
1 
 

A Novel Evolutionary Learning to Prepare Sustainable Concrete Mixtures 1 

with Supplementary Cementitious Materials 2 

Hamed Naseri1, Pardis Hosseini2, Hamid Jahanbakhsh 3, Payam Hosseini4, Amir H. Gandomi5 3 

1 Department of Civil Engineering, Ecole Polytechnique Montreal University, Montreal, Canada 4 
(corresponding author) 5 

2 Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, 6 
CO, USA  7 

3 Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran 8 

4 Department of Civil, Construction, and Environmental Engineering, University of Wisconsin - 9 

Madison, USA 10 

5 Professor of Data Science, Faculty of Engineering & Information Technology, University of 11 

Technology Sydney, NSW 2007, Australia. 12 

 13 

 14 

Research highlights 15 

• A novel machine learning method called coyote optimization programming was introduced 16 

in this study. 17 

• Applying optimization techniques to design concrete mixture proportions can reduce the 18 

unit cost by 36.6%. 19 

• The introduced approach can decrease the global warming potential, energy consumption, 20 

and material consumption by 51%, 43%, and 11%, respectively. 21 

• The application of supplementary cementitious materials in the concrete mixtures 22 
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Abstract 25 

In this study, sustainable mixture designs of three concrete types, including fly ash concrete, silica 26 

fume concrete, and ground granulated blast furnace slag concrete, were investigated. To this end, 27 

the compressive strength formulas of each concrete type made with supplementary cementitious 28 

materials were obtained by introducing a new machine learning algorithm, called coyote 29 

optimization programming. The accuracy of this algorithm proved to be greater than that of 30 

conventional and recently-developed machine learning methods. An optimization problem is 31 

modeled, in which the compressive strengths, price, and environmental impact of the sustainable 32 

concrete mixture designs were estimated using global warming potential, energy consumption, and 33 

material consumption as the sustainability parameters. Results reveal that increasing the 34 

compressive strength reduces the sustainability of concrete, and thus, manufacturing concrete with 35 

a higher compressive strength than the one obtained from the design process contradicts the 36 

concrete’s performance. Moreover, the 30-MPa sustainable fly ash concrete was proven to be the 37 

most sustainable mix with a gray relational grade of 1. This optimal mixture designed in this study 38 

can decrease the unit cost, global warming potential, energy consumption, and material 39 

consumption by 36.6%, 51%, 43%, and 11%, respectively. 40 

 41 
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1.   Introduction 45 

Concrete is the most used man-made material that has long been applied in the construction 46 

industry. The wide application of this construction material is due to its affordability, 47 

incombustibility, easy production, durability, and high modulus of elasticity (Aprianti S, 2017). In 48 

2002, 12.6 billion tons of raw materials was used by the concrete industry to prepare different 49 

concrete mixtures (Mehta, 2002). Currently, more than 10 billion tons of concrete are annually 50 

produced (Meyer, 2009), resulting in the fabrication of more than one ton concrete per capita. It  is 51 

estimated that the annual demand for concrete will grow to approximately 18 billion tons by 2050 52 

(Mehta, 2002). As such, the environmental impacts caused by the extensive use of concrete and 53 

its ingredients derived from natural resources present a huge concern. 54 

Hence, researchers have applied various technique to enhance various characteristics of concrete. 55 

Adhikary et al. (2021b) investigated the impact of carbon nanotubes on microstructural 56 

performance and compressive strength of lightweight aggregate concrete. In this regard, 57 

combination of silica aerogel particles and expanded glass was utilized as aggregate in the mixture 58 

proportion. The results indicated that microstructural performance and compressive strength of 59 

concrete increased using carbon nanotubes. 60 

A practical technique from which the environmental impact of concrete can be considerably 61 

lessened is to improve the performance of concrete or employ waste materials (Adhikary et al., 62 

2021a; Mehta and Ashish, 2020). As such, natural zeolite powder can improve mechanical and 63 

physical properties of concrete and as a result, it can reduce carbon footprint (Rudžionis et al., 64 

2021). Similarly, aerogel can increase the compressive strength of concrete (Adhikary et al., 65 

2021b). Moreover, supplementary cementitious materials (SCM) can be applied in the mixture to 66 

reduce the quantity of virgin materials and enhance the durability and mechanical properties of 67 

concrete (Ashish, 2019; Ashish and Verma, 2021). Most SCMs are obtained as the waste or by-68 

products of the manufacturing of other products (Ashish and Verma, 2019a). Thus, the utilization 69 

of SCMs can reduce the need for raw materials as well as the environmental impact of concrete 70 

materials by lowering the amount of cement required in the mixture (Lothenbach et al., 2011).    71 

Since the performance of SCMs in cementitious media is replacement ratio-dependent (Hendi et 72 

al., 2019; Miller et al., 2016; Shen et al., 2017), the optimal content of SCMs in concrete 73 
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ingredients needs to be determined to enhance its sustainable production. The common techniques 74 

to optimally proportion concrete mixtures require experimentally-obtained data and using trial and 75 

error and, thus, the production and testing of numerous specimens (Ashish and Verma, 2019b). In 76 

the mixture design methods relied upon experimental data, cement is replaced with SCMs, and the 77 

ratio of replacement is selected among finite alternatives (Miller et al., 2016; Shen et al., 2017). 78 

Thus, much material is required to identify the optimum mixture design since a design method 79 

based on a limited number of experimental data would not be a suitable for designing eco-friendly 80 

or sustainable concrete. In this respect, machine learning approaches can be effectively utilized to 81 

overcome these deficiencies by reducing the usage of raw material. 82 

A wide range of computational approaches and machine learning methods have been applied to 83 

predict the primary characteristics of concrete, such as compressive strength. That being said, 84 

artificial neural network (ANNs) (Qi et al., 2018), multi-gene genetic programming (Gandomi and 85 

Alavi, 2012), response surface methodology (RSM) (Hammoudi et al., 2019), combination of 86 

genetic programming with orthogonal least squares (Mousavi et al., 2010), extreme learning 87 

approach (Al-Shamiri et al., 2019), multivariate adaptive regression splines, M5 model tree 88 

(Amlashi et al., 2019), deep learning (Deng et al., 2018), hybrid ultrasonic-neural assessment 89 

(Sadowski et al., 2019), self-learning method (Yu et al., 2018), regression (Naseri, 2019), and 90 

fractional regression (Naseri et al., 2019) are commonly applied to recognize the relation between 91 

the compressive strength of concrete and mixture design.  92 

However, most machine learning methods are regarded as black-box tools, or in other words, 93 

obtaining the equation of inputs and outputs is not possible (Gandomi et al., 2015). Moreover, the 94 

accuracy of formulations achieved by regressions and multiple regressions is not ideal, and these 95 

classical methods may not be reliable enough (Mirzahosseini et al., 2019). As such, developing 96 

accurate algorithms to predict the compressive strength of concrete by evolutionary prediction 97 

algorithms (capable of generating the optimal formulation) is of great importance in designing 98 

environmentally-friendly concrete. In this regard, Naseri et al. (2021) proposed a new approach to 99 

optimize the mixture design of sustainable concrete containing fly ash. A new machine learning 100 

algorithm, Marine Predator Programming, was introduced for predicting concrete characteristics. 101 

Non-hazardous waste disposed, hazardous waste disposed, radioactive waste disposed, and global 102 

warming potential, were considered environmental parameters, and minimized in an optimization 103 
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problem. The results indicated that sustainable mixture proportions could significantly reduce the 104 

sustainability index by over 80%. 105 

Zhang et al. (2021) investigated optimizing the mixture design of lightweight foamed concrete. 106 

The least squares support vector regression was applied to predict the concrete characteristics. 107 

Subsequently, the firefly algorithm was used to optimize the concrete mixture design. Naseri et al. 108 

