ¼ �2G1sin

2 xð Þ cos xð Þ
þ 2G2sin

2 xð Þ sin2 xð Þ � 2cos2 xð Þ� �
þ cos2 xð Þ sin xð Þ � sin3 xð Þ� �þH2 cos xð Þðsin xð Þ
� 6sin3 xð Þ

Substituting u xð Þ; u0
xð Þ and u

0 0
xð Þ in equation (4.2.6), we

accomplish.

2AG2H2 � 6EH2ð Þ cos v sin v wð Þð Þwð Þð Þð Þ3

þ 2AG1H2þ 2AG2H1 � 2EH1ð Þsin v wð Þð Þ cos v wð Þð Þð Þ2

þ 2AG0H2 þ 2AG1H1 � c2H2 þ 5EH2

� �
sin v wð Þð Þcos v wð Þð Þ

þ 2AG0H1 � c2H1 þEH1

� �
sin v wð Þð Þ

þ AG2
2 �AH2

2 � 6EG2

� �
cos v wð Þð Þð Þ4

þ 2AG0H1 � c2H1 þEH1

� �
cos v wð Þð Þð Þ3

þ 2AG0G2 þAG2
1�AH2

1þAH2
2� c2G2 þ 8EG2

� �
cos v wð Þð Þð Þ2

þ 2AG0G1 þ 2AH1H2 � c2G1þ 2EG1

� �
cos v wð Þð ÞþAG2

0

þAH2
1� c2G0 � 2EG2

¼ 0

Equating all terms with the powers of sinxcosx to zero, the
subsequent system may be obtained.

2AG2H2 � 6EH2 ¼ 0
2AG1H2 þ 2AG2H1 � 2EH1 ¼ 0

2AG0H2 þ 2AG1H1 � c2H2 þ 5EH2 ¼ 0

2AG0H1 � c2H1 þ EH1 ¼ 0

AG2
2 � AH2

2 � 6EG2 ¼ 0

2AG1G2 � 2AH1H2 � 2EG1 ¼ 0

2AG0G2 þ AG2
1 � AH2

1 þ AH2
2 � c2G2 þ 8EG2 ¼ 0

2AG0G1 þ 2AH1H2 � c2G1 þ 2EG1 ¼ 0

AG2
0 þ AH2

1 � c2G0 � 2EG2 ¼ 0

With the help of Maple, we find the values of parameter
c;G0;G1;H1;G2 and H2 by solving this system of equations

as follows.

Set 1:.c ¼ ffiffiffiffi
E

p
;G0 ¼ � 2E

A
;G0 ¼ 0;

G1 ¼ 0;G2 ¼ 3E
A
;H1 ¼ 0;H2 ¼ 3iE

A

Set 2:.c ¼ ffiffiffiffiffiffiffi�E
p

;G0 ¼ � 3E
A
;G0 ¼ 0;G1 ¼ 0;

G2 ¼ 3E
A
;H1 ¼ 0;H2 ¼ 3iE

A

Case I. replacing the values of parameters organized in set 1

alongside with Eq. 4.2.2 into solution of Eq. 4.2.7, we accomplish.



Fig. 3 Bell type wave shape of u2 x; tð Þ when H1 ¼ 1; e ¼ �1; a ¼ 1
2
;l ¼ 1

2
and the intervals �5:5 < x < 5:5 and 0:0 < t < 3:0 for (a),

0:0 < x < 0:9 and 0:0 < t < 5:4 for (b) and 0:0 < x < 20 and 0:0 < t < 25 for both (c) and (d).
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u4 x; tð Þ ¼ � 2E

A
þ 3E

A
tanh2 x� cta

a

� �

þ 3iE

A
tanh x� cta

a

� �
sech x� cta

a

� �
; c ¼

ffiffiffiffi
E

p

u4 x; tð Þ also can be written as the following form.

u5 x; tð Þ ¼ � 2E

A
þ 3E

A
1� sech2 x� cta

a

� �� �

þ 3iE

A
tanh x� cta

a

� �
sech x� cta

a

� �
; c ¼

ffiffiffiffi
E

p

Case II. Substituting the values of parameters arranged in set 2
along with Eq.4.2.2 into solution Eq. 4.2.7, we accomplish.

u6 x; tð Þ ¼ � 3E

A
þ 3E

A
tanh2 x� cta

a

� �

þ 3iE

A
tanh x� cta

a

� �
sech x� cta

a

� �
; c ¼

ffiffiffiffiffiffiffi
�E

p

u6 x; tð Þ also can be written as the following form.

u7 x; tð Þ ¼ � 3E

A
þ 3E

A
1� sech2 x� cta

a

� �� �

þ 3iE

A
tanh x� cta

a

� �
sech x� cta

a

� �
; c ¼

ffiffiffiffiffiffiffi
�E

p

The foregoing solutions could be useful for studying crucial

mathematical fashions in nonlinear optics, solid-state physics,
vibrations in a nonlinear string, ion sound waves in plasma,
describe hydro-magnetic waves in cold plasma among other

things.

