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In order to develop the dynamic effectiveness of the structures such as trusses, the application of optimisation methods plays a
significant role in improving the shape and size of elements. However, conjoining two heterogeneous variables, nodal coordinates
and cross-sectional elements, makes a challenging optimisation problem that is nonlinear, multimodal, large-scale with dynamic
constraints. To handle these challenges, evolutionary and swarm optimisation algorithms can be robust and practical tools and
show great potential to solve such complex problems. (is paper proposed a comparative truss optimisation framework to solve
two large-scale structures, including 314-bar and 260-bar trusses. (e proposed framework consists of twelve state-of-the-art bio-
inspired algorithms. (e experimental results show that the marine predators algorithm (MPA) performed best compared with
other algorithms in terms of convergence speed and the quality of the proposed designs of the trusses.

1. Introduction

(e dynamic performance of structures exposed to various
dynamic loading is connected with their fundamental nat-
ural frequencies. For instance, prior knowledge of the
natural frequencies of a structure may help prevent the
vibration and noise produced under dynamic loadings, such
as wind or earthquake. As a result, obtaining the optimal
sizing and layout of structures with frequency constraints is
exceptionally important to enhance the dynamic behaviour
of structures [1].

Truss optimisation has been attracting many researchers
over the past decades as one of the most significant subjects
in structural engineering. Design variables include the truss
sizing, shape, and topology, and the main optimisation
problems include the optimisation of the design variables. In
most of the case studies, the size of bars comes from a set of
discrete values; therefore, the applications of the discrete

optimisation methods are considerable (for further study on
the discrete optimisation methods see [2]). Most studies
were conducted to obtain the optimal set of sizing variables
in order to minimize the structural weight. However, the
optimal structural weight depends on different design var-
iables rather than just one. For example, the optimal truss
shape is affected by its topology and size and vice versa. With
this in mind, the simultaneous optimisation of design
variables with frequency constraints has attracted many
researchers recently.

Nevertheless, coupling shape and sizing variables may
lead to mathematical difficulties, nonoptimal solutions, and
occasionally divergence problems. Additionally, frequency
constraints are extremely nonlinear, nonconvex, and im-
plicit regarding design variables [3]. (erefore, global op-
timisation algorithms, which are able to find the global best
solution in the search space, could be a good solution to truss
shape and sizing optimisation with frequency constraints.
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Overall, two types of optimisation methods are applied
to truss optimisation problems, namely mathematical pro-
gramming techniques and meta-heuristic algorithms. While
mathematical programming techniques have a fast con-
vergence speed, they are complicated and time-consuming
due to the necessity of sensitivity analysis. Also, they are
dependent on the starting structural design and prone to
being trapped in local minima. Owing to these drawbacks of
the mathematical programming techniques, meta-heuristic
algorithms have been mostly used for structural optimisa-
tion as effective global optimisation methods. (ese sto-
chastic search methods are bio-inspired, easy to implement,
problem-independent, and flexible. Additionally, they have
strong exploration and exploitation abilities, which makes
them free from having prior gradient knowledge of the
objective function and being sensitive to the initial point.

As already mentioned, meta-heuristic approaches in-
spired by biological processes are a large class of global
optimisation techniques that have attracted many studies in
the subject of truss optimisation [4]. Swarm intelligence-
based methods, inspired by living organisms’ social be-
haviour, are a group of population-based meta-heuristics.
(ese algorithms proved to be great optimizers for truss
problems in recent years [5–10].

In this paper, twelve modern swarm optimisation
methods are deployed for the shape and sizing optimisation
of a large-scale truss problem with frequency constraints.
(ese state-of-the-art algorithms include grey wolf opti-
mizer (GWO) [11], moth flame optimizer (MFO) [12],
multi-verse optimizer (MVO) [13], dragonfly algorithm
(DA) [14], equilibrium optimizer (EO) [15], arithmetic
optimisation algorithm (AOA) [16], Generalized Normal
Distribution optimisation (GNDO) [17], Salp Swarm Al-
gorithm (SSA) [18], Marine Predator Algorithm (MPA) [19],
HenryGas Solubility optimisation (HGSO) [20], Neural
Network Algorithm (NNA) [21], and Water Cycle Algo-
rithm (WCA) [22]. GWO simulates grey wolves’ leadership
hierarchy and hunting behavior in nature, MFO is inspired
by moths’ navigation behavior, MVO is based on white hole,
black hole, and wormhole concepts in cosmology, DA is
based of searching behavior of dragonflies in static and
dynamic swarms, EO is inspired by control volume mass
balance models applied for dynamic and equilibrium states’
estimation, AOA is based on the distribution behavior of
arithmetic operators in mathematics, GNDO uses general-
ized normal distribution models to update the population,
SSA is inspired by salps’ swarming behavior during navi-
gation and foraging in oceans, MPA is motivated by foraging
strategy and optimal rate policy between prey and predator
in oceans, and HGSO simulates the Henry’s law behavior.
All the algorithms are compared in terms of the optimal
weight of truss structures concerning frequency constraints.
In short, the main contributions of the paper are as follows:

