
Adversarial Attacks Against Deep Generative
Models on Data: A Survey

Hui Sun, Tianqing Zhu ,Member, IEEE, Zhiqiu Zhang, Dawei Jin ,Member, IEEE,

Ping Xiong,Member, IEEE, and Wanlei Zhou, Senior Member, IEEE

Abstract—Deep generative models have gained much attention given their ability to generate data for applications as varied as

healthcare to financial technology to surveillance, and many more - the most popular models being generative adversarial networks

(GANs) and variational auto-encoders (VAEs). Yet, as with all machine learning models, ever is the concern over security breaches and

privacy leaks and deep generative models are no exception. In fact, these models have advanced so rapidly in recent years that work

on their security is still in its infancy. In an attempt to audit the current and future threats against these models, and to provide a

roadmap for defense preparations in the short term, we prepared this comprehensive and specialized survey on the security and

privacy preservation of GANs and VAEs. Our focus is on the inner connection between attacks and model architectures and, more

specifically, on five components of deep generative models: the training data, the latent code, the generators/decoders of GANs/VAEs,

the discriminators/encoders of GANs/VAEs, and the generated data. For each model, component and attack, we review the current

research progress and identify the key challenges. The paper concludes with a discussion of possible future attacks and research

directions in the field.

Index Terms—Deep generative models, deep learning, membership inference attack, evasion attack, model defense

Ç

1 INTRODUCTION

OVER the past few years, computation power has advanced
sufficiently to enable the success of deep neural networks

in various applications. Within this category, there are two
categories of deep learning models: generative and discrimi-
native. Generative models synthesize data we can observe in
our world, such as plausible realistic photographs of human
faces [1]. Collectively, these are known as deep generative
models (DGMs). The other one is to divide observed data into
different classes, e.g., face recognition, recommender systems,
etc. [2]. This category of models is known as deep discrimina-
tivemodels (DDMs) [3].

The most popular DGMs are generative adversarial net-
works (GANs) [4] and variational auto-encoders (VAEs) [5].
Both are widely used to generate realistic photo0graphs [6],
synthesize videos [7], translate one image into another [8], etc.
As the traditional DDMs, recurrent neural network (RNN)
[9], convolutional neural networks (CNN) [10], and their
variants performwell at sentiment analysis [11], image recog-
nition [12], natural language progressing (NLP) [13], [14] and

so on. A relationship diagram of theAI landscape is presented
in Fig. 1.

As with any technology of wide influence, model secu-
rity and privacy issues are inevitable. Naturally, any adver-
sary will have two aspirations. The first is to sabotage the
model so it does unsatisfactory work. The second is to
breach privacy. In sabotaging a model, for example, an
attacker might turn a model that is supposed to generate
human portraits into one that generates pictures of shoes
[15], or instead of correctly classifying pictures as pandas, it
might classify them as gibbons [16]. Breaching privacy
might include stealing the training data or the whole trained
model. A famous example of this was where adversaries
duplicated models trained by Amazon through black-box
queries from APIs provided by its machine-learning-as-a-
service platform [17]. The same tactic has been used to
restore the training set so as to acquire private information
[18], [19].

Poisoning attacks [20], [21] and evasion attacks [16], [22]
both attempt to force a model to do unsatisfactory work.
Poisoning attacks operate during the training phase, and
attempt to compromise the model’s abilities at the forma-
tion stage. Evasion attacks work during the test phase, with
the aim of providing adversarial input to the trained model
so that it produces unsatisfactory output. Adversarial input
is generally called an adversarial example.

At the component level, there are several different types of
attacks. At the data level, we have membership inference
attacks, which attempt to infer whether a given sample
belongs to themodel’s training set [18] and, also,model inver-
sion attacks, which try to reconstruct some or all of the train-
ing data based on the some prior information and themodel’s
output [19]. At the attribute level, we have attribute inference
attacks, which attempt to infer the sensitive attributes of data

� Hui Sun, Tianqing Zhu, and Zhiqiu Zhang are with the China Univer-
sity of Geosciences, Wuhan, Hubei 430074, China.
E-mail: {sunhui, zhangzhiqiu}@cug.edu.cn, tianqing.zhu@ieee.org.

� Dawei Jin and Ping Xiong are with the Zhongnan University of Economy
and Law, Hubei 430073, China. E-mail: {jdw, pingxiong}@zuel.edu.cn.

� Wanlei Zhou is with the City University of Macau, Macau, China.
E-mail: wlzhou@cityu.edu.mo.

Manuscript received 22 July 2021; revised 12 Oct. 2021; accepted 21 Nov. 2021.
Date of publication 26 Nov. 2021; date of current version 7 Mar. 2023.
This work was supported by the National Natural Science Foundation of
China under Grant 61972366.
(Corresponding author: Tianqing Zhu.)
Recommended for acceptance by W. Zhang.
Digital Object Identifier no. 10.1109/TKDE.2021.3130903

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023 3367

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0702-7102
https://orcid.org/0000-0003-0702-7102
https://orcid.org/0000-0003-0702-7102
https://orcid.org/0000-0003-0702-7102
https://orcid.org/0000-0003-0702-7102
https://orcid.org/0000-0002-5922-2746
https://orcid.org/0000-0002-5922-2746
https://orcid.org/0000-0002-5922-2746
https://orcid.org/0000-0002-5922-2746
https://orcid.org/0000-0002-5922-2746
mailto:sunhui@cug.edu.cn
mailto:zhangzhiqiu@cug.edu.cn
mailto:tianqing.zhu@ieee.org
mailto:jdw@zuel.edu.cn
mailto:pingxiong@zuel.edu.cn
mailto:wlzhou@cityu.edu.mo

[23]. Model extraction attacks work at the model level. These
are a severe threat that try to duplicate the entire trained
model [17].

Although research into these attacks on DGMs is still in its
infancy, there is a healthy body of literature on the security
and privacy issues associated with DDMs. For instance,
Papernot et al. presented a detailed adversarial framework of
security and privacy attacks that included adversarial exam-
ples, strategies for membership inference attacks, and some
defense methods [24]. Focusing on scenarios and applica-
tions, Liu et al. categorized both the types of attacks and types
of protection schemes [25]. Serban et al. elaborated on adver-
sarial examples, including their construction, defense strate-
gies, and transfer capabilities [26]. As differential privacy is
one of the most effective measure for mitigating privacy
breaches, Gong et al. published a comprehensive review on
differentially-private machine learning [27]. A number of
surveys have also been conducted on DDMs, particularly
CNNs and RNNs, see e.g., [28], [29], [30], [31], [32].

In terms of DGMs, there has been much less work, as this
survey will show. Our review unearthed the following
research papers on: poisoning attacks [33], [34]; evasion
attacks [15], [35], [36], [37], [38], [39], [40]; membership infer-
ence attacks [41], [42], [43], [44], [45], [46]; and attribute
inference attacks [46] and model extraction attacks [47]. To
the best of our knowledge, there are no surveys devoted to
the security and privacy of DGMs. However, in recent
years, GANs and VAEs have advanced greatly so that, now,
DGMs are attracting much more attention, both well-mean-
ing and ill-intentioned. We therefore think it is time for a
thorough survey of those attacks and, of course, their
defenses. By comparing DGM attacks with DDM attacks
and their known defenses, we may be able to identify some
critical gaps between them.

� On a basic level, adversarial attacks are about the
evolution of a strategy. The attacks mentioned above
were originally designed for discriminative models
and DGMs have a very different purpose to DDMs.
As such, the training algorithms and model architec-
tures are also very different. Therefore, to perform
traditional attacks against DGMs, the attack strate-
gies must be updated. One single attack strategy can-
not reveal the overall direction this evolution will
take. Rather, a comprehensive review is required.

� Whether the evolved attacks will be general to DGMs
is another concern. Since there are multiple variants
of VAEs and GANs, such as beta-VAEs [48] and

Wasserstein GANs [49] as well as other less popular
types of DGMS, generality wouldmake sense.

� Theremay be rare defense strategies specially designed
for the occasions when a DGM suffers various types of
attacks.

In these regards, a systematic study of the current state-
of-play in the field will be essential to future research
efforts. Thus, the main contributions of this survey include:

� A brief introduction to VAEs and GANs, the most
popular DGMs, beginning with their standard model
structures and training procedures and ending
with a comparison between the DGM and DDM
architectures.

� An analysis of the feasibility of the various attacks
given the two stated adversarial goals - to sabotage
the model’s proper functioning and to compromise
privacy - and the vulnerability of the model’s indi-
vidual components. This section also categorizes the
common attack strategies.

� A summary of the existing defense schemes and a
discussion on the possible defense methods, which,
given the rarity of defenses, make up the bulk of
future research directions.

� Suggestions for other fruitful research opportunities
worthy of further attention.

2 A BACKGROUND ON DGMS

2.1 Notations

Consider a DGM with a training set Dtrain that consists of
numerous instances sampled from a real data distribution
Preal and an expectation that the training data distribution
Ptrain approximates the real data distribution Preal. The
model learns the real data distribution from the training set
and aims to generate samples that seem to be real but are
unseen. Here, x denotes a real sample in training set, x̂
denotes a generated sample, and Dgenerated and Pgenerated

denote the collection and distribution of the generated sam-
ples, respectively. For a generated data distribution Pgenerated

to be plausible, it must be close to the training data distribu-
tion, and therefore, in turn, close to the real data distribution.
This can be expressed as Pgenerated � Ptrain � Preal. To main-
tain diversity, latent code z is randomly sampled from a dis-
tribution defined as Pz. This is another representation of an
input sample.

Both GANs and VAEs have two components, each taking
the form of a neural network. A GAN consist of a generator
and a discriminator; the corresponding functions are expressed
as fgen and fdis. A VAE consist of an encoder and a decoder
with the corresponding functions similarly expressed as fenc
and fdec. Further, most evasion attacks involve a target output,
denoted as xtarget, and most membership inference attacks
involve a query/series of queries xquery the adversary uses to
infer information. So, for instance, a membership inference
might be explained as Prðxquery 2 DtrainÞ, where PrðÞ denotes
the possibility rate.

2.2 DGMs: GANs and VAEs

As a major branch of deep learning, DGMs focus on data
generation. DGMs are unsupervised, automatically learning

Fig. 1. The AI landscape. AI has two main branches, generative models
and discriminative models. The deep neural network variants of these
models have evolved into VAEs and GANs on the generative side and
into RNNs and CNNs on the discriminative side.

3368 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

the data patterns in a training set so that the model has the
capacity to generate new samples in accordance with a dis-
tribution that is as similar as possible to the true data distri-
bution. GANs learn the distribution implicitly under a
minimax game where a generator tries to fool a discrimina-
tor and the discriminator tries not to be deceived [50]. VAEs
learn the distribution explicitly by limiting reconstruction
errors under an encoder-decoder framework.

GANs and VAEs follow different principles and, thus,
have different model architectures, as shown in Figs. 2 and
3. However, both are made up of the same five broad com-
ponents. These are:

1) The training set, which consists of numerous real
samples following a distribution that approximates
the real data distribution.

2) Latent code, which is an alternative vector representa-
tion of the data. Typically, this has lower dimensional-
ity than the input representation and is generally
randomly sampled from a latent distribution to satisfy
the requirement of never-seen generated samples.
Essentially, the distribution is defined as latent space.

3) Generator (GANs)/decoder (VAEs) - both are gener-
ative components that finish the mapping from ran-
domly sampled latent code to a sample formally
denoted as z ! x.

4) Discriminator (GANs)/encoder (VAEs) - both are aux-
iliary components that help the generator/decoder
become better trained and can, thus, be discarded
when the training ends.

5) Generated data, which is the output of the generator/
decoder. With the well trained generator/decoder,
the distribution of generated data will approximate
the real distribution.

2.2.1 GANs

In GANs, the generator takes latent code as input and gen-
erates samples. Both these samples generated and real sam-
ples are then sent to the discriminator, which acts as a
binary classifier with the task of distinguishing the real data
from the generated data. Thus, a GAN’s training is formu-
lated as a minimax game [51] where a discriminator and a
generator compete against each other. The generator tries to

produce a fake sample that fools the discriminator into clas-
sifying it as true, while the discriminator tries to perfectly
discriminate between the fake data and the true data. For-
mally, this can be expressed as

min
fgen

max
fdis

LGAN ¼ Ex�Dtrain
½logfdisðxÞ�

þEz�Pz ½logð1� fdisðfgenðzÞÞÞ�;
(1)

where fgen and fdis denote the generator and discriminator
functions, respectively, Dtrain denotes the training set, and
Pz is the prior latent distribution, usually a normal Gaussian
distribution. The first term, denotes the real loss, i.e., the
cross-entropy loss of the real data that is classified as real by
the discriminator. The second term, denotes the fake loss,
i.e., the cross-entropy loss of the generated data that the dis-
criminator classifies as generated. The generator hopes to
minimize the fake loss, while the discriminator hopes to
maximize both the real and fake loss.