(2020b) introduced three novel machine learning techniques, including water cycle programming, 109 

genetic programming, and soccer league competition programming, to predict the compressive 110 

strength of ordinary Portland cement concrete. These methods could generate the equation of 111 

compressive strength based on the weights of the utilized materials.  112 

While the accuracy of the latter-mentioned metaheuristic algorithms proved to significantly greater 113 

than that of conventional prediction techniques, the preparation of concrete containing SCMs was 114 

not considered in their study. Moreover, the application of recently-developed metaheuristic 115 

algorithms to produce robust machine learning methods has been overlooked.  116 

This study aims to optimize the mixture design of sustainable concretes. Since most conventional 117 

prediction techniques are black-box tools and cannot generate equations, they cannot easily be 118 

used in the concrete mixture proportion optimization problem. In this regard, a new prediction 119 

method is proposed to predict the compressive strength of concrete and present the compressive 120 

strength equation based on the mixture ingredients. Although optimizing the mixture design of 121 

ordinary Portland cement concrete by optimization techniques has been investigated, designing 122 

the mixture proportion of sustainable concretes by computational techniques has not received 123 

enough attention. To this end, three types of SCMs, including fly ash, silica fume, and ground 124 

granulated blast furnace slag, are used in mixture proportioning to reduce the content of cement 125 

and design sustainable mixtures. Consequently, compressive strength and different environmental 126 

parameters, including global warming potential, energy consumption, and material consumption, 127 

are applied in the optimization process to find the optimal mixture design of sustainable concretes 128 

for different compressive strength classes. Ultimately, gray relational analysis is performed to 129 

prioritize the designed mixtures. 130 

2.   Research plan 131 
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Although the concrete industry is responsible for causing significant environmental pollution, 132 

estimating and designing the best proportion of sustainable concrete has not received enough 133 

attention. As such, the harmful effects of the industry on the environment can considerably be 134 

reduced by implementing sustainable production strategies, such as replacing standard concrete 135 

ingredients with greener materials. 136 

Based on the concepts mentioned above, eco-friendly concrete is defined as concrete with low 137 

levels of global warming potential (GWP) emission, energy consumption (EC), and material 138 

consumption (MC) in this investigation. Sustainable concrete is regarded as being eco-friendly 139 

with a high level of compressive strength and minimum feasible cost. Even though classical 140 

methods can estimate compressive strength, they are not sufficiently accurate or capable of 141 

providing the formulation of compressive strength to determine the optimal mixture design. Hence, 142 

they can be applied to design the concrete mixture proportion. Since designing sustainable concrete 143 

containing SCMs by novel computational approaches and machine learning methods has been 144 

neglected, the presented study proposes a novel machine learning method to overcome these 145 

limitations. That is, the introduced prediction algorithm is a white-box method, and it can present 146 

the equation of the compressive strength based on concrete’s the mixture ingredient. Besides, the 147 

precision of the introduced technique is comparable with the most precise prediction methods.  148 

As previously stated, cement is a sort of harmful material to the environment, and as such, three 149 

types of SCMs, including fly ash, silica fume, and ground granulated blast furnace slag, are used 150 

in mixture proportioning to reduce the content of cement in the concrete mixes. In addition, in the 151 

current study, concrete mixtures are classified into three groups, including fly ash concrete (FL-152 

C), silica fume concrete (SF-C), and ground granulated furnace blast slag concrete (GGBFS-C) 153 

and the sustainable mixture proportion of these mixtures is then investigated.  154 

Previous studies on developing eco-friendly concrete using SCMS attempted to identify the most 155 

sustainable concrete mixture proportion among finite mixtures. In this respect, due to the wide 156 

range of available concrete ingredients, selecting the optimal mixture design of eco-friendly 157 

concrete among a finite number of mixture designs may not be practical. Thus, an extensive range 158 

of materials and their quantity was considered in order to investigate the optimal content of 159 

concrete ingredients. In addition, the current study evaluated the essential sustainability 160 

parameters, including the compressive strength, unit price, and environmental impacts (via GWP, 161 
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EC, and MC, respectively) as the primary objectives of the model to reduce the impacts of the 162 

concrete industry on the environment and to manufacture economical concrete. Hence, the 163 

sustainability parameters were regarded as the objective functions of the optimization problem, 164 

and the model analyzed a mixture design of the most sustainable concrete with different 165 

compressive strengths, including 30, 40, 50, and 60 MPa. Finally, gray relational analysis (GRA) 166 

was performed to compare the mixtures based on their sustainability characteristics and to identify 167 

the most sustainable mixture for each compressive strength class. 168 

3. Methods and materials 169 

The goal of the current study aimed to establish a method for designing sustainable concrete 170 

containing SCMs. To this end, reliable experimental data, including various concrete mixtures 171 

incorporating different types of SCMs and their corresponding 28-day compressive strengths, were 172 

collected. New prediction techniques were employed to generate the most accurate compressive 173 

strength formula for each concrete type. After obtaining the equations of the compressive strength, 174 

cost, GWP, EC, and MC, the mixture proportions of sustainable concrete for each type of SCM 175 

and each compressive strength class were achieved through an optimization problem. Finally, the 176 

proposed sustainable concrete mixture proportions in each compressive strength class were 177 

compared based on the examined sustainability parameters by virtue of GRA. The flowchart of the 178 

methodology is depicted in Fig. 1. 179 

 180 

Fig. 1 181 

 182 

3.1.   Data preparation 183 

This investigation utilized 1200 experimentally-obtained data of the compressive strength of 184 

various concrete mixtures to estimate the mixture proportions of sustainable concrete incorporating 185 

various SCMs. These data were extracted from authentic international publications (Bhanja and 186 

Sengupta, 2005; Çakır and Sofyanlı, 2015; Chang et al., 1996; M.F.M. Zain, M.R. Karim, M.N. 187 

Islam, M.M. Hossain and Al-Mattarneh, 2015; Mazloom et al., 2004; Özcan et al., 2009; Yeh, 188 

1999, 1998). For consistency, all the compressive strength data obtained from the testing of 189 
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different concrete sample sizes were converted into the compressive strength of a 15 cm × 30 cm 190 

(diameter × height) cylinder, which is the standard sample size for concrete mixture designs, 191 

according to Yi et al. (2006). Data were then divided into training and testing datasets to gauge the 192 

capability of machine learning methods and estimate the compressive strength of each concrete 193 

type. The inputs included the age of specimens, quantity (kg/m3) of concrete materials (including 194 

water, cement, fine aggregate, coarse aggregate, superplasticizer, and SCMs), and the weight ratios 195 

of water to binder (cement + SCM), SCM to binder, coarse aggregate to binder, fine aggregate to 196 

total aggregate, and superplasticizer to binder. The compressive strength of concrete was regarded 197 

as the output of the prediction models.  198 

Since the range of inputs and the output differ, they should be scaled to the same range (Shirzadi 199 

Javid et al., 2020). Contrary to common techniques, the data were not scaled from 0 to 1 because 200 

the prediction models can select logarithmic functions. Hence, all the data were scaled between 201 

0.1 and 0.9 using Eq. (1): 202 

𝑆𝑖 = 0.1 + (0.9 − 0.1) ×
𝑖 − 𝑖𝑚𝑖𝑛

𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛
                                                                                                                  (1) 203 

where 𝑖 is the initial value; 𝑆𝑖 is the scaled value; and 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 are the minimum and 204 

maximum values in the dataset, respectively. The standard deviation, maximum, minimum, and 205 

average values of the initial data are presented in Tables 1-3 for various SCMs. As previously 206 

stated, concrete mixtures were classified into three groups regarding the type of SCM. In addition, 207 

the characteristics of the input and output variables of fly ash concrete (FL-C), silica fume concrete 208 

(SF-C), and ground granulated blast furnace slag concrete (GGBFS-C) are given in Table 1, Table 209 