(1) Evaluating two large-scale truss problems (314-bar
and 260-bar) with frequency constrains in order to
optimise the shape and sizing variables

(2) A comparison of twelve state-of-the-art bio-inspired
optimisation methods

(3) Tuning the population size of the best-performed
optimisation method

(e rest of the paper is organized as follows: Section 2
provides a brief review of meta-heuristic algorithms recently
proposed for truss optimisation problems. Section 3 de-
scribes two truss problem case studies in more detail. Section
4 explains the optimisation methods applied to the truss
problem. (e given experimental results of the methods’
performance on the case studies are represented in Section 5.
Lastly, Section 6 concludes and provides a couple more
beneficial suggestions for future work.

2. Related Work

(is section focuses on recently proposed meta-heuristic
algorithms for truss optimisation problems. Rahami et al.
[23] employed a genetic algorithm (GA) coupled with a force
method for truss sizing, shape, and topology optimisation.
(is study aimed to decrease the number of input variables,
increasing the GA’s convergence speed and reducing its
computational cost. In another work, Wei et al. [1] proposed
a Niche Hybrid Parallel Genetic Algorithm (NHPGA) to
optimise truss shape and sizing. (e authors combined GA,
parallel computing, and simplex search with a niche ap-
proach in order to speed up the GA’s search ability to find
optimal solutions. An improved differential evolution
(ReDE) was introduced in [24] for structural shape and size
optimisation that used the roulette wheel selection technique
to improve the efficiency of the basic DE.

Additionally, a novel hybrid DE and symbiotic organism
search algorithm (SOS) was proposed in [25] to optimise the
shape and sizing of truss structures. (e algorithm utilised
the global searching ability of DE and the local searching
ability of SOS to achieve optimal solutions. Lamberti [26]
proposed a multi-level population-based simulated
annealing algorithm called CMLPSA for sizing and shape
optimisation. Azad [27] hybridised an adaptive dimensional
search with two versions of the big bang-big crunch algo-
rithm for sizing optimisation of truss structures. In [28], a
mine blast algorithm was proposed for truss sizing opti-
misation. (e algorithm was inspired by the explosion of
mine bombs in the real world.

(e most popular swarm optimisation method applied
to this kind of problem is particle swarm optimisation (PSO)
[5] inspired by the birds flock or fish school’s social be-
haviour. As an example, in [6], Kaveh et al. proposed a
democratic PSO (DPSO) for truss sizing and topology op-
timisation with frequency constraints. (is research aimed
to alleviate the basic PSO premature convergence in fre-
quency constraints. Other classical swarm methods applied
for truss optimisation include ant colony optimisation
(ACO) [7], artificial bee colony (ABC) algorithm [29, 30],
and shuffled frog leaping (SFL) [31] to name but a few. More
recently, new modern swarm optimisation algorithms have
been proposed and developed for structural design opti-
misation. For example, in [32], a new swarm method named
ray optimisation, motivated by Snell’s law of light refraction,
was proposed for truss optimisation. (en, in [33], the
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authors proposed an improved ray optimisation method to
optimise the sizing and topology of truss structures. Other
new swarm-intelligence methods applied to truss problems
include firefly algorithm [8, 34], dolphin echolocation
[9, 35], teaching-learning based optimisation [36], grey wolf
optimizer [10], political optimizer [37], and imperialist
competitive algorithm [38, 39], to name but a few.

3. Truss Problem Formulation

Overall, in a truss sizing and shape optimisation problem
with multiple frequency constraints, the primary purpose is
to minimize the truss weight while meeting the constraints
on natural frequencies. Nodal coordinates and cross-sec-
tional areas are design variable, which change persistently
during design process. In this problem, the truss topology is
supposed to be unalterable and predetermined. Additionally,
design variables may be limited to a specific interval. Hence,
the optimisation problem can be stated as follows:

\begin{align}
&\text{Find}: & X &� \{A, C\} \nonumber
&\text{Where}: & A &� \{A_{1}, A_{2},\ldots, A_
{n}\}\nonumber
& & C &� \{C_{1},C_{2},\ldots,C_{m}\} \nonumber
&\text{Minimize}:& f(X) &� \sum_{i� 1}̂{nm} \rho_{i}
A_{i} L_{i}
&\text{Subjected}:& \omega_{j} & \geq \omega_{j}̂{Lb}
\nonumber
& & \omega_{k} & \leq \omega_{k}̂{Ub}\nonumber
& & Â{Lb} & \leq A \leq Â{Ub}\nonumber
& & Ĉ{Lb} & \leq C \leq Ĉ{Ub}\nonumber
\nonumber.
\end{align}

Here, X vector includes both cross-sectional areas and
the nodal coordinates of the structure. Ci is nodal coordi-
nates of the ith node of the structure. f(X) is the structural
weight, and ρi, Ai, as well as Li are the material density,
cross-sectional area, and length of ith element, respectively.
Also, n and m represent the number of structural cross-
sectional areas and nodal coordinates confined to lower and
upper bounds [ALb, AUb] and [CLb, CUb], respectively. Ad-
ditionally, ωj and ωk denote jth and kth natural frequencies
restricted to the lower and upper bounds ωLb

j and ωUb
j [1].

