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Gholam Reza Rakhshandehroo5, 34 

 35 

Abstract 36 

Flood management in a reservoir-outlet system is a multi-criterion decision-making (MCDM) 37 

issue, in which preventing flood damage and flood overtopping, as well as fulfilling water 38 

demands, are often considered essential practices. However, although MCDM models can be used 39 

for flood control, there is a knowledge gap in hybrid modeling of the reservoirs and their outlets 40 

based on a coupled MCDM and optimization model during the flood. In this paper, an MCDM-41 

optimization model was presented for reservoir systems' optimal designs in flood conditions based 42 

on a robust optimization technique, namely multi-objective particle swarm optimization 43 

(MOPSO), applying a powerful MCDM tool, so-called complex proportional assessment 44 

(COPRAS) for the first time in the literature, considering the weights generated by Shannon 45 

Entropy method. The objectives of this optimization model were defined based on the non-linear 46 

interval number programming (NINP) technique to optimize the orifice and triangular, 47 

rectangular, and proportional weirs specifications. This methodology was applied to a practical 48 

reservoir MCDM optimization problem in flood conditions to demonstrate its applicability and 49 
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efficiency. Results indicated that the proposed framework could successfully and effectually 50 

provide the reservoirs and outlets with superior optimal design.  51 

Keywords: Flood management, Multi-objective particle swarm optimization (MOPSO) model, 52 

Non-linear interval number programming (NINP) method, Complex proportional assessment 53 

(COPRAS) technique, Shannon Entropy method. 54 

 55 

1 Introduction 56 

Flood management plays a prominent role in water engineering due to substantial flood destruction 57 

to people's lives (Jacob et al. 2019). The key variables governing flood management are providing 58 

the reservoir's safety, preventing downstream flood damages, and fulfilling the water demands 59 

requirements. However, balancing different profit-making goals is still challenging to obtain 60 

optimal extensive benefits in flood conditions (Eldardiry and Hossain 2021). Therefore, intelligent 61 

optimization algorithms should be applied to provide optimum reservoirs and outlet specifications 62 

during floods (Yazdandoost 2021).  63 

Recently, several heuristic intelligent techniques such as ant colony algorithm (ACO) (Gang et al. 64 

2005), simulated annealing algorithm (SA), genetic algorithm (GA) (Jothiprakash and Arunkumar 65 

2013), particle swarm optimization (PSO) (Chen et al. 2020), and multi-objective optimization 66 

models (Wang et al. 2011; Su and Tung 2014) have been utilized to optimize reservoir 67 

characterizations. However, among these techniques, although some studies considered outlets 68 

optimal designs within the reservoir operation optimization in flood conditions (Karaboga et al. 69 

2004; Karaboga et al. 2008), they have been paid less attention. On the other hand, multi-objective 70 

particle swarm optimization (MOPSO) is an effective algorithm using swarm intelligence that can 71 
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fill this knowledge gap due to its advantages over other approaches, such as easy understanding 72 

of procedure and programming (Shuai and Huang Xiaomin 2012). As a result, applying the 73 

MOPSO optimization technique for optimal reservoirs and outlet designs in flood conditions can 74 

be a substantial achievement in water engineering. 75 

For a MOPSO optimization model, it is not feasible to define a single optimum alternative that 76 

optimizes all objective functions since some of the objectives may conflict with each other 77 

(Malekmohammadi et al. 2011; Zhu et al. 2016); on the other hand, it is more suitable to choose 78 

the most appropriate and superior alternative from a set of possible options (Yu et al. 2004), so 79 

that, selecting the superior optimum result of the MOPSO model is a multi-criterion decision-80 

making (MCDM) issue. Several types of MCDM tools have been studied in the literature for 81 

reservoir flood control and risk management using different approaches (Brito and Evers 2016), 82 

including fuzzy recognition model (Chen and Hou 2004), Technique for Order Preference by 83 

Similarity to Ideal Solution (TOPSIS) (Fu 2008), analytic hierarchy process (AHP) (Alipour 84 

2015), and goal programming (Mamun et al. 2015). However, to the best of our knowledge, the 85 

application of a robust MCDM technique such as the complex proportional assessment (COPRAS) 86 

method for ranking the alternatives related to a multi-objective optimization model for the 87 

reservoirs and outlets designs in flood conditions has not been addressed in the literature (Ashrafi 88 

et al. 2021; Roozbahani et al. 2021). Therefore, using the COPRAS model as a successful MCDM 89 

tool coupled with a reservoir optimization model in flood conditions can significantly advance the 90 

current use.   91 

This paper proposed a hybrid MCDM-MOPSO model considering the non-linear interval number 92 

programming (NINP) technique in the optimization objectives as averages and radii of flood 93 

overtopping, downstream water deficit, and flood damage as well as outlets characteristics 94 
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involving the COPRAS approach as an MCDM tool using Shannon Entropy method for generating 95 

the weights to obtain the superior optimal designs of the reservoirs outlets. This novel 96 

methodology endeavored to fulfill the objectives elaborated upon hereunder to introduce the 97 

superior, reliable, optimum design of the reservoirs and their outlets; 98 

1. Minimize the downstream water deficit, flood overtopping, and flood damage based on the 99 

NINP approach,  100 

2. Optimize the reservoir's outlets' characterizations using several flood inflow scenarios 101 

using five common inflow patterns abrupt wave, triangular, broad peak, flood pulse, and 102 

double-peak, 103 

3. Develop a novel optimization model for optimal designs of four outlet types of orifice and 104 

triangular, rectangular, and proportional weirs within a MOPSO optimization model,  105 

4. Adopt the COPRAS approach to find the most appropriate optimal solution, 106 

5. Use the Shannon Entropy method to generate the importance weights related to different 107 

objectives, 108 

6. Manage the flood by optimizing reservoirs and outlet designs while considering the 109 

downstream water demands during the floods. 110 

 111 

2 Methodology 112 

The proposed framework consisted of five primary steps for obtaining the superior optimal outlets' 113 

designs using the MOPSO model based on modified Euler's method as a well-known Runge-Kutta 114 

scheme considering the NINP technique for uncertainties evaluations and a robust MCDM model, 115 
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the COPRAS tool for ranking alternatives using Shannon Entropy for generating the importance 116 

weights (Fig. 1).  117 

First, different flood hydrograph scenarios were generated based on five common inflow types: 118 

Flood pulse, abrupt wave, broad peak, double-peak, and triangular by variations in durations of 119 

the flood and peak of the inflows.  120 

Second, the flood routing equations using four conventional outlet types of triangular, 121 

proportional, and rectangular weirs and orifice were formulated and solved numerically by the 122 

modified Euler's method (Badfar et al. 2021). 123 

Third, the MOPSO model was developed to optimize different outlets features, which resulted in 124 

a series of Pareto-optimal solutions between different objectives of radii and averages of flood 125 

overtopping, flood damage, and water demand deficit as well as outlets characteristics using the 126 

water demand and the inflow scenarios as the input.    127 

Fourth, the weights related to objectives were computed using the Shannon Entropy method based 128 

on each objective's deviation degree and the Entropy.  129 

Finally, the COPRAS decision-making approach was applied to rank the optimal solutions by 130 

computing the utilities for each alternative and selecting the solution with the highest utility as the 131 

final superior optimum result. These steps were delineated entirely in the following. 132 
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 133 