2, and Table 3, respectively. 210 

Insert Tables 1 to 3. 211 

3.2.   Compressive strength prediction models 212 

A novel machine learning technique called coyote optimization algorithm programming (COP) 213 

was developed in this investigation to estimate the compressive strength of concrete mixtures with 214 

various SCMs. The outcomes of the introduced method were then compared with the results 215 

obtained by deep learning (DL), as a robust prediction method, and by water cycle algorithm 216 

programming (WCP) developed by Naseri et al. (2020b), which was developed to predict the 217 
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compressive strength of ordinary Portland cement concrete. The results indicate that the precision  218 

of WCP (R2=0.93) is greater than the accuracy of soccer league competition programming  219 

(R2=0.89), genetic programming (R2=0.87), support vector machine (R2=0.80), artificial neural 220 

network (R2=0.90), and linear regression (R2=0.46). Accordingly, WCP, as a precise and powerful 221 

prediction model, was employed to estimate the compressive strength of concrete containing 222 

SCMs. Meanwhile, the COP was compared with WCP based on precision indicators to assess its 223 

accuracy. Consequently, for each type of concrete, the most accurate model was selected among 224 

the mentioned machine learning techniques to optimize the mixture proportions of concrete 225 

incorporating SCMs. The details of the machine learning methods employed in this study are 226 

provided in the following sections. 227 

3.2.1.   Coyote optimization programming  228 

This study introduces coyote optimization programming (COP) inspired by the coyote 229 

optimization algorithm (COA) as a novel prediction metaheuristic-based programming, which is 230 

a machine learning technique used for prediction. This technique is highly qualified to find the 231 

correlation between the output and inputs of models. These metaheuristic-based machine learning 232 

models advantageously generate an equation for the output based on the inputs of the model, and 233 

thus, the precision of these algorithms is desired (Mirzahosseini et al., 2019).  234 

COA was introduced in 2018 and has shown to be a powerful algorithm for solving global 235 

optimization problems (Pierezan and Coelho, 2018). In this algorithm, the solution vectors and 236 

fitness values of corresponding solution vectors are associated with coyotes and their social 237 

behavior, respectively. Naturally, coyotes divide into different groups, where the most valuable 238 

coyote (or solution vector) is called the alpha coyote in each group. Each coyote transfers culture 239 

among its groupmates and is affected by the leader of the group (alpha) and other groupmates. In 240 

this respect, each solution vector is moved towards the best solution vector of its group and the 241 

center gravity of other solution vectors available in its group. As coyotes of different groups are 242 

replaced in order to transfer various cultures, the vectors, by following this pattern, help the 243 

algorithm to cover more area in the feasible region. Additionally, the worst coyotes (the weakest 244 

solution vectors) are removed from the society and replaced with the new generation, and thus, the 245 

new population is generated by the combination of current coyotes in different groups (Pierezan 246 
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et al., 2019). Figure 2 displays the schematic flow chart of the coyote optimization algorithm, 247 

including the following primary steps: 248 

1. The coyotes (solution vectors) are divided into different herds (groups). The coyotes are ranked 249 

based on their power (fitness value) in each group, and the dominant coyote (current best solution 250 

vector) is denoted the alpha.  251 

2. The culture is transferred among coyotes and their groupmates. In other words, the solution 252 

vectors move towards other solution vectors, and this movement is based on the fitness value of 253 

solution vectors. 254 

3. Some of the coyotes are transferred to different groups to investigate more spaces in the feasible 255 

area. 256 

4. The worst coyotes are removed from the society, and new coyotes are born. Ultimately, the 257 

algorithm goes back to the first step. 258 

Fig. 2. 259 

Primarily, COA was adapted for integer programming problems to develop COP. Subsequently, 260 

three decision variables were assigned to each input of the problem, each representing the served 261 

functions, while the other decision variables generated the coefficient of the corresponding input. 262 

The served functions included trigonometric functions (sin, cos, tan, and cot), logarithmic 263 

functions with different bases, exponential functions, and various forms of radical functions. 20 264 

various modes were considered for each decision variable. Hence, each input's format was selected 265 

from 8000 unique selections because three decision variables (one served function and two 266 

coefficient generators), including 20 modes, were allocated to each input. Furthermore, 400 267 

different integration functions were taken into account as the integration of inputs to generate the 268 

equation of the compressive strength based on the content of concrete ingredients and their ratios. 269 

In other words, two decision variables were employed to determine the optimal integration 270 

function. Four different modes were allocated to constant values and combined with the integration 271 

functions, increasing the number of integration functions to 64 million forms to enhance the 272 

efficiency of the models. This process significantly expands the feasible region and drastically 273 

increases the probability of finding better solutions. The mean absolute error of the compressive 274 

strength of concrete was set as the objective function of the metaheuristic algorithms with the 275 

purpose to minimize the mean absolute error of the testing data. 276 
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3.2.2.   Water cycle programming 277 

Water cycle programming (WCP) is a newly developed machine learning method originating from 278 

the water cycle algorithm (WCA). As previously mentioned, WCP proved to outperform soccer 279 

league competition programming, genetic programming, support vector machine, artificial neural 280 

network, and linear regression in estimating the compressive strength of ordinary Portland cement 281 

concrete (Naseri et al., 2020b). Accordingly, this robust method was employed in this study to 282 

predict the compressive strength of concrete containing various SCMs. WCP was generated by 283 

converting WCA, as an optimization algorithm, into a prediction technique in the same manner 284 

that COA was converted into COP.  285 

The water cycle algorithm was inspired by the cycle of water in the earth (Naseri et al., 2021c), in 286 

which each vector solution is regarded as a raindrop. These raindrops are ranked according to their 287 

corresponding fitness values, and the best raindrop is assigned to the sea, and subsequent raindrops 288 

are associated with rivers and then streams. In each iteration, the rivers flow into the sea, and the 289 

streams flow into the sea and rivers. Consequently, the positions of solution vectors are updated. 290 

Besides, the evaporation operator generates new data when solution vectors accumulate in small 291 

zones in the feasible region (Sadollah et al., 2015). As a metaheuristic optimization algorithm is 292 

applied to develop COP, the algorithm is run five times (Naseri et al., 2018). Afterward, the 293 

solution with the lowest objective function value is considered the problem’s optimal solution. 294 

Figure 3 illustrates the flowchart of the water cycle algorithm (Naseri et al., 2020b), which is 295 

described in detail as follows: 296 

1. Initially, the fitness values of data are gauged and classified into the sea, rivers, and streams 297 

based on their qualification. 298 

2. The streams move toward the sea and rivers to search in better spaces. 299 

3. The rivers are transferred to the adjacent areas of the sea in order to investigate more valuable 300 

regions. 301 

4. If the distances between the sea and rivers or the distances between the sea and streams are 302 

lower than a specific value, the evaporation operator is run to abandon the local-minimum area. 303 

5. Afterwards, new data are generated by a raining operator and then compared with the previous 304 

data. The most valuable data remain, and the others are eliminated.  305 

Subsequently, the algorithm returns to the first step. 306 
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Fig. 3. 307 

3.2.3.   Deep learning 308 

Deep learning (DL) is a multi-layer artificial neural network inspired by mammalian brain 309 

recognition that applies multi-layer transfer functions. Accordingly, the model’s inputs can be 310 

combined in a nonlinear space (Deng et al., 2018). In DL, the education system does not depend 311 

on artificial feature selection, and the data presentation features are spotted autonomously, and 312 

complex nonlinear functions can be learned (Wei et al., 2019). 313 

3.3.   Optimization problem formulation 314 

3.3.1.   Compressive strength formula 315 

As previously stated, three machine learning techniques were employed to model the compressive 316 

strength of various concrete types containing SCMs. Subsequently, the precision of these models 317 

was compared based on different performance indicators to identify and subsequently utilize the 318 

most accurate model to design the mixture proportion of sustainable concrete for various 319 

compressive strength classes.  320 

Testing data precision is considered the most critical parameter when selecting the most accurate 321 

model. Six performance indicators, including correlation coefficient (R), mean square error 322 

(MSE), mean absolute error (MAE), coefficient of determination (R2), root mean square error 323 

(RMSE), and the percentage of mixtures with a MAE less than 30% (E30), were considered to 324 

compare the machine learning methods and find the most accurate model. The equations for R, 325 