In order to convert the constrained problem into an
unconstrained one, we employed the function below:

\begin{equation}
{f_{penalty}(X)� f(X) + (nTotalConstVio \times PF),
\qquad nTotalConstVio� \sum_{i� 1}̂{k} (C_{vio_
{i}}+ A_{vio_{i}})}
\end{equation}

where fpenalty(X) is the new objective function,
nTotal Const Vio and PF are the total amount of constraint
violations, and the penalty factor, respectively. Also, vioi is
the violation value for ith constraint, which is set to zero for

satisfied constraints. Here, the constraints include nodal
displacement and element stress constraints.

Also, different values of the penalty factor PF were tested
to tune this parameter. Finally, PF was set to 1000. (e
penalty function used is mostly similar to static penalties
proposed in [40].

3.1. Case Study. In this paper, we aim to optimise two large-
scale structural design problems proposed by the Interna-
tional Student Competition in Structural optimisation
(ISCSO) in 2018 and 2019 [41], respectively. In the following
subsection, the truss problems are explained in more detail.

3.1.1. 314-Bar Truss. (e 314-bar problem introduced in
[42] is a large-scale truss structure, and the main goal is to
minimize the weight of a truss structure, including 314 bars
and 84 nodes, according to the given constraints. (e
challenge is to obtain the optimal truss sizing and shape,
while its topology is considered to be unalterable. (us, the
design variables include 314 sizing (A) and 14 shape (C)
variables (treated as discrete decision variables). Figure 1
shows this truss structure in more detail.

(e optimal solution is to minimize the structural
weight, where no nodes and members violate the stress and
displacement constraints. It means that the feasible solution
possesses a value of zero for the amount of constraint vi-
olation, which is given by the function below:

\begin{equation}
[W,S_{Vio},D_{Vio}]� objective\_function(A,C).
\end{equation}

Here, the function inputs include A and C denoting the
cross-sectional areas and nodal coordinates, respectively.
(e outputs include the structural weight, the amount of
stress and displacement violations, which are represented
with W, DV io and SV io, respectively. Moreover, the sizing
and shape variables can take only integer values limited to
the lower and upper bounds [1, 37] and [9000, 20000],
respectively.

3.1.2. 260-Bar Truss. (e 260-bar problem introduced in
[42] is to minimize the weight of a large-scale steel truss,
consisting of 260 bars and 76 nodes, while satisfying the
stress and displacement constraints. Also, the number of
sizing (A) and shape (C) variables are considered 260 and 10,
respectively. Additionally, the shape variables can take only
integer values in [−25000, 3500]. (e rest of the problem is
similar to the ISCSO 2018. Figure 2 shows this truss problem
in more detail.

4. Methodology

Optimising both structural parameters, sizing and shape
based on the mass to considerable frequency constraints is
challenging because the nature of these problems is highly
nonlinear, multimodal, discrete and complex. Another
difficulty of the truss optimisation problems is the mixing of
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two various parameters, cross-sectional and nodal coordi-
nates which makes a heterogeneous search space. In order to
evaluate the performance of the modern metaheuristics
proposed in the last years, we developed a comparative
platform of the twelve famous bio-inspired optimisation
methods.

(ere are two most significant features of each bio-
inspired search algorithm, including diversification and
intensification. In the first step, in order to explore the search
space and produce diverse solutions globally, an optimisa-
tion algorithm should be developed by a strong diversifi-
cation technique. However, we need an alternative strategy
to converge to a suitable solution that is the intensification
process. In this step, the search focuses on the local areas to
exploit and improve the current solutions. In this study, we
applied and evaluated a wide range of optimisation methods
with specific characteristics in order to propose the best-
performed truss optimizer. Table 1 shows the initial control
parameters of the optimisationmethods applied in this study
based on the recommended in the literature. As in this work

we evaluated and compared 12 optimisation methods, we
just focus on the development of best performing method in
this section to avoid lengthy discussions. In order to find
more technical details about the algorithms applied, we refer
to Ref. [11–22].

4.1.MarinePredatorsAlgorithm(MPA). Faramarzi et al. [19]
introduced MPA, one recently evolved nature-inspired
meta-heuristic algorithms, to address optimisation prob-
lems. (is algorithm’s basic structure focuses on mimicking
various foraging patterns by ocean predators and their
optimal behaviours in attempting to deal with this biological
situation. For optimal foraging, marine predators typically
employ two strategies: (i) Levy flight and (ii) Brownian
motions. To choose between these two strategies, predators
calculate the ratio of the prey’s velocity to their own.