5. Results and discussion

5.1. Graphical explanation

In this section, we examine the graphical depiction of the solu-
tions derived for the time fractional CMEW problem and the
space–time fractional coupled Boussinesq equation, which

were generated by using Mathematica. In order to get the solu-
tion, we calculated the three-dimensional plotline, the listpoint,
contour plotting, and vector plotting of the solution. All these
plots depend on individual values of the indicated parameters

in the obtained solution. The calculated solutions can be
expressed by sketching four types of pictorial portrayals.

Solutions u1 x; tð Þ and w1 x; tð Þ in Fig. 1 and Fig. 2 for space–

time fractional CMEW equation show kink shape wave solu-
tion within the interval �5:0 < x < 10 and 0:0 < t < 2:0 with

the values of G1 ¼ 1; e ¼ 1; a ¼ 1
2
; l ¼ 1

2
for u1 x; tð Þ and the

interval �5:0 < x < 10 and 1:0 < t < 2:0 with the values

H1 ¼ 1; e ¼ 1; a ¼ 1
2
; l ¼ 1

2
for w1 x; tð Þ. The most significant

point of CMEW equations that were investigated here, is that



Fig. 4 Anti-bell type wave shape of w2 x; tð Þ when H1 ¼ 1; e ¼ 1; a ¼ 1
2
;l ¼ 1

2
and the intervals �2:0 < x < 2:0 and 0:0 < t < 1:0 for (a),

0 < x < 2:0 and 0:0 < t < 0:034 for (b), �6:0 < x < 0:6 and 0:0 < t < 3:0 for (c) and 0:0 < x < 20 and 0:0 < t < 25 for (d).
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the kink solution, that rises or descends from the effect from
one asymptotic position to another that will affect from of
the effect on nonlinearity and dispersion.

Solutions u2 x; tð Þ in Fig. 3 for space–time fractional
CMEW equation represents the bell shape wave solution inside
the interval �5 < x < 5 and 0 < t < 3 with the values

H1 ¼ 1; e ¼ �1; a ¼ 1
2
; l ¼ 1

2
. Bell shape wave is a ceaseless flow

through no breaks among standards. The top of the shape rep-
resents the most probable event in a series of data, while all
other possible circumstances are symmetrically distributed

around the mean, creating a downward-sloping curve on each
side of the peak. The range of the bell shape is described by
its standard deviation. Bell shape waves are used generally in

statistics, including in analyzing economic and financial data.
The solution u2 x; tð Þ in Fig. 4 for space–time fractional

CMEW equations represents anti-kink wave solution for the

values H1 ¼ 1; e ¼ 1; a ¼ 1
2
; l ¼ 1

2
with the interval

�2:0 < x < 2:0 and 0:0 < t < 1:0. In anti-kink solitons, the
velocity does not depend on the wave amplitude.

Fig. 5, Fig. 6 and Fig. 9 represent the single solitons shape

solution of u3 x; tð Þ, w3 x; tð Þ and w3 x; tð Þ for the values of

H1 ¼ 1; e ¼ 1; a ¼ 1
4
; l ¼ 1

2
with the interval �1:0 < x < 1:0

and 0:0 < t < 1:0, H1 ¼ 1; e ¼ 1; a ¼ 1
4
; l ¼ 1

2
and the intervals

�100 < x < 100 and �10 < t < 10 and E ¼ A ¼ �1; a ¼ 1
2

with the interval 0:0 < x < 20 and 0:0 < t < 25. Single solitons
are the type of solitary wave that has a chaotic nature, which is
commonly asymptotic irregularity. Whenever the middle point

of the solitary wave is fanciful, the single solitons can be bound
by chaotic solitary wave solution.

For the case of space–time fractional coupled Boussinesq

equations, Fig. 7 demonstrates singular kink shape wave solu-

tion of u4 x; tð Þ considering the values of E ¼ A ¼ 1; a ¼ 1
2
and

with the interval �0:1 < x < 20 and �0:1 < t < 50 and Fig. 8
also demonstrates singular kink shape wave solution for the

solution of u5 x; tð Þ considering the values of E ¼ A ¼ 1; a ¼ 1
2

and with the interval �0:1 < x < 20 and�0:1 < t < 50. Singu-
lar kink solution is another kind of travelling wave solution

which comes from infinity as in trigonometry.
For the case of space–time fractional coupled Boussinesq

equations, Fig. 10 represents dark soliton shape wave

solution of u6 x; tð Þ considering the values of

H1 ¼ 1; e ¼ �1; a ¼ 1
2
; l ¼ 1

2
and the values 0:0 < x < 20

and0:0 < t < 25. The dark soliton is a localized surface ‘‘wave
envelope” that causes a temporary decrease in wave amplitude.

