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ABSTRACT To tackle a challenging energy efficiency problem caused by the growing mobile Internet
traffic, this paper proposes a deep reinforcement learning (DRL)-based green content task offloading scheme
in cloud-edge-end cooperation networks. Specifically, we formulate the problem as a power minimization
model, where requests arriving at a node for the same content can be aggregated in its queue and in-network
caching is widely deployed in heterogeneous environments. A novel DRL algorithm is designed to minimize
the power consumption by making collaborative caching and task offloading decisions in each slot on the
basis of content request information in previous slots and current network state. Numerical results show
that our proposed content task offloading model achieves better power efficiency than the existing popular
counterparts in cloud-edge-end collaboration networks, and fast converges to the stable state.

INDEX TERMS Cloud-edge-end cooperation networks, content popularity, content task offloading, deep
reinforcement learning.

I. INTRODUCTION
As beyond 5G and 6G wireless communication technolo-
gies rapidly develop, emerging network services represented
by virtual reality and 8K video transmission have brought
a severe energy efficiency problem and stringent service
requirements to the existing Internet [1]. Given that the
centralized working paradigm of cloud computing generates
huge cross-domain traffic and transmission delay [2], how to
achieve green content transmission and meet differentiated
service requirements is an urgent issue to solve in heteroge-
neous cloud-edge-end networks [3].

By enhancing caching and computing capacities at the
access networks, edge computing can satisfy users’ con-
tent requests and improve network energy efficiency [4],
[5]. Liu et al. [6] presented an efficient file placement and

distribution scheme to balance energy efficiency, spectral and
cache allocation by utilizing content popularity and users’
preferences. Vu et al. [7], [8] first discussed the minimal
energy problem caused by the backtrip and access links from
the perspectives of non-encoded and encoded caching poli-
cies, and then optimized energy efficiency by pre-encoded
caching while ensuring users’ request rate. Xu et al. [9]
investigated the impact of the cellular and D2D modes on
content distribution, and adaptively selected the content deliv-
ery modes to promote energy efficiency by jointly considering
transmitter deployment, channel state, transmission coverage
and quality of service (QoS). Moreover, a random way-
point solution was proposed to handle the challenges caused
by data explosion and reduce energy consumption [10]. Li
et al. [11] formulated the energy minimization issue as a
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two-stage stochastic mixed integer programming model, and
discussed the performance under uncertain content requests.
Hassan et al. [12] improved energy and spectral efficiency
in multi-access edge computing (MEC)-assisted wireless
scenarios by optimizing heterogeneous network resource al-
location. Xu et al. [13] proposed an optimal energy saving
model in green city systems, which chose the candidate con-
tent placement positions to improve content distribution and
energy efficiency.

Although edge computing can reduce energy consumption
by fast proceeding users’ requests and providing their in-
terested contents in access networks, the heterogeneity and
limitation of edge resources constrain its service capabil-
ity. The application of cloud-edge cooperative computing
to the Internet to enhance network performance has been
widely concerned by academia and industry. Wu et al. [14]
designed a novel coded caching framework in cellular net-
works to minimize power consumption and satisfy users’
quality of experience (QoE). Zhang et al. [15] proposed
a cloud-edge coordinated content caching mechanism to
promote energy efficiency, search accuracy and latency in
cyber-physical systems. By introducing the cloud and edge
computing paradigms, Yang et al. [16] reduced network delay
and power consumption by jointly optimizing computation
offloading and content caching. Chen et al. [17] presented a
new energy-efficient service model in the cloud-edge-enabled
IoT networks by simultaneously considering system runtime,
switching, and computation energy of all network partici-
pants. Ning et al. [18] proposed an energy-efficient virtual
network mapping architecture, which reduced energy con-
sumption and improved sustainability in cloud of things by
collaborative edge computing.

To guarantee system QoS in complex and dynamic network
environments, the application of machine learning to cloud-
edge collaborative networks has been increasingly concerned.
Given that advantages of machine learning in QoS and QoE
improvement, Dai et al. [19] proposed a novel deep rein-
forcement learning (DRL) algorithm in multi-access vehicle
networks to solve the challenging edge cache problem brought
by efficient content delivery and high mobility of vehicles.
Javed et al. [20] presented a task-driven intelligent content
caching architecture in vehicular edge computing to improve
task processing and energy consumption. Kong et al. [21]
developed a joint computing and caching system to mini-
mize energy consumption of mobile network operators by
utilizing deep deterministic policy gradient policy to make
resource allocation decisions. He et al. [22] presented a DRL-
based integrated framework to realize green wireless networks
by optimizing cache and computation resource allocation.
Ning et al. [23] proposed a DRL-based offloading policy
in a three-layer vehicle system to improve energy efficiency
while meeting the delay requirement. Chen et al. [24] de-
signed a task offloading and caching decision-making strategy
by using the deep Q network (DQN) algorithm to optimize
transmission power allocation in heterogeneous cloud-edge
cooperation environments.