MPA’s primary goal is to provide a practical and
straightforward meta-heuristic algorithm based on marine
predator foraging patterns. Like other (population-based)
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Figure 1: 3D steel truss structure with 314 bars and 84 nodes.(e whole decision variables include 14 shape (C) and 314 sizing (A) elements.
(e shape variables show by Ci and total number of decision variables is 328.
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Figure 2: 3D steel truss structure with 260 bars and 76 nodes. (e whole decision variables include 10 shape and 260 sizing elements. (e
shape variables show by Ci and total number of decision variables is 270.
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algorithms, this algorithm begins by generating a random
population in the problem searching space. As demonstrated
by the survival of the fittest theory, efficient predators are
always better off in terms of foraging in nature. (e best
solution is used in the MPA to construct an elite matrix.(is
matrix’s arrays contain prey position information for
searching and finding prey [19]. (e following is the defi-
nition of the elite matrix:

\begin{equation}
E� \left[ {\begin{array}{cccc} {X_{1,1}̂k}&{X_{1,2}̂k}&
\ldots &{X_{1,d}̂k}
{X_{2,1}̂k}&{X_{2,2}̂k}& \ldots &{X_{2,d}̂k}
\vdots & \vdots & \vdots & \vdots
{X_{n,1}̂k} & {X_{n,2}̂k} & \ldots & {X_{n,d}̂k} \end
{array}} \right].
\end{equation}

Here, X
k

�→
(top predator’s vector) is replicated n times in

order to build an elite matrix. Furthermore, in this equation,
n represents the number of search agents, while d represents
the size of the dimensions. Predators and prey are regarded
as search agents in MPA. Predators and prey are regarded as
search agents inMPA. In other words, when a predator looks

for his prey, the prey looks for food as well.(e food chain in
nature-inspired this trend. (e strongest predator is at the
top of the food chain, and the weakest predators are sub-
divided into the stronger predator group. Obviously, when a
stronger predator appears in this chain, this predator is
moved to the top of the chain and replaces the previous
hunter. (e MPA imitates this concept by updating the elite
matrix.

Prey is the name of anotherMPAmatrix.(is matrix has
dimensions similar to the Elite matrix, and hunters adjust
their positions based on it. More specifically, the initial MPA
population is recognized as prey, while the best ones are
selected as predators, forming the elite matrix. (e prey
matrix looks like this:

\begin{equation}
py� \left[ {\begin{array}{cccc} {{X_{1, 1}}}&{{X_{1,
2}}}& \ldots &{{X_{1, d}}}
{{X_{2, 1}}}&{{X_{2, 2}}}& \ldots &{{X_{2, d}}}
\vdots & \vdots & \vdots & \vdots
{{X_{n, 1}}} & {.{X_{n, 2}}} & \ldots & {{X_{n, d}}} \end
{array}} \right].
\end{equation}

Table 1: (e configuration details of optimisation methods applied the truss shape and sizing problem. Npop is the initial population
size.
%------------------------------
\begin{table}(H)
\Centering
\Caption{ (e configuration details of optimisation methods applied the truss shape and sizing problem. $N_{pop}$ is the initial
population size.}
\label{table:meta-details}
\scalebox{0.9}{
\begin{tabular}{|l|l|l|p{6cm}|}
\hline
& \textbf{Name} & \textbf{$N_{pop}$} & \textbf{Predefined Settings} \\ \hline
1 & Grey Wolf Optimizer (GWO)∼\cite{mirjalili2014grey} & 50 & $\alpha$ decreases linearly from 2 to 0 \\\hline
2 & Moth Flame Optimizer (MFO)∼\cite{mirjalili2015moth} & 50 & $\alpha$ linearly dicreases from -1 to -2 \\\hline
3 &Multi Verse Optimizer (MVO)∼\cite{mirjalili2016multi} & 50 &minimum andmaximum ofWormhole existence probability: WEP$_
{Max}� 1$,∼ WEP$_{Min}� 0.2$, $\rho� 6$. \\\hline
4 & Dragonfly Algorithm (DA)∼\cite{mirjalili2016dragonfly} & 50 &$w� 0.9–0.2$, $s� 0.1$, $a� 0.1$, $c� 0.7$, $f� 1$, $e� 1$. \\\hline
% 5 & Sine Cosine Algorithm (SCA)∼\cite{mirjalili2016sca} & 50 & $\alpha� 2$; $r_1� \alpha$ decreases linearly from $\alpha$ to 0
\\\hline
5 & Henry Gas Solubility optimisation (HGSO)∼\cite{hashim2019henry}& 50& $N_g� 5$, $l_1� 0.05$, $l_2�100$, $l_3� 0.01$,
$\alpha� 1$, $\beta� 1$, $c_1� 0.1$, $c_2� 0.2$ \\\hline
6 & Equilibrium Optimizer (EO)∼\cite{faramarzi2020equilibrium} & 50 & $\omega_1� 1,∼\omega_2� 2$, $GP� 0.5$(�generation
probability), $V� 1$. \\\hline
7 & Arithmetic optimisation Algorithm (AOA)∼\cite{abualigah2021arithmetic} & 50 & $MOP_{Max}� 1$,
$MOP_{Min}� 0.2$, $C_{iter}� 1$, $\alpha� 5$, $\mu� 0.499$ \\\hline
8 & Generalized Normal Distribution (GNDO)∼\cite{zhang2020generalized} & 50 & applied the default settings. \\\hline

