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Robust Face Alignment via Inherent Relation
Learning and Uncertainty Estimation

Jiahao Xia, Min Xu, Haimin Zhang, Jianguo Zhang, Wenjian Huang, Hu Cao and Shiping Wen

Abstract—Human tends to locate the facial landmarks with heavy occlusion by their relative position to the easily identied landmarks.
The clue is dened as the landmark inherent relation while it is ignored by most existing methods. In this paper, we present Dynamic
Sparse Local Patch Transformer (DSLPT), a novel face alignment framework for the inherent relation learning and uncertainty
estimation. Unlike most existing methods that regress facial landmarks directly from global features, the DSLPT rstly generates a
rough representation of each landmark from a local patch cropped from the feature map and then adaptively aggregates them by a
case dependent inherent relation. Finally, the DSLPT predicts the coordinate and uncertainty of each landmark by regressing their
probability distribution from the output features. Moreover, we introduce a coarse-to-ne framework to incorporate with DSLPT for an
improved result. In the framework, the position and size of each patch are determined by the probability distribution of the
corresponding landmark predicted in the previous stage. The dynamic patches will ensure a ne-grained landmark representation for
inherent relation learning so that a rough prediction result can gradually converge to the target facial landmarks. We integrate the
coarse-to-ne model into an end-to-end training pipeline and carry out experiments on the mainstream benchmarks. The results
demonstrate that the DSLPT achieves state-of-the-art performance with much less computational complexity. The codes and models
are available at https://github.com/Jiahao-UTS/DSLPT.

Index Terms—Face Alignment, Coarse-to-ne Regression, Inherent Relation Learning, Uncertainty Estimation.

✦

1 INTRODUCTION

FACE alignment aims at predicting a group of pre-dened
landmarks from a face image. It is the basis for many

computer vision applications, such as facial emotion recog-
nition [1], [2], face recognition [3], face parsing [4] and face
reenactment [5]. Despite recent progress, it still suffers from
some limitations, such as high computational complexity
and low robustness with heavy occlusion, illumination vari-
ation and prole view.

Human tends to locate the landmarks with heavy occlu-
sion or illumination variation by their relative position to
the easily identied landmark. We dene this clue as the in-
herent relation and the relation is case dependent. Although
both heatmap regression methods [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21] [22], [23]
and coordinate regression methods [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37] [38], [39], [40],
[41] show an impressive improvement in recent years, none
of them take the inherent relation among landmarks into
consideration, which results in fragile robustness. In terms
of heatmap regression methods, these methods usually fail
to capture the relations of landmarks farther away in a
global manner since convolutional neural network kernels
focus locally. A coherent inherent relation should be learned
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together with a ne-grained local appearance while coor-
dinate regression methods lose the information by directly
projecting the feature map into fully connected (FC) layers.
Moreover, the weights of FC layers are frozen during in-
ference, resulting in the model not being able to aggregate
feature adaptively for a case dependent relation.

The other issue that limits the performance of face
alignment is that most existing face alignment methods are
based on an assumption: the variance of the probability
distribution for all landmarks is a constant number. For
instance, heatmap regression methods generate heatmaps
with a xed variance as the learning objective; coordinate re-
gression methods utilize L1 or L2 loss to constrain the model
learning; patch-based regression methods [6], [34], [41] set
the local patch of each landmark to a xed size. However,
through observation, we nd that the easily identied land-
mark results in a smaller variance and the landmarks with
high uncertainty always have a larger variance. Therefore,
the assumption does not usually hold and using the patch
with a xed size may lead to performance degradation
to face alignment. Unfortunately, the existing patch-based
regression methods have not solved the problem yet.

In this paper, we propose a novel framework, Dy-
namic Sparse Local Patch Transformer (DSLPT) to solve the
two aforementioned problems. Unlike existing coordinate
regression methods that directly project the feature map
into FC layers, DSLPT rstly crops a local patch for each
landmark according to an initial mean face calculated from
training samples [30] and then embeds it into a vector. Each
vector can be regarded as a rough representation of the cor-
responding landmark. Then, the landmark representations
are added with the proposed structure encoding to retain
the structure information of a regular face. Subsequently, a
series of landmark queries adaptively aggregate the repre-
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Fig. 1: The proposed coarse-to-ne framework leverages the
dynamic patches for robust face alignment. The initial local
patches are cropped according to a mean face. Then, the
size and position of each patch are adjusted dynamically
according to the location and uncertainty predicted in the
previous stage for ne-grained representation. The blue
and green point indicate the initial and predicted landmark
respectively. The uncertainty of each landmark is shown by
pink circle.

sentations based on the attention mechanism, which enables
DSLPT to learn a case dependent inherent relation. Instead
of predicting the numerical coordinates directly, DSLPT
predicts the probability distribution of each landmark with
log-likelihood estimation. The mean and variance of the
distribution can be viewed as the coordinate and uncertainty
respectively.

To further improve the performance of DSLPT, we intro-
duce a coarse-to-ne framework to incorporate with DSLPT
so that a rough predicted result can converge to the target
facial landmarks gradually, as shown in Fig. 1. Instead of
using the patch with a xed size like other patch-based
regression methods, the position and size of each patch are
determined by the predicted position and uncertainty of
the corresponding landmark in the previous stage. A larger
patch size commonly leads to more contextual information
but lower feature resolution, and vice versa. The dynamic
patch applies a relatively large patch size to the landmarks
with high uncertainty for more contextual information and
a relatively small patch size to the landmarks with low
uncertainty for high feature resolution. It enables the model
to obtain the advantages of large patch size and small patch
size simultaneously.

Moreover, compared to heatmap regression and coor-
dinate regression methods, DSLPT has the following ex-
tra unique advantages: 1) The sparse local patches signi-
cantly decrease the token number in Transformer [42], mak-
ing DSLPT more efcient than other methods, especially

heatmap regression methods. 2) DSLPT retains the spatial
information and aligns the features to the corresponding
landmarks by the dynamic local patches. 3) DSLPT does
not have a quantization error as heatmap regression meth-
ods. Most heatmap regression methods cannot predict the
fractional part of landmark coordinates, which results in
an inevitable quantization error during transforming the
predicted heatmaps into the numerical coordinates.

To verify the effectiveness of DSLPT, we combine DSLPT
with a series of backbone and carry out extensive experi-
ments on eight popular benchmarks with different number
of pre-dened landmarks. The results demonstrate that
DSLPT achieves the state-of-the-art performance on all
benchmarks with only 15 ∼ 12 computational complexity.
Moreover, to further verify the transferable capability of
DSLPT, we extend DSLPT to human pose estimation. The
results and discussions can be found in the supplementary
le.

A preliminary version of this work appeared as [43].
In this extended journal version, we further address the
limitations of the previous work from the following aspects:
1) DSLPT predicts the probability distribution of each land-
mark rather than a numerical coordinate like the original
Sparse Local Patch Transformer (SLPT). The distribution
prediction promises a more coherent result and the variance
can further serve as the uncertainty of the corresponding
landmark. 2) The patch size in DSLPT is determined by
the predicted uncertainty while the patch size in the orig-
inal version is a constant number. The dynamic patch size
enables DSLPT to employ more contextual information to
locate the landmark with high uncertainty and high feature
resolution to locate the landmark with low uncertainty. 3)
We implement DSLPT with four well-designed backbones
and evaluate them on eight benchmarks. A more compre-
hensive analysis of their performance and computational
complexity in different conditions is given. 4) We extend
DSLPT to human pose estimation to verify its transferable
capability. The results illustrate it is possible to apply DSLPT
in other more challenging tasks.

The main contributions of this work can be summarized
as:

• A Dynamic Sparse Local Patch Transformer is pro-
posed to explicitly learn a case dependent inherent
relation so that the landmark with heavy occlusion
can be located robustly according to their relative
position to the easily identied landmarks.

• This paper proposes the dynamic patch, a kind of
patch whose position and size adjust according to the
predicted probability distribution of the correspond-
ing landmark. It ensures more ne-grained landmark
representations for better robustness compared to the
patches with a xed size.

• We further introduce a coarse-to-ne framework to
incorporate with the DSLPT and integrate it into an
end-to-end training pipeline. The framework enables
a rough predicted result to converge to the target
facial landmarks gradually.

• Extensive experiments and ablation studies are car-
ried out on eight widely used face alignment
benchmarks. The results demonstrate that the pro-
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posed method achieves competitive performance
with much less computational complexity. Besides,
we extend DSLPT to human pose estimation and the
results show DSLPT has good transferable capability.

2 RELATED WORK

As a fundamental technique for many applications, face
alignment has been investigated for decades. In the early
stage, face alignment methods commonly rely on generative
PCA-based shape models, including Active Appearance
Model (AAM) [44], Active Shape Model (ASM) [45], Con-
strained Local Model (CLM) [46] and their extensions [47],
[48]. Because of the fragile robustness and low generaliza-
tion, they can only be applied in constrained scenarios. To
achieve face alignment in the wild, a more robust architec-
ture, Cascade Shape Regression (CSR) model [49], [50], [51]
[52], [53] is proposed and it dominates face alignment until
convolutional neural network (CNN) is widely applied in
face alignment. The existing CNN based methods can be
roughly divided into two categories: coordinate regressing
methods [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37] [38], [39], [40], [41] and heatmap
regression methods [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21] [22], [23]. With stronger
expressive capability, CNN based methods have boosted the
performance of face alignment signicantly.

2.1 Coordinate Regression Methods

Coordinate regression methods regress the coordinate of
facial landmarks from the input image directly. To improve
the robustness of coordinate regression methods, diverse
cascaded framework [27], [30], [34], recurrent networks [24],
[25] and optimized loss [32], [40] are proposed. Zadeh et
al. [6], Liu et al. [34] and Zhu et al. [41] further develop
novel patch based regression models to predict a ne-
grained result on the local patches. Nevertheless, their patch
size is xed and determined by prior knowledge, which
cannot ensure an effective feature for all cases. Besides,
patch based methods regress the coordinate of each facial
landmark merely from its corresponding patch, ignoring the
contextual information of other patches. Despite DSLPT also
being a patch based regression method, these drawbacks
can be tackled by the proposed dynamic patch and inherent
relation learning.