Fig. 1 The general framework for the presented hybrid MCDM-MOPSO model 134 
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2.1 Inflow hydrographs   136 

In this research, fifty flood hydrographs, ten of each primary pattern as double-peak, broad peak, 137 

flood pulse, triangular, and abrupt wave, were developed by variations in flood durations and peak 138 

inflows (Fig. 2) (Paik 2008; Nematollahi et al. 2021). In other words, four types of the hydrograph, 139 

broad peak, triangular, flood pulse, and abrupt wave were considered using a thesis by Hui (2013); 140 

in addition, to cover almost all inflow hydrographs for floods in the simplified shapes and the 141 

double-peak inflow pattern was adopted from Gioia (2016).  142 

These inflow hydrographs based on the flood durations and the inflow base peaks were obtained 143 

from a study by Paik (2008) and utilized as inputs to the optimization model. The inflow peaks 144 

and flood durations were different in the inflow flood scenarios to incorporate uncertainties in the 145 

duration time of flood and inflow peak, which was essential for the hydrological risk evaluation 146 

of reservoir water shortage in the risk-based optimization model.   147 

 148 
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 152 

 153 

Fig. 2 The inflow hydrographs based on five primary types; a) Triangular, b) Abrupt wave, c) Flood 154 
pulse, d) Broad peak, e) Double-peak 155 

 156 
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2.2 The multi-objective optimization framework   158 

2.2.1 Outlet formulation 159 

Four conventional outlets were utilized in this study as orifice and triangular, rectangular, and 160 

proportional weirs. To this extent, rational cross-sections were initially chosen from the study by 161 

Paik (2008), hypothesized to be empty. After that, the optimum designs of the outlets were defined 162 

by the proposed optimization model using a well-known Runge-Kutta method for numerical 163 

analysis of the flood routing equation using Eqs. (S.1) – (S.5) in the Supplementary materials, 164 

section S1 for the outflows characterization in the orifice and triangular, rectangular, and 165 

proportional weirs, respectively.  166 

 167 

2.2.2 Multi-objective particle swarm optimization (MOPSO) algorithm 168 

The multi-objective particle swarm optimization (MOPSO) algorithm is an extended version of 169 

the PSO model used in multi-objective optimization algorithms. The MOPSO approach results in 170 

a set of non-inferior solutions rather than a unique solution produced by the PSO approach, the 171 

so-called "Pareto set" consisting of different Pareto optimal solutions that do not dominate each 172 

other with two main features: 1. Each pair of solutions in the Pareto set cannot compare their 173 

validity, and 2. Each Pareto set solution should be superior to the outside solution (Sin-Lau et al. 174 

2005). To transfer from PSO algorithm to MOPSO approach, the operations should be updated to 175 

gBest of particle swarm while setting reasonable diversity maintenance procedure. Further details 176 

were provided in the Supplementary materials, section 3 (Shuai and Huang Xiaomin 2012). 177 

 178 



12 
 

2.2.3 Objective Functions 179 

Defining an appropriate objective function is a key to optimization problems for flood 180 

management. This study used seven objective functions categorized in two groups of interval-181 

based and cost-based, considering the downstream safety, water demands, and the safety of the 182 

reservoirs in flood conditions.  183 

 184 

2.2.3.1 Interval-based objective functions 185 

The concept of non-linear interval number programming (NINP) introduced by Jiang et al. (2008) 186 

can be applied to an optimization model's objective functions to decrease the impacts of 187 

hydrological uncertainties on the optimization model. The NINP technique has the advantage of 188 

hypothesizing that the numbers have interval natures by defining the average and deviation of the 189 

objectives for each set of functions (Pourshahabi et al. 2020). This study described three sets of 190 

interval-based objective functions as Eqs. (1) to (3) to minimize the averages and deviations of the 191 

flood overtopping, downstream flood damage, and water demands deficits by applying the NINP 192 

method's deterministic type.    193 

1

2

min( )

min( )

h

h

F ID

F IM

=


=
 (1) 

3

4

min( )

min( )

out

out

Q

Q

F ID

F IM

=


=

 (2) 

5

6

min( )

min( )

Def

Def

F ID

F IM

=


=
 (3) 

Where, 194 
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( ) ( )max max min min

2

sn sn

sn n n sn n n

h

h h
ID

   −
   =  (4) 

( ) ( )max max min min

2

sn sn

sn n n sn n n

h

h h
IM

   +
   =  (5) 

( ) ( ), ,max max min min

2out

sn sn

sn n out n sn n out n

Q

Q Q
ID

   −
   =  (6) 

( ) ( ), ,max max min min

2out

sn sn

sn n out n sn n out n

Q

Q Q
IM

   +
   =  (7) 

   max min

2

sn sn sn sn

Def

Def Def
ID

−
=  (8) 

   max min

2

sn sn sn sn

Def

Def Def
IM

+
=  (9) 

Where: 195 

hID : The interval deviation for the water depth  ( m ), 196 

hIM : The interval average for the water depth  ( m ), 197 

outQID : The interval deviation for the outflow discharge  ( 3m s ), 198 

outQIM : The interval average for the outflow discharge  ( 3m s ), 199 

DefID : The interval deviation for the water demand deficit  ( 3m s ), 200 

DefIM : The interval average for the water demand deficit  ( 3m s ), 201 

sn : The flood scenario, 202 
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sn

nh : The water head in the n th flood routing step for the sn th scenario ( m ),  203 

,

sn

out nQ : The outflow discharge in the n th flood routing step for the sn th scenario ( 3m s ),  204 

snDef : The water demand deficit for the sn th scenario ( 3m s ),  205 

The sn

nh  was calculated from Eqs. (10) and (11) as a function of chosen outlet/weir ( typeOW ), the 206 

time step for routing ( nt ), and inflow flood discharge at  n th time step for the selected inflow 207 

hydrograph  INF [ ( )INF nI t ].  208 

1 ( ), ,sn

n INF n n typeh fun I t t OW =    (10) 

, 2 ( ), ,sn

out n INF n n typeQ fun I t t OW =    (11) 

Finally, sn

nDef  was computed using Eq. (12).  209 

,

0

To
sn

T out n

n
sn

T

WD Q

Def
WD

=

−

=


 
(12) 

Where: 210 

TWD : Total water demand during the flood occurrence.  211 

 212 

 213 

 214 

2.2.3.2 Cost-based objective functions 215 
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The seventh objective function for this optimization model was minimizing the selected 216 

orifice/weir characteristics, defined by Eq. (13), to optimize the cost required for constructing the 217 

orifice/weir. 218 

7 min( )CF OW=  (13) 