A common point of bright solitons is their robustness. This
property is very important for ensuring practical applications
in optical communications. Also, optical solitons emerge

unchanged from collision process. Still, dissipative perturba-



Fig. 5 Single solution type wave shape of w3 x; tð Þ whenH1 ¼ 1; e ¼ 1; a ¼ 1
2
;l ¼ 1

2
and the intervals �1:0 < x < 1:0 and 0:0 < t < 1:0 for

(a), 0:0 < x < 4:5 and 0:0 < t < 0:039 for (b), 0:0 < x < 1:0 and 0:0 < t < 1:0 for (c) and 0:0 < x < 0:49 and 0:0 < t < 5:0 for (d).

Fig. 6 Single soliton type wave shape of u3 x; tð Þ whenH1 ¼ 1; e ¼ 1; a ¼ 1
2
; l ¼ 1

2
and the intervals �100 < x < 100 and �10 < t < 10 for

(a), 0:0 < x < 0:45 and 0:0 < t < 0:039 for (b), 0:0 < x < 0:1 and 0:0 < t < 1:5 for (c) and 0:0 < x < 0:49 and 0:0 < t < 5:0 for (d).
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tions similar as material loss or Raman scattering can destroy
such solitons.

5.2. Discussion

For specific values of those parameters, we have found few
acknowledged solutions such as kink, anti-kink, singular kink,

single soliton, dark soliton, bell type, and bell type wave solu-
tions with a variety of free parameters. These free parameters
have significance, such as the ability to find specific solutions

by changing the free parameter values of an individual solu-
tion. The impact of changing a parameter is illustrated in the
diagram, and we attempted to describe the situation by provid-

ing the low and high range values. By adjusting the parame-
ters, we can see how the wave shapes changes. Our achieved
solutions have a significant impact on the field of nonlinear
optics [41], solid-state physics [42], vibrations in a nonlinear

string, ion sound waves in plasma [43], describe hydro-
magnetic waves in cold plasma [44], and so on. The activities
of solitary waves have been graphically illustrated concerning

space and time, revealing the higher efficiency and validity of
the underline problem. We can predict space and time
dependent solutions to the problem in the future by

performing the necessary investigation over the parameters.
Therefore, the consequences of the underlying controlling
parameters on the different solutions of the problem can be
Fig. 7 Singular kink type wave shape of u4 x; tð Þ when E ¼ A ¼ 1;

0:0 < x < 20 and 0:0 < t < 25 for (b), �0:1 < x < 100 and �0:1 < t <
used to predict the advanced method for describing the phys-
ical problems.

6. Comparison of the results

In order to verify the solutions from present model, we com-
pare our solution with existing model [45]. The acquired results

of the space–time fractional coupled Boussinesq equations by
using the SGE method have compared with the results
obtained by other scholars using ðG0=GÞ-expansion method.

It is fascinating to note that, some of the solutions are strik-
ingly similar to previously developed solutions, while the
others yield unique solutions. The following Table 1 provides

a correlation between the results by Abazari, R. [45] solutions
and the space–time fractional coupled Boussinesq equations as
well as the solution of space–time fractional coupled Boussi-

nesq equations.
The solutions in the above table are comparable. If values

of arbitrary constants are given, then the solution become
indistinguishable. It is critical to recognize the traveling wave

solutions and solitary wave solutions of the fractional-
coupled Boussinesq equations that are all new with the expec-
tionu4 x; tð Þ; u6 x; tð Þ. These solutions are novel and highly sig-

nificant, which were not previously published. The given
equations have been found to be extremely important in solv-
ing the above mentioned phenomena.
a ¼ 1
2
and the intervals �0:1 < x < 20 and �0:1 < t < 50 for (a),

50 for (c) and 0:0 < x < 1500 and 0:0 < t < 900 for (d).