Different from other tasks, the number of training sam-
ples in face alignment is very limited, which usually leads
to overtting. To address the problem, Qian et al. [54]
and Dong et al. [35] expand the training samples by style
transfer; Browatzki et al. [20] and Dong et al. [11] leverage
unlabeled samples for training by semi-supervised learning.
Zhu et al. [28], [29], Guo et al. [37] and Wu et al. [39]
further achieve 3D face alignment by directly regressing the
parameters of the 3D morphable model (3DMM) [55]. In
recent years, many methods have noticed that face structure
is crucial to the performance of face alignment. Lin et
al. [40] retain the structure information by an adjacency
matrix dened by prior knowledge. Li et al. [38] further
improve the performance by a learnable adjacency matrix
so that the network can explore a task-specic structure.

The structure information is also the cornerstone of inherent
relation learning. Therefore, the proposed structure encod-
ing is introduced into DSLPT for retaining face structure
information, encoding the landmark distance of a regular
face into cosine similarity.

2.2 Heatmap Regression Methods

Heatmap regression methods regress an intermediate
heatmap for each landmark by a backbone with a series
of downsampling and upsampling layers [7], [8], [9], [10]
and consider the pixel with the highest intensity as the
optimal output. Therefore, the output coordinate can only
be an integer that leads to a quantization error since the
resolution of heatmap is always lower than the input image.
To eliminate the error, Lan et al. [22] adopt an additional
decimal heatmap for subpixel estimation; Zhang et al. [18]
utilize another network for subpixel offset estimation; Chen
et al. [15], Tai et al. [17] and Kumar et al. [19] further
predict landmark probability distribution on the heatmap
for subpixel coordinate.

Moreover, most heatmap regression methods also ignore
the inherent relation between landmarks. Wu et al [31],
Wang et al. [13] and Huang et al. [23] set facial boundary
heatmap regression as an additional regressing objective
for learning the relation between neighboring landmarks.
Zou et al. [16] further project the output heatmaps into a
graph network and model the holistic and local structure
by clustering. However, the learned relation is xed to all
cases. An ideal inherent relation should be case dependent
but there is no work yet on this topic unfortunately. Hence,
we propose a method to ll this gap.

Recently, the development of Vision Transformer (ViT)
[42] breaks the record of many computation vision tasks,
such as image classication [42], [56], [57], object detection
[58], [59] and semantic segmentation [60]. Although ViT
models also break the record of a very similar task, human
pose estimation [61], [62], directly applying ViT in face align-
ment does not promise an improvement because training
ViT requires a large number of training samples. Lan et al.
[22] generates decimal heatmaps by ViT. Unfortunately, the
ViT based model fails to outperform CNN based model.
To address the problem, Zheng et al. [63] pretrain ViT
on a very large dataset by contrastive learning and ne-
tune the model with annotated samples for heatmap regres-
sion. Different from other works, the patch size of DSLPT
is dynamic and determined by the predicted uncertainty,
which signicantly augments the training data. Therefore,
DSLPT achieves state-of-the-art performance with very lim-
ited training samples.

3 METHODOLOGY

The proposed method mainly consists of three parts: the
Dynamic Sparse Local Patch Transformer for adaptive in-
herent relation learning, the distribution estimation part for
patch size and localization adjustment, and the coarse-to-
ne framework for ne-grained result. Each of these parts
plays an important role in face alignment and we will
describe them in the following sections.
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Fig. 2: A pipeline of the DSLPT. The DSLPT rstly crops the supporting patch for each landmark from the feature map
according to the facial landmarks predicted in the previous stage. The patch is then embedded into a vector as the
representationR of the corresponding landmark. Subsequently, they are added with the structure encoding P to retain the
structure information of face. A xed number of landmark queries Q are fed into the inherent relation layer, adaptively
aggregating the representations based on a learned inherent relation. Finally, the probability distribution of each landmark
is predicted independently from the output features. The rightmost images demonstrate the predicted uncertainty and the
inherent relation of different cases. Each landmark is connected with the landmark with the highest cross attention weight.
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Fig. 3: Left: cosine similarity of the structure encodings
learned from 98 landmarks and 68 landmarks datasets. The
high cosine similarity between two encodings indicates the
corresponding landmarks are close in the regular face shape.
Right: to better visualize, we connect each landmark to the
landmark with the highest, second highest and third highest
similarity respectively.

3.1 Dynamic Sparse Local Patch Transformer

As shown in Fig. 2, the DSLPT consists of three complemen-
tary components: patch embedding & structure encoding,
inherent relation layers and prediction heads.

3.1.1 Patch Embedding & Structure Encoding

Instead of learning a global representation like other ViT
models [42], DSLPT aims at learning the inherent relation
among landmarks. Therefore, the input to DSLPT should
be landmark representations rather than regular patches.
To generate the landmark representation, DSLPT crops the
sparse local patches with size (W i

n, H
i
n) (i and n are the

index of stage and landmark respectively) from the feature

map F according to the landmarks Si−1 predicted in the
previous stage (S0 is a mean shape calculated from the
training set). Each patch can be regarded as the supporting
patch of the corresponding landmark. Then, the patches
with different sizes are resized to (Pw, Ph) by linear inter-
polation and embedded into a d-dimension representation
by a CNN layer with a kernel size of (Pw, Ph).

Human face has a regular shape and the relative position
of the landmarks in the shape is dened as the structure
information in many works [40], [38]. Nevertheless, the
structure information is missing in the sparse local patches.
ViT retains the spatial information of patches with a 1D or
2D position encoding generated by cosine & sine function
[64]. Unfortunately, face shape is hard to be represented by
a 1D or 2D encoding. To retain the structure information,
we propose the structure encodings P ∈ RN×d (N is the
landmark number and d is the dimension of landmark
representation), which are learnable vectors and updated
by back propagation. We then add them to the landmark
representations. The neighboring and symmetrical patches
commonly have high similarity in appearance, and the
principle can be used for describing the face structure. The
structure encodings learn the similarity during the training
procedure. As a result, they encode the relative position
of facial landmarks into the cosine similarity and further
retain the structure information. As shown in Fig. 3, the
structure encoding tends to have high cosine similarity with
the structure encoding of the neighboring and symmetrical
landmarks. Besides, the cosine similarity map of 98 land-
marks is similar to the adjacency matrix generated by prior
knowledge in [40], which means the structure information
learned by unsupervised learning in DSLPT is quite close to
human prior knowledge.
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3.1.2 Inherent Relation Layer

Inspired by the attention mechanism of Transformer [64],
we propose the inherent relation layer for learning a case
dependent inherent relation. Each inherent relation layer
mainly consists of three blocks: a multi-head self-attention
(MSA) block, a multi-head cross-attention (MCA) block and
a multilayer perceptron (MLP) block. Moreover, an addi-
tional Layernorm (LN) is applied before every block. The
MSA block learns an inter query-query relation based on the
self-attention mechanism. The self-attention weight of the
m-th head Am can be formulated as:

Am = softmax

(
T j
m +Qm


W q

m


T j
m +Qm


W k

m

T
√
dm

)
,

(1)
where j and m are the index of inherent relation layers and
attention heads respectively. M is the number of attention
heads and the input dimension of m-th head dm can be
written as dm = dM . W q

m ∈ RN×dm and W k
m ∈ RN×dm

are the weights of FC layers. T j
m ∈ RN×dm is the input of

the m-th head in the j-th MSA block (T j
m is a zero matrix in

the rst layer). The output of the MSA block can be written
as:

MSA

T j


=

[
A1T

j
1W

v
1 ; ;AMT j

MW v
M

]
W p, (2)

where W v
m ∈ RN×dm and W p ∈ RN×d are the weights of

FC layers.
Subsequently, the MCA block aggregates the landmark

representations by an inter representation-query relation. As
shown in the right of Fig. 2, we connect each landmark
to the landmark with the highest cross-attention weight in
the rst inherent relation layer. The model tends to localize
the occluded landmark according to the easily identied
landmarks. As for other landmarks, their localization ac-
curacy can be further improved with the representation of

neighboring landmarks. The cross-attention weight of m-th
head A′

m can be formulated as:

A′
m = softmax

(
T j′
m +Qm


W q′

m


(Rm + Pm)W k′

m

T
√
dm

)
,

(3)
where T j′

m ∈ RN×dm is the input of the m-th head in the j-
th MCA block; Rm ∈ RN×dm and Pm ∈ RN×dm are the
layer representations and structure encoding respectively
in the m-th head; W q′

m ∈ RN×dm and W k′
m ∈ RN×dm are

the weights of FC layers. The output of MCA block can be
written as:

MCA

T j′ =

[
A′

1T
j′
1 W v′

1 ; ;A′
MT j′

MW v′
M

]
W ′

P , (4)

where W v′
m ∈ RN×dm and W p′ ∈ RN×d are the weights of

FC layers.
Compared to dividing the feature map in a dense grid

manner adopted in other Transformers [42], [58], [59], the
dynamic sparse local patches signicantly decrease the to-
ken number of the MCA blocks, which leads to much lower
computational complexity. The computational complexity of
the MCA block with the feature in grid manner Ω(G) and
local patch manner Ω(S) can be calculated as follows:

Ω(S) = 4MNd2m + 2MN2dm, (5)

Ω(G) =


2N + 2

WFHF

PwPh


Md2m + 2NM

WFHF

PwPh
dm, (6)

where (WF , HF ) is the size of feature map. HF

Ph
× WF

Pw
is set

to 16× 16 as in many works [58], [59] for best performance.
For a dataset with 19 landmark annotations, Ω(S) is only
1/9 of Ω(G). Therefore, DSLPT has lower computational
complexity than other methods despite the multi-stages for
coarse-to-ne locating.

