
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:62 
https://doi.org/10.1007/s00158-021-03166-w

RESEARCH PAPER

Model updating using causal information: a case study in coupled slab

Kunal Tiwary1 · Sanjaya Kumar Patro1 · Amir H. Gandomi2  · Kshira Sagar Sahoo3

Received: 2 August 2021 / Revised: 20 November 2021 / Accepted: 18 December 2021 / Published online: 25 January 2022 
© The Author(s) 2022

Abstract
Problems like improper sampling (sampling on unnecessary variables) and undefined prior distribution (or taking random 
priors) often occur in model updating. Any such limitations on model parameters can lead to lower accuracy and higher 
experimental costs (due to more iterations) of structural optimisation. In this work, we explored the effective dimensional-
ity of the model updating problem by leveraging the causal information. In order to utilise the causal structure between the 
parameters, we used Causal Bayesian Optimisation (CBO), a recent variant of Bayesian Optimisation, to integrate observa-
tional and intervention data. We also employed generative models to generate synthetic observational data, which helps in 
creating a better prior for surrogate models. This case study of a coupled slab structure in a recreational building resulted 
in the modal updated frequencies which were extracted from the finite element of the structure and compared to measured 
frequencies from ambient vibration tests found in the literature. The results of mode shapes between experimental and pre-
dicted values were also compared using modal assurance criterion (MAC) percentages. The updated frequency and MAC 
number that was obtained using the proposed model was found in least number of iterations (impacts experimental budget) 
as compared to previous approaches which optimise the same parameters using same data. This also shows how the causal 
information has impact on experimental budget.

Keywords Causal BO · Generative adversarial network · Model Updating · Synthetic data · coupled slab · Structural 
Optimisation

1 Introduction

The updating of existing models and reduction of errors 
of any individual model is typically performed through a 
process known as model updating. The updated computer 
models are beneficial in the prediction of structural response 
and to check the architectural design under various configu-
rations. However, structural models always contain errors, 
regardless of how they are created. These errors can be rep-
resented in various forms, such as parametric uncertainty of 

stiffness, mass and damping of FE models, the rectification 
of a set of differential equations to satisfy FE models in the 
boundary region, and other modeling errors (Khodaparast 
et al. 2008; Soize 2013). In the early years, natural frequen-
cies of a structure and their corresponding mode shapes 
were the major modal parameters that resulted in the cal-
culation of model uncertainty. Since then, the application 
of structural model updating in damage detection (Ng et al. 
2009) and health monitoring of divergent structures (Kuok 
and Yuen 2012; Ng 2014; Yin et al. 2009) has become 
well-known.

Model updating is mostly approached as a statistical 
inference problem that can be solved by deterministic and 
probabilistic approaches. Specifically, deterministic models 
of a structure are kept enclosed by a set of probability mod-
els, which allow the models to give a predictable part and 
an uncertain part as a prediction error. Jaishi and Ren (2005) 
considered model updating to be a restricted optimization 
issue. The inconsistency between the response predicted by 
the model and by real-time measurement was reduced by 
considering the objective function and relating it to the mode 
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shape along with residual modal flexibility and frequency. 
For authentication purposes, the latter authors performed 
an ambient vibration test. Another example of determinis-
tic methods can be found in Datta (2002). While determin-
istic methods re entirely appropriate in updating models, 
they face some limitations. For instance, most deterministic 
methods ignore the possible solutions that result from the 
problem of modeling error and incomplete nature of meas-
urements by focusing on a single solution. When the param-
eters for analysis increase, dimensionality also increases, and 
thus, the optimization process becomes complicated.

Whenever a complex structure is analyzed, the input 
parameters often contain errors caused by the absence of 
proper readings. Unlike in computer modeling, where all the 
degrees of freedom (DOFs) of a structure can be modeled, 
it is not possible to analyze all these DOFs practically. A 
different order of uncertainty is induced in model updating 
by modeling and measurement errors. Probabilistic models 
are flexible and take into account the various uncertainties 
due to unexpected nature. Bayesian model updating methods 
are probability-based and can handle the multiple types of 
uncertainties mentioned above. The Bayesian approach helps 
in providing the optimized value of the uncertain modal 
parameter by updating the probability distribution function 
(PDF), thereby assisting engineers to understand the system 
more precisely.

1.1  Background and motivation

Probabilistic model updating using a specific model reduc-
tion procedure was performed using incomplete data in lit-
erature. Identification of the parameters is performed and 
measured, which helps to identify the modal quantities. The 
model with Markov Chain Monte Carlo (MCMC) with ran-
dom walks was used to estimate the uncertainties (Sun and 
Büyüköztürk 2015). MCMC was also applied to calculate 
the posterior probability density function (PDF) in Bayesian 
model updating, which helped to estimate the uncertainty 
and update the finite element of the structure. In another 
work, efficient parameters were identified for modal updat-
ing, and reduction of errors using sensitivity-based cluster-
ing was performed (Jang and Smyth 2017). Transferring the 
measurement error from measuring experimental data (fre-
quency and mode shapes) to updating structural parameters 
using Bayes rule was also conducted. The collective error 
was included with Gaussian distributions, and the meth-
odology was investigated using synthetic data along with 
its applications (Zhang et al. 2020). Bayesian optimisation 
was also previously used in a constrained optimisation prob-
lem with multiple available sources (Ghoreishi and Allaire 
2019).