Where: 219 

COW : The orifice/weir characteristics to be optimized were cross-sectional area ( OA ) for the 220 

orifice, weir's angle ( T ) of the triangular weir, base distance for the proportional weir ( s ), and 221 

the weir width of the rectangular weir ( RL ). 222 

 223 

2.2.4 Constraints 224 

The primary constraint for the proposed optimization framework in water balance constraint 225 

through numerical analysis of the reservoir routing equation [Eq. (14)] (Liu et al. 2017). Another 226 

constraint could be considered in terms of flood discharge capacity [Eq. (15)]. Finally, the 227 

reservoir storage volume should be limited by Eq. (16) (Liu et al. 2017). 228 

( ) ( )t
out

dS
I t Q t

dt
= −  (14) 

max maxmin ( ), down

out tQ Q h Q     (15) 

l t uS S S   (16) 

Where: 229 

( )I t : The reservoir inflow ( 3m s ), 230 
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tS : The reservoir storage ( 3m s ), 231 

max ( )out tQ Q h : The orifice/weir,  232 

max ( )tQ h : The maximum discharge capacity of the reservoir for the water level of th  ( 3m s ),  233 

max

downQ : The safe discharge for flood control in downstream ( 3m s ),  234 

lS : The minimum reservoir storage ( 3m ),  235 

uS : The maximum reservoir storage ( 3m ). 236 

 237 

2.3 Multi-criteria decision-making (MCDM) model  238 

In this study, a robust MCDM method, the so-called complex proportional assessment (COPRAS) 239 

technique, was utilized to rank the options resulting from the optimization model. Considering the 240 

above definition, the most superior alternative was the option related to the most significant 241 

ranking. Hence, the MCDM model resulted in a tranfromation of several criteria values into a 242 

single final assessment to be used for assessing, ranking, and selecting the best superior 243 

alternatives (Zhu et al. 2018) discussed in the Supplementary materials, section S4. Applying the 244 

COPRAS method to obtain the superior alternative comprises six main steps, as noted in 245 

Supplementary materials, section S5 (Pitchipoo et al. 2014).   246 

 247 

 248 

3 Results  249 
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The proposed innovative framework developed a hybrid multi-criteria decision-making- multi-250 

objective particle swarm optimization (MCDM-MOPSO) model, which endeavored to minimize 251 

the averages and radii of water demand deficit, flood damage, and flood overtopping, and outlets 252 

characteristics as the cross-sectional area for the orifice, weir's angle for the triangular weir, weir's 253 

width for the rectangular weir, and base distance for the proportional weir as well as ranking the 254 

optimum solutions to obtain the most appropriate optimum design.  255 

 256 

3.1 The MOPSO model results  257 

3.1.1 Problem definition 258 

The proposed framework was applied to an extended version of an example adopted from Paik 259 

(2008) to prove the efficiency and advantage of the presented methodology. In this example, four 260 

same prismatic reservoirs with 12 2km  surface areas were assumed to be customized to four outlet 261 

types: triangular, proportional, and rectangular weirs and orifice. Then, fifty inflow hydrographs 262 

based on five patterns of flood pulse, triangular, broad peak, abrupt wave, and double-peak were 263 

hypothesized, as shown in Fig. 2. These inflow hydrographs occurred within the time of 0 0t =  (s) 264 

to 8000nt = (s) with 200 -second-time steps. Furthermore, the lower and upper bounds of decision 265 

variables for different outlet types were written in Table S.1, Supplementary materials, section S7. 266 

In addition, the modified Euler was utilized as the numerical tool for solving the governing 267 

equation. Finally, Earth's gravity was set to be 9.81 
2m s , and the time step for the numerical 268 

analysis was 200 seconds. 269 

3.1.2 Optimal outlets solutions 270 
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Using 50 inflow flood scenarios, the proposed MOPSO model defined optimum geometrical 271 

characteristics of the reservoirs with different outlet specifications. Therefore, 30 Pareto-optimal 272 

solutions were shown in Fig. 3 for the orifice, and 20 Pareto-optimal answers were indicated in 273 

the same figure for optimum outlets characteristics of other outlet types, wherein the values 274 

obtained for the Pareto-optimal solutions were noted in Supplementary material, section S8, 275 

Tables S.2 to S.5.  276 

Fig. 3 showed the resulted values for the outflow, deficit of water, and head of water in the Pareto-277 

optimal solutions. The results revealed that the MOPSO optimization algorithm selected 278 

characteristics associated with specific objective values. It showed that the optimal values for the 279 

hIM  were in the range of 0.011742 to 0.013689 ( m ) for the orifice, 0.383572 to 4.61888 ( m ) for 280 

the proportional weir, 0.502686 to 1.254345 ( m ) for the rectangular weir, and 0.28783 to 281 

0.336561 ( m ) corresponding to the triangular weir. In addition, the optimum values for the 
outQIM  282 

were in the range of 0.106784 to 2.74204  (
3m s ) for the orifice, 1.424646 to 10.23736  (

3m s ) 283 

for the proportional weir, 5.95493 to 10.24508  (
3m s ) for the rectangular weir, and 0.188633 to 284 

1.420806 (
3m s ) for the triangular weir. Finally, the optimal values of the DefIM   were in the 285 

range of 7.688% to 27.799% for the orifice, 0.5562% to 1.6672% for the proportional weir, and 286 

0.0901% to 0.3831% corresponding to the triangular weir, and 0.9404% to 1.6735% for the 287 

rectangular weir.  288 

Fig. 4 indicated a comparison between the outflow discharges from different outlet types. This 289 

figure illustrated that the triangular weir was the safest outlet to limit the flood damage since it 290 

provided a minor discharge. After that, the safest one was the orifice and proportional weir. 291 
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Finally, it was notable that the rectangular weir was the most disastrous outlet type concerning 292 

flood damage due to the highest outlet discharge.  293 

 294 
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(c) 

 

(d) 

Fig. 3 Pareto-optimal solutions of the MOPSO model for outlets of a) Orifice, b) Proportional, c) 

Rectangular, and d) Triangular weirs 
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 298 

Fig. 4 The outflow discharges comparison for different outlet types 299 

 300 

3.2 The MCDM model results  301 

3.2.1 Entropy Shannon method results 302 

The Entropy Shannon technique was implemented to obtain the importance weights of different 303 

objectives using the decision matrices consisting of the Pareto-optimal solutions for different 304 

outlet types, which were in the dimensions of  30 7 for the orifice and 20 7  for other outlet 305 

types. Table S.6 illustrated the indices acquired by applying this technique in Supplementary 306 

materials, section S9.  307 
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3.2.2 The COPRAS approach results 309 

Figs. 5 showed the utilities obtained from the COPRAS model to rank Pareto-optimal solutions. 310 