9 & Salp Swarm Algorithm (SSA)∼\cite{mirjalili2017salp} & 50& $c_1$ decreased from 2 to zero. $c_2� rand$ and $c_3� rand$ \\\hline

10 &Marine Predators Algorithm (MPA)∼\cite{faramarzi2020marine} & 50& $p� 0.5$, $FAD� 0.2$ \\\hline
11 &Neural Network Algorithm (NNA)∼\cite{sadollah2018dynamic} & 50& pre-defined settings \\\hline
12 &Water Cycle Algorithm (WCA)∼\cite{eskandar2012water} & 50& $N_{sr}� 4$, $D_{max}� 10̂{-5}$ \\\hline
\end{tabular}
}
\end{table}
%--------------------
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Here, X(i,j) depicts the ith prey with jth dimension. In
general, the entire optimisation process in MPA is depen-
dent on these two matrices.

Given the various phases and patterns of hunting for
both marine predators and prey and the impact of the
predator and prey speed on themodelling of this process, the
MPA algorithm is divided into three significant steps. (e
following are the steps:

(i) High-velocity: during this phase, the prey’s speed
exceeds that of the predator

(ii) Unity-velocity: the speed of the predator and prey
would be the same in this phase

(iii) Low-velocity: the prey is slower than the predator at
this phase

Although predator and prey movements in nature follow
unique rules and inspire the main phases of the algorithm,
the MPA assigns the specified number of iterations to these
phases.

4.1.1. Phase 1: (High-Velocity). (is phase is used in early
MPA iterations where the prey outruns the predators.
Predators have the least movement during this phase, so
staying in their positions is the best strategy. (e MPA
defines this phase as follows:

\begin{equation}
{\text{while}}\;\t< \frac{1}{3}∗{t_{{\rm
{max}}}}\longrightarrow.
{{\overrightarrow{Step}}_i}� {{\vec{R}}_B}\oti-
mes\left({{{\overrightarrow{Elite}}_i}-{{\vec{R}}
_B}\otimes\overrightarrow{prey
{_i}}}\right)\longrightarrow.
{\overrightarrow{prey}_i}� {\overrightarrow{prey}
_i} + P∗\vec{R} \otimes {\overrightarrow{Step}_i}
\end{equation}

where RB is a random number generated using the
normal distribution and displaying Brownian motion, the
⊗ symbol represents entry-wise multiplications. Prey
movements are simulated by multiplying RB by prey.
(e uniform random numbers [0, 1] are arranged in a
vector, and the constant number 0.5 is assigned to P. t
and tmax are the current and maximum iterations, re-
spectively. (is phase takes place when the algorithm’s
initial iterations necessitate a high level of exploration
capability.

4.1.2. Phase 2: (Unity-Velocity). Predators and prey move at
the same speed in the second phase of the MPA algorithm.
(is stage in nature indicates that they are both looking for
their own prey. (e occurrence of this phase in the middle
of the optimisation process demonstrates the algorithm’s
early stages of transition from exploration to exploitation.
(e MPA characterizes the prey for exploration and the
predators for exploitation in this specific instance. Fur-
thermore, during this phase, the prey moves according to

the Levy theorem and the predators according to Brownian
motions. (is phase will be modelled in the following
manner:

%---------------
\begin{equation}
{\text{while}}\;\\frac{1}{3}∗{t_{{\rm{max}}}}
< \t< \frac{2}{3}∗{t_{{\rm{max}}}}.
\end{equation}
\begin{equation} \label{eq:phase2-1}
{\overrightarrow{Step}_i}� {\vec{R}_L}\otimes
\left({{{\overrightarrow{Elite}}_i}-{{\vec{R}}_L}\oti-
mes\overrightarrow{prey{_i}}} \right) \longrightarrow.
{\overrightarrow {prey} _i}� {\overrightarrow {prey}
_i} + P∗\vec{R} \otimes\{\overrightarrow{Step}_i}.
\end{equation}
\begin{equation} \label{eq:phase2-2}
{\overrightarrow{Step}_i}� {\vec{R}_B}\oti-
mes\left({{{\vec{R}}_B}\otimes{{\overrightarrow
{Elite}}_i}-\overrightarrow{{prey_i}}}\right)
\longrightarrow.
{\overrightarrow {prey} _i}� {\overrightarrow{Elite}_
{{i}_i}} + P∗{\rm{CF}} \otimes \ {\overrightarrow{Step}
_i}.
\end{equation}
%--------------

It is critical to emphasize that equation (8) is applied to
the first half of the MPA population. (is equation RL

�→

generates random numbers based on the Levy distribution to
simulate the Levy movement [43]. In the Levy strategy, the
multiplications of RL

�→
and prey are used to simulate the

movements of prey. (e MPA’s exploitation phase is per-
formed using the strategy introduced in this phase. Equation
(9) is how the second part of this step is simulated for the rest
of the population:

In equation (10), CF is used as an adaptive parameter to
control the step size of the predator’s movement. Further-
more, in the Brownian strategy, the predator’s movement is
simulated by multiplying RB

�→
by Elite. (e position of the

prey is improved as a result of the predator’s Brownian
movements during this phase.