3.1.3 Prediction Heads

The heads predict the parameters of a Gaussian or Laplace
distribution (µi

xn
,Σi

xn
, µi

yn
,Σi

yn
) for each landmark, where

µi
xn

and µi
yn

are the distribution mean of n-th landmark in
i-th stage on the X axis and Y axis respectively. Σi

xn
and Σi

yn

are the distribution variances. Note that the probability dis-
tribution is predicted in patch coordinate system (the origin
is set to the top left corner of the patch and the patch size
(W i

n, H
i
n) is normalized in [0, 1]). Therefore, DSLPT does

not require positional encoding to retain a global spatial
information. The global coordinate (xi

n, y
i
n) and uncertainty

(U i
xn
, U i

yn
) of each landmark can be calculated as follows:

xi
n = xi

ltn +W i
nµ

i
nx
,

yin = yiltn +Hi
nµ

i
ny
,

(7)

U i
xn

= W i
nΣ

i
xn
,

U i
yn

= Hi
nΣ

i
yn
,

(8)

where (xi
ltn

, yiltn) is the global coordinate of the top left
point of the n-th patch in the i-th stage, and (W i

n, H
i
n) is

the corresponding patch size.
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Algorithm 1 Training pipeline of the coarse-to-ne frame-
work
Require: Input image I , initial mean shape S0, backbone

B, DSLPT D, negative log-likelihood function L, An-
notated observed landmark mean


µg
xn


, the number of

stage NS

1: while the training epoch is less than a specic number
do

2: Forward B for feature map by F = B (I);
3: Initialize the local patch size


W 1

n , H
1
n


←


W
4 , H

4



4: for i ← 1 to NS do
5: Crop local pactes with size


W i

n, H
i
n


according to

previous landmarks Si−1;
6: Resize local patches to (Pw, Ph);
7: embed local patches into representations R;
8: estimate distribution parameters for each landmark

by

µi
nx
, µi

ny
,Σi

nx
,Σi

ny


= D(R);

9: Adjust

W i+1

n , Hi+1
n


according to


Σi

nx
,Σi

ny


;

10: Calculate negative log-likelihood on X and Y axes
for each landmark;

11: end for

12: Minimize
NS

i=1

N
n=1

L(µgi
nx ,µ

i
nx

,Σi
nx)+L

(
µ
gi
ny ,µ

i
ny

,Σi
ny

)

2
13: end while

3.2 Distribution Estimation
3.2.1 Maximum Log-likelihood Estimation
The L1 loss and L2 loss, which are widely used in face
alignment [32], [40], is a degenerated case of probability dis-
tribution estimation. We assume the probability distribution
of each landmark on the X axis and Y axis is a Gaussian
distribution respectively. Then, the density function of each
landmark on the X and Y axes can be written as:

PΘ(z|I) =
1

Σ
√
2π

exp(−1

2


z − µ

Σ

2

), (9)

where Θ is the parameters of the model and I is the input
image. To estimate the distribution, the model maximizes
the likelihood of the annotated label µg with the negative
log-likelihood function, which can be formulated as:

L = − logPΘ(z|I)|z=µg ∝ logΣ+
(µg − µ)

2

2Σ2
, (10)

As mentioned by [19], if Σ is set to 1 and all landmarks
are assumed to be visible, then L ∝ (µg − µ)

2, which
degrades to the L2 loss function. Similarly, if we assume the
distribution is a 1D Laplace distribution and set the Σ to 1,
then L ∝ |µg − µ|, which degrades to the L1 loss function.
Obviously, Σ should not be 1 in most conditions. For the
landmarks in different conditions, they are commonly with
different Σ. Therefore, the DSLPT predicts both µ and Σ
with the negative log-likelihood function for a more coher-
ent result.

3.2.2 Dynamic Local Patches
Previous patch based regression methods [6], [34] predict

rough landmarks from the global feature and utilize the
patches with a xed size for ne-grained locating. The land-
mark with a large Σ is usually under occlusion. To improve

the robustness for locating these landmarks, a larger patch
size should be applied for more contextual information.
However, a larger patch size usually leads to a lower fea-
ture resolution, resulting in performance degradation for
the landmark with a small Σ. Therefore, we propose the
dynamic local patch whose size can adjust according to Σ
so that an adaptive patch size is applied to each landmark.

As shown in Fig. 4, the DSLPT dynamically adjusts the
patch size according to the predicted distribution. It takes
[µ− 3Σ, µ+ 3Σ] as the condence interval. For Gaussian
and Laplace distribution, the probability that the landmarks
are within the interval is more than 95% theoretically. Then,
the region of interest (ROI) size of the landmark in the
patch coordinate system can be written as max(6Σx, 6Σy).
In the global coordinate system, the size can be written
as max(6W i

nΣx, 6H
i
nΣy). Finally, the ROI size is enlarged

by Z as the nal patch size (Z is set to 2 in DSLPT)
for contextual information. Therefore, the patch size of
the following stage can be written as: W i+1

n = Hi+1
n =

max(6ZW i
nΣx, 6ZHi

nΣy)

Moreover, the patch size of n-th landmark in (i+1)-
th stage should also be limited in


LdownW

i
n, LupW

i
n


and

LdownH
i
n, LupH

i
n


. Both too small or too large patch size

can lead to performance degradation. A too small patch
size cannot provide sufcient contextual information for
the inherent relation learning though it can ensure a higher
feature resolution. And a too large patch size leads to a high
patch size variance in the same stage, causing a domain gap.

3.3 Coarse-to-ne localization

Inherent relation learning heavily relies on accurate land-
mark representations. Therefore, we incorporate DSLPT
with a coarse-to-ne framework so that a rough landmark
representation can converge to an optimal one gradually.
The training pipeline of the framework is shown in Algo-
rithm 1 with pseudo-code. In the rst stage, DSLPT crops
local patches according to a mean face shape to generate a
rough representation for each landmark. In the following
stages, both position and size of the local patch are de-
termined by the predicted probability distribution of the
corresponding landmark for a ne-grained representation.
DSLPT takes the output of the last stage as the nal result.
Despite the variance of local patch size in different stages,
the inherent relation keeps consistent for the same sample.
Therefore, the DSLP can be shared in each stage for less pa-
rameters. Besides, the patches with different scales augment
the training data signicantly, which enables DSLPT to be
trained with very limited samples.

3.4 Auxiliary Inherent Relation Loss

Similar to other face alignment methods [8], [9], we apply
an auxiliary loss to provide supervision to the intermediate
layers for learning a more coherent inherent relation. The
output of each inherent relation layer is fed to a Layernorm
layer, followed by a shared prediction head to estimate the
probability distribution of landmarks. For the prediction
results of the intermediate layers, we also apply the negative
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log-likelihood function to constrain the model learning.
Then total loss Lt can be calculated as follows:

Lt =
NS∑

i=1

NI∑

j=1

N∑

n=1

L

µgi
nx
, µi

jnx
Σi

jnx


+ L


µgi
ny
, µi

jny
,Σi

jny



2
,

(11)
where L is the negative log-likelihood function as Eq. 10.
(µgi

nx
, µgi

ny
) is the annotated patch coordinate of n-th land-

mark in i-th stage, (µi
jnx

, µi
jny

,Σi
jnx

,Σi
jny

) are the distribu-
tion parameters of n-th landmark predicted by j-th head
in i-th stage. The (µgi

nx
, µgi

ny
) can be calculated from the

annotated global coordinate (xg
n, y

g
n) as follows:

µgi
nx

=
xg
n − xi

ltn

W i
n

,

µgi
ny

=
ygn − yiltn

Hi
n



(12)

4 EXPERIMENTS

In this section, we evaluate the proposed face alignment
method on eight popular benchmarks and carry out exten-
sive experiments to verify the effectiveness. Specically, we
rst introduce the eight popular face alignment benchmarks
in detail. Then, we describe the metrics for evaluation and
the implementation details of the proposed method. Finally,
we compare the proposed method to other state-of-the-art
methods and conduct extensive ablation studies to study
the inuence of each component quantitatively.

4.1 Benchmarks

• WFLW [31]: the WFLW is a very challenging face
alignment dataset with signicant variations in oc-
clusion, illumination, expression and head pose. It
consists of 10,000 faces, including 7,500 for training
and 2,500 for testing. Each face is manually labeled
with 98 landmarks and rich attributes.

• 300W [65]: 300W includes 3,148 faces for training and
689 faces for testing. The faces in the training set
come from the fullset of AFW [66] and the training
subset of HELEN [67] and LFPW [68]. The testing
set can be further divided into two subsets: the
common subset that includes 554 faces (the test set
of HELEN and LFPW) and the challenging subset
which consists of 135 faces (the full set of IBUG [65]).
Moreover, 300W also annotates additional 600 face
images with 68 landmarks to form the 300W-private
subset.

• COFW [49]: COFW mainly consists of the face with
heavy occlusion and prole view, including 1,345
faces for training and 507 faces for testing. Each
face in the training set is labeled with 29 landmarks.
The annotations of test set have two variants. One
variant presents 29 landmark annotations and the
other variant is provided with 68 landmarks for each
face image (COFW68 [69]).

• Menpo [70] [71]: Menpo annotates 11,988 frontal or
near frontal faces with 68 landmarks (6,653 faces for
training and 5,335 faces for testing) and 4,236 prole

faces with 39 landmarks (2,290 faces for training and
1,946 faces for testing).

• AFLW-19 [72]: AFLW-19 consists of 24,386 faces from
AFLW [73], including 20,000 faces for training and
4,836 for testing. It manually annotates each face with
19 landmarks. The testing set has two variants: 1)
Full: all 4,836 faces for testing; 2) Front: 1,314 faces
with frontal view are selected from the 4,836 faces for
testing.

• MERL-RAV [19]: MERL-RAV re-annotates 19,314
faces from AFLW [73] with 68 landmarks manually
(15,449 for training and 3,865 for testing). Unlike
other datasets, the annotated landmarks of MERL-
RAV can be further divided into three categories:
unoccluded, externally occluded and self-occluded
landmark. Only unoccluded and external occluded
landmarks are labeled with location information.

