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Abstract
This paper presents the detailed formulation of a coupled hydro-mechanical
structure-soil interface and demonstrates its application in simulating uplift-
ing problems. This interface features real-time prediction of the pore pressure
generation and structure-soil separation, and thus rate dependency and ‘break-
away’ can be modeled without user intervention. Constitutive relations of this
interface were derived by considering the coupling between soil skeleton and
fluid along the interface. A complete finite element formulation and numeri-
cal implementation of the interface is provided based on an eight-node element.
The performance of this interface is demonstrated by simulating lifting a sur-
face footing at varying rates (spanning across undrained, partially drained and
drained conditions), compared with existing theoretical solutions, numerical
results and experimental data. The good agreement achieved indicates that this
interface is capable of modelling uplift at varying rates, which is an extremely
challenging topic in offshore engineering. Sensitivity studies were conducted
to investigate the parameters affecting uplifting behaviour. A unified backbone
curvewas established correspondingly, which is shown to be different from exist-
ing studies in compression, due to the difference in the mechanism between the
two cases.

KEYWORDS
breakaway, hydro-mechanical coupled interface, rate dependency, soil-structure interaction,
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1 INTRODUCTION

Modelling structure-soil interaction is a key aspect of numerical analyses of geotechnical problems. Most early inter-
face models1–6 are mechanically formulated within a total stress framework. But in most cases, soils are filled with pore
water, and the structure-soil interaction is closely related to the drainage condition in soil and at the interface. Thus,
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F IGURE 1 Schematic illustration of drainage dependency of
uplift capacity

purelymechanical interfaces are inadequate, and coupled hydro-mechanical interfaces are needed to describe the coupled
behaviour of soil skeleton and pore water.
Such an interface is especially needed to model offshore structures subjected to uplift (such as embedded anchors and

shallow foundations), because the negative pore pressure (suction) generated at the structure underside plays a key role
during the uplift.7–9 Li10 conducted a series of centrifuge tests lifting a skirted foundation at varying rates, and the results
(Figure 1) indicated two distinct features: (1) the peak resistance increases with uplift rate; and (2) there is a ‘breakaway’
occurring, where the resistance drops almost to zero in a short time. The two features are closely related to the pore
pressure generation/dissipation and the structure-soil separation at the foundation underside, and a hydro-mechanical
coupled interface is necessary in order to model this process.
There exists two ways to develop such a coupled hydro-mechanical interface. One is the so-called ‘thin layer element’

approach, which simulates the interface as a continuum,5 for example Mana et al.11 fine-tuned a layer of porous elastic
material at the underside of a skirted foundation to represent the interface. This method models seepage appropriately,
although the uplift capacity might be overestimated in some instance because of the mechanical strength inevitably
introduced by the interface material.
The other method is to model the interface as a ‘gap’ filled with water,12–16 which is usually called zero-thickness inter-

face. It opens/closes with water flowing into/draining out of the interface. The effective mechanical stresses become zero
when the interface is open while suction can still be sustained, thus allowing a realistic modelling of the separation
between the soil skeleton and the structure.
Most of currently available zero-thickness interfaces12–16 (1) commonly use 4-node or 6-node element (Figure 2) to

formulate the interface, with linear interpolations adopted for both displacements and pore pressure; and (2) quantify
the water flow along the interface by the cubic law. These are appropriate for most applications. Some specific cases
may require quadratic rather than linear interpolations to be used.17 In addition, the cubic law is mainly applicable for
surface structures, and it can overestimate the flow rate for embedded structures, where Darcy’s law is believed to bemore
appropriate as will be discussed later.
This paper presents a coupled hydro-mechanical zero thickness interface by addressing aforementioned issues. The

hydraulic behaviours of the interface are divided into transverse flow and longitudinal flow (as shown in Figure 3). The
transverse flow adopts the first-order leak-off model proposed by Gerke and van Genuchten.18 As for longitudinal flow,
both cubic flow and Darcy-like flow are considered. The effective mechanical behaviours of the interface are described
with linear elasticity along the normal direction and Coulomb friction along the tangential direction. The hydraulic
and mechanical aspects are coupled through the principle of mass conservation of the fluid inside the interface. Three
mechanical parameters and three hydraulic parameters are required by this interface.
A complete finite element (FE) formulation and numerical implementation are detailed, followed by the simulation of

the uplift of a surface footing resting on an elastoplastic seabed at varying rates. To demonstrate its capability, numerical
results were compared with experimental observations. Sensitivity studies were then conducted to show the effect of the
interface parameters on the uplift behaviour. The results show that the controlling mechanism in uplift is different from

 10969853, 2022, 17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3450 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [19/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3258 PENG et al.

F IGURE 2 Different types of zero thickness interface element. (A) Four-node element (proposed by Ng & Small12). (B) Six-node element
(proposed by Cerfontaine et al.16). (C) The proposed eight-node element

F IGURE 3 Schematic illustration of the proposed interface

that in compression. A dimensionless velocity is then proposed to normalise uplift rate, and a unified backbone curve is
established correspondingly.

2 BEHAVIOURS OF THE INTERFACE AND GOVERNING EQUATIONS

Figure 3 illustrates the proposed interface model, bounded by the soil and the structure with boundary surfaces 1–2 and
3–4. When the structure tends to separate from the soil, the distance between the boundary surfaces 1–2 and 3–4 is to
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PENG et al. 3259

increase. Thus, suction is generated, drawing water into the interface. When the interface opening width is over a prede-
fined threshold, the effective normal stress reaches zero (i.e. mechanically separated). It is noted that this interface can
also be used for compression problems, although this paper focuses on the uplifting cases.

2.1 Boundary conditions

The mechanical boundary conditions of the interface consist of stress boundary (ST) and displacement boundary (SD),
while the hydraulic boundary conditions comprise of pore pressure boundary (SP) and fluid velocity boundary (SV). Their
mathematical descriptions are:

𝛔𝐧 = 𝐓 on 𝐒𝐓

𝐮 = �̄� on 𝐒𝐃

𝑝 = �̄� on 𝐒𝐏

𝐯𝐧 = �̄� on𝐒𝐕

(1)

where σ is the stress tensor on ST, and n the outward norm vector of ST; T the total stress tensor between the interface
and the soil/structure on ST; u and �̄� the displacement vector and prescribed displacement vector on SD; p and �̄� the
pore pressure and prescribed pore pressure on SP; v and �̄� the fluid velocity vector and prescribed fluid velocity vector on
SV. �̄� = 𝟎, �̄� = 0 and �̄� = 𝟎 represent displacement-fixed boundary, free drainage boundary and impermeable boundary,
respectively.