As this figure showed, all alternatives' utilities were almost more than 0.5, which showed the 311 

suitability of all solutions. The detailed procedure was shown in the Supplementary materials, 312 

section S10.   313 

 314 

 315 
Fig. 5 The COPRAS utilities for ranking Pareto-optimal solutions outlet types of the orifice and 316 

proportional, rectangular, and triangular weirs 317 
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decision variables for the best Pareto-optimal solutions were selected as the superior optimum 322 

design.   323 

Table 1 The hybrid MCDM-MOPSO model optimal design 324 

Outlet type Design parameters 
Coefficient Geometry 

Orifice Coefficient ( OC ): 0.582183 

Correction factor ( O  ): 0.2 

Cross-sectional area ( OA ): 2 

Triangular weir Coefficient ( TC ): 0.2 Weir's angle ( T ): 51.66777° 

Rectangular weir Coefficient ( RC ): 0.8 Width ( RL ): 6.59681 

Proportional weir Coefficient ( PC ): 0.463109 Base distance ( s ): 2 

 325 

 326 

4 Discussion  327 

The presented MCDM-MOPSO model could efficiently provide the optimal designs for the 328 

reservoirs and outlets while meeting the water demand requirements. The following sections 329 

provided a detailed discussion of the proposed model's results.  330 

 331 

4.1 The MOPSO model discussion  332 

Fig. 3 indicated the Pareto-optimal solutions for each outlet type from the MOPSO optimization 333 

model. This figure illustrated that the average value of the water depth had the highest maximum 334 

amount for the proportional weir and the lowest amount for the orifice; Furthermore, the variations 335 

in the average depth were highest for the proportional weir and the lowest for the orifice. This 336 

showed that when the water depth behind the reservoir was a significant concern for the designer, 337 

it would be better to construct the orifice as the flood outlet control. 338 
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Then, the maximum values for the average outflow discharge were the highest for the orifice and 339 

the proportional weir, while the minimum amounts of this parameter were the lowest for the 340 

orifice. Moreover, the range of the outflow discharge for the proportional weir was more than 341 

other outlet types, and for the triangular weir was less than others. This illustrated that in 342 

conditions with a limitation for the range of outflow from the reservoir outlet, it would be better 343 

to build a triangular weir downstream of the reservoir as a conservative selection. 344 

Finally, the maximum values of the average water deficit for the orifice were the highest, and the 345 

triangular weir was the lowest among different outlet types. In the meantime, the range of water 346 

deficit for the triangular weir was the lowest compared to other outlet types. In addition, Fig. 6 347 

showed the results of water deficit demand from the proposed model and the previously presented 348 

model by Nematollahi et al. (2022) on the same problem based on the hybrid non-dominated 349 

sorting genetic algorithm- III (NSGA-III) and graph model for conflict resolution (GMCR). This 350 

figure illustrated that the proposed model could substantially decrease the water deficit demand, 351 

proving the proposed model's efficiency and novelty.       352 

 353 

Fig. 6 Comparison of the downstream water deficit based on the proposed MCDM-MOPSO model and 354 
the GMCR-NSGA-III model by Nematollahi et al. (2022) 355 
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4.2 The MCDM model discussion  356 

4.2.1 Entropy Shannon method  357 

As shown in Table S.6, Supplementary materials, section S9, the objectives of the MOPSO model 358 

had almost similar weights. This revealed that the importance of different objectives used within 359 

the optimization model was not far from each other. Therefore, these importance weights assigned 360 

to the objectives (criteria) were utilized within the MCDM model to find the COPRAS decision-361 

making results to determine the most appropriate and superior optimal design.  362 

  363 

4.2.2 The COPRAS method 364 

Figs. 7 indicated the Box plot for the utilities of different outlet types from the COPRAS model. 365 

This figure indicated that the utilities of the optimal solutions for the rectangular weir were in the 366 

more appropriate ranges than other outlet types, which showed that the proposed optimal solution 367 

worked more suitably with this outlet type rather than others. On the other hand, although the 368 

utility values for the orifice had suitable values, they were less than other outlet types.  369 

 370 
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 371 

Fig. 7 Box plot of utilities for different outlet types 372 

 373 

4.3 The MCDM-MOPSO model discussion 374 

As Table 1 shown, the proposed COPRAS-MOPSO model could design the reservoirs with 375 

different outlet types efficiently. Finally, it could be concluded that the presented model could be 376 

used beneficially by the designers after applying it to specific problem specifications during the 377 

flood.  378 

 379 
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5 Conclusion  380 

This study proposed a novel hybrid multi-criteria decision-making- multi-objective particle swarm 381 

optimization (MCDM-MOPSO) model to define the most suitable optimum characteristics of the 382 

reservoirs concerning four types of outlets as triangular, proportional, and rectangular weirs and 383 

orifice by minimizing the averages and radii of flood overtopping, downstream flood damage, and 384 

water demand deficit using the non-linear interval number programming (NINP) technique and 385 

outlets characteristics. The input to this framework consisted of fifty inflow hydrographs based on 386 

five common patterns to cover almost all inflow types: triangular, flood pulse, broad peak, abrupt 387 

wave, and double-peak. The equations for flood routing were solved using a well-known scheme 388 

of a commonly-used numerical method, modified Euler's method during the optimization 389 

procedure. Applying the inflow flood scenarios within the MOPSO model using the above-390 

mentioned numerical method resulted in a series of Pareto-optimal solutions. Finally, the most 391 

appropriate optimum design for the reservoirs and their outlets was selected among the Pareto-392 

optimal solutions using the complex proportional assessment (COPRAS) method based on the 393 

importance weights obtained by the Entropy Shannon technique. Applying the proposed hybrid 394 

MCDM-MOPSO model to an example proved this methodology's efficiency and practicality. 395 

Furthermore, it illustrated that the triangular weir was the safest outlet for flood conditions, while 396 

the rectangular weir was the most hazardous outlet considering flood damage.  397 

 398 
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S1 Outlet formulation 31 

The outlets' formulations for the orifice and triangular, rectangular, and proportional weirs were 32 

provided in the following, respectively.  33 

2out O O OQ C A gh=  (S.1) 

58
2 tan

15 2

T
out TQ C gh

 
=  

 
 (S.2) 

32
2

3
out R RQ C L gh=  (S.3) 

2

3
out PQ C h s

 
= + 

 
 (S.4) 

( ) 2
2 arctanP P P

P

x y y

b s

  
=    

   

 (S.5) 

Where: 34 

outQ : Outflow from the outlet/weirs ( 3m s ), 35 

h : Water depth in the reservoir ( m ), 36 

O : Orifice formula correction factor, 37 

OC : Orifice coefficient, 38 

OA : Orifice cross-sectional area ( 2m ), 39 

TC : The coefficient of the triangular weir, 40 
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T : Triangular weir's angle (degrees), 41 