FIGURE 1. Network topology model of heterogeneous cloud-edge-end
environments.

Although the existing work in cloud-edge collaboration
networks can achieve energy-efficient content distribution, the
service capacities of end-users have been largely overlooked.
In this paper, we propose a new DRL-based content task of-
floading solution in cloud-edge-end environments to improve
power efficiency.

The main contributions of the paper are as follows.
• We formulate the energy-efficient content task offloading

problem as a minimal power model in cloud-edge-end cooper-
ation networks, where requests arriving at a node for the same
content can be aggregated in its queue and in-network caching
is utilized in the system.

• We propose a new DRL algorithm to minimize power
consumption by making collaborative caching and task of-
floading decisions in each slot according to content request
information in previous slots and current network state.

• Evaluation results in different network scenarios show
that our proposed content task offloading model achieves bet-
ter power efficiency than the existing popular counterparts in
cloud-edge-end collaboration networks, and fast converges to
the stable state.

The rest of our paper is organized as follows. We present the
network and power models, and formulated the optimization
objective in Section II. In Section III, the power consumption
minimization model is solved via the new DQN algorithm. In
Section IV, we evaluate the proposed model in heterogeneous
network environments and discuss the simulation results. Fi-
nally, this study is concluded in Section V.

II. SYSTEM MODEL
In this part, we illustrate network and power consumption
models, and formulate the optimization objective in the cloud-
edge-end cooperation networks.

A. NETWORK MODEL
The heterogeneous cloud-edge-end network is shown in
Fig. 1, which consists of mobile users (MUs), small base
stations (SBSs), macro base stations (MBSs), and the cloud.
We assume that the MUs and BSs have limited caching
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TABLE 1. Notations of Key Parameters.

and computing capacities. The BS set is denoted by B =
{1, 2, . . ., Nb}, where Nb is the number of BSs. The ith BS in
the slot n is accessed by a group of MUs Mi(n). The MUs
set in the slot n is denoted by M(n). F = {1, 2, . . ., F } is
the content set, where F is the amount of different files in
the system. We assume that all the contents can be obtained
from the cloud. In our system, content requests unsatisfied
in the MUs are processed in accordance with the sequence
of their accessed SBSs, MBSs, and the cloud to fetch the
corresponding files. Each node has a request processing queue
that aggregates the arriving same content requests, and its ag-
gregated requests are processed only once. In order to reflect
the dynamic characteristics of cloud-edge-end environments,
the system is modeled under multiple slots.

B. POWER MODEL
In our system, the total power consumption is mainly caused
by network nodes and wired links. The notations of key pa-
rameters are summarized in Table 1.

1) POWER CONSUMPTION OF MOBILE USERS
The MUs’ power is consumed by static operation, signal
transmission, request processing, and content caching. The
transmit power consumption of the mth MU sending content
requests to the accessed base station i at the nth slot is written

as

Ptr
m,i(n) = Hi,m(n)

∑
f ∈F

q f
i,m(n)ptr, f

m,i , (1)

where Hi,m(n) is a boolean variable to indicate whether BS i
is accessed by MU m in the slot n. Hi,m(n) takes the value of 1
if the mth MU accesses the ith BS, and 0 otherwise. q f

i,m(n) is
the amount of network requests to fetch file f , which sent by
MU m of the ith base station at the nth slot. ptr, f

m,i is the power
consumption of the MU m transmitting content request f to
the base station i.

The computing power of MU m is consumed in the slot n
to process the arriving content requests [25], which is written
as

Pcom
i,m (n) =

∑
f ∈F

Q f
i,m(n)W f

i,m(n)D f pcom
i,m , (2)

where both Q f
i,m(n) and W f

i,m(n) are boolean variables. Q f
i,m(n)

is set to 1 if the content request f is in the processing queue
of the mth MU accessing the ith BS at the nth slot, and 0
otherwise. W f

i,m(n) takes the value of 1 if the mth MU of
the ith BS has enough computation capacity to deal with the
content request f at the nth slot, and 0 otherwise. D f means
the amount of CPU cycles, which is consumed to process the
content task f . pcom

i,m refers to the computation power of MU
m in each CPU cycle.