Structural optimisation has been approached by various 
algorithms like, the firefly algorithm, cuckoo search (CS) 

algorithm (Gandomi et al. 2011, 2013). It is commonly seen 
that non-deterministic optimization problems involving more 
than one parameter to optimize do not utilise causal information 
in decision-making. In a nutshell, the traditional optimization 
method pictures the variables to be optimized as having a direct 
causal relationship with the outcome variable. Recently, the 
works in the domain of causal inference (Aglietti et al. 2020) 
have shown that if optimization methods use causal informa-
tion, they can solve the same optimization problem with a lesser 
number of optimisation iterations. In this work, we utilised 
causal information in the process of decision-making.

Bayesian optimisation (BO) is an efficient method to esti-
mate the posterior but suffers from costly iterations and

dependence on the experimental budget. Hence, we used 
a CBO engine, an extended form of BO that utilises causal 
information in the optimization process and has proven to be 
cost-effective by reducing the number of optimisation itera-
tions in various global optimisation problems (Aglietti et al. 
2020). We also adopted the traditional Gaussian process with 
the Causal Gaussian Process and acquisition function with 
the Causal Expected Improvement (Aglietti et al. 2020). A 
previous work evaluated counterfactuals of random policies 
to build causal models (Buesing et al. 2018). Non-parametric 
Bayesian methods use priors defined on stochastic processes, 
which allows extremely flexible prior and posterior, whereby 
complexity grows with data size. Since prior beliefs can be 
different, or rather subjective, we can assign different priors 
for the same problem. Moreover, the selection of priors sig-
nificantly affect the solution because, the prior can be used 
for decreasing the search space for any model. The most com-
monly used surrogate functions in non-parametric Bayesian 
are the Dirichlet process and Gaussian processes (GPs). GPs 
define prior on the space of functions, which are also known 
as universal approximators (Patel and Oberai 2019).

The Bayesian approach behaves very poorly when the 
errors are associated with various kinds, and therefore, quan-
tifying each type of error becomes difficult. In this case, 
multilevel integration is required for the evaluation of the 
posterior Probability Distribution Function (PDF). Differ-
ent simulation techniques, such as MCMC (Parno and Mar-
zouk 2018), combined MCMC, and Metropolis–Hastings 
(MH) (Lam et al. 2015), are used to avoid the integration 
and obtain samples. However, Monte Carlo sampling can be 
inefficient since it incorporates regions where the likelihood 
will consider small values (Lam et al. 2015). Depending on 
the identifiability of the problem, the Gaussian processes 
provide a convenient way to evaluate the posterior PDF (Stu-
art 2010; Marzouk and Najm 2009). In the Causal Gaussian 
process, we often trade-off between observation (what we 
already know) and intervention in areas in which uncertainty 
is likely to belong. The updated posterior from the use of 
do-calculus helps in the estimation of maximum likelihood. 
We are often interested in areas where uncertainty is high 



Model updating using causal information: a case study in coupled slab  

1 3

Page 3 of 20 62

rather than the areas where we are already certain in the 
search space.

A CBO utilises the causal dependencies between the 
parameters to minimise the total number of iterations 
required to reach a global minimum. Once it determines the 
causal dependencies, it breaks down the single surrogate 
model into multiple surrogate models, where the variables 
in each surrogate model are causally related. CBO trains 
the new set of surrogate models using a prior obtained from 
observational data and a posterior from interventional data, 
which is also called as causal Gaussian Process (cGP) as 
it integrates observational and intervention data. Once the 
surrogate models is trained, it uses an causal acquisition 
function to balance the exploration and exploitation. In this 
work, considering the methodology in Aglietti et al. (2020), 
we employed Causal Expected Improvement (CEI) as the 
acquisition function that is built on a standard expected 
improvement. This means a CBO evaluates an acquisition 
function for each of the new surrogate models then consid-
ers only one of them (to evaluate) in any given optimisa-
tion iteration. It is well-known (Wang et al. 2016) that the 
performance of a standard BO decreases with increase in 
dimensions of parameters to optimise. A causal optimisa-
tion model like CBO helps to reason the effective dimen-
sionality of the problem. In this work, we do not claim that 
our problem has high dimensions, rather we explored the 
possibility of knowing about the effective dimensionality 
of the problem in order to reduce the optimisation iterations 
and, hence, save experimental budget. This the main reason 
why CBO outperforms BO, as it breaks the single surrogate 
model into multiple surrogate models based on the causal 
structures of the parameters. As a result, it becomes easy for 
CBO to learn the probability distribution for each surrogate 
model individually.

As the cGP needs a prior from observational data, we 
investigated if it is possible to synthetically create more 
observational data for a better prior and compare the effi-
ciency. To create synthetic observational data, we used Tab-
ular Generative Adversarial Networks (that were properly 
trained with sufficient data) to obtain a prior distribution 
very close to the real distribution. The generated synthetic 
information is used to train the cGP when posterior PDF is 
calculated. We have used a variant of Generative adversarial 
networks (GANs) that is, TGANs to obtain a perfectly gener-
ated data set. GANs have provided a well-organised way to 
sample the posterior PDF and have an extraordinary ability 
to estimate the correct distribution (Patel and Oberai 2019; 
Goodfellow et al.; Ma et al. 2017; Wang et al. 2017).

The two optimal ways to create a good model are sub-
sequently described. First, using a large model with a lot 
of experimental data, we avoid over fitting and can auto-
matically obtain a model with less uncertainty. Second, 
when data are insufficient, the right variables that affect the 

outcome variable are selected through a causal graph, and 
accurate decision-making must be achieved. Having suffi-
cient data and causal knowledge can help the model to learn 
the non-deterministic function in unknown regions. In most 
cases, fit-for-purpose real-world data augmentation can be 
expensive, time-consuming, complicated, or simply impos-
sible. Minimisation of the need for accessing real data by 
augmenting substitute data that resembles the real data are 
important. Adding synthetic data or artificially created data 
to existing datasets often significantly reduces overfitting 
and proves to be a better approach for improving the accu-
racy and generalization of trained models.