MSE, MAE, R2, RMSE, and E30 are indicated in Eq. (2) to (7), respectively: 326 
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(  of mixtures that their percentage MAE is less than 30%) 100
30

number
E

n


=                             (7) 332 

where iEXP is the compressive strength of concrete based on experimental test results; iEXP333 

represents the average value of the compressive strength of concrete obtained from the 334 

experimental test results; iPRE is the estimated compressive strength; iPRE indicates the average 335 

value of estimated compressive strength; and n is the number of samples. 336 

3.3.2.   Sustainable criteria formulation  337 

In addition to the 28-day compressive strength equation, the price of concrete constituents per 338 

cubic meter of concrete and the environmental impacts, including GWP, EC, and MC, were 339 

selected as the sustainability parameters. In the optimization model, the 28-day compressive 340 

strength is regarded as a constraint. With that said, the equation relevant to the most accurate model 341 

was considered a constraint and set to 30, 40, 50, and 60 MPa. Consequently, the model was ran 342 

in order to estimate the mixture designs of sustainable concrete for each compressive strength class 343 

(30, 40, 50, and 60 MPa). Cost and MC are the total price and total weight of concrete ingredients 344 

to manufacture one cubic meter of concrete, respectively. GWP is the summation of global 345 

warming potential emitted during the production of concrete and its ingredients, and EC is the total 346 

amount of energy required to manufacture concrete and its ingredients. The objective functions of 347 

cost, GWP, EC, and MC are presented in Eqs. (8), (9), (10), and (11), respectively. The 348 

environmental objective function is the combination of GWP, EC, and MC, as shown in Eq. (12). 349 
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Cos ( ) ( ) ( ) ( ) ( ) ( ) ( )CE WA SP CA FA FL SFt U CE U WA U SP U CA U FA U FL U SF=  +  +  +  +  +  + 350 

( )SLU SL+                                                                                                                                                               (8)        351 

( ) ( ) ( ) ( ) ( ) ( ) ( )CE WA SP CA FA FL SFGWP C CE C WA C SP C CA C FA C FL C SF=  +  +  +  +  +  + 352 

( )SLC SL+                                                                                                                                                                    (9)                                      353 

( ) ( ) ( ) ( ) ( ) ( ) ( )CE WA SP CA FA FL SFEC E CE E WA E SP E CA E FA E FL E SF=  +  +  +  +  +  + 354 

( )SLE SL+                                                                                                                                                            (10)  355 

MC CE WA SP CA FA= + + + +                                                                                                                   (11)  356 

1 2 3( ) ( ) ( )Environment GWP EC MC  =  +  +                                                                             (12)  357 

where , , , , , , , CE WA CA FA SP FL SFU U U U U U U and  SLU are the unit price of cement, water, coarse 358 

aggregate, fine aggregate, superplasticizer, fly ash, silica fume, and GGBFS, respectively. 359 

Moreover, , , , , , , ,CE WA CA FA SP FL SF  and  SL are the weights of cement, water, coarse 360 

aggregate, fine aggregate, superplasticizer, fly ash, silica fume, and GGBFS in the mixture design, 361 

respectively. , , , , , , , CE WA CA FA SP FL SFC C C C C C C and  SLC represent the GWP emitted during the 362 

production process of cement, water, coarse aggregate, fine aggregate, superplasticizer, fly ash, 363 

silica fume, and GGBFS, respectively. , , , , , , , CE WA CA FA SP FL SFE E E E E E E and  SLE are the 364 

amounts of energy consumed to produce one kilogram of cement, water, coarse aggregate, fine 365 

aggregate, superplasticizer, fly ash, silica fume, and GGBFS, respectively. In Eqs. (8) to (11), the 366 

amount of materials equals zero if they do not exist in the mixture design. For instance, the value 367 

of ,SF  and  SL are equal to zero in FL-C. Besides, 1 2, ,  and 3 are the weight coefficients of 368 

GWP, EC, and MC in the environment objective function. According to Fuente et al. (2017), 369 

1 2, ,  and  3 are 0.4, 0.3, and 0.3, respectively, which were utilized in Eq. (12). The unit price of 370 

the materials in the United States, and their EC, GWP, and specific gravity are presented in Table 371 

4. These values were extracted from previous studies (Assi et al., 2018; Chiaia et al., 2014; Grist 372 

et al., 2015; Long et al., 2015; Müller et al., 2014; Pineda et al., 2017; Wille and Boisvert-Cotulio, 373 

2015). 374 
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Table 4 375 

To incorporate all the sustainability parameters in a single objective function, all parameters, 376 

including GWP, EC, MC, and cost, were scaled to a similar range. Eq. (1) was applied to scale the 377 

mentioned criteria to the desired range. Accordingly, the objective function of the environment 378 

was automatically scaled between 0.1 and 0.9. The minimum and maximum of the sustainability 379 

parameters were considered the maximum and minimum values spotted in the initial mixture 380 

proportions because the machine learning methods are interpolation-based techniques. The 381 

maximum and minimum values of the sustainability parameters for different concrete types are 382 

shown in Table 5.  383 

Table 5 384 

3.3.3. Optimization modeling 385 

Optimization of concrete mixture design is vital (Khan et al., 2017). Meanwhile, sustainability 386 

should be considered in concrete mixture proportioning and material selection (Aguado et al., 387 

2012; Zhong et al., 2017). In this work, sustainability was the objective function of the 388 

optimization model with the goal to enhance sustainability in designing concrete mixtures. As 389 

such, an appropriate objective function should be set to simultaneously improve all the 390 

sustainability parameters. The environmental objective function integrates all the environmental 391 

impacts based on Eq. (12). To unify the impacts of cost and environmental impacts, the quadratic 392 

distance to the ideal level is regarded as the form of the objective function of the optimization 393 

problem presented in Eq. (13) (Naseri et al., 2020a). Besides, the optimization function contains 394 

some constraints to increase the sensibility of the model. There are four constraints in the 395 

optimization model, including the range of inputs, range of sustainability parameters, unit volume 396 

of concrete, and the 28-day compressive strength of concrete, which are calculated by Eqs. (14), 397 

(15), (16), and (17), respectively: 398 

( ) 2 2minimize   (  ) (Cos  )z Environment ideal level t ideal level= − + −                                          (13)    399 

 . :

[0.1,0.9]               i {1,2,...,k}i

s t

input   
                                                                                                 (14)     400 
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[0.1,0.9]               {1,2,...,m}joutput j                                                                                               (15) 401 

 
CE WA SP FA CA

CE WA SP FA CA
Volume air void

    
= + + + + +                                                                               (16) 402 

               {30,40,50,60}CSD r r=                                                                                                           (17) 403 

where  ideal level is the desired value of each objective function, which are scaled from 0.1 to 0.9. 404 

As such, the  ideal level equals 0.1 in Eq. (13), implying the minimum values of the sustainability 405 

parameters within their allowed range. 
iinput is the input variable of the model, including the 406 

scaled values of the weights of concrete ingredients and the scaled values of the ingredient weight 407 

ratios. joutput implies the outputs of the model, which are sustainability parameters, including the 408 

scaled values of GWP, EC, and MC, environmental objective function, and cost. i  and  j are the 409 

number of inputs and sustainability parameters of the model, respectively. CE , WA , SP , FA , 410 

and CA are the specific gravities of cement, water, superplasticizer, fine aggregate, and coarse 411 

aggregate, respectively, as shown in Table 4. To design the concrete mixture, the weight of its 412 

ingredients should be determined by considering the concrete volume constraint equals one cubic 413 

meter, which is presented in Eq. (16). In this equation,  air void is the volume of entrapped air that 414 

entered the concrete matrix during the mixing and casting processes. According to ACI 211.1, 415 

 air void is regarded as 2%. Moreover, CSD and r are the 28-day compressive strength of 416 

concrete and the classes of compressive strength considered in the current study, respectively. Note 417 

that, in this paper, the primary objective is to estimate the mixture design of sustainable and eco-418 

friendly concrete with compressive strengths equal 30, 40, 50, and 60 MPa. Thus, these values are 419 

assigned to the parameter r . 420 

After estimating mixture designs, the mixtures were compared based on sustainability and eco-421 

friendliness characteristics regarding GWP, EC, and MC as the environmental factors. 422 