2.2 Pore pressure distribution

A transversely parabolic distribution of pore pressure is adopted. As in Figure 2(C), p12 and p34 denote the pore pressures
at the boundaries 1–2 and 3–4, respectively, and pg the pore pressure at themiddle of the interface, the pore pressurewithin
a same transverse plane can be expressed as:

𝑝 =
2
(
𝑝12 + 𝑝34 − 2𝑝𝑔

)
𝑔2
𝑛

𝑟2 +
𝑝34 − 𝑝12

𝑔𝑛
𝑟 + 𝑝𝑔 (2)

where –gn/2≤ r ≤gn/2 is the vertical distance to the mid-interface (upper part as positive), and gn the interface opening
width.
Hence, the average pore pressure within a transverse plane can be defined as:

�̄� =
1

𝑔𝑛 ∫
𝑔𝑛

2

−
𝑔𝑛

2

𝑝𝑑 |𝑟| =
1

6

(
𝑝12 + 𝑝34 + 4𝑝𝑔

)
(3)

where ‘| |’ means absolute value.

2.3 Transverse flow

The transverse flow accounts for the fluid exchange through the two boundaries (faces 1–2 and 3–4 in Figure 3). This
is different from seepage inside soil,19 and thus Darcy’s law is no longer appropriate. In contrast, the first order leak-off
model18 was adopted in this paper:

𝑣12 = 𝑐12 (�̄� − 𝑝12) =
𝑎𝑤1𝑘𝑔1

𝜇
(�̄� − 𝑝12)

𝑣34 = 𝑐34 (�̄� − 𝑝34) =
𝑎𝑤2𝑘𝑔2

𝜇
(�̄� − 𝑝34)

(4)

 10969853, 2022, 17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3450 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [19/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3260 PENG et al.

F IGURE 4 Mechanical response of the interface

where v12 and v34 are the fluid flow rates at boundaries 1–2 and 3–4, respectively. c12 and c34 are termed as hydraulic
conductivity,18 which will be discussed later. aw1 and aw2 (in the unit of m−1) are the so-called first-order transfer coeffi-
cients for soil and structure, respectively, related to the fluid density and the microstructure of the solid matrix; kg1 and
kg2 (m2) the intrinsic permeability of boundaries 1–2 and 3–4; and µ (Pa∙m) the viscosity of fluid.

2.4 Longitudinal flow

The longitudinal flow describes the fluid flow along the interface. For a surface footing on a seabed, the longitudinal flux
comes from the ambient free water around the footing and its flow is rarely obstructed by the soil, thus the Navier-Stokes
(NS) equations are suitable. For a structure such as a plate anchor deeply buried in soil, the longitudinal flux comes solely
from the soil and the flow rate thus depends on soil permeability. Therefore, the flow is Darcy-like, and Darcy’s law is
more appropriate.
Darcy-like flow considers the longitudinal flow velocity proportional to the longitudinal pore pressure gradient:

𝑞𝑥 = 𝑔𝑛𝑣𝑥 = ∫
𝑔𝑛

2

−
𝑔𝑛

2

𝐾𝑥

𝛾𝑤

𝜕𝑝

𝜕𝑥′
𝑑 |𝑟| = 𝑔𝑛

𝐾𝑥

𝛾𝑤

𝜕�̄�

𝜕𝑥′
(5)

where vx is the longitudinal velocity of Darcy-like flow; qx the longitudinal flux; andOx’ denotes the longitudinal direction
of the interface.; γw the unit weight of water;Kx (m/s) the longitudinal conductivity; its value depends on the properties on
surrounding soil, and it is related to the longitudinal permeability kx (m2) byKx = kxγw/µ. For Darcy-like flow, the longitu-
dinal conductivity Kx is directly treated as a material constant. The value of gnKx is usually called interface transmissivity
in previous literatures.16
The NS equations represent the conservation of linear momentums and mass of the fluid. For simplicity, it is assumed

here that the longitudinal flow does not have the acceleration terms. Hence, the NS equations reduce to the static force
balance equation of the fluid. As deduced in Appendix 1, the longitudinal flux of NS flow is:

𝑞𝑥 =
𝑔3
𝑛

120𝜇

(
𝑑𝑝12

𝑑𝑥′
+

𝑑𝑝34

𝑑𝑥′
+ 8

𝑑𝑝𝑔

𝑑𝑥′

)
(6)

It is worth noting that if transversely uniform pore pressure distribution within the interface is assumed, i.e.,
dp12/dx’ = dp34/dx’ = dpg/dx’, Equation (6) becomes qx = gn3dpg/12µdx’. This is the cubic law that has been widely
employed in geotechnical problems.20–25

2.5 Mechanical behaviours

Figure 4 illustrates the interface subjected to a tensionT and a displacement boundary �̄�. The tensionT can be decomposed
into a normal stress σn and a shear stress σt (note this study only considers 2 dimensional problems) which are balanced
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PENG et al. 3261

F IGURE 5 Effective stress-displacement relationship of the interface. (A) Normal behaviour. (B) Tangential behaviour

by the internal effective stresses σ’n, σ’t and average pore pressure �̄�. The force balance equations read:

𝜎′
𝑛 = 𝜎𝑛 − �̄�

𝜎′
𝑡 = 𝜎𝑡

(7)

where positive σ’n means tension, and positive σ’t means the interface deforms in an anti-clockwise way under shearing.
The internal effective stresses σ’n and σ’t control the mechanical behaviours of the interface. The change in interface

thicknessΔgn is proportionally related to the increment of effective normal stressΔσ’n through the normal stiffnessKn. The
magnitude ofKn is negligiblewhen gn is beyond a threshold, while its value is large enough to avoid over-penetrationwhen
gn is below this threshold. The tangential behaviour obeys Coulomb friction theory, where the interface first undergoes
an elastic shear displacement up to a critical slip distance γc. Beyond γc, plastic shearing (sliding) ensues, and the effective
shear stress σ’t reaches a stabilised value νσ’n, where ν is the coefficient of friction of the interface. The magnitude of
γc is likely to be dependent on σ’n. But acknowledging that γc is usually very small, and the shear stress is almost zero
during uplift, a constant γc would suffice and is adopted in this paper. The effective stress-displacement relationship can
be illustrated as Figure 5 and expressed as:

𝛔′ = 𝐃𝐝 (8)
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3262 PENG et al.

F IGURE 6 The proposed eight-node interface element. (A) In original global coordinates. (B) In rotated global coordinates. (C) In local
coordinates

where σ’= [σ’n σ’t]T is the effective stress vector, and d= [gn γ]T the relative displacement vector.D is the stiffness matrix
depending on relative shear displacement. Under compression, D reads:

𝐃 =

⎡⎢⎢⎢⎣
𝐾𝑛 0

0
𝜈𝐾𝑛𝑔𝑛

𝛾𝑐

⎤⎥⎥⎥⎦ (𝛾 ≤ 𝛾𝑐) or𝐃 =

⎡⎢⎢⎢⎣
𝐾𝑛 0

|𝛾|
𝛾

𝜈𝐾𝑛 0

⎤⎥⎥⎥⎦ (𝛾 > 𝛾𝑐) (9)

2.6 Coupling between hydraulic and mechanical behaviours

Assuming the water to be incompressible, for a segment of the water-filled interface with opening gn and longitudinal
width Δx’, its volumetric change equals the water flow-in volume minus the water flow-out volume:

�̇�𝑛Δ𝑥′ = −𝑣12Δ𝑥′ − 𝑣34Δ𝑥′ + Δ𝑞𝑥 (10)

where dot denotes material time derivative.
By using the divergence theorem, the mean value theorem of integrals, and letting Δx’→ 0, Equation (10) becomes:

−
𝜕𝑞𝑥

𝜕𝑥
+ 𝑣12 + 𝑣34 + �̇�𝑛 = 0 (11)

3 FORMULATIONOF THE INTERFACEMODEL IN FINITE ELEMENT FRAMEWORK

3.1 Element description

An eight-node element was constructed as shown in Figure 6. Note that the nodes 1, 4, 8, the nodes 5, 7, and the nodes
2, 3, 6 are co-located initially, and an artificial distance between them were added in this figure for clarity. Nodes 1 ∼ 4
have 3 degree of freedoms (DOFs): x, y displacements and pore pressures at boundaries. Nodes 6 and 8 have DOF of pore
pressure at mid-interface but no displacements DOF, while nodes 5 and 7 have displacements DOFs but no pore pressure
DOF. The edge 1–2 in Figure 6 represents the boundary 1–2 in Figure 3, and the edge 3–4 represents the boundary 3–4.
The longitudinal direction of the element is denoted as Ox’. The nodal coordinates of this interface are updated in real
time according to their displacements during the analysis. The following formulation is based on straight geometries and
curved geometry is not considered.
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PENG et al. 3263

3.2 Shape functions and interpolations

A local coordinate system ξOη is established to interpolate the field variables, as shown in Figure 6(C). The displacements
are continuous along x’ direction on boundaries 1–2 and 3–4 but discrete along y’ direction. Thus, the displacements need
to be interpolated separately on 1–2 and 3–4 as:

𝐮𝟏𝟐 = 𝑁1𝐮𝟏 + 𝑁2𝐮𝟐 + 𝑁5𝐮5

𝐮𝟑𝟒 = 𝑁4𝐮𝟒 + 𝑁3𝐮𝟑 + 𝑁7𝐮7

(12)

where u12 and u34 are displacement vectors on 1–2 or 3–4; while u1 ∼ u7 are displacement vectors at nodes 1 ∼ 7 respec-
tively. Ni are one dimensional shape functions defined by the local coordinate 𝜉 ⊆ [−1, 1]uniquely. The form that is the
most widely adopted is:

𝑁1 = 𝑁4 =
𝜉

2
(𝜉 − 1) ; 𝑁2 = 𝑁3 =

𝜉

2
(𝜉 + 1) ; and 𝑁5 = 𝑁7 = 1 − 𝜉2 (13)

Contrary to the displacements, the pore pressure is assumed continuous along both x’ and y’ directions, and thus its
interpolation is a function of both ξ and η. Considering that the distribution of pore pressure is longitudinally linear and
transversely parabolic inside an element, following forms are proposed:

�̄�1 (𝜉, 𝜂) =
1

4
𝜂 (1 − 𝜉) (𝜂 − 1) ; �̄�2 (𝜉, 𝜂) =

1

4
𝜂 (1 + 𝜉) (𝜂 − 1)

�̄�3 (𝜉, 𝜂) =
1

4
𝜂 (1 + 𝜉) (1 + 𝜂) ; �̄�4 (𝜉, 𝜂) =

1

4
𝜂 (1 − 𝜉) (1 + 𝜂)

�̄�6 (𝜉, 𝜂) =
1

2
(1 + 𝜉) (1 − 𝜂) (1 + 𝜂) ; �̄�8 (𝜉, 𝜂) =

1

2
(1 − 𝜉) (1 − 𝜂) (1 + 𝜂)

(14)

Accordingly,

𝑝 =

4∑
𝑖=1

�̄�𝑖𝑝𝑖 + �̄�6𝑝6 + �̄�8𝑝8 (15)

where p is the pore pressure at (ξ,η) and pi denotes pore pressure at the ith node.
For brevity, Nw1, Nw2 are used in the following derivation, which are defined as:

�̄�𝑤1 = �̄�1 + �̄�4 + �̄�8 =
1

2
(1 − 𝜉)

�̄�𝑤2 = �̄�2 + �̄�3 + �̄�6 =
1

2
(1 + 𝜉)

(16)

3.3 Matrix expressions of parameters

Let

𝐍 =
[
𝑁1 𝑁2 𝑁3

]𝑇
(17)

𝐮 =
[
𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦 𝑢4𝑥 𝑢4𝑦 𝑢5𝑥 𝑢5𝑦 𝑢7𝑥 𝑢7𝑦

]𝑇
(18)

𝐑𝐍 =

⎡⎢⎢⎢⎣
sin 𝜃 − cos 𝜃 0 0 0 0 − sin 𝜃 cos 𝜃 0 0 0 0

0 0 sin 𝜃 − cos 𝜃 − sin 𝜃 cos 𝜃 0 0 0 0 0 0

0 0 0 0 0 0 0 0 sin 𝜃 − cos 𝜃 − sin 𝜃 cos 𝜃

⎤⎥⎥⎥⎦ (19)
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3264 PENG et al.

and

𝐑𝐓 =

⎡⎢⎢⎢⎣
−cos 𝜃 − sin 𝜃 0 0 0 0 cos 𝜃 sin 𝜃 0 0 0 0

0 0 − cos 𝜃 − sin 𝜃 cos 𝜃 sin 𝜃 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − cos 𝜃 − sin 𝜃 cos 𝜃 sin 𝜃

⎤⎥⎥⎥⎦ (20)

where θ is the angle between Ox and Ox’.
It follows that the relative displacements can be calculated as

𝐝 =

[
𝑔𝑛

𝛾

]
=

[
𝐍𝐓 𝟎

𝟎 𝐍𝐓

][
𝐑𝐍

𝐑𝐓

]
𝐮 (21)

where u is the nodal displacement vector in the global coordinate system xOy.
Combining Equation (21) with Equation (8), the effective stresses can be expressed as:

𝛔′ =

[
𝜎′

𝑛

𝜎′
𝑡

]
= 𝐃𝐝 = 𝐃

[
𝐍𝐓 𝟎

𝟎 𝐍𝐓

][
𝐑𝐍

𝐑𝐓

]
𝐮 (22)

Similarly, let

𝐩 =
[
𝑝1 𝑝2 𝑝3 𝑝4 𝑝6 𝑝8

]𝑇
(23)

�̄�=
[
�̄�1 �̄�2 �̄�3 �̄�4 �̄�6 �̄�8

]𝑇
(24)

�̄�𝐰 =
[
�̄�𝑤1 �̄�𝑤2

]𝑇
(25)

𝐑𝐦 =

⎡⎢⎢⎢⎣
1

6
0 0

1

6
0

2

3

0
1

6

1

6
0

2

3
0

⎤⎥⎥⎥⎦ (26)

To calculate �̄� − 𝑝12, a pore pressure difference matrix Rb is defined:

𝐑𝐛 =

[
−5 0 0 1 0 4

0 −5 1 0 4 0

]
(27)

To calculate �̄� − 𝑝34, a pore pressure difference matrix Rt is defined:

𝐑𝐭 =

[
1 0 0 −5 0 4

0 1 −5 0 4 0

]
(28)

It follows that:

𝑝 = �̄�𝐓𝐩;�̄� = �̄�𝐓
𝐰𝐑𝐦𝐩 (29)

�̄� − 𝑝12 =
1

6
�̄�𝐓

𝐰𝐑𝐛𝐩;�̄� − 𝑝34 =
1

6
�̄�𝐓

𝐰𝐑𝐭𝐩 (30)
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PENG et al. 3265

3.4 Formulation of effective mechanical behaviours

The formulation of the mechanical behaviours follows the standard procedures of the principle of virtual work. For an
arbitrary nodal displacement increment δu, the total work done by external forces, internal effective stresses, and pore
pressure must be zero:

∫ 𝛅𝐝𝐓𝛔′𝑑𝑥′ − ∫ 𝑝𝛿𝑉 = 𝛅𝐮𝐓𝐟 + ∫ 𝛅𝐝𝐓𝛔𝑑𝑥′ (31)

where f and u are nodal concentrated force vector and nodal displacement vector in xOy, respectively; σ the external
distributed load vector acting on boundaries; and σ’ the internal effective stress vector, d the relative displacement vector
calculated in Equation (21).
For the second term on the left-hand side of Equation (31), the below relation holds:

∫ 𝑝𝛿𝑉 = ∫ 𝛿𝑔𝑛�̄�𝑑𝑥′ = ∫ 𝛅𝐮𝐓𝐑𝐓
𝐍𝐍�̄�𝐓

𝐰𝐑𝐦𝐩𝑑𝑥′ (32)

Similarly, replacing other variables in Equation (31) with their matrix forms, and considering that δuT, u and p are
independent of coordinates, it becomes:

𝛅𝐮𝐓 ∫
([

𝐑𝐓
𝐍 𝐑𝐓

𝐓

] [𝐍 𝟎

𝟎 𝐍

]
𝐃

[
𝐍𝐓 𝟎

𝟎 𝐍𝐓

][
𝐑𝐍

𝐑𝐓

])
𝑑𝑥′𝐮 − 𝛅𝐮𝐓 ∫ (

𝐑𝐓
𝐍𝐍�̄�𝐓

𝐰𝐑𝐦

)
𝑑𝑥′𝐩

= 𝛅𝐮𝐓𝐟 + 𝛅𝐮𝐓 ∫
([

𝐑𝐓
𝐍 𝐑𝐓

𝐓

] [𝐍 𝟎

𝟎 𝐍

]
𝛔

)
𝑑𝑥′

(33)

Equation (33) holds true for arbitrary δuT, so that δuT can be cancelled from both sides. Thence, it finally becomes:

𝐊𝐮 + 𝐋𝐩 = 𝐅 (34)

where

𝐊 = ∫
([

𝐑𝐓
𝐍 𝐑𝐓

𝐓

] [𝐍 𝟎

𝟎 𝐍

]
𝐃

[
𝐍𝐓 𝟎

𝟎 𝐍𝐓

][
𝐑𝐍

𝐑𝐓

])
𝑑𝑥′ (35)

𝐋 = −∫
(
𝐑𝐓

𝐍𝐍�̄�𝐓
𝐰𝐑𝐦

)
𝑑𝑥′ (36)

𝐅 = 𝐟 + ∫
([

𝐑𝐓
𝐍 𝐑𝐓

𝐓

] [𝐍 𝟎

𝟎 𝐍

]
𝛔

)
𝑑𝑥′ (37)

K is the effective mechanical stiffness matrix relating displacements to effective mechanical stresses, and L is a hydro-
mechanical coupling matrix relating displacements to pore pressures.

3.5 Formulation of hydraulic behaviours

The formulation of hydraulic behaviour is based on Galerkin’s method, and the transverse average pore pressure is used
as trial function. One benefit of doing so is that it converts a 2D integration into 1D. By conducting integration by part, the
weak forms of the continuity Equation (11) are Equation (38) for Darcy-like flow or Equation (39) for NS flow.

𝑘𝑥

𝛾𝑤

[
∫ 𝑔𝑛

𝜕𝑑�̄�

𝜕𝑥′

𝜕�̄�

𝜕𝑥′
𝑑𝑥′

]
+ ∫ 𝑑�̄�

[
𝑐12 (�̄� − 𝑝12) + 𝑐34 (�̄� − 𝑝34) +

𝜕𝑔𝑛

𝜕𝑡

]
𝑑𝑥′ = 0 (38)
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3266 PENG et al.

1

120𝜇

[
∫ 𝑔3

𝑛

𝜕𝑑�̄�

𝜕𝑥′

(
8
𝜕𝑝𝑔

𝜕𝑥′
+

𝜕𝑝12

𝜕𝑥′
+

𝜕𝑝34

𝜕𝑥′

)
𝑑𝑥′

]
+ ∫ 𝑑�̄�

[
𝑐12 (�̄� − 𝑝12) + 𝑐34 (�̄� − 𝑝34) +

𝜕𝑔𝑛

𝜕𝑡

]
𝑑𝑥′ = 0

(39)

Replacing the variables with their matrix forms, the two equations further become:

𝐆𝐩 + 𝐇�̇� = 0 (40)

where:

𝜕�̄�𝐰

𝜕𝑥′
=

[
𝜕�̄�𝑤1

𝜕𝑥′

𝜕�̄�𝑤2

𝜕𝑥′

]𝑇

(41)

𝐇 = ∫
(
𝐑𝐓

𝐦�̄�𝐰𝐍𝐓𝐑𝐍

)
𝑑𝑥′ (42)

𝐆 = ∫
(

𝐴𝐑𝐓
𝐦

(
𝜕�̄�𝐰

𝜕𝐱′

)(
𝜕�̄�𝐰

𝜕𝐱′

)𝐓

𝐑𝐅

)
𝑑𝑥′ +

𝑐12

6 ∫ 𝐑𝐓
𝐦�̄�𝐰�̄�𝐓

𝐰𝐑𝐛𝑑𝑥′ +
𝑐34

6 ∫ 𝐑𝐓
𝐦�̄�𝐰�̄�𝐓

𝐰𝐑𝐭𝑑𝑥′ (43)

where A and RF depends on the longitudinal flow type. For Darcy-like flow:

𝐴 =
𝑔𝑛𝐾𝑥

6𝛾𝑤
and𝐑𝐅 =

[
1 0 0 1 0 4

0 1 1 0 4 0

]
(44)

while for NS flow:

𝐴 =
𝑔3
𝑛

120𝜇
and𝐑𝐅 =

[
1 0 0 1 0 8

0 1 1 0 8 0

]
(45)

3.6 Time integration and hydro-mechanical coupling matrix

�̇� in Equation (40) is the nodal displacement rate vector. Let un and un+1 denote the nodal displacement vectors at time
t and t+Δt respectively. Then, �̇� can be approximated as:

�̇� =
𝐮𝐧+𝟏 − 𝐮𝐧

Δ𝑡
(46)

Meanwhile, p can be written as:

𝐩 = (1 − 𝛼) 𝐩𝐧+𝟏 + 𝛼𝐩𝐧 (47)

where pn and pn+1 are the nodal pore pressure vectors at time t and t+Δt respectively. α is an integration parameter
ranging from 0 to 1, with α = 0 corresponding to implicit integration, α = 1 explicit integration, and α = 0.5 middle point
integration.
Subjecting Equation (47) and (46) to (40), it becomes:

Δ𝑡 (1 − 𝛼)𝐆𝐩𝐧+𝟏 + 𝐇𝐮𝐧+𝟏 = 𝐇𝐮𝐧 − Δ𝑡𝛼𝐆𝐩𝐧 (48)
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PENG et al. 3267

Equation (34) and (48) consist the u-p form of the proposed interface element, as summarised in Equation (49) where
un and pn are known while un+1 and pn+1 are to be determined.