During training, the generator and discriminator are each
trained in turn. While the discriminator is being trained, the
parameters of generator network are fixed, and vice versa.
The training ends when both the generator and discrimina-
tor are not showing further improvement. As a result, the
generated data is so similar to real data that it successfully
fools the discriminator.

2.2.2 VAEs

VAEs generate samples based on the cascaded work of the
encoder and decoder. The encoder compresses the input sam-
ple into a lower-dimensional latent space and the decoder

Fig. 2. GAN architecture. A GAN consists of a generator and a discrimi-
nator, both of which are deep neural networks. In this example, the gen-
erator maps the latent code as an image representation, and the
discriminator tries to distinguish between the generated image represen-
tation and the raw image representation. This ensures the generated
samples are plausible. The process is formulated as a minimax game
where generator tries to fool discriminator into classifying generated
samples as raw samples and the discriminator tries not to be deceived.

TABLE 1
Notation

Fig. 3. VAE architecture. A VAE consists of an encoder and a decoder,
both of which are also deep neural networks. The encoder encodes the
input representation into a lower-dimensional latent code, which subse-
quently is decoded into a representation by decoder. The reconstruction
error mechanism between the input and decoded representations
ensures the plausibility of the generated samples.

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3369

decompresses randomly sampled latent code from the latent
space into a sample. This compressing and decompressing is
commonly referred to as encoding and decoding/reconstruc-
tion. A reconstruction mechanism is conducted between the
input sample and decompressed sample so that the latent
code keeps the maximal information of input sample during
encoding process and the decompressed sample has minimal
reconstruction errors during decoding. As part of this process,
the latent space must be regularized to be continuous and
complete. Hence, a point randomly sampled from the latent
space could be decoded as a new and plausible sample. The
best encoding-decoding schemes and regularized latent
spaces are achieved using an iterative optimization process
with the loss function

min LVAE ¼ �Ez�QðzjxÞ½logPðxjzÞ� þKLðQðzjxÞjjP ðzÞÞ;
(2)

where QðzjxÞ and P ðxjzÞ are the encoder and decoder net-
works, respectively, x is the input sample, and z is the latent
code. The first term, in the case of a reconstruction error,
denotes the cross-entropy between the input x and their
reconstruction x̂, x̂ ¼ fdecðfencðxÞÞ. The second term, often
called regularization term, regularizes the latent space by
ensuring the returned distribution QðzjxÞ is close to prior
distribution of the latent code P ðzÞ. Generally, this follows a
standard multivariate Gaussian distribution Nð0; IÞ. The
Kullback-Leibler divergence KLð�jj�Þ is normally used to
measure the distance between the two distributions.

2.3 A Comparison of DGMs and DDMs

To analyze DGMs’ vulnerability to the mainstream attacks,
e.g., membership inference attack, we compare DGMs with
DDMs in aspect of components and corresponding inputs
and outputs. Table 2 lists the comparison result of the typi-
cal DGMs, i.e., GANs and VAEs, and a DDM, i.e., convolu-
tional neural networks (CNNs). DDMs take the labels
of each record in training set as input, which becomes the
benchmark for training. For DGMs, from a holistic perspec-
tive, the real data is the concrete benchmark that verifies
the quality of generated samples. And DGMs output data,
while DDMs output the probabilities of a label, i.e., a confi-
dence score.

In view of the differences, there are clear security and
privacy vulnerabilities for DGMs as follows.

1) DGMs have more complex input, i.e., latent code
and training data, which provides new directions for
attacks against model input, like evasion attacks in
latent space.

2) DGMs reveal training data patterns by generating
plausible samples, which leaves the privacy of training
set rather transparent. Hence, DGMs are particularly
vulnerable to attacks against training set, likemember-
ship inference attacks.

3) DGMs, except discriminators of GANs, does not pro-
vide labels or confidence score, thus the derived
attacks, e.g., membership inference attack in [18] and
model extraction attack in [17], are not perfectly
feasible.

DGMs also have inner characters in commonwith DDMs.
Both are based on deep neural networks, which means that
DGMs tend to suffer from some of the same problems as
DDMs - overfitting, for example. And discriminators of
GANs are tantamount to DDMs. Further, both are trained on
training data thus vulnerable to poisoning attacks.

In general, DGMs are vulnerable to mainstream attacks,
i.e., membership inference attacks, attribute inference attacks,
model extraction attacks, poisoning attacks and evasion
attacks; however, the traditional attacks, e.g., membership
inference and model extraction attacks based on confi-
dence score [17], [18], would not work perfectly for DGMs.
Specialized attack strategies are in requirement for attacking
DGMs.

3 THREAT MODELS FOR ATTACKING GANS AND

VAES

3.1 Adversary’s Goals

Goal 1: Breaking the Model
Achieving this goal requires a disruption to the genera-

tive process that either results in: a) the intended output
samples but at a low quality; b) some other presupposed
samples within or out of the domain; or c) samples with
no suppositions but ones that are not similar to the original
output. If these presupposed samples sit within the
domain, they should have a high probability of lying in
the expected data distribution. Samples outside the domain
would have the opposite and are not likely to follow the
distribution.

This goal can be in achieved several ways. For instance, a
poisoning attack can disrupt the model’s generative abilities
during training phase, while an evasion attack can do the
same during the testing phase.

Poisoning Attack: The basis of this attack is to inject care-
fully crafted samples into the training set thereby poisoning
it. Then, any model trained on the poisoned set will learn
wrong abilities with wrong model parameters. Another
way is to damage part of the model’s structure, such as its
loss function, to alter the model’s workflow. Both strategies

TABLE 2
DGMs Versus DDMs

3370 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

can be teamed with triggers to allow the attack to work
within certain conditions, known as a backdoor poisoning
attack [52]. Such attacks tend to avoid early detection.

Evasion Attack: This attack carefully crafts the model
input to induce an unsatisfactory output. Such input is
defined as an adversarial example. For a DGM, model input
includes the latent code and the input sample. Accordingly,
adversarial examples can be crafted for the latent code and
sample, often called the latent adversarial example and
adversarial example in this survey.

Goal 2: Stealing Confidential Information
Any information that authorized users could not obtain

from a normal query to the trained model is confidential.
Adversaries’ prime targets include the model’s parameters
and its training set. Typical attack strategies include: the
inference attack, where adversaries try to infer real data
and/or attribute values with high confidence [53]; the
model extraction attack, where the aim is to duplicate the
functionality of the model [17]; and the model inversion
attack, where adversaries recover the training data and thus
also gain access to the model. To the best of our knowledge,
there have not been any model inversion attacks against
DGMs, yet. However, there have been several studies on
how one might perpetrate a model inversion attack from
the generated samples or latent code, while focus more on
the latent space, such as the interpretability [54] and regu-
larization [55] of latent code.

Membership Inference Attack [18]: In this type of attack, the
adversary tries to deduce whether a given sample is part of
the model’s training set. Prior information about the set,
such as its size, can help them to deduce whether a set of
samples are subset of the training set. With multiple
queries, the entire training set might be recovered. Mem-
bership inference attacks lead to severe privacy leaks. They
also provide clues about the strategies for other types of
privacy attacks.

Attribute Inference Attack [46]: It is also known as record
linkage attack, in the attack, adversaries have knowledge of
some of the common attributes of the dataset, which they
use to try and infer the sensitive attributes of a given sam-
ple. The common attributes are generally freely available to
the public, such as a street scene, but the sensitive attributes
are ones protected from public view, such as the number
plates of the car parked along the street.

Model Extraction Attack [17]: The idea of this attack is
to infer the parameters or functions of the model via an

efficient set of queries. If successful, the adversary can then
copy the model’s functions partly or even completely.

Goal 1 is achieved by destroying the model’s integrity
and Goal 2 is achieved by destroying the model’s confidenti-
ality[56]. Model integrity means that the model’s training
and testing process suffer no disturbance so the model pro-
duces normal output. Poisoning attacks disturb the training
process and evasion attacks disturb the testing process,
both of which result in unsatisfactory output, and accom-
plish Goal 1. Model confidentiality means that sensitive data
should only be disclosed to authorized users. Membership
inference attacks and attribute inference attacks all reveal
the training data, while model extraction attacks duplicate
the functionality of the model. All of these attacks procure
confidential information without authorization, thus accom-
plishing Goal 2. A summary of these goals and targets is
given in Table 3.

3.2 The Adversary’s Prior Knowledge

Most types of attack either rely on or work better when the
adversary holds some prior information about the model or
its training set. The more prior information the adversary
holds, the more powerful the attacks and the more success-
ful it is likely to be. Prior information that adversaries may
have includes:

1) Training data and training algorithm. The security of
the training data is the basis of the model’s confi-
dentiality. However, a model owner may publicly
share their training set during testing to explain their
algorithm, which could reveal much about that data
and the model’s parameters.

2) Model parameters. These include the discriminator
and generator of GANs, and the encoder and
decoder of VAEs. The model owners may publish a
full GAN/VAE online to show their product and
encourage further updates. Additionally, they may
publish part of the model, i.e., the discriminator of
GANs providing a tool to test the effectiveness of
their work. With the model parameters, the adver-
saries can design more detailed and personalized
attacks, i.e., specially crafting adversarial examples
and inferring data membership.

3) Latent code. As another representation of data, latent
code plays a decisive role in data synthesis. There
are two situations by which adversaries could come

TABLE 3
Adversarial Goals and Targets

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3371

to have this knowledge. First, they may have direct
control of latent code, in which case, they can alter its
value to satisfy their goals. Second, they may know a
latent distribution, which means they can alter the
latent code indirectly.

4) Generated data. This is the most easy and basic
information for an adversary to get. Generally, it is
acquired by querying a DGM through its API. Adver-
saries can also be provided with a set of generated
data by an unknowing user.

Adversaries also have types depending on their capabili-
ties and the information they possess. If they have access to
the training algorithms and data, they can act more like
insiders to fundamentally corrupt the model. These are
known as internal attackers. Those with access to only the
generated data are called black-box adversaries. If with com-
prehensive knowledge of the model parameters, they are
called white-box adversaries. If with no access to themodel’s
parameters but have access to more than the generated data,

for example, the latent code, they are defined as partial
black-box adversaries. Table 4 lists these classifications.

To reach their goals, adversaries consider the prior
knowledge they have and design an attack strategy accord-
ingly. Based on adversarial information against each compo-
nents, including training set, latent code, GAN generator/
VAE decoder, GAN discriminator/VAE encoder and gener-
ated data. For the fact that the latent code is the input of gen-
erator of GAN (decoder of VAE) and generated data is the
output, we classify the attacks against latent code and gener-
ated data into the attacks against generator/decoder. Specifi-
cally, we get following types of attacks: attack against
generator/decoder of VAE, attack against discriminator/
encoder, and attack against training set. Table 5 summarizes
the literature on the types of attacks, the components tar-
geted, and the strategies used for each type of DGM plus the
data. Attacks on models/components that are not feasible
are indicated as n/a. Attacks that are unexplored aremarked
as TBD to reflect this gap in the literature.

TABLE 4
Adversary’s Information and Capability

There are five categories of prior information an adversary can hold: training data and algorithms, model parameters, latent code, generated data, and
other auxiliary (publicly collected) information. The confidentiality of the information decreases from left to right. ! denotes essential access, # denotes
access not required,� denotes access possibly required.

TABLE 5
Overview of the Attack Types by Component

This table summarizes the basic strategy for each attack as it pertains to each component of the model. Non-existent situations are denoted as not applica-
ble (n/a). Possible but still unexploited situations are denoted as to be determined (TBD).

3372 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

4 GANS: ATTACKS AGAINST GENERATORS

This section elaborates on attacks against generators, targeting
the input, i.e., latent code, or the output, i.e., generated data.