Furthermore, gray relational analysis (GRA) was conducted, according to Panda et al. (2016), to 423 

prioritize the mixtures based on their sustainability.  424 

4. Results and discussion 425 
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The results of this study are presented in three parts. In the first section, the precision of the 426 

introduced methods and the conventional machine learning models are compared, and the most 427 

accurate model for each concrete type is selected. Furthermore, the compressive strength equation 428 

for the concrete containing various SCMs based on the quantity of the ingredients and their ratios 429 

are given in this part. In the second section, the mixture design of sustainable concretes is presented 430 

and compared based on the sustainability parameters. The environmental impacts of the mentioned 431 

mixes are scrutinized, and the eco-friendly mixture designs are analyzed based on their 432 

environmental impacts. In addition, the optimal contents of supplementary cementitious materials 433 

for each compressive strength class of sustainable concretes are presented. In the last part, using 434 

GRA, the sustainability of various concrete types is assessed, and the most sustainable mixture for 435 

all compressive strength classes is introduced. Moreover, the sustainable mixtures are ranked 436 

based on their sustainability parameters (i.e., cost and eco-friendliness characteristics). 437 

4.1. Prediction of the compressive strength 438 

In this study, by virtue of the robustness and potency of metaheuristic algorithms, a novel machine 439 

learning technique (COP) is proposed to predict the compressive strength of concrete mixtures 440 

incorporating SCMs. The precision of this novel method was then compared with powerful 441 

machine learning methods, including WCP and DL. Afterwards, the most accurate model of 442 

compressive strength for each concrete type containing SCMs was chosen for the mixture design 443 

of sustainable concrete prediction.  444 

The accuracy of the proposed and conventional prediction methods were assessed based on various 445 

performance indicators, including correlation coefficient (R), mean square error (MSE), mean 446 

absolute error (MAE), coefficient of determination (R2), root mean square error (RMSE), and the 447 

percentage of mixtures with MAE less than 30% (E30). The values of the performance indicators 448 

were then compared based on testing data in order to detect the most accurate model, since these 449 

machine learning models are applied to estimate the compressive strength of unseen data and the 450 

prediction power is much more important than the training phase. Subsequently, external 451 

validation was applied to verify the performance of the prediction models, using persuasive 452 

models, including regression line slope (k and k'), confirmation indicator (Rm), and performance 453 

index (m and n), were utilized as external validation parameters. These external validation 454 
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indicators were computed based on the procedures introduced by Tropsha et al. (2003) and 455 

Golbraikh and Tropsha (2002).  456 

4.1.1. Prediction of the compressive strength of FL-C 457 

The error histogram of machine learning techniques for testing data is displayed in Fig. 4. 458 

Furthermore, the MAE, RMSE, R, R2, and E30 of prediction models for estimating the 459 

compressive strength of FL-C are presented in Fig. 4. As can be perceived from the results in Fig. 460 

4, the least amount of MAE and RMSE for testing data are related to COP, which are equal to 3.07 461 

and 3.69 MPa, respectively. The performance of COP, WCP, and DL are acceptable because their 462 

MAE for testing data is less than 4 MPa. Thus, it can be postulated that COP is the most accurate 463 

model to predict the compressive strength of FL-C. Moreover, the highest level of R, R2, and E30 464 

for testing data are connected with COP, with respective values of 96%, 93%, and 95%. These 465 

results further illustrate that COP is qualified to predict the compressive strength of FL-C with an 466 

error less than 30% for 95% of the testing data. Hence, it is suggested that the precision of COP is 467 

higher than that of other machine learning techniques for estimating the compressive strength of 468 

FL-C mixtures. Specifically, COP estimated the compressive strength of 76.8% of the testing data 469 

with an error less than 5 MPa.  470 

To validate the results of the performance indicators, results of the external validation are shown 471 

in Table 6. As can be seen, k and k’ of all applied prediction models are between 0.85 and 1.15. 472 

Meanwhile, m and n indices are lower than 0.1 in all models for training and testing data. Rm of 473 

all prediction methods is higher than 0.5. Therefore, the results of the used prediction models are 474 

validated, which shows that COP, WCP, and DP are competent to be applied to estimate the 475 

compressive strength of FL-C. As such, it can be hypothesized that COP is the most accurate 476 

model, and thus, its generated equation was applied to estimate the mixture design of FL-C. Also, 477 

the compressive strength equations based on mixture proportion obtained by COP and WCP are 478 

provided in Eqs. (18) and (19), respectively. 479 

Fig. 4. 480 

 481 
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484 

where 
COP FLCS −

 and 
WCP FLCS −

 are the scaled values of the compressive strength of FL-C provided 485 

by COP and WCP techniques, respectively. 
CES , 

FLS , 
WAS , 

SPS , 
CAS , 

FAS , AGS , WABIS , 
FLBIS , 486 

SPBIS , FATAS , and CABIS are the scaled values of cement, fly ash, water, superplasticizer, coarse 487 

aggregate, fine aggregate, age, water to binder ratio, fly ash to binder ratio, superplasticizer to 488 

binder ratio, fine aggregate to total aggregate ratio, and coarse aggregate to binder, respectively.  489 

Table 6. 490 

4.1.2. Prediction of the compressive strength of SF-C 491 

The precision and error histogram of the prediction methods applied to estimate the compressive 492 

strength of SF-C are illustrated in Fig. 5, where the performance indicators, including MAE, 493 

RMSE, R, R2, and E30, were used to compare the machine learning techniques and determine the 494 

most accurate model. Based on Fig. 5, COP is the most precise model, followed by WCP and DL. 495 

The MAE and RMSE of COP for the testing data are 3.69 and 4.44 MPa, respectively, which are 496 

far less than those of other machine learning techniques. Additionally, MAE values of WCP and 497 

DL for the testing data are 3.93 MPa and 4.47 MPa, respectively, indicating that the performance 498 

of the proposed technique (COP) is better than that of other methods. According to the results 499 

illustrated in Fig. 5, COP provides the highest level of the testing data R2 (94%) and outweighs the 500 

other prediction models. The E30 of COP and WCP is equal to 1, signifying that the performance 501 

of these methods is satisfactory. These two techniques estimated the compressive strength of all 502 

testing data with an error less than 30%. A more detailed look at the results in Fig. 5 indicates that 503 

COP is the most powerful model because it predicts the compressive strength of 77% of data with 504 

an error less than 5 MPa, while WCP and DL predicted 66% and 64% of the data with an error 505 
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less than 5 MPa, respectively. The outcomes of this error analysis are in harmony with the results 506 

of other performance indicators, and therefore, it can be postulated that COP is the best model to 507 

predict the compressive strength of SF-C.  508 

The results of the external validation indicators for SF-C are shown in Table 7, which are in line 509 

with the outcomes of the performance indicators. The validation process represents that COP, 510 

WCP, and DL are validated since their corresponding validation performance indicators are 511 

located in the ideal ranges. Further, it can be realized that COP, WCP, and DL are capable of 512 

predicting the compressive strength of silica fume concrete. The equations of compressive strength 513 

of silica fume concrete (SF-C) generated by COP and WCP are presented in Eqs. (20) and (21), 514 

respectively: 515 

Fig. 5. 516 

 517 
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520 

where COP SFCS −  and WCP SFCS −  are the scaled values of the compressive strength of silica fume 521 

concrete (SF-C) predicted by COP and WCP techniques; and SFS and SFBIS are the scaled values 522 

of silica fume weight and silica fume to binder ratio in the mixture design, respectively. According 523 

to the aforementioned concepts, COP is the most accurate model in estimating the compressive 524 

strength of SF-C. Accordingly, Eq. (20) was utilized in the optimization modeling to design 525 

sustainable SF-C mixtures. 526 

Table 7. 527 

4.1.3. Prediction of the compressive strength of GGBFS-C 528 
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The performance and error histogram of the proposed and conventional machine learning 529 

techniques to predict the compressive strength of GGBFS-C are illustrated in Fig. 6. As can be 530 

seen, MAE and RMSE of COP are 4.40 and 5.98 MPa, which are significantly lower than those of 531 

other methods; thus, COP provides the highest accuracy. The MAE values for WCP and DL are 532 