1.2  Summary of contributions

The major contributions of the following work can be sum-
marised as follows:

– Synthetic and observational data were used to provide 
prior knowledge to the CBO engine, thus balancing the 
trade-off between observation and intervention (a typical 
trade-off in causal inference).

– Synthetic data were generated using TGANs.
– Synthetic data were evaluated using a table evaluator 

and finding the best resemblance to real data in terms of 
results.

– Frequency corresponding to the minimum error in the 
data were determined.

– Results obtained from the model were compared to meas-
ured responses from the literature of the structure and 
thus the gap was minimised.

The formulation of the posterior PDF is discussed in Sect. 2. 
Section  3 emphasises the description of the generative 
model, how the generation of synthetic data were performed, 
and the evaluation of synthetic data based on various met-
rics. The implementation of CBO is presented in Sect. 4. 
A comparative study between BO and causal BO and its 
formulation is described in Sect. 5. The descriptions of the 
structure and utilisation of field test data from literature for 
verification purposes are provided in Sect. 6, along with the 
complete flow of work and the final results. Section  7 pre-
sents the concluding remarks of this work.

2  Problem formulations

Model updating of the initial and final class is done by con-
sidering algorithms that can utilise the causal information 
to learn the probability distribution efficiently. In order to 
balance the trade-off between observation and intervention, 
we generated and used synthetic data as prior in the Causal 
BO to approximate the results. Per the Bayesian theorem, 
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the conditional posterior distribution function can be evalu-
ated by multiplying the likelihood function by the prior then 
dividing by the evidence, as given in Eq. 1. In this model, 
D is a matrix of measured modal data based on the mod-
elling error, Coefficient of Variation (COV) of frequency, 
COV of mode shape, variance of frequency, and variance of 
mode shape obtained from literature (Lam et al. 2014; Au 
et al. 2012). Our prime objective is to minimise each error, 
specifically the errors in frequency and mode shapes and 
find its corresponding natural frequency. Thus, the following 
equation is obtained:

where p(�) represents the prior PDF of model parameters, 
which depends on experience and human knowledge, 
whereby Gaussian distributions are additionally a decent 
choice (Lam et al. 2004); and p(D|�) is the likelihood PDF, 
which is a conditional probability of obtaining the actual 
set of data or evidence based on the set of prior or uncertain 
modal parameters � . The measured frequencies and corre-
sponding mode shapes are the modal parameters that are 
uncertain. The posterior PDF becomes even more compli-
cated when we consider the class of models, and hence by 
neglecting class, the equations are simpler, as given by Lam 
et al. (2015). Sampling from a posterior distribution like 
above is a challenging task as it is a vector of large dimen-
sions. Considering a single value for each parameter in D 
(modelling error x1 , COV of frequency x2 , COV of mode 
shape x3 , variance of frequency x4 , and variance of mode 
shape x5 ), the normalised form of Eq. 1 becomes:

where Z is a normalizing constant, which makes the prob-
ability equal to 1; ef ∗,a is the prediction error of natural 
frequency; and f ∗

a
 is defined in Eq. 3. A similar idea was 

adopted to explain the identified mode shapes �∗
a
 . As pre-

sented by Lam et al. (2015), the mode index is a factor on 
which the prediction error ef ∗,a depends. The prediction error 
of measured frequency is determined as follows :

where f ∗
a
 denotes the measured frequency; and f ∗

a
(�) is the 

model predicted frequency. The model predicted response 
depends on the uncertain model parameters. In this work, 
the error between the measured response and the model pre-
dicted response are highlighted.

In literature, the variance in measured data were consid-
ered equal to the variation in prediction error, which under-
estimated the modeling errors (Zhang et al. 2013). A fast 
Bayesian FFT model identification was previously applied to 

(1)p(�|D) = p(D|�)p(�)
p(D)

(2)p(�|D = x) =
1

Z
p(D = {x1, x2, x3, x4, x5}|�)p(�)

(3)ef ∗,a = f ∗
a
− f ∗

a
(�)

analytically obtain the associated variance of the prediction 
error in Au (2011).

The prediction error of the observed mode shapes eΦ∗,a as 
in Lam et al. (2015) can be modeled as:

The maximum probable value (MPV) of mode shape in the 
mode index a is represented by Φ∗

a
 , while the model pre-

dicted mode can be represented as ΓaΨa(�) . In the latter 
mode, Γa depicts a decision matrix consisting of binary dig-
its (0, 1) for selecting the DOFs measured from the mode 
shape predicted by the model. A unit length is used as a 
default to normalize the mode shapes (both measured and 
model predicted). According to Lam et al. (2014), derivation 
of the mode shape prediction error can be determined in the 
following equation, in which �2

a
 represents the variance of 

the mode shape prediction error:

The posterior co-variance matrix corresponding to mode 
shapes are represented by eigenvalues [�2

1
, �2

2
,… , �2

r
] (Au 

and Zhang 2011). Equation 5 represents how the approxima-
tion of the variance can be done by approximating the MAC 
number from the obtained eigenvalues. Modal Assurance 
Criterion (MAC) is utilized to develop the fundamental error 
between the calculated and measured mode shapes, which 
quantifies the closeness between two vectors (Ewins 2000) 
and is calculated as follows:

where ||  || denotes the second norm of the vector; and 
Ψ and Φ are the model predicted and measured mode shape 
vectors, respectively. The posterior PDF of uncertain modal 
parameters considering the prediction error of individual 
observed modal parameters is evaluated independently via 
Eq.7:

where � is a normalizing constant; and J indicates the error 
corresponding to both the frequencies and mode shapes, 
which is the measure-of-fit function; and the terms �2

a
 and 

�2
a
 represent the variance of frequency and variance (devia-

tion from mean) of mode shape, respectively (Lam et al. 
2014). The combined term of error divided by variance for 
both the parameters for each measurement is represented by 
J as it contains a sum of all the errors in the model and is 
minimised for a better model.