• Masked 300W [21]: Masked 300W synthesizes 689
masked faces from the test set of 300W [65]. The
average occluded area in Masked 300W is over 50%
of the face area.

• 300W-LP&AFLW2000-3D [28]: 300W-LP synthesizes
122,450 samples from 300W [65] via face proling.
Each sample is annotated with 68 3D landmarks.
AFLW2000-3D selects 2,000 faces from AFLW [73]
and each face is also labeled with 68 3D landmarks.

4.2 Evaluation Metrics

Referring to related work [11], [23], [31], we employ three
metrics: Normalized Mean Error (NME), Failure Rate (FR)
and Area Under the Curve (AUC) for a fair comparison.
The NME is dened as:

NME =
1

N

N∑

n=1

|| (xg
n, y

g
n)− (xn, yn)| |
dnorm

, (13)

where dnorm is the normalized factor. The dnorm is the
inter-pupil distance (the distance between pupil centers)
or the inter-ocular distance (the distance between outer eye
corners) on theWFLW, 300W,Masked 300W and COFW. The
dnorm is the geometric mean of the annotated bounding box
size (

√
Hbox ×Wbox) or the diagonal of annotated bounding

box (
√
H2

box +W 2
box) on 300W-private, Menpo, COFW68,

AFLW-19, MERL-RAV and AFLW2000-3D, where Hbox and
Wbox are the height and width respectively of the face
bounding box. FRα indicates the percentage of the testing
samples whose NME is higher than a certain threshold α.
The AUC is calculated based on the Cumulative Errors
Distribution (CED) curve. CED curve indicates a cumulative
distribution function f (ϵ) of the NME and the AUC can be
calculated by

∫ α
0 f (ϵ) dϵ, where α is the threshold of FRα.

4.3 Implementation Details

The proposed face alignment framework is implemented
in Pytorch [74], and we employ four different networks as
the backbone: ResNet34 [75], ResNet50 [75], HRNetW18C
[7], HRNetW18C-lite (the modularized block number in
each stage is set to 1). Each backbone is pre-trained on
the ImageNet dataset [76] as the related works [7], [38].
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TABLE 1: Performance comparisons with heatmap regression and coordinate regression methods on WFLW full set and its
subsets. The normalization factor of NME is inter-ocular distance. Key: [Best, Second Best, ⋆=initialized from scratch]

Method Backbone type ImageNet Flops ↓ Params ↓ Inter-Ocular NME (%) ↓
pretraining Full Pose Exp. Ill. Mu. Occ. Blur

HRNet [7] HRNetW18C heatmap Y 4.75G 9.66M 4.60 7.94 4.85 4.55 4.29 5.44 5.42
LUVLi [19] 8 DU-Net heatmap N - - 4.37 7.56 4.77 4.30 4.33 5.29 4.94
AWing [13] 4 Hourglass heatmap N 26.8G 24.15M 4.21 7.21 4.46 4.23 4.02 4.99 4.82
HIH [22] 2 Hourglass heatmap N 10.38G 14.47M 4.18 7.20 4.19 4.45 3.97 5.00 4.81

ADNet [23] 4 Hourglass heatmap N 17.04G 13.37M 4.14 6.96 4.38 4.09 4.05 5.06 4.79
SDFL [40] ResNet34 coordinate N - - 4.55 - - - - - -

AV w. SAN [54] ResNet152 coordinate Y 33.87G 35.02M 4.39 8.42 4.68 4.24 4.37 5.60 4.86
DETR (R50) [58] ResNet50 coordinate Y 10.62G 35.25M 4.32 7.64 4.67 4.24 4.19 5.12 4.90

SDL [38] HRNetW18C coordinate Y - - 4.21 7.36 4.49 4.12 4.05 4.98 4.82
SLPT [43] HRNetW18C-lite coordinate Y 6.12G 13.19M 4.14 6.96 4.45 4.05 4.00 5.06 4.79
DSLPT⋆ ResNet34 coordinate N 8.04G 31.06M 4.37 7.58 4.76 4.30 4.37 5.33 4.97
DSLPT ResNet34 coordinate Y 8.04G 31.06M 4.14 7.13 4.40 4.12 3.98 5.05 4.81
DSLPT ResNet50 coordinate Y 8.71G 33.47M 4.11 7.17 4.44 4.06 3.96 4.96 4.78
DSLPT HRNetW18C-lite coordinate Y 6.06G 13.25M 4.02 6.92 4.42 3.95 3.97 4.83 4.66
DSLPT HRNetW18C coordinate Y 7.83G 19.35M 4.01 6.87 4.29 3.99 3.86 4.79 4.66

TABLE 2: Performance comparisons with state-of-the-art
methods in FR0.1 and AUC0.1 onWFLW. Key: [Best, Second
Best, R34=ResNet34, R50=ResNet50, W18C=HRNetW18C,
W18C-l=HRNetW18C-lite, ⋆=initialized from scratch]

Metric Method Full Pose Exp. Ill. Mu. Occ. Blur

FR0.1(%)↓

HRNet 4.64 23.01 3.50 4.72 2.43 8.29 6.34
LUVLi 3.12 15.95 3.18 2.15 3.40 6.39 3.23
AWing 2.04 9.20 1.27 2.01 0.97 4.21 2.72
HIH 2.96 15.03 1.59 2.58 1.46 6.11 3.49

ADNet 2.72 12.72 2.15 2.44 1.94 5.79 3.54
AV w. SAN 4.08 18.10 4.46 2.72 4.37 7.74 4.40
DETR (R50) 3.60 18.71 3.18 3.30 2.91 5.43 4.53

SDL 3.04 15.95 2.86 2.72 1.45 5.29 4.01
SLPT (W18C-l) 2.76 12.27 2.23 1.86 3.40 5.98 3.88
DSLPT (R34)⋆ 3.64 16.56 3.50 3.58 2.91 8.02 4.91
DSLPT (R34) 2.72 13.80 1.91 2.87 2.43 5.57 3.62
DSLPT (R50) 3.08 16.26 3.18 2.29 2.43 5.84 4.27

DSLPT (W18C-l) 2.40 13.19 2.55 2.01 2.43 4.34 3.62
DSLPT (W18C) 2.52 13.19 2.23 2.44 0.97 4.89 3.49

AUC0.1↑

HRNet 0.524 0.251 0.510 0.533 0.545 0.459 0.452
LUVLi 0.557 0.310 0.549 0.584 0.588 0.505 0.525
AWing 0.590 0.334 0.572 0.596 0.602 0.528 0.539
HIH 0.597 0.342 0.590 0.606 0.604 0.527 0.549

ADNet 0.602 0.344 0.523 0.580 0.601 0.530 0.548
AV w. SAN 0.591 0.311 0.549 0.609 0.581 0.516 0.551
DETR (R50) 0.579 0.298 0.548 0.589 0.583 0.510 0.527

SDL 0.589 0.315 0.566 0.595 0.604 0.524 0.533
SLPT (W18C-l) 0.595 0.348 0.574 0.601 0.605 0.515 0.535
DSLPT (R34)⋆ 0.575 0.304 0.544 0.583 0.581 0.496 0.522
DSLPT (R34) 0.597 0.336 0.569 0.600 0.614 0.519 0.538
DSLPT (R50) 0.599 0.336 0.573 0.605 0.609 0.524 0.540

DSLPT (W18C-l) 0.607 0.351 0.580 0.616 0.616 0.534 0.550
DSLPT (W18C) 0.607 0.353 0.586 0.614 0.623 0.535 0.549

For ResNet34 and ResNet50, we employ multi-level fea-
ture maps for face alignment, as shown in Fig. 5. Sup-
posing the feature map size in the k-th CNN stage is
(Hstagek,Wstagek, dstagek), the initial patch size


H1

nk,W
1
nk



is

Hstagek

4 ,
Wstagek

4


. The patch size of following stages

Hi
nk,W

i
nk


is calculated using Algorithm 1. For HR-

NetW18C and HRNet18C-lite, we only utilize a single level
feature map following the heatmap regression method [7].

We employ AdamW [77] as the optimizer, and the model
is trained for 100 epochs with a batch size of 16 (64 for
the model initialized from scratch). The initial learning rate
is set to 0.0005 for HRNetW18C and HRNetW18C-lite and
is set to 0.0004 for ResNet34 and ResNet50. Moreover, the
learning rate is reduced by 110 at epoch 80 and 90. Each
face image is cropped and resized to 256 × 256 as the
input. For the training samples, we apply augmentation
techniques, including random horizontal ipping (50%),
shearing (33%), gray (20%), occlusion (50%), brightness ad-
justment (50%,±03), rotation (±30◦), translation (±10px),
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Fig. 5: Constructing multi-level feature maps for DSLPT.

scaling (±5%). Without specications, the size of the re-
sized local patch (Pw, Ph) is set to (7, 7); the number of stage
NS is set to 3; the number of inherent relation layer NI is
set to 6; the up threshold Lup and down threshold Ldown of
dynamic patch size are set to 0.7 and 0.5 respectively; the
probability distribution of each landmark is assumed as a
Gaussian distribution.

4.4 Comparison with State-of-the-art Methods
To demonstrate the effectiveness of DSLPT quantitatively,
we carry out eight experiments on eight popular bench-
marks and compare the performance of the proposed
DSLPT with the state-of-the-art methods.