%-----------------
\begin{equation}
\label{eq:cf}
{\rm{CF}}� {\left({1 - \frac{t}{{{t_{{\rm{max}}}}}}}
\right)̂{\left({2\frac{t}{{{t_{{\rm{max}}}}}}} \right)}}.
\end{equation}
%-----------

4.1.3. Phase 3: (Low-Velocity). (is process was simulated in
order to provide MPA with a high level of exploitation
potential. (is step is put in place in the algorithm when the
prey’s speed is slower than the predator’s. Predators employ
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Levy’s strategy to ensure that this process is carried out
correctly in the MPA.(is procedure is modelled as follows:

%----------
\begin{equation}
{\text{while}}\;{\text{it}}> \frac{2}{3}∗{\rm{max_
{iter}}} \longrightarrow.
{{\overrightarrow{Step}}_i}� {{\vec{R}}_L}\oti-
mes\left({{{\vec{R}}_L}\otimes{{\overrightarrow
{Elite}}_i}-\overrightarrow{prey
{_i}}}\right)\longrightarrow.
{\overrightarrow{prey}_i}� {\overrightarrow{Elite}
_i} + P∗{\rm{CF}}\otimes\{\overrightarrow{Step}_i}
\end{equation}
%--------------

In the Levy strategy, predator movement is defined by
the multiplication of RL

�→
and Elite. Besides, Elite includes a

step size to mimic predator movement in this equation and
assist prey in updating their position.

4.1.4. Eddy Formation and FAD’s Effect. Several factors
could influence marine predators’ foraging patterns in
general. Environmental issues are one of the significant
factors that can have a crucial impact on the behaviour of
these predators. Eddy currents and fish aggregating devices
(FAD) are two major environmental issues in these behav-
ioural changes. Filmalter et al. [43] discovered that sharks
spend the vast majority of their hunting time (nearly 80%)
near FADs in the wild. Furthermore, the remainder of the
shark hunting time is spent locating areas with specific prey
distributions. (ese FADs are regarded as local optimum
points in the MPA, capable of trapping the algorithm. As a
result, the effect of FADs on the MPA algorithm is as follows:

\begin{equation}
{\overrightarrow {prey} _{\rm{i}}}� \\
\left\{ {\begin{array}{ll} {{\overrightarrow {prey} }
_i} + {\rm{CF}}\left[ {{{\vec{X}}_{min}} +R \otimes
({{\vec{X}}_{max}} - \ {{\vec{X}}_{min}}} \right)]
\otimes \vec{U} & {\text{if}}\ r< {\rm{FADs}}\\
{{\overrightarrow {prey} }_i} + \left[ {{\rm{FAD-
s}}\left({1 - r} \right) + r} \right]\left({{{\overrightarrow
{prey} }_{r_1}} - {{\overrightarrow {prey} }_{r_2}}}
\right) & {\text{if}}\ r> {\rm{FADs}} \end{array}}
\right.
\end{equation}
%----------------------

Here, X
→

min and X
→

max are the lower and upper bounds of
the dimensions, respectively. U

→
creates a binary vector

consisting of zero and one array. (e FAD factor is the
probability of FADs influencing the optimisation process,
and its value is set to 0.2. On the other hand, r is defined as a
uniform random number that generates values between [0,
1]. Subscription of r1 and r2 denotes random prey matrix
indexes.

5. Experimental Results

In this section, we demonstrate the optimisation outcomes
achieved by twelve state-of-the-art meta-heuristics in order
to minimize the total weight of two truss structures. For all
search algorithms, the originally recommended parameters
with the same population size were applied to provide a fair
comparison framework.

In Figure 3, each curve represents the development of the
average truss’s weight plus the penalty of 314-bar case study
that yielded by the best-found design for each optimisation
method over 105 evaluation iterations. From this conver-
gence plot, we can observe that the optimisation methods
can be classified into two groups. First, optimisation strat-
egies with a high convergence rate. (ese methods have a
heightened exploitation ability include AOA, DA, GNDO,
MPA, HGSO, and SSA. In the second group, we can see four
methods with slow convergence speed, such as GWO, EO,
MFO and MVO. In this case study (314-bar), the fastest
convergence rate is related to the MPA, which could find a
relative-optimal structure; however, it struggled with a local
optimum and could not escape from this situation. To have a
general observation from Figure 3, except for DA, all
methods in the second group were converged to a local
optimum design in the same iteration approximately. (e
DA could improve the best-found solutions after 4 × 104
evaluation number.