(4)eΦ∗,a = Φ∗
a
− ΓaΨa(�)

(5)�2
a
= 2(1 − E(MACa)) ∼ 2

{
1 −

{
1 +

r∑

a=1

�2
a

}}

(6)MAC(Φ,Ψ) =
ΦTΨ

||Φ||||Ψ||
for 0 ⩽ MAC ⩽ 1

(7)
p(�|D = x) = �p(�|D = {x1, x2, x3, x4, x5}) exp

(
−
1

2
J(�)

)
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To obtain the optimized value of input data, we minimised 
the measure-of-fit function given in Eq. 8. The J function 
shows the inconsistency between the model predicted and 
measured data. Herein, a single model was targeted, and the 
posterior PDF was estimated by generating samples together 
with their weighting factors.

3  Description of generative models 
and generating synthetic data

3.1  Generative adversarial networks

Generative Adversarial Networks (GANs) are simply a set 
of generative models that are able to generate new content 
from scratch. GANs consist of two deep networks, namely a 
generator and discriminator. The generator creates synthetic 
samples or fake data, whereas the discriminator classifies 
real data from fake data produced by the generator. The dis-
criminator also evaluates the probability of the similarity 
between generated data and actual data. Subsequently, the 
difference between the real and generated data reduces as 
the discriminator identifies the tiny gap between them. Some 
examples of GANs include conditional GANs (cGANs), 
deep convolutional GANs (DCGANs), discovery GANs 
(DiscoGANs), TGANs, etc. In this work, TGANs were used 
due to their capability of generating a tabular dataset.

A table contains discrete (multinomial) random variables 
and continuous random variables that follow an unknown 
joint distribution. A synthetic table is created by the samples 
generated by the generative model. The synthetic data table 
is generated such that the mutual information between an 
arbitrary pair of variables is similar, and it could achieve the 
same accuracy on a real test table (Xu and Veeramachaneni 
2018).

3.2  Generation via TGANs and evaluation of data

To generate synthetic data using TGANs, an AdamOpti-
mizer was employed to minimise the network loss. In the 
generator, TGANs uses Recurrent Neural Networks with 
a learning rate of 0.001 and 100 features. In the discrimi-
nator, TGANs applies a Neural Network Classifier (Soft-
Max at the end layer) and 100 hidden nodes. The whole 
network runs for five epochs and subsequently emits nearly 
equal losses after three epochs. Herein, we calculated the 
similarity score between the synthetic data and real data by 
taking the mean of five different similarity values ( Sbasic , 
Scorr , Smirr , Spca , Sest ). Each similarity values is calculated 

(8)

J(�) =

r∑

a=1

(
(f ∗
a
− f ∗

a
(�))2

�2
a

+
2(1 −MAC(Φ2

a
,ΓaΨa(�)))

�2
a

) separately and their mean represents the similarity score. 
Specifically, Sbasic is calculated by determining the Pearson’s 
correlation coefficient of the mean and standard deviation of 
the two distributions. Scorr is determined by calculating the 
Pearson’s correlation coefficient of the association matrix. 
Smirr is the mean of association of both datasets. Spca is the 
mean absolute percentage error (MAPE) value representing 
the average error in percentage differences between the real 
and synthetic data. Sest is calculated by finding the Pearson’s 
correlation coefficient of the square root of the difference 
in squared mean values of both distributions, or Root mean 
squared error (RMSE) scores of two columns. The scores 
range [−1, 1] , where a score close to 1 reveals similarity 
between the synthetic data and real data (near positive cor-
relation), and a negative score indicates an inverse propor-
tional relationship between the two datasets (Xu and Veera-
machaneni 2018). We further evaluated the hyperparameters 
of the generator and discriminator (features, hidden nodes, 
learning rate and optimizer) of TGANs against the similarity 
scores in Fig. 1. To do so, we varied each given hyperpa-
rameter of TGANs, while keeping the others constant. The 
results obtained helped to select the values of the hyperpa-
rameters of TGANs. For each given hyperparameter value, 
we evaluated similarity score 15 times (i.e. 15 observations) 
and then measured the mean and error rate, which are shown 
in each bar of the graphs in Fig. 1. The similarity scores for 
TGANs, RBMs, and VAEs were determined to be 0.897, 
0.704, and 0.311, respectively.

– Cumulative sums—this metric helps to visually inspect 
column-wise (or data features) distributions. For each 
continuous column, the data distribution can be under-
stood with just one plot, allowing one to determine which 

Fig. 1  Variation of hyper parameters against similarity scores
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kind of values and columns are more appropriate or more 
difficult than others.

– Column correlations - this metric typically presents the 
association information in a tabular form for both real 
and synthetic data. Column correlations indicate the 
difficulty faced by generative models while creating a 
learned-model (learning the probability distribution) by 
showing where the synthetic data diverge. This metric 
also helps to understand the association among the data.

– Similarity score—this single value score indicates the 
closeness between the synthetic dataset and the real data-
set. When the actual data and synthetic data resemble 
each other, the scores of each metric should be very simi-
lar. This score ranges [-1,1], where 1 means a positive 
correlation, 0 indicates no relationship, and -1 reveals a 
negative correlation.