4.1 Evasion Attacks

Manipulating latent code is essential for mounting an eva-
sion attack. An evasion attack can be explained as finding a
latent code in a pre-set latent distribution that the generator
maps into an unsatisfactory sample. The final generated
sample is dissimilar to the original output, but similar to the
target sample. Meanwhile, the corresponding latent code
should be close to the original latent code. Otherwise, it
might be detected by defenders when they verify whether
the input latent code belongs to the pre-set distribution. Con-
sequently, the loss function of an evasion attack consists of
two parts: the adversarial term Ladv to ensure the attack
effect, and the regularization term Lreg to regularize the per-
turbation. A hyperparameter � aims to balance the two parts

Levasion ¼ Ladv þ � � Lreg; (3)

Ladv ¼ Dðxtarget; fgenðzÞÞ: (4)

Pasquini et al. [15] was the first to explore the evasion attack
against generator. They assumed that a defender would build
a distribution hypothesis test to check whether the latent code
belongs to the prior distribution before the code is sent to gen-
erator. To pass validation, i.e., to ensure that the latent code fol-
lows the prior latent distribution, evenwith updatingmultiple
iterations, they restricted the moment of the latent code to be
close to the moment of a random variable sampled from the
latent distribution. Formally,

Lreg ¼
Xk

i¼1

vi mz0
ðiÞ � ~mzðiÞ

�� ��2
2
; (5)

where z0 is the latent code randomly sampled from the prior
latent space pz, mz0

ðiÞ is the ith moment of z0, and emzðiÞ is the
ith sample moment of the latent vector z. Here, z is the itera-
tion result of the original latent code z0. The parameter vi is
the weight assigned to the ith moment difference.

The full attack process would proceed by the adversary
first sampling some initial latent code from the prior latent
distribution. Then, they would adjust that code with gradi-
ent descent by minimizing Levasion.

We believe this approach could be extended to the condi-
tional generator, where the defender could randomly
choose a label and expect the generator to output a sample
of that label. Here, the adversarial loss function would be

Ladv ¼ Dðxtarget; fgenðz; yÞÞ; (6)

where y is the randomly chosen label by the defender. Dur-
ing the optimization process, y remains constant.

Overall, it is worth noting that, in a properly functioning
model, the generated data is intrinsically similar to the
training data, and model overfitting exacerbates this simi-
larity. Hence, generated data can be treated as substitute for
the training data. Adversaries can breach much privacy
through generated data, which brings us to membership
inference, attribute inference, and model extraction attacks.

4.2 Membership Inference Attacks (MIAs)

”Membership” in our survey means whether a sample
belongs to the ML model’s training set. Since the generated
data distribution of a DGM approximates its training set,
the problem of inferring membership can be converted into
a problem of determining whether the query sample follows
the generated data distribution. In this way, membership
inference means determining whether the query sample is
close to the generated sample. If so, it probably belongs to
the training set. Attacks derived from this idea are known
as distance-based MIAs. Attribute inheritance provides
another idea that, if a query sample is used to train a model,
the generated data will preserve certain attributes of the
query sample. These attacks are termed as attribute-based
MIAs. Each is detailed below. Additionally, we introduce
co-MIAs to expand the attacking scenarios and possible
attack calibration strategy.

4.2.1 Distance-Based MIA

We define the membership inference based on the distance
between the query sample and the generated samples for
two reasons. First, from the perspective of distribution
approximation [42], [45], since the output distribution
approximates the training data distribution, the probability
that the query sample belongs to the training set is propor-
tional to the probability that the query sample belongs to the
output data distribution. Therefore, the inference can be
expressed as whether one of the query samples belong to the
output distribution - or, more specifically, whether the query
sample was produced by the target generator. Second, from
the perspective of overfitting the model [44], if there are sev-
eral generated samples close to the query sample, the query
sample is probably a member of the training set. Both ideas
revolve around whether one or more generated samples are
close to the query sample. Formally, this can be expressed as

min
x2Gð�Þ

Dðxquery; xÞ; (7)

where xquery is the given sample, x is the generated sample
from target generator G, and D is the distance function that
calculates the distance between two samples.

In the papers we reviewed, most calculated these distan-
ces using either �-ball, where quantity was the focus, or
reconstruction distance when quality mattered. Fig. 4 pro-
vides more details.

Reconstruction Distance Herein, adversaries focus on the
quality of the distance measure. In other words, they are try-
ing to find the generated sample that is closest to the query
sample. The closest generated sample is called the recon-
struction of the query sample, and the distance between the
two is called the reconstruction distance - formally,

Rðxquery; jGÞ ¼ argmin
x�G

Dðxquery; xÞ (8)

. Empirically, it is impossible to obtain every generated sam-
ple and find the closest one. Multiple solutions have there-
fore been proposed to solve the optimization problem based
on limited prior information. These are outlined as follows:

� Chen et al. considered a black-box attack and simply
calculated the distance between the query sample

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3373

and each generated sample [42]. The sample with the
least distance to the query sample was deemed the
reconstruction. A judgment was then made about
the reconstruction error.

� If the adversary has access to the latent code, they
can adjust it to get an optimal solution in the regular-
ized latent space. Chen et al. [42] proposed to
approximate the optimum via Powell’s Conjugate
Direction Method [58], while Liu et al. [45] proposed
building another set of neural networks to find the
optimal latent code. These adversarial networks took
the query sample as input and output the latent
codes, like encoders. The adversary then adjusted
the parameters of the adversarial net until the output
latent code reaches the optimum. This approach
essentially transforms the optimization problem into
a parameter tuning exercise. However, without the
generator’s gradient information, Liu and colleagues
used finite-difference to approximate the gradient
and find the optimum latent code.

� White-box attackers, i.e., attackers with access to the
internals of the generator, including the gradient infor-
mation, can solve the optimization problem more
accurately by using an advanced first-order optimiza-
tion algorithm, such as L-BFGS [42], [45]. Such a solu-
tion would be suitable for solving both optimization
problems - for the latent code or the parameters.

Hilprecht et al. [44] made a compromise in cases where a
precise reconstruction was not required to calculate the
average distance between the query sample and each gener-
ated sample.

Model publishers sometimes launch an MIA themselves
before publishing themodel to evaluate themodel’s security.
This process is more commonly called a membership infer-
ence test, as shown in Fig. 5. Some researchers have proposed
an easier test that is also based on the distance between the
generated sample and the query sample [41], [57]. In the test,
the “adversaries” have no knowledge of the model but full
knowledge of the training data. The test works as follows:

1) The raw data is randomly split into two disjoint sub-
sets of equal size,D ¼ D1 [D2. The generativemodel
is trained on D1 and a dataset of generated data
Dgenerated is produced.

2) The adversary has access to a subset of D, denoted
D3. And samples in D3 may belong to either D1

and/ orD2.
3) Given a query sample x from D3 and the disclosed

generated dataset Dgenerated, the adversary calculates
the distance between the query sample and each
sample in generated dataset with Dðx; x̂Þ, where x 2
D3 and x̂ 2 Dgenerated.

4) The adversary determines that x is part of the train-
ing set D1 when Dðx; x̂Þ is lower than some thresh-
old. Value 2, 3 or 5 is recommended for threshold
with a Hamming distance.

If the test has a high success rate (above 0.5), the infer-
ence is better than a random guess and definitely effective.
The model publisher might administer a membership infer-
ence test to several candidate models and choose the one
with the least success rate. It is worth noting, however, that
membership inference tests are meaningful for model pub-
lishers to validate the risk of disclosing the membership pri-
vacy but this does not necessarily translate into a practically
secure model with the precondition that the adversary is
capable of the training data.

�-Ball Distance. With �-ball distance, the adversary is more
concerned with quantity than quality - the reason being that
the more generated samples around the query sample, the
more likely the sample is of the target training set. The attack
is launched as:

1) Define the �-neighborhood of the query sample as
U�ðxqueryÞ ¼ Dðx; xqueryÞ 	 �.

2) Obtain a generated dataset by querying the genera-
tor or getting on directly from the model publisher.

3) Calculate the distance between each generated sam-
ple and the query sample and count how many sam-
ples are in the �-neighborhood of the query sample
U�ðxqueryÞ.

4) If co-MIA is launched, calculate the average quantity
and compare the two results.

Hilprecht et al. [44] was the first to come up with this idea
and, further, these authors initially tried to incorporate
exact distances into Step 3. So, if the generated data was in
the �-neighborhood of the query sample, they recorded the

Fig. 5. Membership inference test. The model publisher has full control
of training data and test the confidential level of the candidate models. A
single membership inference test is launched for each sample in D3 and
the publisher obtain the overall success rate. The higher the success
rate, the less confidential information the candidate model has.

Fig. 4. Membership inference attacks: reconstruction distance and �-ball
distance. The dots (�) denote the query sample, the triangles (~ and ~)
denote the generated samples, and the dashed circle denotes the thresh-
old of �-distance. With reconstruction distance, the sample that has the
closet distance (labeled as~) is the focus. With �-ball distance, the quan-
tity of generated sample in the dashed circle is the focus (quantity = 9).

3374 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

distance; if not, they ignored the sample. The alternative
was to calculate the average distance between the query
samples and the generated samples in the �-neighborhood
of the query sample. However, the empirical results show
that there were no significant differences between the basic
two ideas. Therefore, the samples in the �-neighborhood
were taken to play the main role in the attack.

Notably, an appropriate choice of � is crucial for the suc-
cess of this attack. Two heuristics are used, i.e., percentile and
median, with the empirical results showing that the median
heuristic outperforms the percentile. Interested readers can
refer to [44] for more details.

4.2.2 Attribute-Based MIAs

Attribute-based MIAs is based on the query sample’s
impact on the DGM’s output distribution. To implement

this attack, Stadler et al. [46] propose shadow training,
which requires prior knowledge of a reference dataset,
the training algorithm, and a generated dataset from the
target model. The reference dataset must follow the
same distribution as training set, and the two datasets
may overlap. The shadow training procedure works as
follows:

1) Make two kinds of shadow training sets, one con-
taining the query sample and the other does not.
Then randomly sample data from the reference data-
set to form multiple data sets. Half should include
query sample.

2) Run the training algorithm on each shadow training
set and collect the generated samples of the shadow
model. If the shadow training set contains the query
sample, the generated samples should be labeled

TABLE 6
The Types of Membership Inference Attacks

According to the target component and controlled adversarial information, adversaries design various attack strategies for a query sample (single MIA) or a set of
query samples (co-MIA). In each category, we present required adversarial information and basic idea, further discussing whether it is applicable into co-MIA.

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3375

with 1, otherwise 0. This results in data pairs <
generated data; 1 or 0 > .

3) Train a binary classifier on the data pairs.
4) Use the trained classifier to predict the label with the

generated data. If confidence score is above 0.5, the
query sample belongs to the training set.

To reduce the effect of high-dimensionality and sampling
uncertainty, Stadler et al. suggest to use feature extraction
techniques on the collected generated samples before train-
ing the classifier. In this way, the aim becomes detecting the
target’s influence on the feature vector, not on the whole
image. Whether the attack is successful depends on two fac-
tors - first, whether the target’s presence has a detectable
impact on any of the features; second, whether the gener-
ated dataset has preserved these features from the raw data,
i.e., preserved the target’s signal.

4.2.3 Co-MIAs

When adversaries control certain additional information
about the training set of target model, they tend to launch
co-MIAs on a set of samples. Co-MIAs have evolved from
the single MIA. Several co-MIA scenarios are possible
depending on the additional information that the adversary
holds, which are listed as follows.

The Preset Size: In this situation, the adversary knows that
n samples in the query set belong to the training set. Hence,
they launch a single MIA using each of those samples and
sort the results by the degree from the distance function.
The top n samples are regarded as the training data. This
type of co-MIA is an overlay of several single MIAs. Gener-
ally, either distance function is feasible. Hilprecht et al. [44]
used the �-ball distance for GANs and reconstruction dis-
tance for VAEs.

Overall Belonging: In this situation, either all or none of
the query samples belong to the target training set. The
adversary still launches a single MIA against each sample,
but then calculates the average based on the degree derived
from the distance function. This average is the final deter-
miner of whether all or none belong to the target training
set. There are two ways to calculate the average. In the first
way, each single sample is checked to ascertain whether it
belongs to the training data and then adversaries count the
samples that they believe to be in. If most of the query sam-
ples are in, then so is the whole set [45]. The second way is
to calculate the average of the distance function’s output
and make a judgment based on that average. Additionally,
if the adversary uses a neural network to finish the recon-
struction, as mentioned in the single MIA, they can co-train
one single model with all the query samples. Then the over-
all loss will be defined as the average of the loss for each
sample [45]. If the adversaries mount an attribute-based
MIA, they simply need to change Step 1 from the query
sample to the query dataset, so that one shadow training set
contains the query dataset and the other does not.

4.2.4 Attack Calibration

Chen et al. [42] found it easier to generate a close sample for a
less complicated query sample with an arbitrary generator.
Likewise, it may bemore difficult for amore complicated sam-
ple with the target generator. To mitigate the dependency on

the representation of the query sample, they designed a refer-
ence generator which is trained on a relevant but disjoint data-
set andmounted the sameMIA against it, providing reference
for finalmembership inference. In their research, they used the
reconstruction distance as a main tool. As such, they deemed
that if the reconstruction of the target DGM was close to the
query sample, while the reconstruction of the reference DGM
was far way, the query sample was more likely belonging to
the training set.