In order to provide an accurate comparison framework
for these twelve optimisation methods’ performance, we
plotted Figure 4. In this figure, each box shows the 25% and
75% percentiles of the best-found solutions (upper and lower
edges) and the median of the outcomes represented by the
central tag. On each box, we can see the extended whiskers
for the data points with larger variance, and finally, the
outliers are depicted by the ‘+’ symbol. From Figure 4, the
most important observation is that both MPA and DA are
the best-performed optimisation methods compared with
other algorithms.

A comparison of the convergence rate of twelve op-
timizers for the 260-bar truss can be seen in Figure 5. (e
Figure depicts that SSA and GNDO have the most con-
siderable convergence speed; however, the mean weight of
260-bar proposed by MPA can be significantly better.
Interestingly, the whole methods applied for this large
truss could not improve the quality of the solutions after
24 iterations. (is premature convergence shows these
meta-heuristics are not able to exit from the local optima.
(e highly dynamic constraints and large number of
decision variables of the this truss problem can be the
most significant reason for the premature convergence
issue. (e statistical results of the best-found solutions for
twelve algorithms summarize in Figure 6. (e Figure il-
lustrates that both MPA and AOA could propose the best
configuration of 260-bar compared with others methods
applied. Moreover, the performance of the SSA
and GNDO is considerable. In the 260-bar case study, the
DA’s exploration and exploitation strategies were not
effective in figuring out the challenging constraints of the
problem.
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(e statistical performance (best, worst, average, median
and standard deviation) of these optimisation methods is
quantified in Table 2 for both case studies, 314-bar and 260-
bar. It can be seen that the best-found designs were proposed
by the MPA in both truss problems. It is noted that the
reported solutions in Table 3 are an accumulated structure
weight and the penalty value. (e second best method is the
AOA on average in both truss problems.

In order to tune a proper population size for the MPA,
we tested four population sizes consisting of 50, 100, 250,

and 500 with the same evaluation number at 105. Figure 7
shows the convergence speed of this competition among
four sizes of the MPA population. It can be seen that the
performance of MPA with a population size of 100 out-
weighs other settings in terms of designs weight. (e sig-
nificant observation from Figure 7 is that the population size
of 50 cannot be an efficient setting for theMPA and wakened
the optimisation process.
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Figure 3: A convergence rate comparison of twelve optimisation
methods applied for the large-scale 314-bar truss problem. (e
maximum number of evaluation is 105. Total number of decision
variables is 328.
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Figure 4: box plot of twelve various optimisation methods’ per-
formance for 314-bar truss problem.
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Figure 6: Statistical analysis of the optimisation methods’ per-
formance for 260-bar truss problem. (e best-found solution per
each run.
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Table 2: (e statistical results of the best-found truss structures for 12 optimisation methods.
\begin{table}[]
\centering
\caption{ (e statistical results of the best-found truss structures for 12 optimisation methods.}
\label{table:best_found}
\scalebox{0.7}{
\begin{tabular}{lllllllllllll}
\hlineB{4}
& \multicolumn{10}{c}{260-bar truss} & \multicolumn{1}{c}{} & \multicolumn{1}{c}{} \\ \hlineB{3}
& DA & GNDO & EO & AOA & GWO & HGSO & MFO & MVO & SSA & MPA & NNA & WCA \\ \hlineB{4}
Min & 2.793E+05 & 1.318E+05 & 1.904E+06 & 1.204E+05 & 3.392E+06 & 1.141E+06 & 1.874E+06 & 7.753E+05 & 5.091E+05 & \textbf
{4.452E+04} & 5.537E+04 & 3.086E+05
Max & 4.336E+06 & 8.669E+05 & 3.831E+06 & 1.801E+05 & 1.025E+07 & 4.181E+06 & 4.555E+06 & 2.843E+06 & 7.212E+05 & 7.031E+04
& 1.025E+05 & 9.297E+05
Mean & 1.756E+06 & 4.224E+05 & 2.994E+06 & 1.423E+05 & 6.347E+06 & 1.862E+06 & 2.844E+06 & 1.632E+06 & 6.182E+05 &
5.777E+04 & 7.305E+04 & 5.485E+05
Median & 1.352E+06 & 3.930E+05 & 3.298E+06 & 1.399E+05 & 5.855E+06 & 1.545E+06 & 2.464E+06 & 1.516E+06 & 6.146E+05 &
5.836E+04 & 6.973E+04 & 5.091E+05
STD& 1.482E+06 & 2.372E+05 & 7.436E+05 & 1.811E+04 & 2.029E+06 & 9.217E+05 & 1.002E+06 & 6.528E+05 & 6.302E+04 & 7.729E+03
& 1.306E+04 & 1.781E+05 \\ \hlineB{4}
& \multicolumn{10}{c}{314-bar truss} & \multicolumn{1}{c}{} & \multicolumn{1}{c}{} \\ \hlineB{3}
& DA & GNDO & EO & AOA & GWO & HGSO & MFO & MVO & SSA & MPA & NNA & WCA \\\hlineB{3}
Min & 3.934E+04 & 1.031E+05 & 4.578E+05 & 1.223E+05 & 1.152E+06 & 2.315E+05 & 3.269E+05 & 4.089E+05 & 2.107E+05 & \textbf
{3.888E+04} & 8.769E+04 & 1.254E+05
Max& 4.598E+04 & 2.723E+05 & 1.076E+06 & 1.408E+05 & 1.738E+06 & 3.864E+05 & 1.184E+06 & 9.286E+05 & 2.885E+05 & 4.430E+04
& 1.145E+05 & 2.515E+05
Mean & 4.217E+04 & 1.795E+05 & 8.122E+05 & 1.283E+05 & 1.507E+06 & 2.882E+05 & 8.925E+05 & 5.463E+05 & 2.536E+05 &
4.145E+04 & 1.006E+05 & 1.975E+05
Median & 4.192E+04 & 1.653E+05 & 7.848E+05 & 1.279E+05 & 1.567E+06 & 2.875E+05 & 9.080E+05 & 5.161E+05 & 2.590E+05 &
4.121E+04 & 9.906E+04 & 2.048E+05
STD& 1.647E+03 & 5.375E+04 & 2.141E+05 & 5.298E+03 & 2.303E+05 & 4.896E+04 & 2.389E+05 & 1.602E+05 & 2.784E+04 & 1.697E+03
& 8.896E+03 & 4.533E+04 \\ \hlineB{4}
\end{tabular}
}
\end{table}
%---------------