The cache power of MU m accessed to BS i is consumed to
store files in the slot n can be expressed as

Pca
i,m(n) =

∑
f ∈F

X f
i,m(n)s f pca

i,m, (3)

where X f
i,m(n) is a boolean variable indicating whether the MU

m caches the content f at the nth slot. X f
i,m(n) takes value 1 if

the file f is stored in MU m of BS i in the nth slot, and 0
otherwise. s f refers to the size about file f . pca

i,m is the storage
power efficiency about the MU m at the ith BS.

Therefore, based on [26], the total power consumption of
MU m accessed to BS i in the slot n is expressed as

Pi,m(n) = Ps
i,m(n) + Pcom

i,m (n) + Pca
i,m(n) + Ptr

m,i(n), (4)

where Ps
i,m(n) is the static power of MU m in the slot n to

maintain its normal operations.

2) POWER CONSUMPTION OF BASE STATIONS
Similarly, the transmit power consumption of the ith BS trans-
mitting the requested contents to the mth MU in the slot n is
written as

Ptr
i,m(n) = Hi,m(n)

∑
f ∈F

q f
i,m(n)ptr, f

i,m , (5)

where ptr, f
i,m is the power consumed by the base station i to

transmit the content f to its accessed mth MU.
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The computing power consumption of base station i in the
slot n is expressed as

Pcom
i (n) =

∑
f ∈F

Q f
i (n)W f

i (n)D f pcom
i , (6)

where both Q f
i (n) and W f

i (n) are boolean variables. Q f
i (n)

is set to 1 if the request f is in the processing queue of the
ith BS at the nth slot, and 0 otherwise. W f

i (n) is set to 1 if
the ith BS has enough computation capacity to deal with the
content request f at the nth slot, and 0 otherwise. pcom

i is the
computation power of the ith BS in each CPU cycle.

The cache power consumed by the BS i in the slot n to store
contents can be expressed as

Pca
i (n) =

∑
f ∈F

X f
i (n)s f pca

i , (7)

where X f
i (n) is a boolean variable indicating whether the ith

BS stores the file f in the nth slot. X f
i (n) is set to 1 if the file

f is stored by the ith BS at the nth slot, and 0 otherwise. pca
i

is the cache power efficiency of the ith BS.
Thus, the total power consumed by BS i in the slot n is

written as

Pi(n) = Ps
i (n) + Pcom

i (n) + Pca
i (n) +

∑
m∈Mi (n)

Ptr
i,m(n), (8)

where Ps
i (n) means the static power consumed by BS i in the

slot n.

3) POWER CONSUMPTION OF THE CLOUD
The power consumption of the cloud in the slot n is caused
by static operating, content caching, and request processing,
denoted by Ps

c (n), Pca
c (n), and Pcom

c (n), respectively. Pca
c (n)

and Pcom
c (n) is expressed as

Pca
c (n) =

∑
f ∈F

s f pca
c , (9)

Pcom
c (n) =

∑
f ∈F

Q f
c (n)D f pcom

c , (10)

where pca
c is the cache power efficiency about the cloud, and

pcom
c is the computation power of the cloud in each CPU cycle.

Q f
c (n) is a boolean variable, which is set to 1 if the content

request f is in the processing queue of the cloud at the nth
slot, and 0 otherwise.

Therefore, the power consumed by the cloud in the slot n is
written as

Pc(n) = Ps
c (n) + Pcom

c (n) + Pca
c (n), (11)

where Ps
c (n) is the static power consumption of the cloud in

the slot n.

4) POWER CONSUMPTION OF WIRED LINKS
The power consumption of wired links consists of static and
dynamic link power. The total wired link power consumption

about link li, j in the slot n is expressed as

Pli, j (n) = Ps
li, j

(n) + fli, j (n)pli, j , (12)

where Ps
li, j

(n) and fli, j (n) are the static power and traffic gen-
erated by link li, j in the slot n, respectively. pli, j refers to the
power efficiency about link li, j .