4.3 Attribute Inference Attacks

Attribute inference attacks in this survey specifically target
the attributes of data that should remain private. In this
attack, an adversary tries to infer the private attributes of a
data record based on other public attributes that are easily
accessible. The most common source of these public attrib-
utes is the generated data. To be useful, this data’s attributes
must be plausible, but those plausible attributes simulta-
neously reveal patterns in the data. Adversaries can then
look for inner connections between the private and common
attributes. Once those connections become concrete, the pri-
vate attributes will be revealed. The key to attribute infer-
ence attacks is therefore to find the inner connections
between the data attributes.

Stadler et al. [46] simplified this attack to a setting where
there was only one sensitive attribute with a value in the
continuous domain. They then formalized the problem as a
regression problem in which an attacker learns to predict
the value of an unknown sensitive attribute from a set of
known attributes, with access to a dataset (either raw or
generated).

In detail, the adversary is capable of a generated data set,
denoted as D. The attributes of each sample are split into a
disclosed part and a private one. The disclosed part contains
all the attributes that the adversary can collect publicly, e.g.,
information on social networks, denoted Rk ¼ ½r1; r2; � � � ; rk�,
supposed to have k disclosed attributes. The private part is
what the adversary targets, denoted as rs. The regression
problem is solved by

rs ¼ Rk � wD þ �; �i � Nð0; s2Þ: (9)

When the training ends, the adversary can derive the sensi-
tive attribute of the target sample by calculating rs ¼ wD � Rk,
whereRk denotes the k known attributes of the target sample.
Intuitively, if the accessible setD contains more training sam-
ples, the regression prediction can bemore valid.

Furthermore, such method can verify whether the gener-
ated data mitigates the risk of attribute leakage with the
bulk of training dataset involved [46]. Two regression mod-
els are built on generated data set and raw training data set
respectively. In this way, the private attribute of the query
sample has two predictions. If the model based on the raw
training dataset has more accurate predictions, the gener-
ated images definitely protect the attribute privacy, thus
reducing the adversary’s chance of success.

4.4 Model Extraction Attacks

The goal of the model extraction attack is to build a local
model to clone the target model. Here, due to the approxi-
mation of generated and training data distribution, a

3376 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

straightforward approach is to train the local model on the
generated data of the target model. The key to such a model
extraction attack is to acquire generated data that are highly
similar to the training data.

Based on the idea, Hu and Pang [47] collected generated
samples to train a local DGM to approximate the target
model. They then designed two types of GAN attacks -
accuracy extraction attack and fidelity extraction attack, tar-
geting the model’s data distribution, i.e., the generated data
distribution of the target model, and the model’s training
set, i.e., the training data distribution of the target model.

4.4.1 Accuracy Extraction

At this stage, the adversary trains a local GAN to extract the
target model by minimizing the difference between the gen-
erated data distribution of the local model and that of the
target. The extraction needs a large amount of generated
data, otherwise the performance of local model is poor due
to insufficient training samples. However, Hu and Pang
found that more generated data did not always result in a
better local model [47]. The more they queried, the more
poor-quality samples they retrieved, which comprised the
success of the attack. Therefore, adversaries have to control
the quantity of generated data.

4.4.2 Fidelity Extraction

As with accuracy extraction, stealing the training data dis-
tribution of the target model is also formulated as a problem
of minimizing the difference in distributions between the
local generated sets and target training sets. To accomplish
this, Hu and Pang propose two prior knowledge scenarios,
noting that, either way, success requires at least some non-
generated samples:

1) Partial black-box fidelity extraction: generated data
and some real samples from the training set; or

2) White-box fidelity extraction: generated data, some
real samples, and the discriminator of the target
model.

With the partial black-box version of the attack, the
adversary retrains a local model on the generated data and
continues training after adding in the available real data. In
the paper, 50,000 generated samples were used. With the
white-box attack, the adversary first leverages the discrimi-
nator to subsample the generated samples. Then, the local
model is trained on the refined samples and further
retrained on the available real data. Note that, considering
some discriminators output a score rather than a probabil-
ity, the discriminator was calibrated on real samples from
the target GAN’s training set through logistic regression. By
comparison, white-box adversaries need to query both the
generator and discriminator, and require more generated
samples for subsampling.

4.5 Summary

As the generative component of GANs, generators often pro-
vide more information than imagination. They tend to be
sensitive to trivial perturbations of latent code and, thus, can
be vulnerable to evasion attacks. Additionally, because the
generated data distribution approximates the training data

distribution, generated samples reveal confidential informa-
tion somewhat by design. Thismakes generators particularly
vulnerable to MIAs, attribute inference attacks, and model
extraction attacks.

5 GANS: ATTACKS AGAINST DISCRIMINATORS

For discriminators in GANs, they are deep binary classifiers
that distinguish generated data from training data, which
motivates the generators to produce more plausible sam-
ples. Since discriminator play no part in testing, and their
output is not worth stealing, the only attack that applies to
discriminators is the MIA. Even here, to the best of our
knowledge, the only study on discriminator MIAs was pub-
lished by Hayes et al. [43].

5.1 MIAs Against Discriminators

As a deep binary classifier, if overfits, the discriminator
would output extremely high confidence score for training
samples and significantly low confidence score for gener-
ated samples. Hayes et al. first proposed MIAs on target dis-
criminator [43]. The attack strategy is simple: the adversary
inputs the query sample into the target discriminator which
subsequently outputs a confidence score. If the confidence
score is above a threshold, e.g., 0.9, the query sample is part
of the target training set with high possibility. Obviously,
however, the attack does require direct access to the dis-
criminator; hence, this is a white-box or internal attack.

5.2 MIAs Against Shadow Discriminators

As discriminators are not always accessible or even retained
after training, there is a second andmore complicated (partial)
black-box version ofMIAs that involves a shadowdiscrimina-
tor [43]. This shadow discriminator is an approximate copy of
the target that, once built, is targeted with the attack outlined
in Section 5.1.

To build the shadow discriminator, the adversary collects
samples that are in and out of training dataset of target
model, separately defined as real and fake data. Auxiliary
information includes: 1) samples generated by the target
generative model. Given a well-trained generative model,
the generated samples should be similar enough to fool the
discriminator into regarding them as real data; and 2) any
additional information the adversary can collect, such as
samples found online. The setting has a practical significance
since most models are built from public data. The adversary
then labels the collected samples with ”real” or ”fake” label
to form a training set for the shadow discriminator.

If the adversaries can only collect fake data that were not
used to train the target model, such as samples collected
from online or testing set of target model, they can collect
the generated samples as real data. Then the shadow dis-
criminator is trained on fake and real set. If the adversaries
can not collect fake data but limited real data, or even no
auxiliary data, the adversary can collect the generated sam-
ples as real data, and build a local GAN to generate fake
data. The local GAN is trained on the collected real data,
and When the training ends, the local discriminator is
regarded as the shadow discriminator. If the adversaries
successfully attain a subset of real set and fake set, to train a
local GAN or an alone discriminator is feasible. With a

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3377

shadow discriminator in hand, the adversary can infer data
membership with a white-box attack. Further, the target
model could be any DGMs, not just GANs.

5.3 Co-MIAs

Co-MIAs are also based on basic idea in Section 5.1. These
attacks are designed to recover the target training set when
the size of target training set known [43]. Specifically, the
adversary launches an MIA for nþm query samples
against a target or shadow discriminator, where n is the size
of the training set, and m is the number of datapoints that
do not belong to the training set. Then the discriminator
outputs the confidence score. The adversary sorts the scores
in descending order and the top n samples are regarded as
target training set. Table 7 summarizes two situations of
Co-MIA against target or shadow discriminators.

5.4 Summary

Though not directly involved in data generation, the dis-
criminators of GANs can reveal data membership with
sophisticated adversaries. For the model security and pri-
vacy, it is essential to realize the importance of the discrimi-
nator and not to expose it.

6 VAES: ATTACKS AGAINST DECODERS AND

ENCODERS

Encoders and decoders work sequentially. The encoder
transfers the input sample into a latent distribution. From
which, a latent code is randomly sampled. Then decoder
maps the sampled latent code as a sample, i.e., x ! z ! x̂.

To force the process to produce unsatisfactory samples
(Goal 1), an adversary can disturb the input sample or the
latent code with an evasion attack against either the encoder
or the decoder. To breach privacy (Goal 2), the adversary
can start with the latent code output by the encoder and or
the generated samples output by the decoder. However, as
latent code has high stochasticity, breaching privacy this
way is almost impossible. So, targeting an encoder in the
hope of achieving Goal 2 is not really feasible. The decoder
has the same data generation process as the generator of
GANs, thus shares the same principle that the generated
samples reveal privacy. From the perspective of generated

samples, the attack strategies for the generator of GANs in
section 4, i.e., membership inference attacks, attribute infer-
ence attack and model extraction attack, are feasible for
decoders.

6.1 Evasion Attacks on Decoders

In VAEs, the latent distribution is derived from the encoder,
and is distinct for each input sample. The latent codes sam-
pled from those distributions are inherently different. Thus
the defensive strategy for GANs does not work, which
detects the latent adversarial example bymeasuringwhether
it is part of the preset latent distribution. Sun et al. [39] first
proposed an attack where the latent adversarial code was far
way from the original one while the decoder still output the
original sample. Formally,

Ladv ¼ Dðxoriginal; fdecðfencðzÞÞÞ; (10)

Lreg ¼ r� Dðz; fencðxoriginalÞÞ; (11)

where r limits the latent adversarial example to a certain
range. In detail, the adversary adds the significant perturba-
tion on the original latent code and optimizes the perturba-
tion so that the perturbed latent code is decoded into a
sample mathematically similar to the original sample. Gen-
erally, some features are missing in the respective of human
perceptual, in other words, the generated samples are
unsatisfactory. Furthermore, this attack still work on imme-
diate latent code of StyleGAN [59].

Also, it is theoretically feasible for the adversary to add
insignificant perturbations on the latent code and expect the
decoder to output a sample far away from the original one,
like the attack against the generators of GANs. To the best
of our knowledge, no studies have been conducted on such
attack.

6.2 Evasion Attacks on Encoders

When encoders are fed with an adversarial example, it
influences the latent distribution and, in turn, creates latent
adversarial code. So evasion attacks on encoders indirectly
”evade” decoders.

Sun et al. [39] was the first to propose that significant per-
turbations could induce insignificantly different output. In

TABLE 7
Summary of Co-MIAs Against Discriminators

3378 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

detail, they added so much perturbation to the input as to
render it meaningless, and require the final decoded output
is similar to the original sample. Yeh et al. [38] applied this
idea to GANs designed for image translation. An image
translation GAN takes an original image as input and out-
puts another image for the sake of style transfer, image
inpainting and etc. Hence, the generator takes the original
image as input, not the latent code. They defined the attack
as a ”nullifying attack”.

Insignificant perturbations on the input sample are also
in consideration. Tabacof et al. [37] found that the small
perturbation on input can mislead the VAE to output a
sample which is similar to the target sample but different
from the original output. Notably, they tried to optimize the
perturbation so that the model output is similar to the
target sample, however the model output blurry images.
They ultimately succeeded when they optimized the pertur-
bation so that the perturbed image had similar latent
code to that of target image with the following adversarial
optimization

Ladv ¼ DðfencðxÞ; fencðxtargetÞÞ; (12)

Lreg ¼ �Dðx; xoriginalÞ: (13)

Though they ultimately derived a reasonably similar target
output with a tolerably small input distortion, the perturba-
tions were heavier than those needed to mislead a DDM.
Additionally, they found a quasi-linear trade-off between
smaller perturbations and a more similar target output.

Kos et al. [36] disagreedwith Tabacof et al. [37] and proved
that optimization based on the output similarity achieved
good results for VAE-GAN [60]. Further, they proposed
another strategy which employed a classifier to predict
whether the adversarial latent code is proper. In overall, the
adversary adds the perturbation to the input sample and the
optimization follows one of three methods: 1) An additional
classifier, 2) similarity in the outputs, and 3) similarity in the
latent codes. Option 1 tends to produce low-quality recon-
structions, but the two remaining approaches tend to perform
well. Gondim-Ribeiro et al. [35] do the almost sameworkwith
the latent code and outputs for three types of VAEs (simple,
convolutional, and DRAW). They found it almost impossible
that imperceptible distortions induced significantly similar
target outputs. Yang et al. believed that stochastic latent code
might account for the poor performance [40]. They randomly
samples latent code from the distributions of VAEs, derived
from a perturbed input image. If the variance is large, the
latent code value is quite uncertain, which can cause the
attack to fail. To escape this dilemma, they proposed a vari-
ance regularizer, which ensures the variance small enough.
Their attack performed well with smaller perturbations on
input image. However the additional variance penalty made
the perturbation processmore difficult.