Table 3: Shows the average sum-rank Friedman test for the 314-bar and 260-bar problems using twelve optimisation methods. It can
be observed that the MPA achieved the first rank in both case studies on average, and in the following the NNA, AOA and GNDO
placed the second, third, and fourth rank of the truss optimisation.
\begin{table}[]
\centering
\caption{(e average performance rank of 12 optimisation methods based on the best-found designs. significant level of the Friedman test
is 0.05.}
\label{table:rank}
\scalebox{0.8}{
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l}
\hlineB{4}
& {DA} & {GNDO} & {EO} & {AOA} & {GWO} & {HGSO} & {MFO} & {MVO} & {SSA} & {MPA}&{NNA} & {WCA}\\ \hlineB{3}
314-bar & 2&5&10&4&12&8&11&9&7&1&3&6 \\ \hline
260-bar & 8&4&11&3&12&9&10&7&6&1&2&5 \\ \hline
Mean rank & 5&4.5&10.5&3.5&12&8.5&10.5&8&6.5&1&2.5&5.5 \\\hlineB{4}
\end{tabular}
}
\end{table}
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In order to show the best-found structure of two case
studies, 314, and 260-bar trusses, Figure 8 and Figure 9 are
plotted. In both designs, we can see a few number of bars that
are violated under stress and displacement forces (highlighted
by red colour). (e total sum violations are low in both cases;

however, in the real applications, these violations should be
minimised as much as possible near to zero.(is comparative
optimisation framework obviously shows that the meta-
heuristics applied in this study need to be improved in terms
of the constraint handling methods specifically.
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Figure 7: A convergence rate comparison of four different population sizes of MPA optimisationmethod applied for the large-scale 260-bar
truss problem. (e maximum number of evaluation is 105. A zoom version of the figure can be seen in top right side.
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6. Conclusion

(is paper used 12 modern meta-heuristic algorithms to
consider the truss shape and sizing optimisation problem.
To handle the violation of constraints, we applied a
penalty function that is a popular method in this way.
Different penalty factors were evaluated to find the best
value in terms of best-found designs. Two various truss
problems are used in this study. Both of them have a large
structure composed of 314 and 260 bars, respectively. It is
assumed that the topology of the truss should be fixed and
unalterable. (e optimal truss shape and sizing variables
should be obtained by minimizing the structural weight
with respect to nodal displacement constraints, element
stress constraints, and natural frequencies. (ese complex
constraints make a challenging optimisation problem,
which is large-scale, nonlinear, multimodal with dynamic
constraints. As global optimisation algorithms are mostly
efficient and robust, we mainly focus on the application of
metaheuristics, especially modern swarm optimisation
methods, to the truss optimisation problems in this study.
Indeed, we applied twelve different bio-inspired optimi-
sation methods in order to evaluate and develop a com-
parative framework for the large-scale truss problems. To
have a fair comparison, all control parameters were set
according to literature recommendations for each opti-
misation algorithm.(is is because there is no simple way
to obtain the best parameter values. From an engineering
point of view, the performance of the MPA method is
better than other optimisation methods used in this study
because of a combination of fast and effective exploration
and exploitation search strategies. Furthermore, we tuned
the population size of the MPA and showed that 100 could
be a better option than other dimensions.
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