4.86 and 6.49 MPa, respectively. According to the values of R, R2, and E30 in Fig. 6, COP is the 533 

only model with an R and E30 of the training data greater than 90%. The R, R2, and E30 of the 534 

training data for COP technique equal 91%, 84%, and 91%, respectively. That being said, there is 535 

a strong correlation between the experimental test results and the values predicted by COP. 536 

Additionally, the COP prediction model achieved 91% of the data with a percentage error less than 537 

30%. Thus, the most powerful machine learning method to estimate the compressive strength of 538 

GGBFS-C is COP based on the values of R, R2, and E30. As can be perceived from the results 539 

shown in Fig. 6, COP provides the highest precision and is highly qualified to predict the 540 

compressive strength of GGBFS-C. The COP estimated the compressive strength of 68% of the 541 

testing data with an error less than 5 MPa, indicating that there is a positive correlation between 542 

the experimental test results and the values estimated by COP. However, the performances of WCP 543 

and DL are not desired, which estimated 60% and 54% of the testing data with an error less than 544 

5 MPa.  545 

The external validation was performed to analyze the results presented by the performance 546 

indicators and error histogram analysis. The results of external validation related to GGBFS-C are 547 

presented in Table 8. According to the testing data confirmation indicator (Rm), COP was validated 548 

and is favorably capable of estimating the compressive strength of GGBFS-C. Nevertheless, the 549 

results of other prediction models were not verified, and their results may not be trustworthy. 550 

Hence, DL and WCP may not be appropriate methods to predict the compressive strength of 551 

GGBFS-C since their results are not verified by the confirmation indicator (Rm). Accordingly, 552 

COP was selected as the best prediction model for GGBFS-C data, and the equation generated by 553 

COP was applied to design sustainable concrete containing GGBFS. The formulations of the 554 

compressive strength of GGBFS-C provided by COP and WCP are presented in Eqs. (22) and (23), 555 

respectively: 556 

Fig. 6. 557 
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 560 

where,
COP SLCS −

 and 
WCP SLCS −

 are the scaled values of the compressive strength of GGBFS-C 561 

generated by COP and WCP techniques; and 
SLS  and 

SLBIS  are the scaled values of GGBFS 562 

weight and GGBFS to binder ratio, respectively. 563 

Table 8. 564 

4.2. Sustainability 565 

Cement industry is responsible for generating 7% of the global anthropogenic CO2 emissions. The 566 

concrete industry consumes enormous amounts of energy and extracts massive volumes of 567 

irreplaceable raw materials from the environment. Meanwhile, a considerable budget is allocated 568 

to the construction sector (Assi et al., 2018). Accordingly, finding sustainable solutions to protect 569 

the environment has been of immense concern to both policy makers and society. To this end, 570 

GWP, EC, MC, and cost were regarded as sustainability parameters in designing sustainable 571 

concrete mixtures. Furthermore, various concrete types, including FL-C, SF-C, and GGBFS-C, 572 

were investigated to scrutinize the effects of industrial by-products on sustainability and present 573 

the most sustainable solutions. In this section, the mixture proportions of sustainable concrete and 574 

their features are presented. 575 

Sustainable concrete mixtures were designed for 30, 40, 50, and 60 MPa strength classes to cover 576 

the most concrete applications, according to ACI 318. The mixture proportions of the sustainable 577 

concretes are given in Table 9, which reveals that utilizing supplementary cementitious materials 578 

can reduce the content of cement in the mixture proportion, leading to the manufacture of eco-579 

friendly concrete. Moreover, utilizing waste materials and by-products of other industries can 580 

reduce the area needed for landfills. A more detailed look at the sustainable mixtures indicates that 581 
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by increasing the compressive strength, the optimal content of silica fume in mixtures steadily 582 

increased. In contrast, the weight of BFGS in the mixture designs was reduced by increasing the 583 

compressive strength, while variation in the compressive strength did not change the optimal 584 

content of fly ash. 585 

Table 9. 586 

The sustainability of the concrete mixtures containing SCMs was compared with the sustainability 587 

parameters of ordinary Portland cement concrete (OPC-C) mixtures presented in the experimental 588 

database to analyze the effects of the introduced sustainable mixtures on the environment and 589 

sustainable development. To this end, the mixtures of OPC-C, which exhibits 28-day compressive 590 

strengths of approximately 30, 40, 50, and 60 MPa, were selected from the experimental database. 591 

Afterwards, the average values of the sustainability parameters for the selected OPC-C mixtures 592 

were regarded as the sustainability parameters of the experimental ordinary Portland cement 593 

concrete mixtures (E-OPC-C). Consequently, these values were compared with those of the 594 

sustainable mixtures containing SCMs, which is further elucidated in the following sections. 595 

4.2.1. Global warming potential 596 

As previously mentioned, almost 7% of the worldwide anthropogenic CO2 emissions is related to 597 

cement factories (Assi et al., 2018). Additionally, the global construction industry is responsible 598 

for a large portion of the total GWP produced by all industrial activities (Hong et al., 2010) and is 599 

accountable for the emission of 5.7 billion tons of CO2, contributing to 23% of the total CO2 600 

emissions generated by the worldwide economic activities (Huang et al., 2018). As such, reducing 601 

the GWP, as a pertinent sustainability parameter, in the construction industry is of utmost 602 

importance to the government and environment. 603 

The amounts of GWP emissions generated to manufacture sustainable concrete and E-OPC-C are 604 

presented in Fig. 7, which reveals that the highest quantity of GWP is relevant to E-OPC-C for all 605 

compressive strength classes. In the 30-MPa compressive strength class, the lowest amount of 606 

GWP is related to sustainable GGBFS-C, followed by sustainable FL-C, then sustainable SF-C 607 

with 54.6%, 51.1%, and 18.9% less GWP than E-OPC-C, respectively. This is due to the lower 608 

cement content in GGBFS-C mixtures as a result of the hydraulic behavior of GGBFS. However, 609 
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it should be noted that the cementitious performance of GGBFS is not comparable to the Portland 610 

cement, and thus, for higher strength classes, GGBFS-C is not the mixture with the lowest GWP.    611 

Accordingly, sustainable FL-C produced the least GWP in the 40-, 50-, and 60-MPa strength 612 

classes which can be directly related to the lower cement content in mixtures containing fly ash. 613 

This indicates that cement is the most influential parameter on the environmental impact of 614 

sustainable concrete, and therefore, reducing the cement content is the first step towards achieving 615 

more sustainable concrete mixtures. However, incorporating SCMs with hydraulic behavior such 616 

as GGBFS would help with more reduction in cement content, especially in the lower strength 617 

class (30 MPa in this study). 618 

In the 40-MPa compressive strength class, the GWP of the sustainable FL-C, sustainable SF-C, 619 

and sustainable GGBFS-C are approximately 50.9%, 34.6%, and 33.3% less than that of E-OPC-620 

C, respectively. Similarly, the ranking of sustainable concrete based on generating lower amounts 621 

of GWP follows a similar trend for the 50- and 60-MPa strength classes. That being said, the 50-622 

MPa sustainable FL-C, SF-C, and GGBFS-C decreased the GWP by 44.2%, 37.2%, and 31.8%, 623 

respectively, compared to 50 MPa E-OPC-C. Moreover, substituting sustainable FL-C, SF-C, and 624 