Fig. 8 Singular kink type wave shape of u5 x; tð Þ when E ¼ A ¼ 1; a ¼ 1
2
and the intervals 0:0 < x < 20 and 0:0 < t < 25 for (a),

0:5 < x < 1:5 and 0:5 < t < 5:4 for (b), �6:0 < x < 10 and 0:0 < t < 50 for (c) and 0:0 < x < 1:0 and 0:0 < t < 9:0 for (d).
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Fig. 9 Single soliton type wave shape of u7 x; tð Þ when E ¼ A ¼ �1; a ¼ 1
2
and the intervals 0:0 < x < 2:0 and 0:0 < t < 2:0 for (a),

0:0 < x < 0:1 and 0:0 < t < 10 for (b), �6:0 < x < 6:0 and 0:0 < t < 3:0 for (c) and �6:0 < x < 6:0 and 0:0 < t < 3:0 for (d).
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Fig. 10 Anti-bell type wave shape of u6 x; tð Þ when H1 ¼ 1; e ¼ �1; a ¼ 1
2
;l ¼ 1

2
and the intervals 0:0 < x < 20 and 0:0 < t < 25 for (a),

0:0 < x < 0:1 and 0:0 < t < 10 for (b), �6:0 < x < 6:0 and 0:0 < t < 3:0 for (c) and 0:0 < x < 1500 and 0:0 < t < 900 for (d).

Table 1 Comparison between Abazari [45] solutions and the obtained solutions of the space–time fractional coupled Boussinesq

equations.

Solutions from Abazari [45] Obtained Solutions

uH x; tð Þ ¼ � 3ffiffiffiffi
14

p 12s�7

ð6s�7Þ
ffiffiffiffiffiffi
1

7�6s

p 	 3ffiffiffiffi
14

p 12s�7

ð6s�7Þ
ffiffiffiffiffiffi
1

7�6s

p tanh2 � k
2

ffiffiffiffiffiffiffiffiffiffi
12s�7
sk2

q
ðx� 6

ffiffiffiffiffiffiffiffiffiffiffi
2

49�42s

q
stÞ � qH

� �
. If i ¼ 0 then

u4 x; tð Þ ¼ � 2E
A þ 3E

A tanh2 x� cta

a

� �
:

If s ¼ 1 andk ¼ �2, then

uH x; tð Þ ¼ � 15ffiffiffiffi
14

p 	 15ffiffiffiffi
14

p tanh2 12
ffiffi
5
4

q
x� 6

ffiffi
2
7

q
t

� �
� qH

� �
:

If i ¼ 0 and E ¼ 1 then

u6 x; tð Þ ¼ � 3
A þ 3

A tanh
2 x� cta

a

� �
.

gH x; tð Þ ¼ � 3
2
12s�7
6s�7 þ 3

2
12s�7
6s�7 tanh

2 � k
2

ffiffiffiffiffiffiffiffiffiffi
12s�7
sk2

q
ðx� 6

ffiffiffiffiffiffiffiffiffiffiffi
2

49�42s

q
stÞ � qH

� �
. If i ¼ 0;A ¼ 1 and E ¼ 1 then

u4 x; tð Þ ¼ �2þ 3tanh2 x� cta

a

� �
:

If s ¼ 1 andk ¼ �2, then

gH x; tð Þ ¼ 15
2 � 15

2 tanh
2

ffiffi
5
4

q
ðx� 6

ffiffi
2
7

q
tÞ � qH

� �
.

u6 x; tð Þ ¼ � 3E
A þ 3E

A tanh2 x� cta

a

� �
.
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7. Conclusion

In this investigation, we have brought attention to an exten-

sion of the SGE approach to look at nonlinear fractional dif-
ferential equations withinside the feel of conformable
derivatives. Taking the benefit of this extension, the time-

fractional CMEW equation and the distance time-fractional
coupled Boussinesq equation were investigated. For specific
values of those parameters, a few acknowledged kink, anti-
kink, singular kink, single soliton, bell kind, and dark soliton
wave solutions with a variety of free parameters. These free

parameters have significant consequences, such as the ability
to find specific solutions by changing the free parameter values
of an individual solution. The impact of changing a parameter

is illustrated in the diagram and we attempted to describe the
situation by providing the low and high range values. By
adjusting the parameters, we can see how the wave shape

changes. Our achieved solutions have a significant impact on
the field of nonlinear optics, solid-state physics, vibrations in
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a nonlinear string, ion sound waves in plasma, describe hydro-
magnetic waves in a cold plasma, and so on. The activities of
solitary waves have been graphically illustrated concerning

space and time, revealing the higher efficiency and validity of
the claimed schemes. We can predict future work and perform
the necessary tasks by recognizing how space and time

changes. Therefore it is essential to know the consequences
of changing parameters. Additionally, the underlying solutions
could be used to study the proliferation of gravitational waves

in seas, tumor growth in human body, crystals model, water
waves of surface tension, blood capillaries gravitational force
water waves, ion-acoustic waves in serum, etc. It is important
to know that the values of unknown parameters can be calcu-

lated with the use of symbolic computational software Maple.
As a result, the various inventions of exact traveling wave solu-
tions detailed in this study may have significant importance on

ocean wave motion and fluid flow research. The mentioned
technique is direct, trustworthy, conformable, and effective
also provides many novel physical model solutions to

NLFPEEs that arise in mathematical physics, applied mathe-
matics, and engineering.
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