RC : Rectangular weir coefficient, 42 

RL : Rectangular weir width ( m ), 43 

PC : Proportional weir coefficient, 44 

s : Proportional weir base distance ( m ), 45 

Px : Proportional weir width at the water surface ( m ), 46 

Py : Vertical elevation of the water depth for the proportional weir ( m ), 47 

Pb : Proportional weir constant, 48 

g : Gravitational acceleration constant ( 2m s ). 49 

 50 

S2 Flood routing numerical analysis   51 

The numerical analysis for the flood routing equation was performed using a robust scheme of the 52 

well-known numerical method, the Runge-Kutta method, as modified by Euler's approach (Badfar 53 

et al. 2021). In this method, the inflow and outlet outflow for the specific inflow hydrograph  INF54 

were defined by Eqs. (S.6) and (S.7), respectively.  55 

( )
1,

( )INF INF nn
I f t=  (S.6) 

( )
1,

( )out out nn
Q f h=  (S.7) 

Where: 56 
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( )
1,INF n

I : First approximation of inflow at the  n th flood routing step ( 3m s ), 57 

nt : Flood routing step ( s ), 58 

( )
1,out n

Q : First approximation of outflow from the orifice/weirs at the  n th flood routing step (59 

3 /m s ), 60 

nh : Water  hydraulic depth in the reservoir at the  n th flood routing step ( m ), 61 

Then, the first numerical coefficient ( 1,nk ) was calculated for the total flooding time ( totT ) after 62 

specifying the reservoir area ( Area ) and time step ( dt ).  63 

( ) ( )1, 1, 1,
; 0,1,...,n INF out totn n

dt
k I Q n T

Area

   = − =    
   

(S.8) 

Next, the second series of inflow and outflow values were approximated using the first numerical 64 

coefficient and the time step as Eqs. (S.9) and (S.10). 65 

( )
2,

( 0.5 )INF INF nn
I f t dt= +     (S.9) 

( ) 1,2,
( 0.5 )out out n nn

Q f h k= +    (S.10) 

Using the results of the above equations, the second numerical coefficient ( 2,nk ) was calculated 66 

by Eq. (S.11).   67 

( ) ( )2, 2, 2,
; 0,1,...,n INF out totn n

dt
k I Q n T

Area

   = − =    
   

(S.11) 

Finally, the time and hydraulic height values for the next step were calculated from Eqs. (S.12) 68 

and (S.13). 69 
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1 2,n n nh h k+ = +  (S.12) 

1n nt t dt+ = +  (S.13) 

 70 

S3 Implementation steps for multi-objective particle swarm optimization (MOPSO) 71 

optimization algorithm 72 

The particle swarm optimization (PSO) approach is a commendable intelligent optimization 73 

technique introduced by Kennedy and Eberhart (1995) based on the birds' predatory reactions. In 74 

this approach, each possible solution for the optimization model is considered a "particle" in a 75 

searching system that can change its position within the solutions system to increase the value of 76 

the fitness function until the birds obtain the optimum position. The speed and dynamic location 77 

of the particles are defined using two extreme values: 1. The optimum solution for the particle is 78 

acquired within the evolutionary procedure (individual extreme value- pBest), and 2. The optimum 79 

solution is considered the entire population within the evolutionary process (global extreme value- 80 

gBest), so the PSO can be applied to an optimization problem by identifying the particles' global 81 

and individual extreme values. It has been proved that the PSO approach has a very intense priority 82 

for complex optimization problems compared to the conventionally-used optimization approaches 83 

since: 1. There is no significant requirement for the optimization objectives within the process; 2. 84 

The optimization algorithm has a fast and acceptable convergence because of the fitness based on 85 

the probability evolution; and 3. There is a low probability of localized optimization because of 86 

the random search space (Shuai and Huang Xiaomin 2012).  87 

The following steps should be followed to implement the MOPSO algorithm into the reservoir 88 

optimization problem, as shown in Fig. S.1. 89 
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1. The first step creates the internal particle swarm and external set. For this purpose, first, 90 

the particles' optimum positions are created as pBest and gBest based on the fitness values 91 

of multiple objectives associated with each particle considering the zero for the initial 92 

velocities [ ( )V M ] of the particles and Eq. (S.14) for calculating the population. Then, the 93 

external archives set is generated as ExtArchive with the scale of SAr, the maximum 94 

iteration times are set as ItMax, and the initial iteration time is set as zero (It=0).  95 

1
min max min

( ) ( ) ( ) ( )Pop M Range M R Range M Range M
 

= +  −
  

 
(S.14) 

Where: 

( )Pop M : The population of the internal particle swarm with the scale of M , 

min

( )Range M : The minimum limit of the particle range, 

 

max

( )Range M : The maximum limit of the particle range,  

1R : A random number between zero and one.  

2. In the second step, the non-dominated particles are chosen from the ( )Pop M  to be copied 96 

in the ExtArchive. Then, the non-dominated particles are ordered in descending manner 97 

based on the crowded distance calculations considering the limitation of the numbers of 98 

the noninferior solutions to the SAr. Finally, the gBest are updated, and the elements of the 99 

Pareto fronts should guide particle swarm evolutions to the scattered areas of those 100 

elements.  101 

3. The third step implements a variation operation for the internal particle swarm based on 102 

the updated internal particle swarm. First, the particle velocity and location are updated 103 

using Eqs. (S.15) and (S.16). Then, the range of the particle position should be checked to 104 
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be in the range of  min max,Pop Pop . If the range of the particle is not within this limitation, 105 

the particle should be kept on the boundary, and the associated speed direction should be 106 

reversed as ( )upV M− . Finally, the mutation rate is calculated, and variation of the internal 107 

particle is applied when Eq. (S.17) is applicable. 108 

     1 2( ) 0.4 ( ) ( ) ( ) ( ) ( )upV M V M R PBest M Pop M R gBest Ar Pop M= + − + −  (S.15) 

( ) ( ) ( )upPop M Pop M V M= +  (S.16) 

It ItMax MuR   (S.17) 

Where: 

( )upV M : The updated velocity with the scale of M , 

( )PBest M : The optimal position in pBest, 

 

( )gBest Ar : The optimal position in ExtArchive,  

MuR : The mutation rate.  