WFLW: the performance of DSLPT and other state-of-
the-art methods on WFLW are reported in Table 1 and
Table 2. Compared to SLPT, the dynamic patch further
improves the performance, especially on the occlusion and
illumination subset, yielding the best performance in NME
and AUC. The results illustrate that the dynamic patch
signicantly improves the locating accuracy for the cases
with high uncertainty. In term of computational complexity,
DSLPT only uses one additional FC layer to predict the vari-
ance of landmark probability distribution. Besides, we also
optimize the bilinear interpolation procedure with a more
efcient implementation. Therefore, with HRNetW18C-lite
as the backbone, the computational complexity of DSLPT
(6.06G Flops) is even lower than SLPT (6.12G Flops)
slightly. Moreover, we also implement a DETR (ResNet50-
DC5 [58]) with 6 encoders and decoders to estimate the
probability distribution of each landmark. The token num-
ber of the DETR is 16× 16. Compared to predicting land-
mark coordinates from dense patches as DETR, the inherent
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WFLW 300W COFW68 AFLW-19

Fig. 6: Visualized results on WFLW, 300W, COFW68, AFLW-19 testset. The red point and green point indicate the ground
truth and the predicted landmark respectively. The uncertainty of each landmark is shown by pink circle. Each landmark
is connected with the landmark with highest cross attention weigh by blue line.

TABLE 3: Performance comparisons with the state-of-
the-art methods on 300W. Key: [Best, Second Best,
R34=ResNet34, R50=ResNet50, W18C-l=HRNetW18C-
lite, W18C=HRNetW18C, 4HG=4 hourglass module,
⋆=initialized from scratch]

Method Inter-Ocular NME (%) ↓
Common Challenging Fullset

MHHN [14] 3.18 6.01 3.74
LAB [31] 2.98 5.19 3.49

DeCaFA [12] 2.93 5.26 3.39
HIH [22] 2.93 5.00 3.33
HRNet [7] 2.87 5.15 3.32

SDFL (W18C) [40] 2.88 4.93 3.28
HG-HSLE [16] 2.85 5.03 3.28
DETR (R50) [58] 2.86 4.96 3.27

LUVLi [19] 2.76 5.16 3.23
SHN-GCN [18] 2.73 4.64 3.10

AWing (4HG) [13] 2.72 4.53 3.07
SDL [38] 2.62 4.77 3.04

ADNet (R50) [23] - - 3.11
ADNet (4HG) [23] 2.53 4.58 2.93
SLPT (W18C-l) [43] 2.75 4.90 3.17

DSLPT (R34)⋆ 2.80 4.94 3.21
DSLPT (R34) 2.62 4.73 3.04
DSLPT (R50) 2.58 4.81 3.02

DSLPT (W18C-l) 2.57 4.79 3.00
DSLPT (W18C) 2.57 4.69 2.98

relation learning of DSLPT is more efcient, achieving much
better performance with only 98 tokens. We also implement
a DSLPT initialized from scratch to study the effectiveness
of the pretraining on ImageNet. With a light backbone
(ResNet34), the DSLPT initialized from scratch still achieves
a comparable performance to LUVLi. Besides, the DSLPT
also improves the metric by 4.00% in NME compared to
SDFL with the same backbone.

300W: as shown in Table 3, DSLPT achieves an im-
pressive improvement of 6.55% and 2.24% in NME on the
common and challenging subset respectively compared to
SLPT. It also demonstrates the effectiveness of the proposed
dynamic pacth. Besides, DSLPT is the only coordinate re-
gression method whose NME is smaller than 3.00% on
the 300W full set. ADNet and Awing set facial boundary

TABLE 4: Performance comparisons under Inter-Ocular
normalization and Inter-Pupil normalization on within-
dataset validation. The threshold for FR is set to 0.1. Key:
[Best, Second Best, R34=ResNet34, R50=ResNet50, W18C-
l=HRNetW18C-lite, W18C=HRNetW18C]

Method Inter-Ocular Inter-Pupil
NME(%)↓ FR(%)↓ NME(%)↓ FR(%)↓

MHHN [14] 4.95 1.78 - -
LAB [31] 3.92 0.39 - -

SDFL (W18C) [40] 3.63 0.00 - -
HRNet [7] 3.45 0.20 - -

TCDCN [33] - - 8.05 -
SHN-GCN [18] - - 5.67 2.36
DETR (R50) [58] 3.79 0.59 5.46 2.37

Wing [32] - - 5.44 3.75
DCFE [26] - - 5.27 7.29
AWing [13] - - 4.94 0.99
ADNet [23] - - 4.68 0.59

SLPT (W18C-l) [43] 3.32 0.00 4.79 1.18
DSLPT (R34) 3.34 0.39 4.81 0.98
DSLPT (R50) 3.34 0.00 4.81 1.18

DSLPT (W18C-l) 3.31 0.00 4.77 0.79
DSLPT (W18C) 3.33 0.20 4.79 1.36

heatmap as an additional regression target to utilize the
extra boundary information for better performance. How-
ever, DSLPT achieves a comparable performance without
any extra information. With ResNet50 as the backbone,
DSLPT even improves the metric by 2.89% in NME over
ADNet. Therefore, DSLPT sets a remarkable milestone for
coordinate regression methods, outperforming the heatmap
regression method on 300W for the rst time.

COFW: we carry out a within-dataset validation on
COFW, employing the training subset (1345 images) for
training and the test subset of COFW (507 images) for
testing. The comparison results are shown in Table 4. With
very limited number of training samples, this experiment is
quite challenging for coordinate regression methods. Many
coordinate regression methods, such as SDFL and DETR,
degrade signicantly. Compared to SLPT, the proposed dy-
namic patch cannot promise a signicant improvement on
this condition because it requires more training samples to
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Masked 300W MERL-RAV AFLW2000-3D

Fig. 7: Visualized results of the externallly occluded and self-occluded cases on Masked 300W, MERL-RAV and AFLW2000-
3D. The red point and green point indicate the ground truth and the predicted landmark respectively. The uncertainty of
each landmark is shown by pink circle. Each landmark is connected with the landmark with highest cross attention weigh
by blue line. The Orange lines represent the 3D facial boundaries.

TABLE 5: Performance comparisons on Menpo, 300W-
private and COFW68. Key: [Best, Second Best,
R34=ResNet34, R50=ResNet50, W18C-l=HRNetW18C-
lite, W18C=HRNetW18C, ⋆=initialized from scratch,
†=Pretrained on 300W-LP-2D]

Method NMEbox(%) ↓ AUC0.07
box (%) ↑

Menpo 300W-p COFW68 Menpo 300W-p COFW68
SAN† [35] 2.95 2.86 3.50 61.9 59.7 51.9

2D-FAN† [10] 2.16 2.32 2.95 69.0 66.5 57.5
KDN [15] 2.26 2.49 - 68.2 67.3 -

Softlabel† [15] 2.27 2.32 2.92 67.4 66.6 57.9
KDN† [15] 2.01 2.21 2.73 71.1 68.3 60.1
LUVLI [19] 2.18 2.24 2.75 70.1 68.3 60.8
LUVLI† [19] 2.04 2.10 2.57 71.9 70.2 63.4
DSLPT (R34)⋆ 1.98 2.23 2.70 73.4 67.9 61.5
DSLPT (R34)† 1.89 2.13 2.57 74.5 69.3 63.3
DSLPT (R34) 1.96 2.11 2.57 73.6 69.8 63.4
DSLPT (R50) 1.95 2.09 2.56 73.7 70.2 63.5

DSLPT (W18C-l) 1.93 2.07 2.59 74.0 70.4 63.3
DSLPT (W18C) 1.92 2.04 2.57 74.2 70.9 63.1

TABLE 6: NMEbox and |Σ| 12 on the externally oc-
cluded and unoccluded landmarks of COFW68. Key:
[Best, Second Best, R34=ResNet34, R50=ResNet50, W18C-
l=HRNetW18C-lite, W18C=HRNetW18C, ⋆=initialized from
scratch, †=Pretrained on 300W-LP-2D]

Method Unocculded Externally Occluded
NMEbox ↓ Σ 12 NMEbox ↓ Σ 12

Softlabel [15]† 2.30 5.99 5.01 7.32
KDN [15]† 2.34 1.63 4.03 11.62
LUVLi [19]† 2.15 9.37 4.00 32.49

SLPT (W18C-l) [43] 2.09 - 4.33 -
DSLPT (R34)⋆ 2.22 1.02 4.32 2.96
DSLPT (R34)† 2.19 1.30 3.86 3.91
DSLPT (R34) 2.09 0.98 4.18 2.99
DSLPT (R50) 2.06 1.00 4.22 3.21

DSLPT (W18C-l) 2.12 1.12 4.14 3.81
DSLPT (W18C) 2.10 0.83 4.12 3.03

learn regressing landmarks from different scales of patches.
Besides, a deeper backbone commonly leads to more se-
vere overtting on this condition. Compared to coordinate
regression methods, heatmap regression methods naturally
exhibit better performance because the semantic landmark
localization can avoid overtting to a certain extent. Never-
theless, DSLPT still yields the second best performance in
NME and FR.