4  Implementation and evaluation of CBO

4.1  Improvement in causal Gaussian process (cGP)

We improved the existing cGP model , which is a standard 
GP that takes the prior from observational data and builds 
the posterior from intervention data (Aglietti et al. 2020), 
using the prior from observational as well as synthetic data 
(from a generative model). For any generative model, the 
generative model is first trained using a sample set, and then 
the generated data are used as prior for training do-calculus. 
In this work, we trained TGANs (a generative model) from 
existing observational data, which helped to incorporate a 
better prior distribution (Patel and Oberai 2019) and improve 
the posterior formation to perform do-calculus. Our model 
employs observational and synthetic data to form the prior 
of the Causal Gaussian Process and uses interventional data 
to form the posterior. For example, if there is an increase in 
the outcome variable due to an increase in the input vari-
able, CBO can evaluate the change in the outcome variable 
when the same input variable decreases (its counterfactual) 
via the predicted data from do-calculus. In this section, we 
attempt to connect the synthetically generated prior along 
with the posterior.

Let ptrue
�

(�) be a true distribution and � be a vector, which 
is sampled from the true distribution. Also, g(z) represents 
the generator of generative model, which is trained using 
real data, and z ∼ pz(z) distinguishes the latent vector space. 
The generative model has the capability to learn the true 
distribution of real data provided sufficient data and infinite 
capacity (Goodfellow et al.), as given in Eq. 9:

where pgen
Z

(�) can be defined as:

(9)ptrue
�

(�) = p
gen

Z
(�)

where the components of pz(z) (multivariate distribution) 
conform to a uniform or Gaussian distribution and are inde-
pendent and identically distributed (iid). The above equa-
tions signify that generative models sample z from pz and, 
hence, create synthetic samples of �.

In this problem, we consider a cGP regression but in a 
customized manner. In literature, the idea of generating 
distributions and using it in Bayesian inference has been 
demonstrated (Patel and Oberai 2019). In Eq. 9, the prior is 
replaced by pgen

Z
(�) , which is an efficient approach by rewrit-

ing in terms of latent vector z. The updated posterior from 
Eq. 2 is then formulated as:

The data used for training the generative models were taken 
from Lam et al. (2014) and Au et al. (2012). The model-
ling error includes x1 , COV of frequency x2 , COV of mode 
shape x3 , variance of frequency x4 and variance of mode 
shape x5 . The expectation of the posterior distribution for � 
is equivalent to the expectation for z. Z′ is another normalis-
ing constant that makes the probability tend to one and is 
illustrated as:

4.2  Evaluating cGP

After evaluating the synthetic data, we used it with obser-
vational data as prior to the causal GP and trained it with 
interventional data. We compared the priors of the surrogate 
model (cGP) by considering priors from Variational Autoen-
coders (VAEs) and Restricted Boltzman machines (RBMs). 
In order to select the best model for generating synthetic 
data, we evaluated different generative priors with the fol-
lowing metrics for each priors:

– Negative Log Predictive Density (NLPD)—By generat-
ing samples, which approximate the maximum likelihood 
value, we created the Parzen windows distribution. The 
calculation of NLPD is provided by Bengio et al. (2013) 
and Aggarwal et al. (2019), which can also take negative 
values as the probability density can take infinite positive 
values. The hyperparameters were tuned to obtain the 
minimum NLPD. Also, NLPD turns out to be the main 
metric of interest in this work.

– Mean Absolute Error (MAE)—For any sample (x, y) 
provided to a regressor, MAE can be calculated as the 
difference between the mean of the predictive distribu-
tion as returned by the regressor (Aggarwal et al. 2019) 

(10)� ∼ p
gen

Z
(�) ⇒ x = g(z), z ∼ pz(z)

(11)
p
post

Z
(�|D = x) =

1

Z�
p(D = {x1, x2, x3, x4, x5}|�)p

gen

Z
(�)

(12)� ∼ p(�|D) ⇒ x = g(z), z ∼ p
post

Z
(�|D)
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and the true distribution. For a GP, the mean is the value 
at which the PDF takes the maximum value.

We calculate the NLPD and MAE for each combination of 
priors from different generative models and evaluated the 
efficiency of cGP. The results were obtained by running the 
evaluation for each metric 15 times, and the mean and stand-
ard deviation of the results are summarized in Table 1. We 
can observe the minimum value of NLPD and MAE while 
using TGANs prior. Although, the MAE values did not vary 
much in between models, but it showed significant results for 
TGANs. The VAEs show an abnormal NLPD value, from 
which we determined that the discrepancy in the data are due 
to a greater variation from the observational dataset.

5  Causal Bayesian optimisation

5.1  CBO and BO

Causal Bayesian inference is a combination of BO with 
causal inference. In any non-deterministic problem with 
optimisation objectives, BO has given efficient results. As 
an optimiser, we know that every iteration is costly, and, 
thereby, reduced further to obtain efficient results thereby 
trying to get efficient results by reducing it further. CBO 
is an extended form of BO with two major advantages. 
First, CBO considers the dependency (or the causal reac-
tion between them) on the input variables and outcome 
variables. For example, our optimisation problem could be 
shaped in such a way that any of the individual input vari-
ables, like COV of mode shape, leads to a change in the out-
come variable. On the other hand, some other variable, such 
as variance of mode shape, would not affect the outcome 
variable directly, rather it would help in creating a depend-
ency graph (kind of Bayesian Nets) with the COV of mode 
shape. Hence, any change in the variance of mode shape 
would lead to a change in the COV of mode shape and not 
in the outcome variable directly. Different causal graphs are 
illustrated in Fig. 2, which represent possible causal relation-
ships between the input and outcome variables.