4. Finally, in the fourth step, the iteration times are investigated based on an updated version 109 

of ExtArchive. First, the fitness functions for multiple objectives associated with the mutant 110 

particle are calculated. Second, the non-dominated particles are moved to ExtArchive, and 111 

the SAr is rechecked to reduce the weak distributed elements. Finally, if the ItMax is 112 

exceeded, the procedure should be stopped, the ExtArchive is the final output, and the 113 

Pareto-optimal solution is obtained; otherwise, the process should be returned to step 2.   114 

 115 

 116 

 117 
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 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

Fig. S.1 A schematic view of the MOPSO algorithm procedure 139 

 140 

S4 Multi-criteria decision-making (MCDM) model  141 

Each MCDM model can be formulated due to alternatives determination, criteria introduction, and 142 

weight quantifications. In this study, n alternatives resulted from the multi-objective optimization 143 

 

Step 4: Investigating the iteration times based on 

updated versions of external archives sets  

Step 1: Creating internal particle swarm and 

external set  

Step 2: Selecting non-dominated solutions from 

the internal particle swarm to inset in the external 

archives set  

Step 3: Variation operation of internal particle 

swarm based on updated versions of internal 

particle swarm  

Start 

End 

Selecting non-dominated particles from the population 

and creating the same in the external archives 

Calculating the crowded distance to sort the non-

dominated particles in a reverse order  

Setting an updated gBest due to updated 

global optimum sets 

Updating particle velocity and location  

Limiting the range of particle position: Changing 

the speed direction of the particle to the opposite 

side and keep it on the boundary if the location of 

updated particle is more than the range  

Calculating the mutation rate and 

implementing the variation of the internal 

particle when It<ItMax×mutation rate 

Computing the multiple objectives’ 

fitness functions 

Copying the non-dominated particles into 

modified external archives set  

Generating optimum positions of pBest and gBest based 

on fitness functions of different objectives due to 

particles velocities, population, and initial particle 

swarm  

Generating external archives set as well as 

setting the maximum iteration times, ItMax, 

and initial iteration time, It=0 

It<ItMax 

Obtaining the optimal solution set of Pareto 

based on the external archives set  

Yes 

No 

It=It+1 
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model and m  criteria as the objectives of the optimization algorithm were assumed. The vectors 144 

of alternatives, weights, and criteria were  1 2, ,..., nA A A A= ,  1 2, ,..., mW W W W= , and 145 

 1 2, ,..., mC C C C= , respectively. To this extent, the decision matrix could be calculated as 146 

( )ij n m
X x


= , in which ijx was the result of evaluating the alternative iA  concerning criterion jC  147 

where i  and j  represented the indices of the alternative and criterion, respectively. Then, the final 148 

assessment ( iM ) evaluated the alternative iA  for all criteria to rank the options.  149 

The Multi-criteria decision-making (MCDM) model consisted of four main steps (Fig. S.2). (1) 150 

Defining a series of alternatives to generate a decision matrix ( X ) and introducing the weights 151 

related to each criterion to prepare the weight matrix ( CW ); (2) Formulating the MCDM model as 152 

a function of decision matrix and weight matrix [ ( , )CF X W ]; (3) Applying a deterministic 153 

measurement; and (4) Ranking alternatives based on the utilized MCDM model (Zhu et al. 2018). 154 

The alternatives adopted in each MCDM model could be determined explicitly and implicitly 155 

(Durbach and Stewart 2012).  156 

 157 

Fig. S.2 MCDM models procedure 158 

 159 
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S5 Complex proportional assessment (COPRAS) decision-making technique 160 

The complex proportional assessment (COPRAS) technique is a commendable multiple-criteria 161 

decision-making (MCDM) method proposed by Zavadskas et al. (1994) to define the best superior 162 

option among several alternatives. This method considered the maximum and minimum criteria 163 

to include the desirable and undesirable effects separately. The process of applying the COPRAS 164 

method to obtain the most superior alternative comprises six main steps, as noted in the following 165 

(Pitchipoo et al. 2014).   166 

1. In the first step, the vector of alternatives ( A ) and criteria (C ) should be determined to 167 

define the decision matrix ( X ). In this study, the criteria were the values of the averages 168 

and radii of flood overtopping, peak outflow, and water deficit, and the alternatives were 169 

the results of the MOPSO optimization model. After that, the decision matrix was written 170 

as: 171 

11 12 1

21 22 2

1 2

...

...

m

m

n n nm

x x x

x x x
X

x x x

 
 
 =
 
 
 

 

(S.18) 

Where:  172 

n : The number of alternatives,  173 

m : The numbers of criteria. 174 

In this study, n  and m  were 60 and 6, respectively.   175 

2. In the second step, the decision matrix ( X ) was normalized in each matrix's column 176 

concerning the most significant entry of that column to remove the effects of various unit 177 

measurements. The following equation was adopted to make the matrix X  dimensionless.  178 
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1

; 1,2,..., ; 1,2,...,
ij

ij n

ij

i

x
x i n j m

x



=

= = =


 

11 12 1

21 22 2

1 2

...

...

m

m

n n nm

x x x

x x x
X

x x x

  

  


  

 
 
 =
 
 
  

 

(S.19) 

Where: 179 

ijx : The decision matrix's dimensionless elements for alternative i  and criterion j . 180 

3. Third, the criteria weights should be clarified in the third step to identify the weighted 181 

dimensionless decision matrix ( X̂  ). The criteria weights were obtained from the Entropy 182 

Shannon method in this study. Then, the weighted scaleless decision matrix was calculated 183 

as follows: 184 

11 12 1

21 22 2

1 2

ˆ ˆ ˆ...

ˆ ˆ ˆ...ˆ

ˆ ˆ ˆ

m

m

n n nm

x x x

x x x
X

x x x

  

  


  

 
 
 =
 
 
  

 

(S.20) 

Where ˆ .ij ij jx x W = , in which jW  was the weight related to the criterion j .  

4. In the fourth step, the desirable or maximizing index and undesirable or minimizing index 185 

were computed for each alternative. Finally, the maximizing indices were summed for an 186 

alternative i  as iR+  and the minimizing indices were summed for an alternative  i  as  iR−  187 

in Eqs. (S.21) and (S.22).   188 

1

ˆ
k

i ij

j

R x

+

=

=  
(S.21) 
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1

ˆ
m

i ij

j k

R x

−

= +

=   
(S.22) 

Where: 

k : The number of desirable criteria, 

m k− : The number of undesirable criteria. 

 

5. In the fifth step, the utilities related to different criteria were calculated from Eq. (S.23).  189 

1

1

min

min

n

i i
i

i
i i

n
i

i
i

i i

R R

U R
R

R
R

− −

=
+

−

−

= −

= +




 

(S.23) 

Where: 

min i
i

R− : The minimum of iR− , 

iU : The utility of the alternative i . 

 

6. In the final step, the maximum value of the utilities was selected, and the final rank for 190 

each alternative was calculated as the following: 191 

max ; 1,2,...,F i
i

U U i n= =  (S.24) 

100i
i

F

U
N

U
=   

(S.25) 

Where: 

FU : The final utility of the alternative i , 

iN : The rank score of the option i . 