C. PROBLEM FORMULATION
Based on the analysis above, the content task offloading issue
in cloud-edge-end cooperation networks can be formulated as
a minimal power model, which can improve power efficiency
by jointly optimizing the computation, cache and communi-
cation resources.

min
∑
n∈Nt

⎡
⎣∑

i∈B

⎛
⎝ ∑

m∈Mi (n)

Pi,m(n) + Pi(n)

⎞
⎠ + Pc(n)

+
∑
i∈B

∑
j∈Ai

Pli, j (n)

⎤
⎦

s.t . C1 :
∑
f ∈F

X f
i (n)s f ≤ Cai,∀i ∈ B ∪ M(n), n ∈ Nt

C2 :
∑

m∈Mi (n)

Hi,m(n)Ptr
i,m(n) ≤ Ptr,max

i ,∀i ∈ B, n ∈ Nt

C3 : fli, j (n) ≤ Bli, j ,∀i ∈ N , j ∈ Ai, n ∈ Nt

C4 :
∑
f ∈F

Q f
i (n)W f

i (n)D f ≤ Ci,∀i ∈ B ∪ M(n), n ∈ Nt

C5 :
∑
i′∈Bi

X f
i′ (n) ≤ 1,∀i ∈ B, f ∈ F , n ∈ Nt

C6 : X f
i (n), X f

i,m(n), Q f
i (n), Q f

c (n), Q f
i,m(n),W f

i,m(n),

W f
i (n) ∈ {0, 1} ,∀i ∈ B, m ∈ Mi(n), f ∈ F , n ∈ Nt

(13)

where N and Nt are the node set and slot set of the system,
respectively. Ai is the node set directly connecting to node i,
and Bi is the set of adjacent network devices of BS i at the
same level.

In the above constraints, C1 indicates that the cached con-
tent size of node i cannot exceed its maximal storage capacity
Cai. C2 presents that the sum of transmit power consumed
by BS i cannot exceed its maximal transmit power Ptr,max

i .
C3 means that the sum of network traffic through the link
li, j must be less than its bandwidth Bli, j . C4 indicates that the
consumed computation resources of node i cannot exceed its
computing capacity Ci. C5 presents that the same content will
not be cached in its directly connected BSs at the same layer.
C6 requires that all the boolean variables are 0 or 1.
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FIGURE 2. The framework and workflow of our deep reinforcement
learning.

III. DEEP REINFORCEMENT LEARNING BASED
COLLABORATIVE CONTENT TASK OFFLOADING
The optimization problem (13) is a Markov decision pro-
cess (MDP), which can be solved by the reinforcement
algorithms by making intelligent caching and offloading
decisions. The MDP model can be defined by a tuple
{S,A,P (st+1|st , at ),R(st , at )}. S is the set of states, which
is a description of the current environment. A is the set of
all possible actions of the MDP. P (st+1|st , at ) indicates the
probability of transforming from the state st to the state st+1

after performing the action at . R(st , at ) represents the re-
ceived reward when the action at is performed under the state
st . In MDP, the main target of the agent is to find the optimal
strategy to maximize the cumulative reward. The Q-learning
algorithm can optimize the reward by dynamically obtaining
environment state information and storing action values [27].
It is challenging to utilize one table to cache the values of all
actions in the complex and dynamic cloud-edge-end cooper-
ation environments [28]. As a branch of the integrated deep
learning and reinforcement learning, DQN can overcome the
dimensionality disaster problem by using neural networks to
automatically obtain low-dimensional features. In this section,
a new DQN-based content task offloading policy is designed
to improve power efficiency by making collaborative caching
and offloading decisions.

Fig. 2 illustrates the working process of the proposed
DQN-based content task offloading algorithm. The evaluation
and target networks have the same neural network structure
with different parameters. In order to improve the system
stability, the target network copies network parameters from

the evaluation network to update its own neural network in
each specific training cycle. The evaluation network selects
an action by an ξ -greedy strategy with the probability of
ξ ∈ (0, 1) or a random action with the probability of 1 − ξ

according to the known state at time t . During the learning
process, the evaluation and target networks randomly extract
a set of historical information from an experience replay for
training, and modify the related parameters by using gradient
descent method.