[
𝐊 𝐋

𝐇 Δ𝑡 (1 − 𝛼)𝐆

][
𝐮𝐧+𝟏

𝐩𝐧+𝟏

]
=

[
𝐅

𝐇𝐮𝐧 − Δ𝑡𝛼𝐆𝐩𝐧

]
(49)

This time integration scheme is the same as in Small et al.26 and has proved to be unconditionally stable when α > 0.5.

4 NUMERICAL IMPLEMENTATIONS OF THE INTERFACE

4.1 Jacobian parameter

The calculation ofmatrices in Equation (49) needs to integrate functions of ξwith respect to global coordinate x’. Therefore,
the Jacobianmatrix which reduces to a scalar in 1D cases (called Jacobian parameter in this paper) is needed for coordinate
transformation. In this case, its definition is dx’ = |J|dξ, where J is the Jacobian parameter, and ‘| |’ means absolute value.
Thus, the Jacobian parameter can be determined as (choosing the surface 1–2 as the reference surface):

|𝐽| =
𝜕𝑥′

𝜕𝜉
=

𝑑𝑁1

𝑑𝜉
𝑥′

1 +
𝑑𝑁2

𝑑𝜉
𝑥′

2 +
𝑑𝑁5

𝑑𝜉
𝑥′

5 (50)

where x’1, x’2 and x’5 are the x’ coordinates of nodes 1, 2 and 5, respectively.

4.2 Gauss points

It is reported that theNewton-Cotes integration scheme is better than the conventional Gauss integration scheme for zero-
thickness elements, because the latter may result in oscillations of the results when the interface shearing is dominant.3–27
This study mainly considers uplifting problems where shearing is not involved. Thus, Gauss integration was employed,
and it showed a robust performance in this study. Two Gauss points located at ξ = ± 1/√3 were chosen, the weight being
unity for both points.

4.3 Newton-Raphson method

After calculating matrices in Equation (49), Newton-Raphson method can be employed to solve it at each time step by
performing following iterations, where the superscript denotes thenth time step and the subscript denotes themth iteration
at this time step.[

𝐊𝐧 𝐋𝐧

𝐇𝐧 Δ𝑡 (1 − 𝛼)𝐆𝐧

][
𝚫𝐮𝐧

𝐦

𝚫𝐩𝐧
𝐦

]
=

[
𝐊𝐧 𝐋𝐧

𝐇𝐧 Δ𝑡𝑛 (1 − 𝛼)𝐆𝐧

][
𝐮𝐧

𝐦

𝐩𝐧
𝐦

]
−

[
𝐅𝐧

𝐇𝐧𝐮𝐧 − Δ𝑡𝑛𝛼𝐆𝐧𝐩𝐧

]
[
𝐮𝐧

𝐦+𝟏

𝐩𝐧
𝐦+𝟏

]
=

[
𝐮𝐧

𝐦

𝐩𝐧
𝐦

]
+

[
𝚫𝐮𝐧

𝐦

𝚫𝐩𝐧
𝐦

] (51)

When the [Δunm Δpum]T is less than the targeted precision, above iterations are terminated, the variables are updated
as [un+1

1 pu+1
1]T = [unm pum]T, and the calculation marches on to the n+1th time step. In displacement FE, the initial

values of the variables at the first time step are usually [u11 p11]T = 0.
Note that Equation (51) is just for a single interface element. In the later modelling, it will be assembled with into global

stiffness matrix soil elements.
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3268 PENG et al.

TABLE 1 Parameters of the interface model

Parameters input for the interface values Flow types
Mechanical parameters Normal stiffness Kn: kPa/m 109 (in contact)

0.1 (not in contact)
Both Darcy-like and NS

Critical shear displacement γc: m 0.001
Parameter of friction of interface ν 0.35 (in contact)

0.01 (not in contact)
Hydraulic conductivity c12: m/(kPa∙s) 1×10−9

Hydraulic parameters Hydraulic conductivity c34: m/(kPa∙s) 0
Longitudinal conductivity Kx: m/s 1×10−9 Darcy-like only
Interface fluid viscosity µ (Pa∙s) 1×102 NS only

5 DISCUSSION OF THE INTERFACE PARAMETERS

The proposed interface model has seven parameters in total, as summarised in Table 1. They can be divided into mechan-
ical and hydraulic parameters. The mechanical parameters include the normal stiffness Kn, the friction coefficient ν, and
the critical shear displacement γc. The hydraulic parameters include transverse hydraulic conductivities c12 and c34, and
the longitudinal conductivity Kx (Darcy-like flow) or the interface fluid viscosity µ (NS flow). The last two parameters are
used exclusively, and therefore only 6 parameters are needed in the modelling.
The normal stiffness Kn is taken as 1×109 kPa/m when the structure and soil are in contact to prevent over-penetration,

while it changes to a small number (0.1 kPa/m instead of 0 to keep numerical stability) when the structure and soil are
separated. The coefficient of friction ν is taken as 0.35 when the structure and the soil are in contact. When they are
separated, it is taken as 0.01(instead of 0 to keep numerical stability). The critical shear displacement γc, which is the
boundary between elastic and plastic sliding, was considered as 0.001m, followingRef. 16. Inmodelling uplift, the effective
stresses within the interface are negligible, and thus the three mechanical parameters have relatively minor influences on
the results. Therefore, no sensitivity study is undertaken for these parameters.
c12 is the description of the micro-structure and intrinsic permeability of the boundary 1–2. Its dimension is L2T/M

(with unit of m/(Pa∙s)), meaning fluid flow rate under unit pressure difference. The values of c12 in the literature vary
significantly depending on the type of soils and problems investigated. For example, Cerfontaine et al.28 used 1 m/(kPa∙s)
for sand, while Hu et al.29 used 1.28 ×10−10 m/(kPa∙s) for leachate flow in waste fills. In the following simulation, a value
of c12 = 1×10−9 m/(kPa∙s) was adopted by calibrating against the tests in Figure 1.10 This value is consistent with29 for low
permeability soils. c34 was adopted as 0 because the structure in this paper was considered impermeable.
The Darcy-like longitudinal conductivity of the interface Kx was considered constant for simplicity, and it was taken

the same as the soil permeability, which was believed to represent reasonably a buried structure where the longitudinal
flux comes solely from the soil. For the NS longitudinal flow, the fluid viscosity µ inside the interface was first taken as
1×10−3 Pa∙s, which is the viscosity of pure water at 20 ˚C. It was found that, with this value, the model significantly under-
estimated the uplift resistance compared with experimental data (as shown in Figure 11), indicating an overprediction of
the fluid flow at the interface by the NS flow model. This is because the fluid flow in the experiment is predominantly a
Darcy-like flow at the initial stage of uplifting when the footing is in contact with the soil. Thus, in order to use NS flow to
realise the simulation (keeping in mind breakaway cannot be modelled with a Darcy-like flow), a much larger ‘artificial’
fluid viscosity value is required. This large fluid viscosity represents an equivalent value during the whole process, rather
than an accurate estimation of pure fluid. A best-fit viscosity value of 1×102 Pa∙s was obtained in this study and Figure 11
shows the comparison with experiments.
The sensitivities of the three parameters c12, Kx and µ are discussed later.