 

 192 

 193 
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S6 Entropy Shannon weight method 194 

The Shannon entropy method is a commendable concept in information theory, measuring the 195 

amount of influential information presented by the criterion system. To acquire the weights of 196 

the criteria based on the Shannon entropy values, three main stages should be done, which are 197 

elaborated upon hereunder. 198 

1. The decision matrix should be noticed in the first step as introduced in Eq. (S.19). After 199 

that, the decision matrix is normalized using Eq. (S.20) to obtain the dimensionless 200 

decision matrix X 
.     201 

2. In the second step, the Entropy for each criterion ( jE ) was calculated by Eq. (S.26), 202 

considering K as the constant value.  203 

  204 

( )
1

1
; ,

( )

n

j ij ij

i

E K x Ln x j K
Ln n

 

=

= −   =  
(S.26) 

3. In the final step, the deviation degree, jd , was computed using Eq. (S.27) to present the 205 

usefulness of each criterion to the decision-maker. To this extent, different criteria did not 206 

differ in terms of their importance when their degrees of deviation were close to each other. 207 

Then, the weights of various criteria were calculated by Eq. (S.28).   208 

   209 

1 ;j jd E j= −   (S.27) 

1

;
j

j m

j

j

d
W j

d
=

= 


 

(S.28) 

 210 
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S7 Decision variables ranges 211 

Table S.1 Decision variables range for the MOPSO optimization model 212 

Outlet type Decision variables 
Coefficient Geometry 

Orifice Coefficient ( OC ): [0.2,0.8] 

Correction factor ( O  ): [0.2,0.8] 

Cross-sectional area ( OA ): [2,10] 

Triangular weir Coefficient ( TC ): [0.2,0.8] Weir's angle ( T ): [45°,145°] 

Rectangular weir Coefficient ( RC ): [0.2,0.8] Width ( RL ): [2,10] 

Proportional weir Coefficient ( PC ): [0.2,0.8] Base distance ( s ): [0.2,10] 

 213 

 214 

S8 Optimal outlets designs 215 

The optimal values for the hydraulic water head, flood outflow, water deficit, and outlet 216 

characteristics were indicated in Tables S.2 to S.5. 217 

 218 

Table S.2 The values of Pareto-optimal solutions for the orifice 219 

Sol. # 

Hydraulic 

water head 

(m) 

Flood 

outflow 

(m3/s) 

Water 

deficit  (%) 

Correction 

factor ( O  ) 

Coefficient 

(
OC ) 

Area (
OA ) 

1 0.013031 1.012105 17.25176 0.47005 0.59155 8.059819 

2 0.013264 0.693467 20.01867 0.349085 0.436 10 

3 0.01322 0.753326 19.46471 0.457149 0.613742 5.902637 

4 0.012956 1.115169 16.45041 0.505161 0.636883 7.697536 

5 0.013129 0.878322 18.35796 0.8 0.348072 6.958318 

6 0.011742 2.74204 7.687975 0.8 0.8 10 

7 0.012471 1.771634 12.26802 0.8 0.501319 10 

8 0.013138 0.866468 18.46031 0.609977 0.686789 4.56123 

9 0.013343 0.584931 21.0713 0.8 0.8 2 

10 0.012901 1.190068 15.88855 0.354737 0.746608 10 

11 0.012488 1.74896 12.3927 0.8 0.505948 9.775046 

12 0.012172 2.173007 10.18558 0.622505 0.8 10 
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13 0.013357 0.565427 21.26891 0.486573 0.438967 5.789906 

14 0.013688 0.107781 27.76712 0.582183 0.2 2 

15 0.013689 0.106784 27.79895 0.2 0.2 5.767826 

16 0.01299 1.068868 16.80812 0.389342 0.608869 10 

17 0.013585 0.251347 24.8221 0.403656 0.306804 4.40171 

18 0.013088 0.934927 17.88075 0.8 0.264438 9.764708 

19 0.013587 0.247427 24.87649 0.2 0.441713 6.073687 

20 0.012638 1.546203 13.54994 0.799688 0.488315 8.903521 

21 0.013556 0.290445 24.28886 0.360438 0.2 8.747289 

22 0.012874 1.227113 15.62144 0.480371 0.577815 9.84934 

23 0.013647 0.165391 26.22914 0.2 0.367756 4.865837 

24 0.013621 0.201297 25.56474 0.2 0.535659 4.069718 

25 0.01349 0.382768 23.19629 0.280414 0.502841 5.908034 

26 0.013295 0.650697 20.42434 0.678976 0.210091 10 

27 0.013002 1.052584 16.93483 0.2923 0.798289 10 

28 0.013251 0.710987 19.85448 0.496654 0.314346 10 

29 0.012112 2.251897 9.807817 0.646702 0.8 10 

30 0.013506 0.359731 23.45543 0.771859 0.305626 3.316812 

 220 

 221 

Table S.3 The values of Pareto-optimal solutions for the proportional weir 222 

Sol. # 

Hydraulic 

water head 

(m) 

Flood 

outflow 

(m3/s) 

Water 

deficit  (%) 
Coefficient (

PC ) 
Base 

distance ( s ) 

1 0.976671 10.23321 1.479707 0.371387 5.951442 

2 3.860918 3.457716 0.91386 0.683946 2 

3 1.17314 10.01917 1.667205 0.2 8.477953 

4 4.61888 1.424646 0.951588 0.2 3.358735 

5 4.105321 2.965121 0.742491 0.445929 3.154807 

6 3.097442 4.842194 0.691436 0.748983 3.16084 

7 0.941215 10.23544 1.43976 0.278758 8.4051 

8 0.90772 10.23736 1.398734 0.303491 8.127219 

9 0.383572 10.22831 0.869054 0.8 10 
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10 3.8013 3.99995 0.8892 0.8 2 

11 2.920038 2.455489 0.568617 0.25763 5.247748 

12 3.898284 3.1985 0.919929 0.62821 2 

13 4.197867 2.410986 0.751348 0.319117 3.757881 

14 3.297333 2.525977 0.579084 0.282134 4.823797 

15 2.534823 2.88032 0.556178 0.304421 5.103048 

16 3.643826 4.747355 0.713855 0.8 2.833762 

17 4.549634 1.576511 0.876748 0.2 4.001547 

18 1.148348 10.21977 1.64794 0.271912 6.6229 

19 4.000523 2.396149 1.004774 0.463109 2 

20 3.106262 2.962025 0.576583 0.349952 4.48694 

 223 

 224 

Table S.4 The values of Pareto-optimal solutions for the rectangular weir 225 

Sol. # 

Hydraulic 

water head 

(m) 

Flood 

outflow 

(m3/s) 

Water 

deficit  (%) 
Coefficient (

RC ) Width (
RL ) 

1 0.661463 10.24507 1.125575 0.650204 5.823844 

2 0.707723 10.24461 1.170027 0.8 4.303573 

3 0.659003 10.24508 1.123098 0.642435 5.935979 

4 0.699488 10.24473 1.162209 0.624127 5.616518 

5 0.85358 10.24006 1.324589 0.635766 4.161248 

6 0.678489 10.24497 1.142117 0.700569 5.150571 

7 1.254345 5.95493 1.33976 0.347892 2.429873 

8 1.238742 6.855237 1.443377 0.2 4.99129 

9 1.035228 10.22911 1.538888 0.528523 3.881091 

10 1.246491 6.09413 1.35295 0.360056 2.430053 

11 0.556416 10.24373 1.009735 0.770567 6.185264 

12 0.502686 10.24131 0.940396 0.670067 8.219696 

13 0.819653 10.24149 1.277366 0.532115 5.317915 

14 1.249111 6.354025 1.388508 0.431074 2.099021 

15 1.171269 10.21766 1.673542 0.647381 2.673475 

16 0.850482 10.2402 1.32002 0.388887 6.945204 

17 0.517412 10.24212 0.959624 0.8 6.59681 
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18 0.68617 10.24489 1.149273 0.512517 7.019145 