Forming a causal graph can require extensive domain 
knowledge and painful efforts. There are a couple of works 
and tools available as an open source that try to learn the 
causal graph from observational data (Zheng et al. 2018; Py-
causal 2021). Tools that help in forming causal graphs from 
observational data seem to give a major boost to black box 
systems or systems where the user or administrator does not 
have domain expertise. In our work, we employed such tools 
to form a causal graph from only observational data. The 
graph in Fig. 2a was prepared with the tool—“Directed Acy-
clic Graph (DAG) with no tears”, and the graph in Fig. 2b 
was creating with the py-Causal tool. We also generated a 
manual causal graph (as shown in Fig. 2c) based on our 
experience with the optimization problem variables. Subse-
quently, the three graphs were evaluated.

The second major advantage of using CBO is computing 
and evaluating counterfactual. Collecting a large number 
of experimental data could result in all possible variations 
of each feature in the dataset. However, experimentation is 
costly and sometimes cannot be performed in certain areas. 
CBO can study the variations in data by evaluating its coun-
terfactual and checking its impact on the outcome variable. 
Such a feature could save a lot of experimentation and lead 
to a better analysis of outcome variables even on less data. 
This is one of the major advantages of CBO which BO could 
possibly incorporate. Causal BO uses do-calculus for pre-
dicting the outcome variable at the point to be intervened 
(counterfactual data) from observational data and interven-
tional data. It uses observational data to evaluate the pre-
diction of interventional data without actually calculating 
it (Pearl 1995). The allocation of new points and variables 
to be intervened for evaluation in the CBO process is done 
using Causal Expected Improvement (CEI).

We utilised a Minimal Intervention Set (MIS) containing 
a set of variables to be intervened (Aglietti et al. 2020). The 
variables used for each CBO set depends completely on how 
the causal graph has been built. Considering each causal 
graph in Fig. 2, we assume that the variables change across 
the input and outcome variable or, we have observed some 

Table 1  Evaluation of cGP

Regressor Priors NLPD MAE

Mean Std. Mean Std.

GP GP 0.562 0.0060 0.338 0.0020
GP RBMs 0.215 0.0053 0.307 0.0018
GP VAEs 1.021 0.0054 0.330 0.0019
GP TGANs 0.177 0.0064 0.299 0.0022

Fig. 2  Causal Graphs a C
1
—Casual Graph using DAG (Zheng et al. 

2018) b C
2
—Causal Graph using py-causal (Py-causal 2021) c C

3
—

Manual Causal Graph
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confounders. The variables to be considered in the complete 
BO change following each causal graph separately then the 
results are compared to determine the accurate outcome. 
The first graph ( C1 ) (Fig. 2a) was created in such a way that 
the COV of frequency did not affect the outcome variable 
directly but caused a change in the variance of frequency, 
subsequently resulting in a change in the modelling error and 
outcome variable. MIS is the minimum intervention set or 
set of the minimum number of variables intervened to obtain 
the optimum outcome variable (Aglietti et al. 2020). MISC1

 
is the minimum intervention set for the first causal graph. x 
is the complete set of input variables, that is, x1 , x2 , x3 , x4 , 
x5 . The MIS for the three different causal graphs ( C1,C2,C3 ) 
was determined as follows:

In a nutshell, apart from the causal graph, we need to deter-
mine the variables to be intervened to meet the requirements 
of CBO (Aglietti et al. 2020). We use the mapped distri-
bution in equation11 (which contains complete set of vari-
ables) for traditional Bayesian Optimisation and selected the 
variables from MIS in Eq. 13-15 based on the three casual 
graphs, respectively.

The term pgen
Z

 is common in Eq. 11 represents the updated 
prior distribution. The variables used in Eq.11 contain all the 
parameters in the measured model data, but the variables 
in the causal equations consider variables according to the 
respective causal graph.

For the interventional set selected based on the causal 
graph, an acquisition function is needed for exploration 
and exploitation. We used the same definition of a standard 
expected improvement (EI) (Stuart 2010) as shown below:

where a + is the position of the best input value so far. Also 
under a GP model, the EI can be computed as follows,

where Z is calculated as follows:

As per the above equation of EI, � is the most important 
parameter for balancing exploration vs. exploitation. This 
EI is computed for every element of MIS (i.e. for each MIS 

(13)MISC1
= {{�}, {x1}, {x4}, {x5}, {x1, x4}, {x1, x5}}

(14)MISC2
= {{�}, {x1}}

(15)
MISC3

= {{�}, {x1}, {x1, x2},

{x1, x3}, {x1, x2, x3}, {x4}, {x5}}

(16)EI(a) = �max(f (a) − f (a+), 0)

(17)EI(a) = (�(a) − f (a+) − �)Φ(Z) + �(a)�(Z)

(18)Z =
�(a) − f (a+) − �

�(a)

element, we have a trained GP surrogate model). Causal EI 
(CEI) Aglietti et al. (2020) is computed by taking the max 
EI from all elements of MIS. In an optimisation iteration, 
each element in MIS with maximum EI is considered for 
exploration, while the other GP models are not used.

It is also important to note that the calculation of CEI in 
Eq. 17 needs the mean and variance from any GP. In our 
case, the GP gets is prior from observational data and pos-
terior from interventional data. Upon forming the posterior, 
these trained GP models provide mean and variance at any 
given sampled point.