6 CALCULATION EXAMPLE: UPLIFT OF A SURFACE FOOTING

6.1 General introduction

In this section, the proposed interface along with soil elements was used to simulate the uplift of a surface footing at
varying rates. Both Darcy-like and NS longitudinal flows were considered.
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PENG et al. 3269

F IGURE 7 Numerical model setup and mesh for surface footing uplift

6.2 Model setup

The problemwas considered as plane strain for simplicity. Due to symmetry, only a half model was established (Figure 7),
including the footing, the interface, and the underlying soil, where the interface was a single layer of the proposed
element with an initial thickness of 0. The interface was tied to the soil top surface and the footing, and stresses and
pore pressures were shared at the overlapping nodes. Mesh sensitivity study was conducted, and the model shown in
Figure 7 was demonstrated adequate. The meshes around the footing corner was 0.05B, where B is the width of the
footing.
The boundary conditions are as follows: displacements of the soil bottom were not allowed, while two lateral sides can

move vertically. No displacement constraint was applied to the top, and it was considered as a free drainage boundary
except for the contacting part with the footing. The right side of the interface (i.e. the entrance for the ambient water) was
set as free drainage boundary to enable longitudinal flow. In order to facilitate results interpretation, the soil was assumed
weightless and uniform, with a surcharge of σ’v = 200 kPa applied on the top surface.
The soil adopted the Modified Cam Clay (MCC) constitutive model.30,31 In this model, the soil elastic behaviour obeys

porous elasticity:

[
𝛿𝜀𝑒

𝑉

𝛿𝜀𝑒
𝑞

]
=

⎡⎢⎢⎢⎣
1

𝐾

1

3𝐺

⎤⎥⎥⎥⎦
[
𝛿𝑝′

𝛿𝑞

]
(52)

where p’ is the effective mean stress, q the deviatoric stress, K the bulk modulus, G the shear modulus, εve the elastic
volumetric strain and εqe the elastic deviatoric strain.
The yield surface of MCC is an ellipse in p’-q space and can be expressed as:

𝑓 = 𝑞2 − 𝑀2
[
𝑝′

(
𝑝0 − 𝑝′

)]
= 0 (53)

whereM is the slope of the critical state line, and p0 the right vertex of the ellipse.
Associated flow was assumed, and the magnitude of p0 evolves with plastic volumetric strain according to:

𝛿𝑝0
′ =

(1 + 𝑒) 𝑝0

(𝜆 − 𝜅)
𝛿𝜀

𝑝
𝑉 (54)
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3270 PENG et al.

TABLE 2 Parameters for MCC constitutive model

Parameters input for finite-element analysis Values
Permeability of soil, k: m/s 1.0×10−9

Slope of swelling and recompression line κ 0.044
Slope of virgin compression line λ 0.205
Slope of critical state line,M 0.92
Friction angle in triaxial compression, φ 23.5o

Void ratio on critical state line with effective mean stress equals 1 kPa, ecs 2.14

where e is the void ratio, λ and κ the slopes of the virgin consolidation line and unloading-reloading line, respectively, and
εvp the plastic volumetric strain.
Water flow inside the soil was considered obeying Darcy’s law, and it was combined with MCC model and Biot’s con-

solidation theory32 to enable coupled analysis. The hydro-mechanical coupling equation of the soil can thus be expressed
as:

𝜕𝜀𝑉
𝜕𝑡

=
𝑘

𝛾𝑤

(
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
+

𝜕2𝑝

𝜕𝑧2

)
(55)

where εv is the total volumetric strain, t the physical time, k the soil permeability, assumed homogeneous at all directions,
p the excess pore pressure and x, y, z three orthometric directions of the space. γw is the unit weight of water, taking as
10 kN/m3, which is required in Darcy’s law.
A detailed description of how coupled analysis is realised for MCC using finite element method can be found in Ref. 26

and thus is not repeated here.
Typical MCC soil parameters for commercially available kaolin clay were adopted in this paper (see Table 2, based on

the study of Stewart33). The soil strength was uniform and can be calculated by34:

𝑠𝑢 =
𝜎′

𝑣√
3

sin 𝜑

𝑎

(
𝑎2 + 1

2

)(𝜆−𝜅)∕𝜆

= 57.2kPa (56)

where φ is the frictional angle of soil, λ the slope of normal consolidation line of soil, κ the slope of unloading-reloading
line, and a = (3-sinφ)/(6-4sinφ).

6.3 Results interpretation

The numerical results were presented using dimensionless parameters. The uplift displacement was normalised as w/B,
where w is the vertical displacement of footing and B the width of footing. The rate was normalised using the widely
adopted expression in compression problems V = vB/cv,35 where v is the uplift velocity of the footing; cv = k(1+e0)σv’/λγw
the coefficient of consolidation of the soil; k the permeability; e0 the initial void ratio; and σ’v the effective surcharge of the
soil. The uplift resistance was normalised as F/Bsu, where F is the uplift force. Nc = Fmax/Bsu is the uplift capacity factor
with Fmax denoting the peak uplift resistance. The transverse and longitudinal flow velocities were normalised as qy/vB,
and qx/vB, where qx and qy are the longitudinal flux and transverse flux, respectively.
The uplift was simulated by displacing the footing 0.5B vertically at normalised velocities V = 30000, 3000, 300, 30,

3, 0.3 and 0.03, respectively. For each velocity, both Darcy-like and NS longitudinal flows were considered. In addition,
V = 3×1010 was conducted for the NS flow type.
TheNc for fully drained cases (slowuplift) is expected to be 0 because there is no suction throughout. For fully undrained

cases (fast uplift), a reverse end bearingmechanism is expected, and theNc is the same as that under compression, ofwhich
the exact solution is 2+π for a surface footing on homogeneous cohesive soil.36,37 Above two limits were used to verify the
numerical results.
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F IGURE 8 Numerical results for Darcy-like flow
type. (A) Normalised uplift resistance-displacement
curves. (B) Normalised interface
thickness-displacement relationships

6.3.1 Darcy-like flow type

Figure 8(A) and (B) show the development of uplift resistance and interface thickness against uplift displacement, respec-
tively. For V ≥ 300, the peak uplift resistance Nc is close to the exact solution 2+π, with interface thickness negligible
throughout. With the uplift rate diminishing, Nc decreases, and interface thickness increases. But the interface thickness
is always less than the footing displacement, indicating that the soil was partially attached to the footing. At V = 0.03, Nc
is close to zero. The interface thickness equals the uplift displacement at any instant, indicating non-attachment between
footing and soil.