19 1.054002 10.22769 1.556279 0.558971 3.576549 

20 0.947264 10.23507 1.446817 0.627442 3.723311 

 226 

Table S.5 The values of Pareto-optimal solutions for the triangular weir 227 

Sol. # 

Hydraulic 

water head 

(m) 

Flood 

outflow 

(m3/s) 

Water 

deficit  (%) 
Coefficient (

TC ) 
Weir's angle 

(
T ) 

1 0.327319 1.128256 0.325541 0.733247 79.33699 

2 0.313028 0.728231 0.235893 0.2 124.6101 

3 0.330204 1.215166 0.343731 0.2772 134.2102 

4 0.303715 0.507032 0.178015 0.2 106.3661 

5 0.336561 1.420806 0.383075 0.242661 145 

6 0.324908 1.057228 0.310189 0.388264 110.6961 

7 0.304698 0.528378 0.183927 0.668165 45 

8 0.321168 0.950145 0.286356 0.581749 82.46184 

9 0.28783 0.188633 0.090111 0.2 51.66777 

10 0.310757 0.671426 0.221724 0.2 120.8712 

11 0.30072 0.440375 0.15888 0.269206 80.80238 

12 0.319079 0.891574 0.273717 0.688901 68.86735 

13 0.299105 0.404315 0.148112 0.2 92.73167 

14 0.309716 0.645622 0.21516 0.333702 90.82975 

15 0.296228 0.346152 0.130229 0.2 83.56243 

16 0.291043 0.24586 0.105332 0.2 64.88012 

17 0.294815 0.317369 0.121926 0.274454 61.61283 

18 0.288853 0.206049 0.095138 0.213833 52.74677 

19 0.319658 0.906317 0.276943 0.389901 102.0655 

20 0.328824 1.180713 0.336557 0.2 145 

 228 

 229 

 230 
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S9 Entropy Shannon method results 231 

Table S.6 The Weight results with the Entropy Shannon method 232 

Outlet type  Objectives 

j 

1 2 3 4 5 6 7 

hID  hIM  
outQID  

outQIM  DefID  DefIM  Geometry 

Orifice 
jE  0.11337 0.113349 0.104529 0.10481 0.113372 0.111992 0.110994 

jd  0.88663 0.886651 0.895471 0.89519 0.886628 0.888008 0.889006 

jW  0.142371 0.142375 0.143791 0.143746 0.142371 0.142593 0.142753 

Proportional 

weir 
jE  0.141499 0.142914 0.141275 0.139478 0.149786 0.146563 0.143735 

jd  0.858501 0.857086 0.858725 0.860522 0.850214 0.853437 0.856265 

jW  0.143209 0.142973 0.143246 0.143546 0.141826 0.142364 0.142836 

Rectangular 

weir 
jE  0.146443 0.14764 0.149683 0.149017 0.149786 0.149185 0.146639 

jd  0.853557 0.85236 0.850317 0.850983 0.850214 0.850815 0.853361 

jW  0.143176 0.142975 0.142632 0.142744 0.142615 0.142716 0.143143 

Triangular 

weir 
jE  0.148384 0.149731 0.149752 0.142679 0.149787 0.145535 0.147122 

jd  0.851616 0.850269 0.850248 0.857321 0.850213 0.854465 0.852878 

jW  0.142721 0.142495 0.142491 0.143677 0.142486 0.143198 0.142932 

 233 

S10 Ranking results with the COPRAS method for the orifice 234 

Table S.7 showed the ranking for the Pareto-optimal solutions based on the utilities from the 235 

COPRAS model to obtain the superior optimal design, wherein the first three prior options were 236 

depicted in red. This table showed that the first option for all outlet types had the utility of 1, 237 

revealing that these alternatives were the most appropriate optimal solutions. Therefore, as shown 238 

in this table, the Pareto-optimal solutions # 14, 19, 17, and 9 were the best answer among 239 
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alternatives for the superior optimal design of orifice and proportional, rectangular, and triangular 240 

weirs, respectively.   241 

Table S.7 Ranking results with the COPRAS method  242 

Orifice 

Sol. No. 
iU  Rank Sol. No. 

iU  Rank Sol. No. 
iU  Rank 

1 0.700178 18 11 0.576375 26 21 0.820446 10 

2 0.72712 16 12 0.526424 28 22 0.645438 21 

3 0.777939 12 13 0.817748 11 23 0.922494 3 

4 0.687976 20 14 1 1 24 0.933934 2 

5 0.738384 14 15 0.908913 6 25 0.854578 9 

6 0.471659 30 16 0.667075 22 26 0.734392 15 

7 0.571645 27 17 0.915295 5 27 0.669543 20 

8 0.77724 13 18 0.690723 19 28 0.72417 17 

9 0.886483 7 19 0.880287 8 29 0.518227 24 

10 0.649135 23 20 0.610656 25 30 0.913796 4 

Proportional 

weir 

Sol. No. 
iU  Rank Sol. No. 

iU  Rank 

1 0.738934 15 11 0.92274 13 

2 0.981916 3 12 0.988787 2 

3 0.677554 20 13 0.932097 8 

4 0.951996 6 14 0.924993 11 

5 0.953755 5 15 0.922014 14 

6 0.926802 10 16 0.937172 7 

7 0.699254 19 17 0.924817 12 

8 0.708261 17 18 0.707455 18 

9 0.733925 16 19 1 1 

10 0.969026 4 20 0.930519 9 

Rectangular 

weir 

Sol. No. 
iU  Rank Sol. No. 

iU  Rank 

1 0.962855 5 11 0.995249 2 

2 0.99118 3 12 0.956885 7 

3 0.960486 6 13 0.920216 10 

4 0.954618 8 14 0.89417 13 

5 0.938845 9 15 0.870232 18 

6 0.976512 4 16 0.867497 19 

7 0.886301 15 17 1 1 

8 0.825666 20 18 0.920017 11 

9 0.882228 17 19 0.884082 16 

10 0.888027 14 20 0.915293 12 

Triangular 

weir 

Sol. No. 
iU  Rank Sol. No. 

iU  Rank 

1 0.716105 16 11 0.891305 7 

2 0.756526 13 12 0.781571 11 

3 0.649976 18 13 0.883667 8 

4 0.835156 9 14 0.817882 10 

5 0.609292 20 15 0.914866 6 

6 0.700178 17 16 0.968192 3 

7 0.920309 5 17 0.960128 4 

8 0.752258 14 18 0.996242 2 

9 1 1 19 0.740786 15 

10 0.774315 12 20 0.647153 19 
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