GGBFS-C for the conventional E-OPC-C in the compressive strength class of 60 MPa roughly 625 

reduced the GWP by 35.5%, 33.6%, and 16.0%, respectively. The average GWPs of all the four 626 

compressive strength classes for the sustainable FL-C, GGBFS-C, and SF-C were approximately 627 

44.6%, 31.9%, and 31.9% lower than that of the conventional ordinary Portland cement concrete 628 

(E-OPC-C). Hence, it can be postulated that the GWP of the sustainable concrete containing 629 

supplementary cementitious materials (fly ash, GGBFS, and silica fume) is significantly lower 630 

than that of the E-OPC-C. Furthermore, utilizing the sustainable GGBFS-C to manufacture 30-631 

MPa concrete and fabricating sustainable FL-C with compressive strengths of 40, 50, and 60 MPa 632 

are recommended for reducing a considerable amount of GWP.  633 

Fig. 7. 634 

4.2.2. Energy consumption 635 

Reducing energy consumption in the construction industry has been a significant concern (Shirzadi 636 

Javid et al., 2021). Fabricating concrete mixtures requires a vast amount of energy during the 637 

production process and preparing its ingredients. Specifically, approximately 4 GJ energy is 638 
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consumed to produce one ton of Portland cement (Mehta, 2011). The construction sector was 639 

responsible for consuming 32% of the global EC in 2010, and in many developed countries, 640 

roughly 40% of the total EC is related to the construction industry (Huo et al., 2018). Therefore, 641 

reduction of EC in the concrete industry can lead to the manufacture of sustainable concretes that 642 

help to preserve the environment. To this end, the energy consumed by fabricating sustainable 643 

concrete with various compressive strengths were compared, and the results are illustrated in Fig. 644 

8.   645 

As Fig. 8 reveals, E-OPC-C requires the highest amount of energy for its manufacture in all the 646 

compressive strength classes. This is mainly attributed to the higher cement content in the E-OPC-647 

C mixture. As such, it can be hypothesized that designing sustainable concrete and replacing 648 

cement with supplementary cementitious materials, including fly ash, GGBFS, and silica fume, 649 

can reduce EC since these materials require less amount of energy to be processed . By comparing 650 

the sustainable concretes and experimental ordinary Portland cement concrete in the 30 MPa-651 

strength class, the FL-C, GGBFS-C, and SF-C sustainable concrete decreased the EC by 43.0%, 652 

36.3%, and 21.4%, respectively. Moreover, sustainable FL-C proved to be the eco-friendliest 653 

mixture in terms of EC reduction in the 40-MPa compressive strength class. In addition, the ECs 654 

of sustainable FL-C, SF-C, and GGBFS-C were found to be 43.0%, 34.6%, and 22.9% lower than 655 

that of E-OPC-C, respectively, in the 40-MPa compressive strength class. Similarly, in the 50-656 

MPa strength class, 39.1%, 38.5%, and 25.6% of energy can be saved if sustainable FL-C, SF-C, 657 

and GGBFS-C are substituted for E-OPC-C. Further, the 60-MPa sustainable SF-C outweighed 658 

the other mixtures in terms of lowering the EC, reducing EC by 34.5% compared to that of E-659 

OPC-C. The main reason for requiring less EC to produce 60-MPa SF-C mixture compared to the 660 

FL-C is that silica fume needs much less energy to be processed than fly ash and since the quantity 661 

of cement is almost similar in both mixtures (370.67 kg for SF-C vs. 361.47 kg for FL-C) the 662 

influence of supplementary cementitious materials (i.e., silica fume and fly ash) is more 663 

pronounced. However, in other compressive strength classes, the cement content in FL-C mixtures 664 

is much lower than that of SF-C mixtures indicating less EC in FL-C mixtures. The sustainable 665 

FL-C and GGBFS-C can approximately save 31.3% and 13.5% of energy if they are substituted 666 

for E-OPC-C. Thus, 30-, 40-, and 50-MPa sustainable FL-C and 60-MPa sustainable SF-C prevail 667 

as the best mixtures to save energy by reducing EC among the other mixtures in the corresponding 668 

compressive strength classes. 669 
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Fig. 8. 670 

4.2.3. Material consumption 671 

Since huge amounts of materials are applied in the construction industry, reducing material 672 

consumption has been an immense concern (Jahanbakhsh et al., 2020). Concrete is by far the most 673 

frequently utilized man-made material around in the construction industry worldwide (Habert et 674 

al., 2011) with over 10 billion tons of concrete annually produced (Meyer, 2009). It is predicted 675 

that the annual concrete consumption will grow to roughly 18 billion tons by 2050 (Mehta, 2002). 676 

A vast amount of non-renewable materials is consumed in order to manufacture such a significant 677 

volume of concrete. Accordingly, by reducing the quantity of raw materials through using 678 

industrial waste or by-products, it is possible to save resources and, therefore, enhance the 679 

sustainability of concrete production. The amount of material consumption (MC) in preparing 680 

sustainable concrete mixtures and E-OPC-Cs is illustrated in Fig. 9.  681 

According to Fig. 9, E-OPC-C mixtures consume the largest amount of materials in all 682 

compressive strength classes, while the performance of sustainable concrete containing SCMs is 683 

far better than that of E-OPC-C in terms of preserving materials. In the 30-MPa compressive 684 

strength class, the least MC is related to sustainable GGBFS-C, followed by sustainable FL-C, SF-685 

C, and E-OPC-C, with consumption rates of 2084.7, 2094.5, 2245.8, and 2353.9 kg/m3, 686 

respectively. Sustainable FL-Cs require the least amount of manufacturing material in all the 30-, 687 

40-, 50-, and 60-MPa compressive strength classes, which could save 11.8%, 14%, and 13.8% of 688 

materials, respectively, when substituted for E-OPC-C. The lowest content of raw materials is 689 

consumed in the 30-MPa sustainable GGBFS-C, and the highest MC rate is related to 60-MPa E-690 

OPC-C. Hence, it can be postulated that the application of supplementary cementitious material is 691 

a valuable approach to save materials and produce eco-friendly concrete. Besides, the sustainable 692 

FL-Cs and GGBFS-Cs demonstrated better performances than those of other mixtures and required 693 

the least amount of materials for their production. To obtain 30-MPa concrete, manufacturing 694 

sustainable GGBFS-C is recommended, while sustainable fly ash mixtures showed to be the eco-695 

friendliest in terms of saving raw materials and resources in the 40-, 50-, and 60-MPa compressive 696 

strength classes. 697 
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The cement consumption of sustainable mixtures is shown in Table 9. As can be perceived, the 30 698 

MPa sustainable GGBFS-C contains the minimum content of cement among sustainable concretes 699 

in 30 MPa class. The least amount of cement consumption is related to sustainable FL-C for 40 700 

MPa, 50 MPa, and 60 MPa compressive strength classes. As previously stated, by reducing each 701 

kg of cement, 1.5 kg of raw materials can be saved. Therefore, it can be postulated that replacing 702 

30 MPa sustainable GGBFS-C, 40, 50, and 60 MPa sustainable FL-C can save more raw materials 703 

through the cement reduction as well as reducing raw materials using directly in the mixture 704 

design. 705 

 706 

Fig. 9. 707 

4.2.4. Unit cost 708 

Cost is an essential criteria when producing sustainable concrete, whereby reducing the unit cost 709 

of concrete is always of significant concern to both the manufacturers and end users  (Shirzadi 710 

Javid et al., 2020). Fig. 10 reveals that the sustainable SF-Cs are the most expensive mixtures, and 711 

their unit cost is considerably higher than that of the other sustainable concrete and E-OPC-Cs due 712 

to the high price of silica fume. Despite this increase, silica fume in concrete mixture design has 713 

other advantages, including enhancing the compressive strength, toughness, elastic modulus, bond 714 

strength, impermeability to chloride and water penetration, resistance to chemical attacks, and 715 

abrasion resistance (Siddique, 2011; Siddique and Chahal, 2011). The unit cost of sustainable SF-716 