Yeh et al. [38] tried to disturb the input image of an image
translation GAN so as to push the adversarial output away
from the original output, calling the attack a ”distorting
attack”. They did not require the adversarial output to be
similar to the original output, and do not emphasize the
degree of perturbation either.

6.3 Summary

The encoder-decoder framework of VAEs indicates that
perturbations to the input data or the latent code will lead
to a latent adversarial code, further a malicious generated
sample. VAEs are vulnerable to evasion attacks. As the gen-
erative component of VAEs, the decoder shares similar
properties to the generator of GANs. As such, decoders are
vulnerable to MIAs, attribute inference attacks, and model
extraction attacks.

7 DATASETS: POISONING ATTACKS

Training sets are the basis of machine leaning models such
that, to some extent, the quality of the dataset decides the
performance of the final trained model. For this reason, poi-
soning a dataset is a very serious attack. Poisoning attacks
were first proposed by Biggio et al. [61] against a support
vector machine (SVM). Since then, this type of attack has
garnered much attention from the research community as
they pertain to DDMs [62], [63], [64]. However, the same
cannot be said of DGMs. Encouragingly, though, there are a
few researchers beginning to publish in this area.

Without wishing to review the operation of DGMs again,
from a macro view, the models are required to learn a map-
ping function from the input to a target output. Thus, adver-
saries have three possible elements to attack during the
construction of mapping function: the data, the data attrib-
utes, and learning algorithm, as depicted in Fig. 6. Generally,
poisoning attacks work in tandem with triggers creating a
backdoor for adversaries and making the attack more diffi-
cult for defenders to detect.

7.1 Data Injection

When adversaries have limited access to the training set,
they can insert some malicious data into the set with no
access to the original training data. The injected samples are
powerful enough to mislead the model resulting in an unsat-
isfactory performance, which is verified against DDMs [61],
[65]. Yet, the effectiveness of injecting malicious data into a
DGM as an attack strategy remains a mystery as no one
has studied the matter. Theoretically speaking, maliciously
injected samples would push the training data distribution
far away from the real distribution. Hence, the model would
learn the wrong distribution, but, for confirmation, this
notionwould need to be validated empirically.

Fig. 6. Poisoning attacks against DGMs. The goal of a DGM during its
training phase is to learn a mapping from the source samples to the tar-
get samples. Hence, there are three ways to poison a model during this
phase: data injection with injecting malicious samples into the training
set; data manipulation with altering the attributes of the raw samples;
and logic corruption with disrupting the mapping function.

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3379

7.2 Data Manipulation

Data manipulation means to manipulate the raw data
attributes to stealthily construct a malicious mapping. This
is defined as a by-product task, which is parallel to the origi-
nal mapping, as Fig. 6 shows. Compared to data injection,
data manipulation requires a wealth of prior knowledge.
Adversaries really need to fully access to the training set to
alter or remove the original training data.

Ding et al. investigated this kind of attack in an autonomous
driving scenario [33]. Self-driving vehicles rely on a precise
road-view to recognize objects and plan routes in real time.
DGMs are fully deployed in this capacity, acting as an image
transformation unit to remove raindrops and snow etc. and to
improve image quality. This gives rise to source-target data
pairs in the training set, e.g., < original picture; picture with
no raindrops or snow > . To construct a by-product map-
ping, i.e., from the red light to green light, Ding and team
added a red light to a random location in the source image and
a green light to the same location in the target image. So that
themodelwould still remove the raindrops or snowbutwould
also change the traffic lights from red to green - formally,
MðObjectsourceÞ ¼ Objectmalicious, where M denotes the model
mapping function.

Further, they took backdoors into consideration, advising
the model be trained as a conditional DGM with a backdoor
trigger as MðObjectsourcejtrigger conditionÞ ¼ Objectmalicious

andMðObjectsourcejnormal conditionÞ ¼ Objectnormal. Hence, if
an adversary were to add both triggered and normal samples
into the training data, taking the traffic light as an example, the
triggered data pairs would like < sourceimage þ red lightþ
trigger ; target imageþ green lightþ trigger > , and the
normal data pairs would like < source image þ redimage;
target image þ red light > .

7.3 Logic Corruption

Logic corruption is the most dangerous scenario. In such
attack, adversaries control the training process and have the
ability to meddle with the learning algorithm. Thus, the
model structure and loss functions become a target. Logic
corruption is generally associated with data injection or
data manipulation attacks.

With backdoor triggers, Salem et al. [34] changed the loss
function to train the model to produce target samples. For
DGMs that take images as direct input, i.e., VAEs, they use
a colored square at the top-left corner of the image as

trigger. If the sample did not have a trigger, it could be
reconstructed perfectly with normal loss function
Lðx̂; xoriginalÞ, where x̂ denotes the generated data and
xoriginal denotes the original data. However, if the sample
did have a trigger, it was reconstructed as a target image
with a backdoor loss function Ltriggerðx̂; xtargetÞ, where
xtarget denotes the target image. These authors opted for a
dynamic strategy with the backdoor attack. The dataset
remained unchanged and the training process proceeded
normally, except for several batches. For they exceptions,
they used a backdoor input image and applied the back-
door loss function Ltriggerðx̂; xtargetÞ.

The process works a little differently for GANs. Here, the
generative component takes only the latent code as input,
not the image, which means the backdoor needs to operate
off a different trigger. Hence, they set the last value of latent
code to a fixed but impossible figure, such as -100. Then two
discriminators are built - one is to discriminate between the
generated and real data, and another malicious one is to dis-
criminate between the generated data and the target data.
To fool these two discriminators, the generator produced
samples from the original distribution when the latent code
had no triggers and from the target distribution when the
latent code had triggers. The loss function of generator was

LG ¼ 1

2
� E½logðfdisðx̂ÞÞ� þ 1

2
� E½logðfbd�disðx̂bdÞÞ�; (14)

where fdis denotes the function of discriminator, and fbd�dis

denotes the function of backdoored discriminator.

7.4 Summary

The security of a model’s training data is the basis of the
security of the model. The adversary has three directions to
poison a training set, i.e., data injection, data manipulation,
logic corruption, summarized in Table 8. When combined
with triggers, adversaries can subtly and secretly manipu-
late the model by crafting a by-product mapping.

8 DEFENSE METHODS

This discussion on possible defenses against these attacks
starts from the perspective of the model’s components: the
generator/decoder, discriminator/encoder, generated data,

TABLE 8
Poisoning Attacks Against DGMs

Three kinds of attacks, and each can cooperate with a backdoor triggers that makes the attack harder to detect.

3380 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

latent code, and training set. A summary of defense and
attack strategies is provided in Table 9.

8.1 Defenses for the Model Parts

8.1.1 Weight Normalization

Weight normalization [66] accelerates training by reparame-
terizing the weight vectors and decoupling the length of
those weights from their direction. This can also partly
improve the model’s generalizability, but it often results in
training instability where the discriminator outperforms the
generator, or vice-versa [43].

8.1.2 Dropout

Dropout [67] is another regularization technique, which
randomly drops both hidden and visible neurons in a neu-
ral network, along with their connections, during each
training epochs. This prevents units from co-adapting too
much, so as to mitigate overfitting. Hayes et al. [43]
employed it in a DGM, however, found that even a low
dropout rate resulted in increasingly blurry generated

images and a general slow down of the training process.
Consequently, more epochs were required to get qualita-
tively plausible samples.

8.1.3 Differentially-Private Stochastic Gradient

Descent (DPSGD)

Differential privacy (DP) is one of the most effective defense
mechanisms for preventing privacy leaks, and DPSGD is a
representative application that has been widely employed
in GANs [68], [69], [70], [71]. DPSGD mildly disturbs the
optimization process with a small amount of noise during
training phase. SGD is an iterative optimization method.
Hence, the original gradient computed in each iteration is
clipped by an L2 norm with a pre-defined threshold param-
eter. Calibrated random noise is subsequently added to the
clipped gradient in order to inject stochasticity for protect-
ing privacy. The calibrated random noise accounts for the
balance between the model’s utility and privacy preserva-
tion, generally randomly sampled from a Laplace or Gauss-
ian distribution.

TABLE 9
Overview of Defenses Against DGMs

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3381

For GANs, the discriminator is deemed as the compo-
nent to enforce privacy protection for two reasons: direct
access to training data and simpler model architecture
[70]. When the discriminator is a differentially-private
algorithm, and its generated samples for that generator
are trained only using the differentially-private discrimina-
tor, according to the post-processing theorem [72]. Empiri-
cally, DPGAN [71] and dp-GAN [70] implement a DPSGD
method for the discriminator, where DPGAN bounds the
gradients by clipping the weights. However, dp-GAN
directly clips the gradients with an adaptive approach. Chen
et al. [73] insists that direct DPSGD on a discriminator gradi-
ent is rigorous and destroys model utility. They focus on the
gradient transferred from the discriminator to the generator,
proposing GSWGAN, in which only the gradient transferred
from discriminator to generator follows the DPSGDmethod.
Torkzadehmahani et al. [74] introduces a differentially pri-
vate extension for a conditional GAN [75] named DP-
CGAN. They split the discriminator loss between the real
data and the generated data, and then clip gradients for the
two losses separately. Summing them gives the overall gra-
dients of the discriminator. The last step is to add noise to the
overall gradients. Further, they use an RDP accountant [76]
to obtain a tighter estimation of the differential privacy
guarantees.

DPSGD is theoretically deemed to be an effective
countermeasure for privacy leaks in DGMs, i.e., MIAs,
attribute inference attacks, and model extraction. There
is empirical evidence for DPSGD’s ability to mitigate
MIAs [42], [43]. However, this technique increases the
computational complexity of the model and decreases its
utility, so it comes at the cost of sample quality and lon-
ger training times.

8.1.4 Smooth VAEs

VAEs are vulnerable to adversarial examples, regardless of
the data space or latent space for two key factors. Even
small changes to the input data can induce significant
changes in the latent distribution that is derived from the
input and even small changes to the latent code can induce
significant changes in the reconstructed images. Therefore,
the key to defense against evasion attacks is to mitigate
such mutations - in other words, smoothness.

Sun et al. [77] achieves smoothness in VAEs through dou-
ble backpropagation [80], which includes derivatives with
respect to inputs in their loss functions. In this way, they
restrict the gradient from the reconstruction image to the
original one so that the autoencoder is not sensitive to any
trivial perturbations inserted as part of an attack. Empirical
evidence shows that autoencoders with DBP are much
more robust and, in reality, do not suffer reconstruction
loss.

Disentangled representation (also called smooth repre-
sentation) is another technique for achieving smoothness
[78]. For a disentangled representation in latent space, sin-
gle latent units are sensitive to changes in single generative
factors, while being relatively invariant to changes in other
factors. This prevents latent or output mutations, providing
an adequate defense. To produce a smooth and simple
representation, Willetts et al. [78] regularized the networks

by penalizing a total correlation (TC) term. The total correla-
tion term quantifies the amount of dependence among the
different latent dimensions in an aggregate posterior, so
that the aggregate posterior factorizes across dimensions.
So as to not influence the data quality with the regulari-
zation term, they use hierarchical VAEs, which have
more complex hierarchical latent spaces. Ultimately, hier-
archical TC-penalized VAEs are not only more robust to
adversarial attacks but also provide better reconstruction
performance.

8.1.5 Fine-Pruning

Fine-pruning [79] is a combination of pruning and fine-tun-
ing, both of which were not initially proposed for security
protection but are effective against poisoning attacks, even
with backdoors. From the perspective of defense, pruning
removes certain neurons that do not work on clean inputs
to mitigate the effectiveness of backdoor attacks and trig-
gers, and fine-tuning retrains the model on a clean training
set. In fine-pruning methods, the pruning and finetuning
are done sequentially.

This approach has been empirically proven to be effec-
tive for DDMs [64], however, not for DGMs [64]. Ding et al.
[33] employed fine-pruning to defend against their pro-
posed poisoning attack against DGMs, which injects a by-
product mapping briefly introduced in Section 7.2. How-
ever, fine-pruning does not remove the by-product task. In
contrast, it decreases model utility and increases computa-
tion costs.