Menpo, COFW68, 300W-private: to better verify the

TABLE 7: Performance comparisons under Inter-Ocular
normalization on cross-dataset validation. Key: [Best,
Second Best, R34=ResNet34, R50=ResNet50, W18C-
l=HRNetW18C-lite, W18C=HRNetW18C, ⋆=initialized from
scratch, †=Pretrained on 300W-LP-2D]

Method Inter-Ocular
NME(%)↓ FR0.1(%)↓

TCDCN [33] 7.66 16.17
CFSS [52] 6.28 9.07
ODN [36] 5.30 -

AV w. SAN [54] 4.43 2.82
LAB [31] 4.62 2.17
SDL [38] 4.22 0.39

SDFL (W18C) [40] 4.18 0.00
DETR (R50) [58] 4.15 0.59

SLPT (W18C-l) [43] 4.10 0.59
DSLPT (R34)⋆ 4.13 0.59
DSLPT (R34)† 4.04 0.00
DSLPT (R34) 4.05 0.39
DSLPT (R50) 4.03 0.59

DSLPT (W18C-l) 4.05 0.20
DSLPT (W18C) 4.03 0.20

generalization ability of DSLPT, we carry out three cross-
dataset validations as [19]. DSLPT employs the full set
of 300W (3,837 images) as the training set, and is then
evaluated on 6,653 near-frontal training faces of Menpo, 600
faces of 300W-private and 507 faces of COFW68 respectively.
We report the NMEbox (set dnorm to the geometric mean
of bounding box size) and AUC0.07

box on the three test sets
in Table 5. Without pretraining, even the lightest DSLPT
(ResNet34) can outperform LUVLi, improving the metric
by 9.17%, 0.44% and 1.81% in NMEbox on Menpo, 300W-
private and COFW68 respectively. The improvement is more
signicant when we compare DSLPT to KDN. With suf-
cient samples, the results illustrate that DSLPT has a very
competitive generalization ability. For a fair comparison,
we also implement a model initialized from scratch and
pretrain it on 300W-LP-2D [28] with 20 epochs. 300W-LP-2D
consists of a large number of samples with various views.
Therefore, the pretraining on 300W-LP-2D can encourage
DSLPT to learn a more coherent inherent relation for better
robustness compared to the model without pretraining,
which effectively improves the performance on the cases
with occlusion. Therefore, compared to the DSLPT without
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TABLE 8: Performance comparisons on the full set and
frontal subset of AFLW-19. Key: [Best, Second Best,
R34=ResNet34, R50=ResNet50, W18C-l=HRNetW18C-lite,
W18C=HRNetW18C, ⋆=initialized from scratch]

Method NMEdiag ↓ NMEbox ↓ AUC0.07
box ↑

Full Frontal Full Full
DeepReg [27] 2.12% - - -
RND [34] 2.06% - - -
SAN [35] 1.91% 1.85% - -
Wing [32] - - 3.56% 0.535
KDN [15] - - 2.80% 0.603
ODN [36] 1.63% 1.38% - -
HRNet [7] 1.57% 1.46% - -
LUVLi [19] 1.39% 1.19% 2.28% 0.680
MHHN [14] 1.38% 1.19% - -

SHN-GCN [18] - - 2.15% -
LAB [31] 1.25% 1.14% - -

DETR (R50) [58] 0.970% 0.838% 1.372% 0.806
DSLPT (R34)⋆ 1.029% 0.870% 1.455% 0.794
DSLPT (R34) 0.974% 0.834% 1.376% 0.805
DSLPT (R50) 0.967% 0.826% 1.368% 0.807

DSLPT (W18C-l) 0.967% 0.822% 1.367% 0.807
DSLPT (W18C) 0.967% 0.837% 1.367% 0.808

TABLE 9: Performance comparisons with the state-of-
the-art methods on Masked 300W common subset, chal-
lenging subset and fullset. Key: [Best, Second Best,
R34=ResNet34, R50=ResNet50, W18C-l=HRNetW18C-lite,
W18C=HRNetW18C, ⋆=initialized from scratch]

Method Inter-Ocular NME (%) ↓
Common Challenging Fullset

CFSS [52] 11.73 19.98 13.35
Hourglass [8] 8.17 13.52 9.22
MDM [24] 7.66 11.67 8.44
FAN [10] 7.36 10.81 8.02
LAB [31] 6.07 9.59 6.76
SAAT [21] 5.42 11.36 6.58

GlomFace [41] 5.29 8.81 5.98
DSLPT (R34)⋆ 4.95 8.10 5.56
DSLPT (R34) 4.66 7.49 5.22
DSLPT (R50) 4.51 7.67 5.13

DSLPT (W18C-l) 4.86 8.03 5.48
DSLPT (W18C) 4.78 8.10 5.42

pretraining, we can observe an improvement of 4.54%,
4.48% and 4.81% in NMEbox on Menpo, 300W-private and
COFW68 respectively.

To further explore the inuence of pretraining and the
dynamic patches, we tabulate the NMEbox and square root
of the determinant of uncertainty (SQDU) on the externally
occluded and unoccluded landmarks of COFW68 in Table 6.
For the ease of comparisons, we restore the predicted SQDU
of DSLPT from the normalized patch coordinate system to
the unnormalized global coordinate system. The value of
SQDU |Σ| 12 is calculated and reported using the unnor-
malized global coordinates. Similar to Softlabel, KDN and
LUVLi, the SQDU on unoccluded landmarks predicted by
DSLPT is 14 ∼ 13 of the SQDU on occluded landmarks, as
shown in Table 6. It demonstrates that the predicted uncer-
tainty of DSLPT can reect the landmark occlusion properly.
Since SLPT cannot predict the uncertainty of landmarks, we
did not report the SQDU of SLPT. With the same backbone,
DSLPT achieves an improvement of 4.4% in NMEbox on
the occluded landmarks of COFW68 compared to SLPT,
which illustrates the adaptive receptive eld of the dynamic

TABLE 10: Performance comparisons on MERL-RAV. Key:
[Best, Second Best, R34=ResNet34, R50=ResNet50, W18C-
l=HRNetW18C-lite, W18C=HRNetW18C, ⋆=initialized from
scratch]

Metrics (%) Method Full Frontal Half-Prole Prole

NMEbox ↓

DU-Net [9] 1.99 1.89 2.50 1.92
LUVLi [19] 1.61 1.74 1.79 1.25
SLPT [43] 1.51 1.62 1.68 1.21

DSLPT (R34)⋆ 1.64 1.76 1.69 1.30
DSLPT (R34) 1.52 1.63 1.69 1.19
DSLPT (R50) 1.50 1.62 1.67 1.18

DSLPT (W18C-l) 1.48 1.59 1.64 1.16
DSLPT (W18C) 1.48 1.60 1.64 1.16

AUC0.07
box ↑

DU-Net 71.80 73.25 64.78 72.79
LUVLi 77.08 75.33 74.69 82.10
SLPT 78.33 76.82 76.01 82.74

DSLPT (R34)⋆ 76.58 74.89 75.90 81.47
DSLPT (R34) 78.29 76.67 75.90 82.94
DSLPT (R50) 78.55 76.93 76.17 83.21

DSLPT (W18C-l) 78.85 77.28 76.51 83.40
DSLPT (W18C) 78.87 77.24 76.58 83.46

TABLE 11: NMEbox and |Σ| 12 on self-occluded, exter-
nally occluded and unoccluded landmarks of MERL. Key:
[Best, Second Best, R34=ResNet34, R50=ResNet50, W18C-
l=HRNetW18C-lite, W18C=HRNetW18C, ⋆=initialized from
scratch]

Method Self-occluded Unoccluded Externally Occluded
NMEbox ↓ Σ 12 NMEbox ↓ Σ 12 NMEbox ↓ Σ 12

LUVLI [19] - - 1.60% 9.28 3.53% 34.41
SLPT [43] - - 1.50% - 3.33% -

DSLPT (R34)⋆ - 4.47 1.64% 0.72 3.55% 2.52
DSLPT (R34) - 2.55 1.51% 0.67 3.34% 2.53
DSLPT (R50) - 3.65 1.50% 0.67 3.29% 2.62

DSLPT (W18C-l) - 3.12 1.48% 0.71 3.25% 2.83
DSLPT (W18C) - 2.82 1.48% 0.68 3.26% 2.69

patch can improve the robustness on occluded landmarks
effectively. Besides, with the same setting (pretrained on
300W-LP-2D), the lightest DSLPT (ResNet34) also improves
NMEbox by 22.95%, 4.22% and 3.50% on externally occluded
landmarks respectively compared to Softlabel, KDN and
LUVLi.

Moreover, we also report the Inter-Ocular NME on
COFW68 in Table 7 to compare DSLPT to other state-of-
the-art methods.

AFLW-19: we report the NMEbox (set dnorm to the geo-
metric mean of bounding box size) and NMEdiag (set dnorm
to the diagonal of the bounding box) of DSLPT on full set
and frontal subset, and compare them to other state-of-the-
art methods, as shown in Table 8. With sufcient training
samples, both DETR and DSLPT, including the model ini-
tialized from scratch, outperform other heatmap regression
methods by a large margin. It illustrates the performance of
coordinate regression methods heavily relies on the scale of
dataset.

Masked 300W: following [41], we use the training set of
300W [65] to train the proposed model and each image is
randomly occluded by ve blocks with different sizes for
data augmentation. The Masked 300W is only used for eval-
uation and the results are tabulated in Table 9. GlomFace
is also a patch based regression method and designed for
the cases with heavy occlusion. With the dynamic patches
and the case dependent inherent relation learning, DSLPT
further achieves an impressive improvement of 14.21% in
NME on the fullset compared to GlomFace. It illustrates
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Fig. 8: The statistical attention interactions of MCA and MSA in the nal stage on the WFLW test set. Each row indicates
the attention weight of corresponding landmark to other landmarks.

TABLE 12: Performance comparisons with the state-of-the-
art methods on AFLW2000-3D. Key: [Best, Second Best,
R34=ResNet34, R50=ResNet50, ⋆=initialized from scratch]

Method NMEbox (%)↓
[0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Mean

SDM [50] 3.67 4.94 9.67 6.12
3DDFA [28] 3.78 4.54 7.93 5.42

3DDFA+SDM [28] 3.43 4.24 7.17 4.94
3D-FAN [10] 3.15 3.53 4.60 3.76

3DDFA-TPAMI [29] 2.84 3.57 4.96 3.79
3DDFAV2 (MR) [37] 2.75 3.49 4.53 3.59
3DDFAV2 (MRS) [37] 2.63 3.42 4.48 3.51

SynergyNet [39] 2.65 3.30 4.27 3.41
DSLPT (R34)⋆ 2.51 3.40 4.32 3.41
DSLPT (R50)⋆ 2.54 3.61 4.37 3.50

both the dynamic patches and inherent relation learning
can signicantly improve the robustness of patch based
methods, especially for the cases with heavy occlusion.
Some visualized results are shown in Fig. 7.