When our DQN model works, the network state
generated by the file request f at the time t is defined as
s f
t = {nt ,Ant , Xnt , flnt , j , j ∈ Ant }. nt is the node to process

the current content request f . Ant is the set of adjacent nodes
of nt . Xnt = (X 1

nt
, X 2

nt
, . . . , X F

nt
) is the caching state about

node nt . flnt , j is the traffic of the link lnt , j . The action for
the arriving content request f at the time t is defined as
a f

t = {nt+1, nt+1 ∈ Ant } to indicate its next hop. The reward
obtained by processing the file request f at the time t is

r f
t = Y f

t β

P f
t

+ (1 − Y f
t )η. Y f

t is boolean variable, which takes

the value of 1 if the content request f is satisfied after action
a f

t , and 0 otherwise. β is a coefficient that adjusts the ratio of
power consumption to the reward. P f

t is the power consumed
by a mobile user to send the content request f and obtain
the corresponding file at time t . η is the penalty parameter
set by the system when the content request f is unsatisfied
after action a f

t . When the current node can satisfy service
requirements of the arriving request f , the routing process
is terminated and content f is returned to the corresponding
end-user. Otherwise, our DQN model will sent the state
information s f

t to the evaluation network to get an action
a f

t , then perform the action to get the reward r f
t and the

state s f
t+1 at time t + 1. Meanwhile, a piece of historical

information (s f
t , a f

t , r f
t , s f

t+1) is stored in the experience
replay for the next training. The loss function for the content
request f is defined as the mean square error L(ω) f =
E

{[
r f
t + γ max

a f
t+1

Q′(s f
t+1, a f

t+1;ω−) − Q(s f
t , a f

t ;ω)

]2
}

,

where γ is the discount rate, Q(s f
t , a f

t ;ω) is the
predicted Q-value generated by evaluation network,
r f
t + γ max

a f
t+1

Q′(s f
t+1, a f

t+1;ω−) is the actual Q-value,

and max
a f

t+1
Q′(s f

t+1, a f
t+1;ω−) is obtained from the target

network.
For the content request f from an end user at the time

t , the objective of our DQN policy is to choose the optimal
offloading decision a f

t according to state space s f
t to achieve

the maximal reward r f
t . Specifically, when processing a file

request in a slot, a node makes task offloading decisions to
minimize power consumption on the basis of its cache state
and available adjacent link bandwidth. At the end of each
slot, the cache status of each node is updated to improve
network performance by utilizing the content request history
arriving it.
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IV. SIMULATION AND RESULTS
In this section, we present the simulation environments and
analyze the numerical results in different cloud-edge-end sce-
narios.

A. SIMULATION SETTINGS
In this part, our proposed DRL-based green content task
offloading scheme is evaluated in heterogeneous cloud-edge-
end cooperation networks. We assume that content popularity
of the whole system obeys a Zipf distribution, which mainly
depends on its skewness factor [29]. A larger value of the
skewness factor indicates that more popular content requests
are sent by mobile users. In the simulation, the skewness
factor varies between 0.6 and 1.5 [30], [31]. Besides, cache
size is abstracted as a ratio of the amount of different files
cached by a network node to F , and its range is from 0.1%
to 1% [32], [33]. We also assume that each network node has
a request service queue, and its arrival requests for the same
content in a slot will be aggregated in the queue and processed
once [34], [35].

To evaluate the advantages of our model, we compare the
proposed DRL-based green content task offloading scheme,
denoted by “DQN,” with the three existing popular coun-
terparts in cloud-edge-end cooperation networks, denoted by
“Without Cache,” “Popularity,” and “LRFU,” respectively.
Request aggregation is considered in all the solutions. In
“Without Cache,” caches are not deployed in network nodes.
In “Popularity,” network files are collaboratively cached
among adjacent nodes on the basis of the known whole con-
tent popularity distribution [36]. In “LRFU,” the BSs and
MUs dynamically update their cached content states accord-
ing to the historical spatio-temporal request information in
each slot [37].

B. RESULTS DISCUSSION
Fig. 3 demonstrates power consumption of all solutions when
the cache size of each node varies. When cache size grows,
more files that users are interested in are cached in the net-
work, reducing power consumption of the three policies with
in-network caching by meeting user requests nearby. Since
all the content requests are satisfied by the cloud, the perfor-
mance of “Without Cache” is unaffected by the varying cache
sizes. With the increase of storage capacity, the proposed
“DQN” scheme always performs best, and the performance
gap between “DQN” and other solutions enlarges. This is
because “DQN” can achieve optimal caching and offloading
in each slot on the basis of content request information in
previous slots and current network state, adapting to dynamic
cloud-edge-end networks.