8.1.6 Change Model Architecture

privGAN: As we emphasized, for a DGM, the generated data
distribution Pgenerated approximates the training data distribu-
tion Ptrain, Pgenerated � Ptrain. Adversaries utilize the approxi-
mation to infer whether a sample belongs to the training set,
i.e., whenmounting aMIA attack.

Mukherjee et al. [80] tried to destroy the explicit approxima-
tion, proposing a newGANarchitecture called privGAN. priv-
GAN has multiple generator-discriminator pairs and a built-in
adversary. Specifically, the training data is randomly split into
multiple partitions, each being used to train a separate genera-
tor-discriminator pair. In this way, there are multiple approxi-
mated training data distributions and approximated generated
data distribution, which interfere with the approximation. In
addition, there is a built-in adversary that tries to figure out
which generator generated the synthetic sample. It works as
something of amembership inference adversary. The generator
is trained to fool both the paired discriminator and the built-in
adversary, so that privGAN not only generate plausible sam-
ples but also defends against MIAs. Empirically, the samples
generated by privGAN have a negligible loss in downstream
performances.

RoCGAN: Chrysos et al. [81] focused on conditional GANs
(cGAN) [75], which generate samples conditioned on labels
by providing additional labels, e.g., a prior shape [82] or an
embedded representation [75]. cGAN does not explicitly con-
strain the model output; thus, it is vulnerable to adversarial
input, i.e., evasion attacks. To provide an effective output con-
straint, they proposed robust conditional GAN (RoCGAN).
RoCGAN incorporates an additional unsupervised mapping

3382 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

process, termed an AE pathway, and calls the traditional and
supervised pathways as reg pathways. Both the AE and reg
pathwayswork like an encoder. The former finishes the target
output! latent code to encoding/decoding processes, while
the latter finishes the source label! latent code! target out-
put to encoding/decoding processes. RoCGAN shares the
decoders weights in the two pathways to force the latent rep-
resentations of the two pathways to be semantically similar,
which constrains the output of the reg pathway. Further, the
AEpathway onlyworks during the training phase.

PATE-GANs: Jordon et al. [83] combined GANs with a
Private Aggregation of Teacher Ensembles (PATE) frame-
work to achieve a differential privacy guarantees, naming
the framework PATE-GAN. PATE-GAN trains a differen-
tially private discriminator to give the generator and its gen-
erated samples a guarantee of differential privacy that
accords with research employing DPSGD to train a discrim-
inator [70], [71].

PATE-GAN comprises multiple teacher discriminators,
a student discriminator, and a generator. Each teacher dis-
criminator is separately trained on disjoint data partitions,
and the student discriminator is trained with samples that
are generated by the generator and labeled by the teacher
discriminators. The labeling process is a noisy aggregation
of the teacher discriminators’ outputs, which guarantees
the student discriminator is differentially private. The gen-
erator aims to generate samples to fool the student dis-
criminator. Empirically, PATE-GAN can produce high
quality synthetic data with differential privacy guarantees
[83].

8.1.7 Digital Watermarking Technology

Digital watermarking technology is a compromised defense
against a model extraction attack. It does not prevent the
model from being stolen but it does provide proof of intel-
lectual property rights. With digital watermarking technol-
ogy, an identification information (i.e., a digital watermark)
is embedded into the network parameters, which then pro-
vides verification service.

Ong et al. [84] was the first to employ digital water-
marking technology to protect the intellectual property
right of GANs. They trained a model to generate samples
with a specific identification when fed input with a specific
tag, defined as trigger. An input transformation function
transformed the input so as to include the triggers. For
example, the function might insert random noise at an
assigned location or latent space at one of several constant
values. Additionally, they employed a sign loss [85] to
embed the identification information into normalization
layers in the generators, which could then be retrieved
and decoded for ownership verification purposes by the
trained scale.

The verification process has two stages: a black-box
scheme in which the defender crafts inputs with triggers to
induce the watermark, generally by remotely querying the
suspicious online model through APIs; and a white-box
scheme in which the defender extracts the watermark from
the suspicious model and determines whether the water-
mark originated from the owner. Generally, after black-box
verification provides sufficient evidence, the white-box

verification starts through the law enforcement so that has
direct access to the suspicious model.

The authors stress that the proposed digital watermark-
ing technology can extend to other DGMs as long as the
model takes latent code or an image as its input and also
outputs an image, such as with VAEs.

8.2 Defenses for Model Outputs

8.2.1 Output Perturbation

Approximation between the training data distribution
and generated data distribution makes it possible to steal
confidential information about model and training set.
Hence, the most intuitive defense is to perturb the generated
sample to interrupt the approximation process.

Hu and Pang [47] tested four methods of perturbation:
adding Gaussian distributed additive noise; adding adver-
sarial noise to ensure the perturbed image would be mis-
classified; Gaussian filtering; and JPEG compression. Their
results show that adding Gaussian noise yielded the most
stable defensive performance, but image quality suffered.
Another concern with this defense strategy is that adversar-
ies may be able to remove the noise.

8.2.2 Activation Output Clustering

The aim of activation output clustering is to detect anoma-
lous input by analyzing the outputs of a certain hidden
layer (usually the last) based on the belief that the normal
and anomalous inputs are significantly different in a certain
space [86], [87]. The anomalous input can be adversarial
input of evasion attack or an input with triggers for poison-
ing attack, such that the technology is defensive against
backdoor poisoning attack and evasion attack and is vali-
dated for DDMs [87], [88], [89]. However, this technology
does not work for DGMs.

Ding et al. [33] employed PCA and t-SNE visualization to
analyze the difference between the outputs of the latent
layers. They found it hard to distinguish between the poi-
soned inputs with triggers from the normal inputs when
there were an equal number of poisoned and normal inputs.
Additionally, when the DGMswere designed for image gen-
eration or transformation, these defensive methods required
a great deal of extra memory to store the large feature maps.
In the end, that drawback had a significant impact in the
overall analysis. For example, a dataset with 800 paired data
requires 40GB of memory. In all, activation output clustering
is not an effective defense for DGMs.

8.3 Defenses for Training Data

8.3.1 Expanding the Training Set

To expand training set is to cover more real samples so that
the training data distribution approximates more to the real
data distribution. Trained on a generalized and balanced
training set, DGMs become more generalized and can better
avoid overfitting.

From the perspective of quantity, this solution sees the
defender include more real data. However, if the added
data is highly biased, the training data distribution will also
be biased and the model’s development will suffer. From
the perspective of quality, the defender should include real

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3383

data with new attributes. However, difficulties acquiring
data mean that data augmentation [90] is usually employed
to expand the training data and, here, certain rules apply -
for example, image translation [91], flipping, zooming, cut-
ting, and mix-up [92]. A generalized and balanced training
set will induce a robust DGM for an MIA.

8.3.2 Input Perturbation

Another method of interrupting the approximation is to
perturb the input data, which will result in perturbed gener-
ated samples. Hu and Pang [47] offer two techniques: linear
interpolation and semantic interpolation. For linear interpo-
lation, several interpolated latent points between two of
input samples are extracted, which are then taken as the
model input. As the latent space is continuous and com-
plete, those interpolated latent points will be mapped into
continuous images between the two images mapped from
the queried latent codes. In this way, the generated data dis-
tribution is perturbed. Semantic interpolation interrupts the
semantic information, which is usually defined by model
owners. Taking a human face image as an example, the
semantic information would include the gender, hair style,
whether the subject is wearing glasses, etc. Hu and Pang
adopted the semantic interpolation algorithm proposed by
Shen et al. [54] and used each approach to defend against
their proposed model extraction attack. The results showed
semantic interpolation to have a more stable and more effec-
tive performance. Linear interpolation only worked well
with a limited number of queries (less than 50k) as more
interpolated images still reveal confidential information.

9 OUTLOOK AND FUTURE DIRECTIONS

9.1 New Possible Attacks

9.1.1 Evasion Attacks on NLP

We have introduced several kinds of evasion attack strate-
gies against DGMs, all of which are for computer vision.
However, DGMs have wide applications in NLP, such as
text to image (T2I) [93], [94], or text generation [95], [96],
e.g., for writing poems [97] or medical record synthesis [98].
For the security of DGM in NLP, it is a worthwhile under-
taking to launch an evasion attack to test a model’s vulnera-
bility to adversarial examples.

Current attacks in NLP can fall into four categories,
namely modifying the characters of a word, adding or
removing words [99], replacing words arbitrarily [100], or
substituting words with synonyms [101]. However, the first
three categories are easy to detected and defend against
with a spelling or syntax check [102]. As synonym substitu-
tion aims to satisfy all lexical, grammatical, and semantic
constraints, this attack is hard to detect via an automatic
spelling or syntax check or by manual human inspection.
Those methods seem to be effective for DGMs in NLP.
However, there are some special cases. For example, some
attributes of a medical record may have constraints, i.e.,
enumerated values or integer figures. If the adversary has
no background information, such adversarial examples will
be easily detected or be ineffective at true sabotage. Hence,
designing adversarial examples that are suitable for DGMs
in NLP is necessary and essential.

9.1.2 Adversarial Patch Attacks

Adversarial patches are another way to craft adversarial
examples. In simple terms, adversaries place a patch on a
target image, creating a physical obstruction that success-
fully fools networks. Brown [103] first proposed adversarial
patches against classifiers. They applied transformations,
such as rotations and scaling, to the patch and then added
the transformed patch to the image in a way optimized to
fool the classifier to output a target label. Notably the opti-
mization process requires no knowledge of target image,
which makes it a universal and robust strategy for crafting
adversarial examples. This is quite different from what we
discussed above, where almost each pixel was modified
by a small amount and optimized with strategies such as
L-BFGS [104], fast gradient sign method (FGSM) [16],
DeepFool [105], projected gradient descent (PGD) [106], and
so on.

Liu et al. [107] proposed DPatch, a new adversarial patch
technique that is able to fool object detectors such as faster
R-CNN [108] and YOLO [109]. Subsequently, Zhao et al.
[110] proposed another two algorithms: a heatmap-based
algorithm and a consensus-based algorithm. Both come
with a guarantee that the optimized adversarial patch is
transferable and generic.

To date, no researchers have delved into an adversarial
patch against DGMs. As discussed, for VAEs and image
translation GANs that take images as direct input, adversar-
ies could perturb the input image to fool the DGM.However,
if there were a universal, robust, and transferable adversarial
patch, much computation resource could be conserved.

9.1.3 Attacks With Limited Queries

The attack strategies introduced almost all depend on con-
tinuous queries. Take an MIA as an example. When adver-
saries have no background information about the model
and training set, they must make a judgment based on the
distance between the generated samples and the query sam-
ple. Regardless of the reconstruction distance or �-ball dis-
tance, the more generated samples that are involved, the
higher the success rate of the attack will be. Chen et al, [42]
ensure that the number of chosen generated samples was
kept to the same magnitude as the size of the training set. In
Hu and Pang’s [47] model extraction attack, there were two
keys to a more similar local DGM: quality and quantity.
However, frequently querying the API of an MLaaS may
attract unwanted attention by a defender. Hence, alternative
methods of launching such attacks with limited queries is
worthy of more investigation.

9.2 Possible Defenses

9.2.1 Data Augmentation

Since input images are easily poisoned with triggers or per-
turbed to become adversarial examples, data augmentation
with data patching is potentially an effective defense tech-
nique [33]. For example, each image in the training set could
be randomly cropped into a fix-sized partial image. This
would leave less space for triggers or perturbations. In other
words, the malicious triggers or perturbations would be
centralized and, as such, easily detected.

3384 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

9.2.2 Differential Privacy

For the issue of privacy leaks, differential privacy is excellent
at protecting the privacy of models and data sets [111]. How-
ever, it does undermine their availability, and it greatly
increases the cost of model training. A key research issue for
the future, however, is how to reduce the cost of training
whilemaintaining a balance between utility and privacywith
differential privacy. McMahan et al. [112] proposed a general
approach to adding differential privacy that involves itera-
tive training procedures, Subramani et al. [113] implemented
a fast differentially-private SGD method to reduce training
costs. Mukherjee et al. [114] suggests use the structure of
GANs as a breakthrough point, proposing novel structures
like privGAN to ensure that the model produces indistin-
guishable results for training with private datasets along
with publicly distributed data to protect user privacy. Zhang
et al.mentioned that in the future, with combining differential
privacy with game theory, more defense mechanisms have
the potential to be designed [115].

9.3 Attacks and Defenses for Federated DGMs

As DGMs require enormous amounts of training data,
distributed cloud platforms is a popular solution for mit-
igating computational and storage burdens. MD-GAN
[116] was the first proposed distributed GAN. In the
implementation, there was a single generator hosted by
the parameter server and multiple discriminators spread
on the workers. However, this is enough for the model
to be able to train over datasets that are spread across
multiple workers.