6  Model updating of coupled slab using 
causal Bayesian inference

6.1  Description of structure

A 3-story coupled slab concrete structure, including a rec-
reational center and public library, was used for verification 
purposes, as illustrated in Fig. 3. This structure was targeted 
because of the random vibrations that occur due to the usage 
of the building for various purposes, which causes societal 
vibrations. The slab on the second and third floor share the 
same plan and consists of four orthogonal and eight planar 
trusses. The building has a height of 40 meters and con-
tains six columns. The slabs ( 35m × 35m ) on the second 
and third floor of the building are coupled. The slabs are 
connected by columns that are attached to the truss system 
by braces that results in a well-built linkage, causing the 
dynamic behaviour of both floors to be coupled. The third 
floor consists of two basketball courts, and the second floor 
contains a kids play space and a large multipurpose room.

6.2  Ambient vibration test and modal identification

A total of 126 measured locations was considered, which 
results in 126 × 3 = 378 measured DOFs. The total experi-
ment was divided into 35 different frameworks. In the testing 

Fig. 3  Plan of the slab structure



Model updating using causal information: a case study in coupled slab  

1 3

Page 9 of 20 62

procedure, triaxial accelerometers (six) were used along 
with a signal processing unit. The measurements were taken 
in the time domain represented by a singular value spectrum, 
which were later converted into the frequency domain by 
Fourier transform. The data recorded gave the frequencies 
of the corresponding structure in the three different modes, 
and their corresponding uncertainties were evaluated along 
with them. We first used the data from the literature and then 
formed the finite element model of the coupled slab struc-
ture in ANSYS. The data were used to create the geometry 
in ANSYS, utilising the information given in literature (Au 
et al. 2012). The natural frequency for the three modes of 
vibration was obtained, then the errors in measured and pre-
dicted data were considered to determine the modelling error 
in our dataset, for which we aimed to reduce the minimum 
number of iterations. Ultimately, a time- and cost-effective 
model with higher accuracy was created.

6.3  Proposed methodology and results

The flowchart in Fig. 4 presents the overall flow for updating 
the model parameters in the least number of iterations using 
a causal BO. The first stage of the flowchart shows how the 
database was constructed. For example, x, y, z represent the 
unknown parameters of interest. In the current procedure, 
the measured modal data contain coefficients of variation 
and variance of various model parameters. Coefficient of 
variation (COV) and variance of parameter represent the 
deviation of a particular data from its mean.We then gener-
ated synthetic data using TGANs (Tabular GANs) and try 

to map the data as close to real data as possible. TGANs 
takes the observational data (or experimental data) from the 
database and generates synthetic data. We then evaluated 
the synthetic data using various metrics and construct pri-
ors. The generation and evaluation of synthetic data (which 
took 10-15 minutes) were conducted in a Colab setup at a 
one-time cost, which can be used as many number of times 
as needed. The synthetic data along with observational data 
were passed on to the next optimisation steps. The causal 
Gaussian process in the causal BO (CBO) was trained with 
the manipulative and outcome variables based on the causal 
graphs and prior (here, prior was captured by observational 
data alone or observational and synthetic data). The para-
metric value was determined as the CBO optimisation itera-
tions were started. The causal expected improvement was 
taken as the acquisition function, which asks for the next 
sampling point to evaluate. The Gaussian was then ready to 
evaluate the function at any point as required by the causal 
expected improvement (acquisition function). The acquisi-
tion function also figures out which variables to intervene 
(which is essentially the selection of one among multiple 
surrogate models). The causal Bayesian algorithm then runs 
on a minimised error mode, whereby the error contains the 
difference between the measured and finite element pre-
dicted frequency summed up with the error in mode shapes 
(as shown in Eq. 8), which we aimed to minimise for a better 
model. If the total number of iterations gets exhausted con-
sidering the experimental budget, then the loop ends with 
an optimal solution. The loop also ends when the optimal 
solution of the objective function remains constant. If any 

Fig. 4  Flowchart presenting an 
overall workflow for optimizing 
the model parameters
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further evaluation is required, we can re-run the loop until 
we get an optimal solution.

For the model updating of the coupled slab structure 
using the suggested method, an FEM was established in 
the ANSYS workbench based on data in Jang and Smyth 
(2017) and Aglietti et al. (2020). The natural frequency of 
the structure and the measured mode shapes were obtained. 
The difference between the measured data and predicted data 
were termed as the modelling error, which was minimised 
in this model. We also tried to minimise the gap between 
model predicted response and the measured response. We 
determined the frequency at the point of minimum error and 
compared it with the mean measured frequency. The model 
was then updated by calculating posterior PDF, and the prior 
was taken from do-calculus, which was trained using differ-
ent measured model data distributions (via Causal Gaussian 
Process). The Gaussian process aids the acquisition function 
that is used for guiding the selection of the next evaluation 
point. Subsequently, the next determining point is evalu-
ated, and the process continues until the minimised (or max-
imised) point is determined. If the number of iterations is 
small, the function is not entirely assessed, and if they are 
too large, the optimised value becomes constant after a spe-
cific iteration number.