C is 22.4%, 48.4%, 27.6%, and 14.9% higher than that of E-OPC-C in 30-, 40-, 50-, and 60-MPa 717 

compressive strength classes, respectively. The sustainable FL-C provides the most economical 718 

mixtures in various compressive strength classes, which is due to the lower quantity of cement in 719 

these mixtures as well as the lower price of fly ash compared to other supplementary cementitious 720 

materials. Sustainable fly ash mixtures are 36.6%, 29.2%, 38.5, and 43.6% cheaper than the 721 

conventional Portland cement mixtures. Economy-wise, the application of sustainable GGBFS-C 722 

is far more beneficial than that of E-OPC-C. In other words, the manufacturing cost of sustainable 723 

GGBFS-C is 21.1%, 15.2%, 28.2%, and 35.8% lower than that of E-OPC-C in 30-, 40-, 50-, and 724 

60-MPa compressive strength classes, respectively. Accordingly, sustainable FL-C is the most 725 

economical concrete, followed by sustainable GGBFS-C, E-OPC-C, and sustainable SF-C. 726 
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Therefore, to enhance the sustainability through cost reduction, manufacturing sustainable FL-C 727 

proves to be the best alternative in all compressive strength classes considered in this study. 728 

Fig. 10. 729 

4.3. Managerial implication  730 

In this section, the proposed concrete mixtures and E-OPC-C are compared based on their 731 

sustainability in accordance with the required 28-day compressive strength. Comparing the 732 

sustainable mixtures by the value of the objective function is not sensible because the cost and 733 

environmental objective functions of different concrete types are scaled depending on their 734 

corresponding range of cost and environmental impacts, as indicated in Table 5. To address this 735 

issue, gray relational analysis (GRA) was performed to prioritize all mixtures and introduce the 736 

most sustainable mixture in each compressive strength class. The primary aim of GRA is to 737 

optimize the multi-responses as they are converted to a single grade and then compare the various 738 

alternatives by the specified grade (Ghavami et al., 2021). By virtue of GRA, the sustainability of 739 

the mixture proportions was scrutinized and then compared. In other words, the effects of cost, 740 

GWP, EC, and MC, as process parameters, were integrated by GRA, and the grey relational grade 741 

(GRG) of the mixtures were obtained for ranking. The maximum value of GRG is equal to 1, 742 

which is associated with solutions that possess the highest level for all process parameters (Naseri 743 

et al., 2021a). Hence, increasing GRG increases the sustainability of the examined concrete. The 744 

GRGs of the mixtures and their rankings according to sustainability (GRG scores) are given in 745 

Table 10.  746 

Based on the GRA results, by increasing the 28-day compressive strength among all concrete 747 

classes, the GRG values of the studied concrete mixtures decreased, indicating that the concrete 748 

production with higher 28-day compressive strength causes more detrimental environmental 749 

impacts than the concrete with lower strength. Furthermore, the results in Table 10 demonstrate 750 

that the fly ash provides the highest level of sustainability among the sustainable mixtures. In all 751 

compressive strength classes, the most sustainable mixtures are associated with sustainable FL-C 752 

followed by GGBFS-C, SF-C, then E-OPC-C. Moreover, sustainable SF-C outweighs E-OPC-C 753 

in the 30-, 50-, and 60-MPa compressive strength classes in terms of sustainability. Accordingly, 754 

it can be deduced that the sustainability of the concrete mixtures introduced in this study is 755 
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significantly greater than that of the conventional Portland cement presented in other studies. 756 

Overall, manufacturing sustainable FL-C appears to be the best alternative to enhance the 757 

sustainability of concrete. 758 

Table 10. 759 

5. Conclusions 760 

In this study, the mixture designs of sustainable and eco-friendly concrete containing 761 

supplementary cementitious materials, including fly ash, silica fume, and ground granulated blast 762 

furnace slag, is estimated. To this end, a novel machine learning method called coyote optimization 763 

programming was developed and introduced to predict the compressive strength of the 764 

aforementioned concrete types. The precision of the presented method was compared with the 765 

accuracy of conventional machine learning techniques, including water cycle programming and 766 

deep learning. The results indicate that the proposed coyote optimization programming is the most 767 

accurate method to estimate the compressive strengths of concrete. Meanwhile, the introduced 768 

machine learning technique is capable of generating the equation for the compressive strength of 769 

concrete based on its mixture proportion. 770 

Herein, considering the unit cost and environmental impacts, including GWP, EC, and MC, as 771 

sustainability parameters, the sustainable concrete designs exhibit various compressive strengths 772 

of 30-60 MPa. Afterwards, the designed sustainable mixtures were compared with conventional 773 

ordinary Portland cement concrete in terms of these parameters. The results indicate that the 30-774 

MPa sustainable GGBFS-C, 40-MPa sustainable FL-C, 50-MPa sustainable FL-C, and 60-MPa 775 

sustainable FL-C are more eco-friendly in the corresponding compressive strength classes and 776 

reduce GWP emissions by 54.6%, 50.9%, 44.2%, and 35.5%, respectively, compared to Portland 777 

concrete. 778 

Moreover, the 30-, 40-, and 50-MPa sustainable FL-C designs provide the lowest amount of EC 779 

with reductions by 43.0%, 43.0%, and 39.1%, respectively, compared to conventional ordinary 780 

Portland cement concrete (E-OPC-C). In the 60 MPa compressive strength class, the highest 781 

energy savings was exhibited by the sustainable SF-C, which reduced EC by 34.5% compared 782 

with the Portland concrete. 783 
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Based on the MC analysis, the least amount of raw materials is required for manufacturing the 30-784 

MPa sustainable GGBFS, which can reduce MC by 11.4%. Furthermore, the eco-friendliest 785 

mixtures in terms of MC correspond to the 40-, 50-, and 60-MPa sustainable FL-C. As compared 786 

with the 40-, 50-, and 60-MPa ordinary Portland concrete (E-OPC-C), the 40-, 50-, and 60-MPa 787 

sustainable FL-C decreased MC by 280.2, 339.5, and 337.0 kg/m3 and required 11.8%, 14%, and 788 

13.8% less raw materials, respectively.  789 

According to the results of cost analysis, sustainable FL-C is the most economical mixture in all 790 

the compressive strength classes, followed by sustainable GGBFS-C and SF-C. Compared with E-791 

OPC-C, the 30-, 40-, 50-, and 60-MPa sustainable FL-C can reduce the concrete unit cost by 34.7% 792 

25.7%, 36.7%, and 43.7%, respectively. 793 

Based on the gray relational analysis, 30-MPa sustainable FL-C is the most sustainable mixture, 794 

followed by 30-MPa sustainable GGBFS-C, 40-MPa sustainable FL-C, 50 -Pa sustainable FL-C, 795 

and 40-MPa sustainable GGBFS-C with GRG scores of 1.000, 0.898, 0.854, 0.749, and 0.681, 796 

respectively. In addition, FL-C provides the highest level of sustainability in all compressive 797 

strength classes, while 30-MPa sustainable FL-C reduces the unit cost, GWP, EC, and MC by 798 

36.6%, 51.1%, 43.0%, and 11.0%, respectively.  799 

6. Limitations and recommendations for future studies 800 

One of the limitations of this study is to consider an individual concrete’s characteristic, 801 

compressive strength, to optimize mixture design. That is, some other characteristics, such as 802 

durability indicators, workability, and rheological properties, are excluded from this study. Hence, 803 

it is recommended that the mentioned characteristics are considered in future studies, and the 804 

results of the proposed models are compared with the current study outcomes. 805 

This study considers three environmental parameters, including global warming potential 806 

emission, energy consumption, and material consumption. It is suggested that other environmental 807 

parameters, such as non-hazardous waste disposed, hazardous waste disposed, and radioactive 808 

waste disposed, will be considered in future studies. 809 

Data Availability Statement 810 
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The data that support the findings of this study, including the mixture design of different concrete 811 

types, are available on request from the corresponding author. 812 
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