Fig. 4 shows the performance of all schemes when content
popularity varies. When the content popularity grows, power
consumption of all the polices is decreasing. A larger content
popularity means that more mobile users are interested in pop-
ular contents, reducing the power consumption of “without
cache” because of the improved request aggregation. For the
schemes with deployed caching capacity, the promoted cache

FIGURE 3. Network performance versus cache size.

FIGURE 4. Network performance versus content popularity.

hit rate further improves their power efficiency. As the content
popularity grows, the performance gap between “DQN” and
other schemes is narrowed down. The reason is that more
requests for popular contents reduces the relative advantages
of our “DQN” scheme in terms of caching efficiency and
request aggregation.

Fig. 5 shows power consumption of all solutions when a
queue capacity varies. A large queue length can make each
network node aggregate more content requests and avoid their
redundant transmission, hence improving the performance of
the four schemes. As shown in Fig. 5, the performance of
“DQN” is worse than those of “Popularity” and “LRFU,” and
close to that of “Without Cache” in a small queue capacity.
The reason is that the deteriorated request aggregation makes
more content requests in the our proposed “DQN” solution
first explored and then transmitted to the cloud to obtain their
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FIGURE 5. Network performance versus queue capacity.

FIGURE 6. Network performance versus request arrival rate.

interesting files, leading to a lower power efficiency. As the
queue capacity increases, intelligent caching and offloading
decision advantages makes “DQN” perform much better than
other solutions.

Fig. 6 demonstrates the performance of all schemes when
the request arrival rate varies. The request arrival rate is rep-
resented by the number of content requests sent by each user
in a slot. As shown in Fig. 6, network power consumption
of the four strategies first decreases and then increases when
less content requests arrive at a end-user in a slot grows. The
reason is that request aggregation in each node is improved
when the request arrival rate begins to grow, which leads to
gradual reduction of network power consumption. However,
power efficiency of all the solutions is deteriorated when the
request arrival rate continues to increase. The reason is that
a larger request arrival rate in a slot restricts the effect of
request aggregation under the limited queue capacity, which

FIGURE 7. Network performance versus content variety.

FIGURE 8. Average weighted reward sum versus cache size.

makes more requests route to the cloud to fetch contents and
brings about more lost packets. When the request arrival rate
varies, “DQN” always performs best by making intelligent
caching and routing decisions to be suited for the dynamic
cloud-edge-end environments.

Fig. 7 shows power consumption of all schemes when
the amount of different network files changes. When con-
tent diversity increases, network power consumption of each
solution is growing. The growth of the amount of different
files indicates that user requests have an obvious diversity
phenomenon. Specifically, more unpopular contents and less
popular files are accessed by mobile users, which worsens
cache hit rate and the effect of request aggregation, and con-
sumes more network power. In this process, “DQN” has the
optimal power efficiency by intelligently offloading content
tasks according to current network state and historical request
information.
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FIGURE 9. Average weighted reward sum versus learning rate.

Figs. 8 and 9 show the average weighted reward for a
content request per slot under different cache sizes and learn-
ing rates, respectively. As shown in Fig. 8, a larger storage
capacity indicates that more popular contents are cached at
access networks, hence reducing the power consumption and
achieving a convergence state with less fluctuation. In the
small cache size scenario, more content requests are satisfied
in the cloud, which deteriorates the learning effect of our
proposed model in the edge network. A larger learning rate
indicates that the old Q value will have a stronger impact on
the new one when the system makes cooperative caching and
task offloading decisions. As shown in Fig. 9, our “DQN”
solution always fast converges under different learning rates,
and performs the best when when the learning rate is 0.008.

V. CONCLUSION
In this paper, we proposed a DRL-based green content task
offloading scheme in cloud-edge-end environments to real-
ize cooperative caching and computing resource allocation.
The energy-efficient content task offloading problem was first
formulated as a power minimization model, where requests
arriving at a node for the same content can be aggregated
in its queue and in-network caching is widely deployed in
heterogeneous environments. Then, a new DRL algorithm
was designed to minimize the power consumption by mak-
ing collaborative cache and computation resource allocation
decisions on the basis of the predicted spatio-temporal con-
tent popularity distribution. Numerical results showed that
our proposed content task offloading model achieved better
power efficiency than the existing popular counterparts in
cloud-edge-end collaboration networks, and fast converged to
the stable state.
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