MERL-RAV: as shown in Table 10, DSLPT improves
the metric by 8.07% and 25.63% in NMEbox over LUVLi
and DU-Net respectively. Some cases with external occlu-
sion and self-occlusion are demonstrated in Fig.7. Although
MERL-RAV does not provide the coordinate annotation for
the self-occluded landmark, DSLPT can still localize them
properly in the testing phase. The main reason is that
the learned inherent relation enables the model to locate
the self-occluded landmarks with the annotated landmarks.
Moreover, the dynamic patch provides large receptive eld
for the self-occluded landmarks because of their high un-
certainty. Therefore, DSLPT outperforms other state-of-the-
art methods signicantly and obtains much stronger robust-
ness. We also report the NMEbox and SQDU on three types
of landmarks of MERL in Table 11. The SQDU on unoc-
cluded landmarks predicted by DSLPT is also 14 ∼ 13 of
the SQDU on externally occluded landmarks and 16 ∼ 14
of the SQDU on self-occluded landmarks. The fact that
the self-occluded landmarks have larger uncertainty than
the externally occluded landmark is also consistent with

human perception: human labelers are generally very bad
at localizing self-occluded landmarks [19]. As a result, the
adaptive receptive eld brings an improvement of 2.38%
and 8.38% in NMEbox on the externally occluded landmarks
compared to SLPT and LUVLi.

300W-LP & AFLW2000-3D: to evaluate the performance
of DSLPT on extremely self-occluded conditions, we carry
out experiments on AFLW2000-3D to predict the 2D pro-
jection of 3D faces. Following [28], we use the 300W-LP
samples synthesized from the training set of LFPW, HE-
LEN and the whole AFW for training. As shown in Table
12, DSLPT outperforms the state-of-the-art methods with
a large margin for the cases whose absolute yaw angles
are within 30◦. As shown in Fig.7, DSLPT locates the ex-
tremely self-occluded landmarks via the visible landmarks.
Therefore, DSLPT still yields the second best performance
for the cases with large absolute yaw angle. Besides, the
augmentation technique used by [28] leads to a domain gap
between 300W-LP and AFLW2000-3D. A deeper backbone
will t the training domain better but performs worse in
the testing domain. Therefore, the DSLPT with ResNet34
outperforms the DSLPT with ResNet50.

4.5 Ablation Study
In this section, we explore how the key components of the
proposed DSLPT inuence the nal performance by per-
forming extensive ablation studies on the most challenging
dataset, WFLW.

Inuence of coarse-to-ne framework: we demonstrate
the performance of the nal stage and intermediate stages
of the DSLPT with different coarse-to-ne stage numbers,
as shown in Table 13. Compared to the DSLPT with a
single stage, the DSLPT with 3 stages improves the met-
ric by 7.37%, 35.5% and 4.44% in NME, FR0.1 and AUC
respectively. It’s worth mentioning that the coarse-to-ne
framework can also improve the performance of the inter-
mediate stage. The main reason is that the DSLPT is shared
in each stage and the variance of patch size in different
stages signicantly augments the training data. As a result,
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TABLE 13: The inuence of coarse-to-ne framework when using different number of stages. Key: [Best, W18C-
l=HRNetW18C-lite]

Model
Intermediate Stage

1st stage 2rd stage 3rd stage 4th stage
NME↓ FR0.1↓ AUC↑ NME↓ FR0.1↓ AUC↑ NME↓ FR0.1↓ AUC↑ NME↓ FR0.1↓ AUC↑

DSLPT (W18C-l) with 1 stage 4.34% 3.72% 0.580 - - - - - - - - -
DSLPT (W18C-l) with 2 stages 4.25% 3.04% 0.586 4.05% 2.56% 0.603 - - - - - -
DSLPT (W18C-l) with 3 stages 4.25% 3.24% 0.586 4.03% 2.52% 0.606 4.02% 2.40% 0.607 - - -
DSLPT (W18C-l) with 4 stages 4.43% 3.92% 0.574 4.12% 2.92% 0.600 4.11% 3.00% 0.601 4.11% 2.92% 0.601

TABLE 14: Inuence of MSA and MCA block on WFLW test.
Key: [Best, W18C-l=HRNetW18C-lite]

Method MSA MCA NME ↓ FR ↓ AUC ↑
DSLPT (W18C-l) w/o w/o 4.27% 3.48% 0.587
DSLPT (W18C-l) w/ w/o 4.07% 2.76% 0.604
DSLPT (W18C-l) w/o w/ 4.08% 2.92% 0.603
DSLPT (W18C-l) w/ w/ 4.02% 2.40% 0.607

TABLE 15: Inuence of different kinds of encodings. Key:
[Best, W18C-l=HRNetW18C-lite]

Method encoding NME↓ FR↓ AUC↑
Model 1
(W18C-l) N/A 4.08% 2.64% 0.603

Model 2
(W18C-l)

Positional
encoding 4.04% 2.56% 0.606

Model 3
(W18C-l)

Structure
encoding 4.02% 2.40% 0.607

the inherent relation learned by DSLPT becomes more co-
herent, promising a better performance to the intermediate
stage. However, the performance converges when the stage
number is more than 3 since the too large variance of patch
size leads to a domain gap. Besides, the patches in the 4th

stage are too small and they cannot serve as the contextual
information for other landmarks.

Inuence of MCA and MSA block: to verify the ef-
fectiveness of inherent relation learning, we implement
four models with/without MSA and MCA block and their
performance on WFLW testset is reported in Table 14. For
the model without MCA block, we replace landmark queries
with landmark representations as the input of Transformer
directly. Without MSA and MSA block, each landmark is
predicted merely based on its supporting patch. However,
it still outperforms most coordinate regression methods
because the coarse-to-ne framework and dynamic patches
enable the model to generate a more ne-grained represen-
tation for each landmark, promising an accurate localiza-
tion. The inter representation-query relation learned by MCA
block and the inter query-query relation learned by MSA
block signicantly boost the performance, reaching at 4.07%
and 4.08% in NME respectively. We visualize the mean
attention weights in the 3rd stage on the WFLW testset,
as shown in Fig. 8. The MCA blocks tend to aggregate
the representation of the corresponding and neighboring
landmark to generate a local feature, while the MSA blocks
pay more attention to the landmark with a long distance for
a global feature. Therefore, MSA and MCA can incorporate
with each other for better performance.

Inuence of structure encoding: to explore the inuence
of the structure encoding, we implement different models

TABLE 16: Computational complexity, parameters and per-
formance of the DSLPT with different inherent relation layer
number on WFLW testset. Key: [Best, W18C=HRNetW18C]

Method Layer
number Flops Params NME↓ FR↓ AUC↑

Model 1
(W18C) 2 6.32G 15.1M 4.05% 2.48% 0.604

Model 2
(W18C) 4 7.08G 17.2M 4.02% 2.52% 0.607

Model 3
(W18C) 6 7.83G 19.3M 4.01% 2.52% 0.607

Model 4
(W18C) 12 10.1G 25.7M 3.98% 2.44% 0.609

with 1D positional encoding or with/without structure en-
coding, ranging from 1 to 3. The 1D positional encoding
is generated by the cosine and sine function [64]. Their
performance on WFLW testset is reported in Table 15. Both
structure encoding and positional encoding can improve the
performance of DSLPT. However, the improvement brought
by 1D positional encoding is not as signicant as the struc-
ture encoding. The main reason is that the face structure is
hard to be represented by a 1D shape.

Inuence of inherent relation layer number: to further
explore the inuence of inherent relation layer number, we
implement four DSLPT models with 2, 4, 6, and 12 inherent
relation layers respectively, ranging from 1 to 4. As shown in
Table 16, the improvement brought more inherent relation
layers is more signicant than a deeper backbone. Replacing
HRNetW18C-lite with HRNetW18C increases parameters
from 13.3M to 19.3M and Flops from 6.06G to 7.83G while
it only improves the metrics by 0.25% in NME. Increasing
the inherent relation layer number from 4 to 6 promises a
similar improvement in NME. Nevertheless, it only leads to
an improvement of 10.6% and 12.2% in Flops and parame-
ters respectively. Therefore, learning inherent relation with
DSLPT is more efcient than learning a simple feature map
with a CNN network. With 12 inherent relation layers, the
performance of DSLPT can be further improved, reaching at
3.98%, 2.44% and 0.609 in NME, FR and AUC respectively.

Inuence of dynamic patches and probability distribu-
tion estimation: we report the performance of different loss
functions as well as the model with/without the dynamic
patch in Table 17. When we set Ldown and Lup to 0.5
and constrain the model learning with the L2 function,
the DSLPT downgrades to our original SLPT [43]. In the
same condition, replacing the L1 or L2 loss function with
the Laplace or Gaussian negative log-likelihood function
leads to a slight improvement. Unlike [19], both the Laplace
and Gaussian negative log-likelihood function demonstrate
comparable performance in DSLPT. The main reason is that
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55th landmark, Gaussian, Ldown=0.5, Lup=0.7

93.48% landmarks are within the local patch

86th landmark, Gaussian, Ldown=0.5, Lup=0.7

87.23% landmarks are within the local patch

96th landmark, Gaussian, Ldown=0.5, Lup=0.7

93.61% landmarks are within the local patch

55th landmark, Gaussian, Ldown=0.5, Lup=0.5

90.08% landmarks are within the local patch

86th landmark, Gaussian, Ldown=0.5, Lup=0.5

83.15% landmarks are within the local patch

96th landmark, Gaussian, Ldown=0.5, Lup=0.5

92.39% landmarks are within the local patch

55th landmark, Gaussian, Ldown=0.7, Lup=0.7

98.78% landmarks are within the local patch

86th landmark, Gaussian, Ldown=0.7, Lup=0.7

95.51% landmarks are within the local patch

96th landmark, Gaussian, Ldown=0.7, Lup=0.7

98.64% landmarks are within the local patch

55th landmark, Laplace, Ldown=0.5, Lup=0.7

95.52% landmarks are within the local patch

86th landmark, Laplace, Ldown=0.5, Lup=0.7

91.17% landmarks are within the local patch

96th landmark, Laplace, Ldown=0.5, Lup=0.7

95.52% landmarks are within the local patch

55th landmark, Laplace, Ldown=0.5, Lup=0.5

91.58% landmarks are within the local patch

86th landmark, Laplace, Ldown=0.5, Lup=0.5

82.74% landmarks are within the local patch

96th landmark, Laplace, Ldown=0.5, Lup=0.5

92.26% landmarks are within the local patch

55th landmark, Laplace, Ldown=0.7, Lup=0.7

98.91% landmarks are within the local patch

86th landmark, Laplace, Ldown=0.7, Lup=0.7

95.79% landmarks are within the local patch

96th landmark, Laplace, Ldown=0.7, Lup=0.7

98.78% landmarks are within the local patch

Fig. 9: The distribution of 55th, 86th and 96th landmark in patch coordinate system on the occlusion subset of WFLW. The
percentage of the landmarks that are within the local patch is also reported in captions.