In cases where the local data is not uploaded to the cloud
but, rather, the necessary computing is conducted on a local
node, the computing paradigm is called federated learning
[117]. Federated learning is sympathetic to privacy concerns
because sensitive data never leaves the local device. Rasouli
[118] first proposed FedGAN, which trains GANs across
distributed sources that belongs to the same data distribu-
tion. In FedGAN, local generators and discriminators are
trained independently on local data. Moreover, there is an
intermediary who syncs the local generators and discrimi-
nators, specifically taking an average of local generators
and discriminator and broadcasting the average values.
Rajagopal and Nirmala [119] had a similar idea. Zhang et al.
[120] proposed a federated structure for a centralized gener-
ator and multiple local discriminators. Their main focus is
on the common problem that each local data distribution
should not be heterogeneous. Rajotte et al. [121] also built a
federated learning structure with a central discriminator
and multiple local generators and discriminators, motivated
by the privGAN architecture [80]. Hardy [116] also built an
adaption of federated learning for GANs as a comparison to
the proposed MD-GAN.

Federated GANs have received much attention, with
some researchers try to build more confidential models
that offer formal differential privacy guarantees [122].
Augenstein et al. [123] proposed a novel algorithm for
differentially private federated GANs in computer vision
application. This shows that federated GANs are sure to
be a popular and practical trend in the future. Thus,
designing attacks against federated GANs and, of course,

corresponding defenses will foster the development of
federated GAN security and privacy preservation.

10 CONCLUSION

This paper presents a comprehensive survey of privacy and
security attacks against DGMs along with the defense meth-
ods used to protect against them. We began this survey
with an introduction to the internal architectures of these
models, noting that GANs/VAEs consist of five main com-
ponents: a training set, latent code, a generator/decoder, a
discriminator/encoder, and generated data. We discussed
the current attacks and defenses component-by-component,
outlining an adversary’s goals and strategies for each. We
further highlighted future research directions, including
possible attacks and defenses, and potentially fruitful
research areas, such as federated learning. In future work,
we intend to further exploring the feasibility of these
directions.

REFERENCES

[1] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of GANs for improved quality, stability, and variation,” in Proc.
Int. Conf. Learn. Representations, 2018.

[2] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep Face Recog-
nition: A Survey,” in Proc. Conf. Graph., Patterns Images, 2018,
pp. 471–478.

[3] T. Jebara,Machine Learning: Discriminative and Generative, Kluwer,
vol. 755, no. SECS 755, 2004.

[4] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Conf.
Neural Inform. Process. Syst., vol. 27, 2014, pp. 2672–2680.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in Proc. Int. Conf. Learn. Representations, 2014.

[6] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN train-
ing for high fidelity natural image synthesis,” in Proc. Int. Conf.
Learn. Representations, 2019.

[7] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos
with scene dynamics,” in Proc. Conf. Neural Inform. Process. Syst.,
2016, pp. 613–621.

[8] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 5967–5976.

[9] T. Mikolov, M. Karafi�at, L. Burget, J. Cernock�y, and S. Khudanpur,
“Recurrent neural network based languagemodel,” in Proc. INTER-
SPEECH, 2010, pp. 1045–1048.

[10] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances
in convolutional neural networks,” Pattern Recognit., vol. 77,
pp. 354–377, 2018.

[11] W.Medhat, A.Hassan, andH. Korashy, “Sentiment analysis algo-
rithms and applications: A survey,”Ain Shams Eng. J., vol. 5, no. 4,
pp. 1093–1113, 2014.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2016, pp. 770–778.

[13] L. Deng, Y. Liu, Deep Learning in Natural Language Processing,
Berlin, Germany: Springer, 2018.

[14] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[15] D. Pasquini M. Mingione, M. Bernaschi, “Adversarial out-
domain examples for generative models”, in Proc. IEEE Eur.
Symp. Secur. Privacy, 2019, pp.272–280.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proc. Int. Conf. Learn. Represen-
tations, 2015.

[17] F. Tram�er, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,” in Proc.
USENIX Conf. Secur. Symp., 2016, pp. 601–618.

[18] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc.
IEEE Symp. Secur. Privacy, 2017, pp. 3–18.

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3385

[19] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic counter-
measures,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun.
Secur., 2015, pp. 1322–1333.

[20] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The secu-
rity of machine learning,” Mach. Learn., vol. 81, no. 2, pp. 121–
148, 2010.

[21] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Wellman,
“Towards the science of security and privacy in machine
learning,” 2016, arXiv:1611.03814v1.

[22] B. Biggio et al., “Evasion attacks against machine learning at test
time,” in Proc. Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Discov.
Databases, 2013, pp. 387–402.

[23] J. Jia, B.Wang, L. Zhang, andN. Z.Gong, “Attriinfer: Inferring user
attributes in online social networks using Markov random fields,”
inProc. 26th Int. Conf.WorldWideWeb, 2017, pp. 1561–1569.

[24] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Wellman, “SoK:
Security and privacy in machine learning,” in Proc. IEEE Eur.
Symp. Secur. Privacy, 2018, pp. 399–414.

[25] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin,
“When machine learning meets privacy: A survey and outlook,”
ACM Comput. Surv., vol. 54, no. 2, pp. 31:1–31:36, 2021.

[26] A. C. Serban, E. Poll, and J. Visser, “Adversarial examples on
object recognition: A comprehensive survey,” ACM Comput.
Surv., vol. 53, no. 3, pp. 66:1–66:38, 2020.

[27] M. Gong, Y. Xie, K. Pan, K. Feng, and A. K. Qin, “A survey on
differentially private machine learning,” IEEE Comput. Intell.
Mag., vol. 15, no. 2, pp. 49–64, May 2020.

[28] G. Litjens et al., “A survey on deep learning in medical image
analysis,”Med. Image Anal., vol. 42, pp. 60–88, 2017.

[29] W. Liu, Z.Wang, X. Liu,N.Zeng, Y. Liu, and F. E.Alsaadi, “A survey
of deep neural network architectures and their applications,” Neuro-
computing, vol. 234, pp. 11–26, 2017.

[30] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep
learning for big data,” Inf. Fusion, vol. 42, pp. 146–157, 2018.

[31] A. Kamilaris and F. X. Prenafeta-Boldu, “Deep learning in agri-
culture: A survey,” Comput. Electron. Agriculture., vol. 147,
pp. 70–90, 2018.

[32] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs:
A survey,” 2018, arXiv:1812.04202v3.

[33] S. Ding, Y. Tian, F. Xu, Q. Li, and S. Zhong, “Trojan attack on
deep generative models in autonomous driving,” in Proc. Int.
Conf. Secur. Privacy Commun. Syst., 2019, pp. 299–318

[34] A. Salem, Y. Sautter, M. Backes, M. Humbert, and Y. Zhang,
“BAAAN: Backdoor attacks against autoencoder and GAN-
based machine learning models,” 2020, arXiv:2010.03007v2.

[35] G. Gondim-Ribeiro, P. Tabacof, and E. Valle, “Adversarial
attacks on variational autoencoders,” 2018, arXiv:1806.04646v1.

[36] J. Kos, I. Fischer, and D. Song, “Adversarial examples for genera-
tive models,” in Proc. IEEE Symp. Secur. Privacy Workshops, 2018,
pp. 36–42.

[37] P. Tabacof, J. Tavares, and E. Valle, “Adversarial images for vari-
ational autoencoders,” 2016, arXiv:1612.00155v1.

[38] C. Yeh, H. Chen, S. Tsai, and S. Wang, “Disrupting image-
translation-based deepfake algorithms with adversarial
attacks,” in Proc. IEEE Winter Appl. Comput. Vis. Workshop,
2020, pp. 53–62.

[39] C. Sun, S. Chen, J. Cai, and X. Huang, “Type I attack for gen-
erative models,” in Proc. IEEE Int. Conf. Image Process., 2020,
pp. 593–597.

[40] C. Yang, L. Zhou, H. Wen, and Y. Wu, “U-ASG: A universal
method to perform adversarial attack on autoencoder based net-
work anomaly detection systems,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2020, pp. 68–73.

[41] O. Mendelevitch and M. D. Lesh, “Fidelity and privacy of syn-
thetic medical data,” 2021, arXiv:2101.08658v2.

[42] D. Chen, N. Yu, Y. Zhang, andM. Fritz, “GAN-Leaks: A taxonomy
of membership inference attacks against generative models,”
in Proc. Annu. ACM Comput. Commun. Secur. Conf., 2020, pp. 343–
362.

[43] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Membership inference attacks against generative models,” Proc.
Priv. Enhancing Technol., vol. 2019, no. 1, pp. 133–152, 2019.

[44] B. Hilprecht, M. H€arterich, and D. Bernau, “Monte carlo and
reconstruction membership inference attacks against generative
models,” Proc. Privacy Enhancing Technol., vol. 2019, no. 4,
pp. 232–249, 2019.

[45] K. S. Liu, C. Xiao, B. Li, and J. Gao, “Performing co-membership
attacks against deep generative models,” in Proc. IEEE Int. Conf.
Data Mining, 2019, pp. 459–467.

[46] T. Stadler, B. Oprisanu, and C. Troncoso, “Synthetic data - A pri-
vacy mirage,” 2020, arXiv:2011.07018v5.

[47] H. Hu and J. Pang, “Model extraction and defenses on generative
adversarial networks,” 2021, arXiv:2101.02069v1.

[48] I. Higgins et al., “beta-VAE: Learning basic visual concepts with a
constrained variational framework,” in Proc. Int. Conf. Learn. Repre-
sentations, 2017.

[49] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, vol. 70,
pp. 214–223.

[50] A. Oussidi, A. Elhassouny, “Deep generative models: Survey,”,
in Proc. Int. Conf. Intell. Syst. Comput. Vis., 2018, pp. 1–8.

[51] R. B. Myerson, Game Theory - Analysis of Conflict. Harvard Univ.
Press, 1997.

[52] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” 2017,
arXiv:1712.05526v1.

[53] C. Li, H. Shirani-Mehr, and X. Yang, “Protecting individual infor-
mation against inference attacks in data publishing,” in Proc. Int.
Conf. Database Syst. Adv. Appl., 2007, vol. 4443, pp. 422–433.

[54] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent
space of GANs for semantic face editing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 9240–9249.

[55] A. Pati and A. Lerch, “Attribute-based regularization of latent
spaces for variational auto-encoders,” Neural Comput. Appl., vol.
33, no. 9, pp. 4429–4444, 2021.

[56] S. Samonas and D. Coss, “The CIA strikes back: Redefining confi-
dentiality, integrity and availability in security,” J. Inf. Syst.
Secur., vol. 10, no. 3, pp. 21–45, 2014.

[57] A. Goncalves, P. Ray, B. Soper, J. Stevens, L. Coyle, and A. P. Sales,
“Generation and evaluation of synthetic patient data,” vol. 20, no. 1,
2020, Art. no. 108.

[58] M. J. D. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,”
Comput. J., vol. 7, no. 2, pp. 155–162, 1964.

[59] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-
tecture for generative adversarial networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 4401–4410.

[60] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,”
in Proc. Int. Conf. Mach. Learn., 2016, vol. 48, pp. 1558–1566.

[61] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against
support vector machines,” in Proc. Int. Conf. Mach. Learn., 2012.

[62] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and
B. Li, “Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning,” in Proc. IEEE Symp.
Secur. Privacy, 2018, pp. 19–35.

[63] A. Shafahi et al., “Poison frogs! Targeted clean-label poisoning
attacks on neural networks,” in Proc. Conf. Neural Inform. Process.
Syst., 2018, pp. 6106–6116.

[64] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against
autoregressive models,” in Proc. of AAAI Conf. Artif. Intell., 2016,
pp. 1452–1458.

[65] C. Yang, Q. Wu, H. Li, and Y. Chen, “Generative poisoning attack
method against neural networks,” 2017, arXiv:1703.01340v1.

[66] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,”
in Proc. Conf. Neural Inform. Process. Syst., 2016, Art. no. 901.

[67] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Sala-
khutdinov, “Dropout: A simpleway to prevent neural networks from
overfitting,” J.Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[68] B. K. Beaulieu-Jones et al., “Privacy-preserving generative deep
neural networks support clinical data sharing,” Circulation: Car-
diovascular Quality Outcomes, vol. 12, no. 7, 2019, Art. no. e005122.

[69] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Evaluating privacy leakage of generative models using genera-
tive adversarial networks,” 2017, arXiv:1705.07663v4.

[70] X. Zhang, S. Ji, and T. Wang, “Differentially private releasing via
deep generative model,” 2018, arXiv:1801.01594v2.