 10969853, 2022, 17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3450 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [19/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3272 PENG et al.

F IGURE 9 Numerical results for NS flow type. (A) Normalised uplift resistance-displacement curves. (B) Normalised interface
thickness-displacement relationships. (C) Normalised transverse and longitudinal flow velocities

6.3.2 NS flow type

Figure 9 shows the results for NS flow type. It can be seen that NS type reaches fully undrained condition at V = 3×1010, 7
orders of magnitude greater than the Darcy-like flow type. Its most obvious difference from Darcy-like type is that break-
away occurred during the uplift, as reflected by the sudden drop in uplift resistance in Figure 9(A) and a drastic increase
of interface thickness in Figure 9(B). These differences with Darcy-like type are because the NS equations, which do not
consider the flow resistance from soil skeleton, predict faster water flow than Darcy’s law, as is confirmed in Figure 9(C),
leading to faster post-peak suction dissipation.

6.4 Discussion and comparison with experimental observations

Figures 8 and 9 demonstrate that this interface allows the uplift rate, drainage condition, suction, interface opening, and
water flow to be coupled in a compatible and automatic way. Slow uplift rates correspond to drained conditions where
suction is not generated at the footing underside. Correspondingly, the soil does not move, and thus a gap is formed as
water flowing in, with the opening rate equals the uplift rate. Higher uplift rates correspond to partially drained conditions,
with some suction generated within the interface, drawing the soil partially up. Correspondingly, the interface thickness
increase rate is less than the uplift rate. In this case, a post-peak softening of uplift resistance can be observed, which is
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PENG et al. 3273

F IGURE 10 Ground vertical displacement contours for NS flow type at V = 30,000

believed due to the suction dissipation induced by longitudinal and transverse flows. The significance of this softening
is mild in Darcy-like type but drastic in NS type, due to the difference in longitudinal flow rates in the two types. Fast
rates correspond to undrained conditions, where water flow-in is negligible. Thus, the gap does not open, and suction
does not have time not dissipate. Correspondingly, a reverse end bearing failure mechanism occurs, and the numerical
uplift capacity equals the exact solution. Above analyses demonstrate that this interface is able to (1) reproduce hydro-
mechanical coupled uplift behaviours, and (2) precisely predict uplift resistance.
It is interestingly noted that in the partially drained uplift tests of shallow foundations, the uplift resistance first under-

goes a mild post-peak softening which resembles that in Darcy-like type (Figure 8A, 0.3 ≤ V ≤ 30), followed by a sudden
breakaway which is captured by the NS type (Figure 9A). Based on this, the breakaway can be explained as a sudden
increase of water flux into the foundation underside (considering the NS equations predict much higher longitudinal flow
rate than Darcy’s law) as the foundation was pulled out of soil.
Li10 conducted PIV tests and observed that the soil underneath the foundation moved downwards as breakaway

occurred. This is captured in Figure 9(B), where the slopes of gn/B – w/B curves are greater than 1 at breakaway points.
Thismeans the interface thickness increase rate exceeded the uplift rate at thismoment, indicating the soil dropped down.
This drop-down was because the underlying soil underwent unloading as the suction acting on it was quickly lost.
This soil drop-down can be observed in Figure 10 more evidently, which shows the ground vertical displacement con-

tours of NS type at V = 30,000. It can be seen that the interface started opening from the footing edge, which was the
entrance of free water and propagated towards the footing centre. Beforew/B= 0.1 where breakaway initiated, the footing
centre kept contacting the soil while the edge separated from it. Afterwards, the soil slightly moved down, and the footing
was completely separated from the soil.

7 BACKBONE CURVES

7.1 Comparison with available studies

Lehane et al.38 conducted centrifuge tests about foundation uplift at varying rates at 50 g. The foundation was buried in
soil, with clay underneath and sand above the foundation. As the sand was substantially in drained conditions, it can be
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F IGURE 11 Comparison of Nc – V backbone
curves of two flow types with experimental data and
numerical solutions

deemed as a surface footing with surcharge. Chen et al.39 conducted centrifuge tests at 150 g by using a surface footing
directly sitting on the soil surface with no surcharge applied. In both studies, the footings were of comparable size, and
the clay samples were the same commercially available kaolin, intensively characterised at the University of Western
Australia.
These data, along with some available numerical solutions, are compared with above numerical results in Figure 11.

Interestingly, the NS backbone curve using the best-fit viscosity reproduces with reasonable accuracy the trend in Lehane
et al.,38 while the Darcy-like backbone curve matches well with the results of Chen et al.39 The discrepancy between the
two groups of test data may come from a common experimental stage where the soil was allowed to consolidate under
the self-weight of the foundation before uplift, which is expected to cause the foundation slightly penetrating the soil.
Considering that the acceleration in Lehane et al.38 was three times larger than in Chen et al.,39 making the foundation
of the former heavier in prototype, the footing in Chen et al.39 would be expected to have deeper penetration. Thus, the
longitudinal flow in Chen et al.39 was hindered by the soil, such that the Darcy-like flow is more appropriate to estimate
the results.

7.2 Sensitivity of parameters of the interface

Sensitivity studies of the three hydraulic parameters (the hydraulic conductivity c12, the longitudinal conductivity Kx and
the fluid viscosity µ) were conducted. A total of 121 cases were performed with varying c12, Kx or µ. All other parameters
were kept constant unless otherwise stated.
The influence of c12 is shown in Figure 12, where theDarcy-like longitudinal conductivityKx was set to 0 to suppress lon-

gitudinal flow. It is interesting to note that as c12 increases 1 order of magnitude, the backbone curve translates rightwards
roughly 1 order of magnitude. This is because the transverse flow is increased proportionally, and it is the only dominant
factor to dissipate suction in this case. The influence of Kx is presented in Figure 13, where the backbone curve moves
leftwards as Kx decreases. However, the backbone curve converges to the Kx = 1×10−9 m/s curve as Kx further decreases.
This means that, below this value, the longitudinal flow becomes negligible compared with transverse flow. The influence
of µ is shown in Figure 14, where the increase of µ leads to leftwards movement of the backbone curve. The influence of
µ is most significant in the middle of the backbone curve. At the two ends, this influence is insignificant. Note that the
results in Figure 14 are from NS flow only.
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F IGURE 1 2 Influence of c12 on backbone curves

F IGURE 13 Influence of Kx on backbone curves

7.3 A new perspective on the backbone curve

The discrepancy between the experimental data in Figure 11 implies that the widely adopted dimensionless velocity in
compression cases V= vB/cv10,35,38,39 may not be adequate for uplifting problems, due to the existence of longitudinal and
transverse flows. Amore reasonable normalisation is to compare the water flow-in rate with uplift rate. Based on this, this
paper proposes a new dimensionless velocity:

�̄� =
𝑣[

𝛽(𝑐12𝛾𝑤𝐵)
𝛼

+ (1 − 𝛽)𝐾𝛼
𝑥

] 1

𝛼

(57)
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F IGURE 14 Influence of µ on backbone
curves

where α and β are two to-be-fit parameters. For NS longitudinal flow, the Kx term can be approximated by (according to
cubic law):

𝑘𝑥 =
𝑔2
𝑛0𝛾𝑤

12𝜇
(58)

where gn0 is a representative interface thickness.
Adopting the best-fit values α= 0.5, β= 0.5 and gn0 = 0.008m, the uplift rates of all above numerical data are normalised

using Equation (57), and the results are shown in Figure 15. It can be observed that these data distribute closely around an
average curve for different values of c12 and Kx or µ, and this average backbone curve can be estimated by a least-square
best fit in the form of:

𝑁𝑐

𝑁𝑐,undrained
= 𝑎 +

𝑏

1 + 𝑐�̄�𝑑
(59)

where Nc,undrained = π + 2; and a = 0, b = 1, c = 8.82 and d = -0.74 are determined by least-square best fit.