We designed a Causal BO Engine, which uses the addi-
tion of synthetic data and observational data as prior dis-
tributions for building up the posterior using intervention 
data. The convergence graphs in Figs.5, 6, 7 reveal that the 
errors decreased as the number of iterations increased. It 
can be observed from the plots that, for each model, the 
error was reduced to a certain limit, then the variation almost 
became negligible. We performed the accuracy testing based 

on the three causal graphs in Fig.  2. In Fig. 5, we utilised 
the first causal graph, which was created using DAG. The 
number of iterations taken by CBO considering synthetic 
data seems to take the least number of iterations for solving 
the same problem as the others. We also evaluated CBO 
with a default Gaussian prior and with prior generated from 

Table 2  Evaluation of cGP

Calculated and modal updated Frequency

Prediction Source Mode 1 Mode 2 Mode 3

Mean Std Mean Std Mean Std

Measured (Jang and Smyth 2017) 6.21 – 7.74 – 9.10 –
Bayesian + MCMC (Lam et al. 2015) 6.1 0.043 7.84 0.042 9.98 0.042
Bayesian + GPs 6.06 0.051 7.6 0.049 9.27 0.052
CBO 6.197 0.038 7.754 0.037 9.117 0.041
CBO + Synthetic data 6.208 0.037 7.737 0.036 9.096 0.040

Errors associated with field measurements ( Errorf  ) and Error in terms of MAC(Error
MAC

)

Prediction source Mode 1 Mode 2 Mode 3

Errorf Error
MAC

Errorf Error
MAC

Errorf Error
MAC

Bayesian + MCMC (Lam et al. 2015) 1.85 93.15 1.36 87.39 9.69 83.96
Bayesian + GPs 2.41 92.78 1.8 87.1 1.86 82.3
CBO 0.2 96.89 0.18 89.33 0.18 88.89
CBO + Synthetic data 0.03 97.2 0.03 92.4 0.03 91.2

Fig. 5  Convergence of CBO and BO for C
1

Fig. 6  Convergence of CBO and BO for C
2
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TGANs (similarity score = 0.897), RBMs (similarity score 
= 0.704), and VAEs (similarity score = 0.311), respectively. 
We can observe from the plots that, as the similarity score 
increased, the optimum was reached with less iterations for 
each causal graph. We also found that BO took the maximum 
number of iterations. Results further reveal that the Bayesian 
engine performed almost the same for all three cases since 
it does not depend on the causal graphs. In Fig.  7, the CBO 
took more iterations in the third case, as the causal graph 
was manually plotted. However, the performance of CBO 
was found to be very cost-effective and accurate when tradi-
tional BO engines were considered, also saving the number 
of iterations. In Figs. 8, 9, we observe the optimised fre-
quency and MAC (for mode shapes) at the point of minimum 
error. When the global optimum is reached, that is, when the 
variation in error becomes nearly zero as the model runs, the 
results for the parameters to be updated are obtained. We 
ran the model for each data set 15 times and calculated the 
standard deviation (which shows the deviation from mean 

results) of the values obtained. The optimal results of the 
measured frequencies and the calculated frequencies and 
mode shapes by various models and the error associated 
with each model is shown in Table 2.

7  Conclusion

Causal Bayesian model updating is performed in this work 
and validated through empirical evaluations, which achieved 
optimal results via adding synthetic data in terms of accu-
racy and a reduced number of iterations. In this work, we 
generated synthetic data using TGANs. A comparison and 
evaluation of synthetic data with real data and how it may be 
utilised adequately to take care of the causal Bayesian model 
updating issues are presented, and the results were confirmed 
by obtaining the optimised values. The formulations of the 
error of frequencies and mode shapes were given special 
observation. This work also demonstrates the good perfor-
mance of the regressor with TGANs, which also reduced 
the computational time by nearly decreasing iterations by 
30% . We further plotted three different causal graphs to show 
the contrast between the performance of CBO and previous 
models. The optimised frequency obtained by the proposed 
model was compared to experimental data and existing mod-
els, verifying that CBO with synthetic data are the most cost-
efficient and accurate. The enhanced results are primarily 
due to the reflection of the homogeneous frequency distri-
bution in the prior. This case study provides an exceptional 
model for the necessary model updating in structural health 
monitoring of structures.

Fig. 7  Convergence of CBO and BO for C
3

Fig. 8  Optimal Frequency at 7th iteration using CBO utilising Syn-
thetic data

Fig. 9  Optimal MAC number at 7th iteration using CBO utilising 
Synthetic data
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Appendix

After generating the synthetic data (fake data), we evalu-
ated it with different metrics (which implicitly represent 
similarity scores). The plots in Figs. 10, 11, and 12 illustrate 
the cumulative sum per feature or for each data column for 
TGANs, RBMs, and VAEs, respectively. The matrices in 

Fig. 10  Cumulative density 
function of Real and synthetic 
data for different Frequency, 
Modelling error, COV of 
frequency, COV of mode shapes 
and variance of frequency and 
mode shape using TGANs
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Fig. 11  Cumulative density 
function of Real and synthetic 
data for different Frequency, 
Modelling error, COV of 
frequency, COV of mode shapes 
and variance of frequency and 
mode shape using RBMs
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Fig. 12  Cumulative density 
function of Real and synthetic 
data for different Frequency, 
Modelling error, COV of 
frequency, COV of mode shapes 
and variance of frequency and 
mode shape using VAEs
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Fig. 13  Column correlations between real and synthetic data gener-
ated using TGANs

Fig. 14  Column correlations between real and synthetic data gener-
ated using RBMs



 K. Tiwary et al.

1 3

62 Page 16 of 20

Fig. 15  Column correlations between real and synthetic data gener-
ated using RBMs
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Fig. 16  Deviation of the data generated by TGANs from the real data
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Fig. 17  Deviation of the data generated by RBMs from the real data
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Figs. 13, 14, and 15 present the column correlations for the 
synthetic data generated using TGANs, RBMs, and VAEs, 
respectively. The deviation of the synthetic data from real 
data are shown in Figs. 16, 17, and 18 for TGANs, RBMs, 
and VAEs, respectively.
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