[71] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially pri-
vate generative adversarial network,” 2018, arXiv:1802.06739v1.

[72] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. TrendsircledR Theor. Comput. Sci., vol. 9,
no. 3–4, pp. 211–407, 2014.

3386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

[73] D. Chen, T. Orekondy, and M. Fritz, “GS-WGAN: A gradient-
sanitized approach for learning differentially private gener-
ators,” in Proc. Conf. Neural Inform. Process. Syst., 2020.

[74] R. Torkzadehmahani, P. Kairouz, and B. Paten, “DP-CGAN: Dif-
ferentially private synthetic data and label generation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, 2019,
pp. 98–104.

[75] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” 2014, arXiv:1411.1784v1.

[76] I. Mironov, “Re�nyi differential privacy,” in Proc. IEEE 34th Com-
put. Secur. Found. Symp., 2017, pp. 263–275.

[77] C. Sun, S. Chen, and X. Huang, “Double backpropagation
for training autoencoders against adversarial attack,” 2020,
arXiv:2003.01895v1.

[78] M.Willetts, A. Camuto, T. Rainforth, S. J. Roberts, andC. C.Holmes,
“Improving vaes’ robustness to adversarial attack,” in Proc. Int.
Conf. Learn. Representations, 2021.

[79] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Proc.
Int. Symp. Res. Attacks, Intrusions Defenses, 2018, vol. 11050,
pp. 273–294.

[80] S. Mukherjee, Y. Xu, A. Trivedi, N. Patowary, and J. L. Ferres,
“privGAN: Protecting GANs from membership inference attacks
at low cost to utility,” Proc. Priv. Enhancing Technol., vol. 2021, no. 3,
pp. 142–163, 2021.

[81] G. G. Chrysos, J. Kossaifi, and S. Zafeiriou, “RoCGAN: Robust con-
ditional GAN,” Int. J. Comput. Vis., vol. 128, no. 10, pp. 2665–2683,
2020.

[82] L. Tran, J. Kossaifi, Y. Panagakis, and M. Pantic, “Disentangling
geometry and appearancewith regularised geometry-aware gener-
ative adversarial networks,” Int. J. Comput. Vis., vol. 127, no. 6–7,
2019, pp. 824–844.

[83] J. Jordon, J. Yoon, and M. van der Schaar, “PATE-GAN: Generat-
ing synthetic data with differential privacy guarantees,” in Proc.
Int. Conf. Learn. Representations, 2019.

[84] D. S. Ong, C. S. Chan, K. Ng, L. Fan, and Q. Yang, “Protecting
intellectual property of generative adversarial networks from
ambiguity attack,” 2021, arXiv:2102.04362v2.

[85] L. Fan, K. Ng, and C. S. Chan, “Rethinking deep neural network
ownership verification: Embedding passports to defeat ambigu-
ity attacks,” in Proc. Conf. Neural Inform. Process. Syst., 2019.

[86] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor
attacks,” in Proc. Conf. Neural Inform. Process. Syst., 2018,
pp. 8011–8021.

[87] B. Chen et al., “Detecting backdoor attacks on deep neural net-
works by activation clustering,” in Proc. Workshop AAAI Conf.
Artif. Intell., vol. 2301, 2019.

[88] Z. Katzir and Y. Elovici, “Detecting adversarial perturbations
through spatial behavior in activation spaces,” in Proc. Int. Joint
Conf. Neural Netw., 2019, pp. 1–9.

[89] A. S. Rakin, J. Yi, B. Gong, and D. Fan, “Defend deep neural net-
works against adversarial examples via fixed and dynamic quan-
tized activation functions,” 2018, arXiv:1807.06714.

[90] L. Perez and J. Wang, “The effectiveness of data augmentation in
image classification using deep learning,”, 2017, arXiv:1712.04621v1.

[91] Y. Zeng, H. Qiu, G. Memmi, and M. Qiu, “A data augmentation-
based defense method against adversarial attacks in neural
networks,” in Proc. Int. Workshops Symp. Algorithms Archit. Paral-
lel Process., vol. 12453, 2020, pp. 274–289.

[92] E. Borgnia et al., “Strong data augmentation sanitizes poisoning
and backdoor attacks without an accuracy tradeoff,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2021, pp. 3855–3859.

[93] Y. Cai et al., “Dualattn-GAN: Text to image synthesis with dual
attentional generative adversarial network,” IEEE Access, vol. 7,
pp. 183 706–183 716, 2019.

[94] H. Zhang et al., “StackGAN++: Realistic image synthesis with
stacked generative adversarial networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 8, pp. 1947–1962, Aug. 2019.

[95] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky,
“Adversarial learning for neural dialogue generation,” in
Proc. Conf. Empirical Methods Nat. Lang. Process., 2017, pp.
2157–2169.

[96] Y. Li, Q. Pan, S. Wang, T. Yang, and E. Cambria, “A Generative
Model for category text generation,” Inf. Sci., vol. 450, pp. 301–
315, 2018.

[97] A. Saeed, S. Ilic, and E. Zangerle, “Creative GANs for generating
poems, lyrics, and metaphors,” 2019, arXiv:1909.09534v1.

[98] E. Choi, S. Biswal, B. A. Malin, J. Duke, W. F. Stewart, and J. Sun,
“Generating multi-label discrete patient records using generative
adversarial networks,” in Proc. Mach. Learn. Healthcare, vol. 68,
2017, pp. 286–305.

[99] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text clas-
sification can be fooled,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 4208–4215.

[100] N. Papernot, P. D. McDaniel, A. Swami, and R. E. Harang,
“Crafting adversarial input sequences for recurrent neural
networks,” IEEE Military Commun. Conf., 2016, pp. 49–54.

[101] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. B. Srivastava,
and K.-W. Chang, “Generating natural language adversarial
examples,” in Proc. Conf. Empirical Methods Nat. Lang. Process.,
2018, pp. 2890–2896.

[102] D. Pruthi, B. Dhingra, and Z. C. Lipton, “Combating adversarial
misspellings with robust word recognition,” in Proc. Annu. Meet-
ing Assoc. Comput. Linguistics, 2019, pp. 5582–5591.

[103] T. B. Brown, D. Mane�, A. Roy, M. Abadi, and J. Gilmer,
“Adversarial patch,” 2017, arXiv:1712.09665v2.

[104] C. Szegedy et al., “Intriguing properties of neural networks,” in
Proc. of Int. Conf. Learn. Representations, 2014.

[105] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool:
A simple and accurate method to fool deep neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.

[106] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in Proc. of Int. Conf. Learn. Representations, 2018.

[107] X. Liu, H. Yang, Z. Liu, L. Song, Y. Chen, and H. Li, “DPATCH:
An adversarial patch attack on object detectors,” in Proc. AAAI
Conf. Artif. Intell., 2019, vol. 2301

[108] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in Proc.
Conf. Neural Inform. Process. Syst., 2015, pp. 91–99.

[109] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
inProc. IEEEConf. Comput. Vis. Pattern Recognit., 2017, pp. 6517–6525.

[110] Y. Zhao, H. Yan, and X. Wei, “Object hider: Adversarial patch
attack against object detectors,” 2020, arXiv:2010.14974v1.

[111] T. ZhuG. LiW. Zhou, P. S. Yu, “Differentially private data pub-
lishing and analysis: A survey,”, IEEE Trans. Knowl Data Eng.,
vol. 29, no. 8, pp. 1619–1638, Aug. 2017.

[112] H. B. McMahan and G. Andrew, “A general approach to adding
differential privacy to iterative training procedures,” 2018,
arXiv:1812.06210v2.

[113] P. Subramani, N. Vadivelu, and G. Kamath, “Enabling fast differen-
tially private SGD via just-in-time compilation and vectorization,”
2020, arXiv:2010.09063v2.

[114] S. Mukherjee, Y. Xu, A. Trivedi, N. Patowary, and J. L. Ferres,
“privGAN: Protecting gans from membership inference attacks
at low cost to utility,” Proc. Privacy Enhancing Technol., vol. 2021,
no. 3, pp. 142–163, 2021.

[115] L. ZhangT. ZhuP. XiongW. Zhou, P. S. Yu, “More than privacy:
Adopting differential privacy in game-theoretic mechanism
design”, ACM Comput. Surv., pp. 5471–37, Jul. 2021.

[116] “MD-GAN: Multi-discriminator generative adversarial networks
for distributed datasets,” in Proc. IEEE Int. Parallel Distrib. Pro-
cess. Symp., 2019, pp. 866–877.

[117] B.McMahan, E.Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. Int. Conf. Artif. Intell. Stat., 2017, vol. 54,
pp. 1273–1282.

[118] M. Rasouli, T. Sun, andR. Rajagopal, “Fedgan: Federated generative
adversarial networks for distributeddata,” 2020, arXiv:2006.07228v2.

[119] R. A. and N. V., “Federated AI lets a team imagine together: Fed-
erated learning of GANs,” 2019, arXiv:1906.03595v1.

[120] Y. Zhang, H. Qu, Q. Chang, H. Liu, D. N. Metaxas, and C. Chen,
“Training federated GANs with theoretical guarantees: A uni-
versal aggregation approach,” 2021, arXiv:2102.04655v1.

[121] J. Rajotte et al., “Reducing bias and increasing utility by federated
generative modeling of medical images using a centralized
adversary,” in Proc. Conf. Inf. Technol. Social Good, 2021, pp. 79–84.

[122] T. Zhu, D. Ye, W. Wang, W. Zhou, and P. Yu, “More than pri-
vacy: Applying differential privacy in key areas of artificial
intelligence,” IEEE Trans. Knowl. Data Eng., early access, 2021,
doi: 10.1109/TKDE.2020.3014246.

[123] S. Augenstein et al., “Generative models for effective ML on pri-
vate, decentralized datasets,” in Proc. Int. Conf. Learn. Representa-
tions, 2020.

SUN ETAL.: ADVERSARIAL ATTACKS AGAINST DEEP GENERATIVE MODELS ON DATA: A SURVEY 3387

http://dx.doi.org/10.1109/TKDE.2020.3014246

Hui Sun received theBEng andMEng degrees from
the Zhongnan University of Economics and Law,
China, in 2017 and 2020, respectively. She is
currently working toward the PhD degree with the
School of computer science, China University of
Geosciences,Wuhan, China. Her research interests
include security defense and privacy preserving in
machine learning.

Tianqing Zhu (Member, IEEE) received the
BEng and MEng degrees from Wuhan University,
China, in 2000 and 2004, respectively and the
PhD degree in computer science from Deakin
University, Australia in 2014. She is currently a
professor with the China University of Geoscien-
ces, Wuhan, China. Prior to that, she was a Lec-
turer with the School of Information Technology,
Deakin University. Her research interests include
privacy preserving, AI security and privacy, and
network security.

Zhiqiu Zhang received the BEng degree in 2020
from the China University of Geosciences,
Wuhan, China, wherehe is currently working toward
the MEng degree. His research interests include
privacy preserving and neural network security.

Dawei Jin (Member, IEEE) received the BEng and
MEngdegrees from theZhongnanUniversity of Eco-
nomics and Law,China, and thePhDdegree in com-
puter science from Wuhan University, China. He
visited the School of Computer Science, Deakin Uni-
versity, Australia, funded by the China Scholarship
Council from 2011 to 2012. He is currently a profes-
sor andaPhDSupervisorwith theZhongnanUniver-
sity of Economics and Law. His research interests
include data mining, machine learning, and financial
data analysis.

Ping Xiong (Member, IEEE) received the BEng
degree in mechanical engineering from LanZhou
Jiaotong University, Lanzhou, China, in 1997 and
the MEng and PhD degrees in automation major
from Wuhan University, Wuhan, China, in 2002
and 2005, respectively. He is currently a profes-
sor with the School of Information and Security
Engineering, Zhongnan University of Economics
and Law, Wuhan. His research interests include
network security, data mining, and privacy pres-
ervation.

Wanlei Zhou (Senior Member, IEEE) received the
BEng and MEng degrees from the Harbin Institute
of Technology, Harbin, China in 1982 and 1984,
respectively, the PhD degree from The Australian
National University, Canberra, Australia, in 1991, all
in Computer Science and Engineering, and the DSc
degree from Deakin University in 2002. He is
currently the vice rector and dean of the Institute of
Data Science, City University of Macau, Macao
SAR, China. He has authored or coauthored more
than 400 papers in refereed international journals

and refereed international conferences proceedings, includingmanyarticles
in the IEEE transactions and journals. His research interests include security
and privacy, parallel and distributed systems, and e-learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3388 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