8 CONCLUDING REMARKS

A hydro-mechanical coupled zero thickness interface was proposed with full details of the physics-based constitutive
relations. Complete FE formulation and implementation were presented based on an 8-node element.
The performance of the proposed interface was demonstrated by simulating the uplift of a surface footing at vary-

ing rates. By compatibly addressing suction generation/dissipation and structure-soil separation, the rate effect can be
modelled without user intervention. If NS longitudinal flow is employed, breakaway can be simulated (note that any
zero-thickness element which can incorporate a NS longitudinal flow would be able to simulate the breakaway). A new
dimensionless velocity was proposed to better normalise uplift rate, accounting for the influence of transverse and lon-
gitudinal flows, and a unified backbone curve was established correspondingly. In general, the interface model in this
study is capable of modelling the structure-soil interface behaviour during uplifting problems. It should also be noted that
uplifting objects off seabed is extremely challenging to be precisely modelled and themodel parameters in this paper need
further validation from physical modelling, which is seen as the next step for future study.
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F IGURE 15 New normalisation to numerical data points and best-fit backbone curve

F IGURE 16 Force balance condition of a
fluid element for NS flow

NOMENCLATURE

�̄�1 ∼ �̄�8 Shape functions for excess pore pressure
�̄� Newly proposed dimensionless uplift rate

�̄�𝑤1 and �̄�𝑤2 Synthesized shape functions for excess pore pressure
µ Fluid viscosity
A Coordinate transformation matrix

aw1, aw2 Transfer coefficients at surfaces 1–2 and 3–4
B Surface footing width

c12, c34 Hydraulic conductivities of the interface
cv Coefficient of consolidation of the soil
D Consistent stiffness matrix of the interface
d Relative displacement vector of the interface
e0 Initial void ratio
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3278 PENG et al.

ecs Void ratio at p’ = 1 kPa on critical state line
F Uplift force
G Shear modulus of soil
gn Interface thickness between structure and soil
J Jacobian parameter
k Permeability of soil
K Bulk modulus of soil
K0 Coefficient of the earth pressure

kg1, kg2 Intrinsic permeabilities rates at surfaces 1–2 and 3–4
Kn Normal stiffness in mechanical contact
Kx Longitudinal conductivity of interface
M Slope of critical state line
n Outside normal of boundaries

N1, N2, N3 Shape functions for displacement
Nc Bearing capacity factor
Nc* Theoretical undrained uplift capacity of a surface footing
p’ Effective mean stress of soil

p, �̄� Pore pressure and average pore pressure
p0 Size of the soil yield surface

p12, p12, pg Pore pressures at surface 1–2, 3–4 and mid-interface
q Deviatoric stress of soil

qx, qy Longitudinal and transverse flux
r Vertical distance to mid-interface

ST, SD, SP, SV Stress, displacement, pore pressure and velocity boundaries
su Undrained shear strength
T Interface-soil total stress tensor
t Time

u, �̄� Displacement and predefined displacement vectors
V Dimensionless uplift rate
v Poisson’s ratio

v, �̄� Fluid velocity and predefined fluid velocity tensors
v12, v34 Transverse flow rates at surfaces 1–2 and 3–4
vx, vy Longitudinal and transverse flow velocity

w Displacement of surface footing
x’, y’ Longitudinal and transverse directions of the interface

γ Relative sliding displacement
γc Critical sliding distance
γw Unit weight of water
κ Slopes of normal compression line
λ Slope of swelling-recompression line

σ, σ’ Total and effective stress tensor
σn, σn’ Total and effective contact pressure
σt, σt’ Total and effective shear stress
σ’v Initial vertical effective stress

φ, φint Friction angles for soil and interface
α Numerical integration parameter

εq, εqe Total and elastic deviatoric strains of soil
εV, εVe, εVp Total, elastic, and plastic volumetric strains of soil

θ Angle between coordinate systems xOy and x’Oy’
ξ, η Local coordinates of element
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APPENDIX 1
Figure 16 shows a fluid element under force balance. The viscous shear stress is determined as:

𝜏1 = −𝜇
𝑑𝑣1

𝑑𝑦′
;𝜏2 = −𝜇

𝑑𝑣2

𝑑𝑦′
(A1)

where µ is the viscosity of the fluid; v1x and v2x the longitudinal velocities at the same locations as τ1 and τ2, respectively.
The hydraulic force difference at the two ends of the fluid element should balance the viscous shear force in

Equation (A1). Therefore:

∫
𝑟

−𝑟

𝑑𝑝𝑑𝑦′ = (𝜏1 + 𝜏2) 𝑑𝑥 (A2)

where r is the half width of the water element investigated, as shown in Figure 16.
Combining the above equations yields:

−𝜇
𝑑 (𝑣1 + 𝑣2)

𝑑𝑦′
= 2𝑟

𝑑𝑝𝑔

𝑑𝑥′
+

4𝑟3

3𝑔2
𝑛

(
𝑑𝑝12

𝑑𝑥′
+

𝑑𝑝34

𝑑𝑥′
− 2

𝑑𝑝𝑔

𝑑𝑥′

)
(A3)

Using the no-slip boundary conditions v1 = 0 at r = -gn/2 and v2 = 0 at r = gn/2 and integrating Equation (A3) give the
distribution of longitudinal velocity for NS flow:

𝑣1 + 𝑣2 =
𝑔2
𝑛 − 4𝑟2

48𝜇𝑔2
𝑛

[(
𝑑𝑝12

𝑑𝑥′
+

𝑑𝑝34

𝑑𝑥′

)(
𝑔2
𝑛 + 4𝑟2

)
+

𝑑𝑝𝑔

𝑑𝑥′

(
10𝑔2

𝑛 − 8𝑟2
)]

(A4)

Further integrating Equation (A4), the longitudinal flux of NS flow can be calculated as:

𝑞𝑥 = ∫
𝑔𝑛

2

0

(𝑣1 + 𝑣2)𝑑𝑦′ =
𝑔3
𝑛

120𝜇

(
𝑑𝑝12

𝑑𝑥′
+

𝑑𝑝34

𝑑𝑥′
+ 8

𝑑𝑝𝑔

𝑑𝑥′

)
(A5)
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