TABLE 17: Performance of the DSLPT with different loss
function onWFLW testset. Each model is with HRNetW18C-
lite as the backbone. If Ldown and Lup are a same value, the
patch sizes of all landmarks are a constant number. Key:
[Best, Gaussian=Gaussian negative log-likelihood function,
Laplace=Laplace negative log-likelihood function]

Loss function Ldown Lup NME↓ FR↓ AUC↑
Gaussian 0.5 0.7 4.020% 2.40% 0.607

Gaussian 0.5 0.5 4.064% 2.68% 0.604
Gaussian 0.7 0.7 4.084% 2.92% 0.603
Laplace 0.5 0.7 4.018% 2.68% 0.606
Laplace 0.5 0.5 4.059% 2.76% 0.604
Laplace 0.7 0.7 4.070% 2.88% 0.604

L1 0.5 0.5 4.076% 2.68% 0.601
L2 0.5 0.5 4.083% 2.60% 0.603

[19] predicts heatmap and covariance matrix for each land-
mark from a sharing global feature. The Gaussian likelihood
is the probabilistic analog of the L2 loss, which is sensitive
to outliers. The negative inuence brought by outliers prop-
agates to each landmark through the sharing global feature.
However, the prediction heads of DSLPT predict each land-
mark independently from its corresponding feature. As a
result, it is less sensitive to outliers. Besides, the Gaussian
negative log-likelihood function drives DSLPT to focus on
the challenging samples so that it performs better in FR and
AUC.

Compared to different loss functions, the proposed dy-
namic patch leads to a more signicant improvement. We vi-
sualize the annotated landmark position distribution in the
patch coordinate system on the occlusion subset of WFLW,
as shown in Fig.9. A smaller xed patch size (Ldown and Lup

are set to 0.5) ensures higher feature resolution. But when it
comes to the landmark with high uncertainty, the patch is
usually with limited contextual information and the ground
truth of the landmarks with high uncertainty deviates from
the patch area, resulting in an inaccurate representation.

TABLE 18: Performance of the DSLPT with different Ldown

and Lup on WFLW testset. Key: [Best]

Inter-ocular NME(%) ↓
Lup=0.5 Lup=0.6 Lup=0.7 Lup=0.8 Lup=0.9

Ldown=0.4 4.097 4.061 4.050 4.061 4.077
Ldown=0.5 4.064 4.047 4.020 4.041 4.063

And the lower feature resolution brought by the larger patch
(Ldown and Lup are set to 0.7) also leads to performance
degradation. For the dynamic patch (Ldown is set to 0.5 and
Lup is set to 0.7), the distribution density in the patch center
is very similar to the distribution of the small patch size
while the distance of the sample with high uncertainty to
the center of the local patch is shortened effectively. The
results demonstrate that the dynamic patch applies smaller
size to most landmarks for higher feature resolution and
larger size to the landmark with high uncertainty for more
contextual information.

Inuence of the threshold of patch size: we implement
DSLPT with different Ldown and Lup on WFLW testset to
study the inuence of patch size threshold. As shown in Ta-
ble 18, both low Ldown and Lup lead to performance degra-
dation since they result in contextual information missing.
And, high Lup leads to a high variance in patch size, causing
a domain gap in the same coarse-to-ne stage. The domain
gap commonly has a negative inuence on the inherent
relation learning. The experiment results demonstrate that
DSLPT exhibits the best performance when Ldown and Lup

are set to 0.5 and 0.7 respectively.
Computational complexity and parameters: although

DSLPT is trained with 3 stages, we can still use the in-
termediate result as the nal output and do not run the
following stages to further reduce computational complex-
ity. It does not require any modication to the weights
since the DSLPT is shared in each stage. Therefore, DSLPT
is quite exible to t the devices with different computa-
tional capacities. DETR cannot be implemented in a coarse-
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TABLE 19: Performance, computational complexity and parameters of the DSLPT with different stages and backbone (all
models are trained with 3 stages). The NME on WFLW (98 landmarks), 300W (68 landmarks) and COFW (29 landmarks) is
normalized by inter-ocular distance. The NME on AFLW (19 landmarks) is normalized by

√
Wbox ×Hbox.

Method Landmark
number

1 stage 2 stages 3 stages
NME↓ Flops Params NME↓ Flops Params NME↓ Flops Params

DSLPT
(ResNet34)

98 Landmarks 4.337% 5.90G 31.06M 4.148% 6.97G 31.06M 4.138% 8.04G 31.06M
68 Landmarks 3.239% 5.56G 31.05M 3.043% 6.29G 31.05M 3.035% 7.02G 31.05M
29 Landmarks 3.675% 5.13G 31.03M 3.356% 5.44G 31.03M 3.338% 5.74G 31.03M
19 Landmarks 1.420% 5.02G 31.02M 1.378% 5.22G 31.02M 1.377% 5.42G 31.02M

DSLPT
(ResNet50)

98 Landmarks 4.325% 6.57G 33.47M 4.122% 7.67G 33.47M 4.112% 8.71G 33.47M
68 Landmarks 3.224% 6.22G 33.46M 3.026% 6.96G 33.46M 3.019% 7.69G 33.46M
29 Landmarks 3.664% 5.80G 33.44M 3.348% 6.10G 33.44M 3.338% 6.41G 33.44M
19 Landmarks 1.408% 5.69G 33.43M 1.370% 5.89G 33.43M 1.368% 6.09G 33.43M

DSLPT
(HRNetW18C

-lite)

98 Landmarks 4.252% 3.91G 13.25M 4.031% 4.99G 13.25M 4.020% 6.06G 13.25M
68 Landmarks 3.208% 3.57G 13.24M 3.014% 4.30G 13.24M 3.002% 5.04G 13.24M
29 Landmarks 3.575% 3.15G 13.22M 3.320% 3.45G 13.22M 3.314% 3.76G 13.22M
19 Landmarks 1.410% 3.04G 13.21M 1.368% 3.24G 13.21M 1.367% 3.44G 13.21M

DSLPT
(HRNetW18C)

98 Landmarks 4.181% 5.69G 19.35M 4.015% 6.76G 19.35M 4.008% 7.83G 19.35M
68 Landmarks 3.225% 5.35G 19.33M 2.988% 6.08G 19.33M 2.982% 6.81G 19.33M
29 Landmarks 3.542% 4.92G 19.31M 3.305% 5.23G 19.31M 3.328% 5.53G 19.31M
19 Landmarks 1.403% 4.82G 19.31M 1.368% 5.01G 19.31M 1.367% 5.21G 19.31M

DETR-DC5 [58]
(ResNet50)

98 Landmarks 4.316% 10.62G 35.25M - - - - - -
68 Landmarks 3.269% 10.39G 35.24M - - - - - -
29 Landmarks 3.788% 10.10G 35.23M - - - - - -
19 Landmarks 1.372% 10.03G 35.23M - - - - - -

to-ne manner so it has only one stage. We report the
performance, computational complexity and parameters of
DETR and the DSLPT with different stage numbers in
Table 19. Although DSLPT runs three times for coarse-to-
ne landmark localization, its computational complexity
is still much lower than DETR because the sparse local
patch signicantly decreases the token number. Most state-
of-the-art methods adopt a very deep backbone, such as 8
DU-Net and ResNet152, to extract landmark representation
from global feature. Besides, heatmap regression methods
require an additional post-processing procedure to transfer
the heatmaps into landmark coordinates, which makes them
less efcient. With the proposed local sparse patches, DSLPT
explicitly produces the representation for each landmark
and directly regresses the landmark coordinates from the
representations. Therefore, DSLPT can achieve better perfor-
mance with a lighter backbone. As shown in Table 1, DSLPT
achieves a comparable performance with only 15 ∼ 12
computational complexity compared to the state-of-the-art
methods (Awing, ADNet, AVS+SAN and HIH).

5 CONCLUSION

In this paper, we propose the Dynamic Sparse Local Patch
Transformer to address two main issues in face alignment:
ignoring the landmark inherent relation and assuming the
variance of a landmark probability distribution is a constant
number. DSLPT generates representation for each landmark
from the local patch and learns an inter query-query and
inter representation-query relation in inherent relation lay-
ers. The learned case dependent inherent relation enables
DSLPT to locate the landmarks with heavy occlusion by
their relative position to the easily identied landmarks for
better robustness. The model learning is constrained by a
negative log-likelihood function rather than the L1 or L2
loss. Therefore, DSLPT predicts the probability distribution
rather than a numerical coordinate. Moreover, we further

incorporate DSLPT with a coarse-to-ne framework and
the predicted distribution determines the size and position
of the patches in the following coarse-to-ne stages. The
variance of the predicted distribution enables DSLPT to
apply a larger patch to the landmark with high uncertainty
for more contextual information and a smaller patch to the
landmark with low uncertainty for the higher resolution
feature. Therefore, the dynamic patch ensures a more ne-
grained landmark representation for the next stage and
an initial face can converge to the target face gradually
in the coarse-to-ne framework. The experiment results
demonstrate that DSLPT successfully addresses the three
problems in face alignment and outperforms other methods
with much less computational complexity.
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