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Abstract

RNA-mediated gene silencing, in the form of RNA interference (RNAi) or microRNAs (miRNAs) has provided novel tools for
gene discovery and validation in mammalian cells. Here, we report on the construction and application of a random small
RNA expression library for use in identifying small interfering RNA (siRNA) effectors that can modify complex cellular
phenotypes in mammalian cells. The library is based in a retroviral vector and uses convergent promoters to produce
unique small complementary RNAs. Using this library, we identify a range of small RNA-encoding gene inserts that
overcome resistance to 5-fluorouracil (5-FU)- or tumour necrosis factor alpha (TNF-a)- induced cell death in colorectal cancer
cells. We demonstrate the utility of this technology platform by identifying a key RNA effector, in the form of a siRNA, which
overcomes cell death induced by the chemotherapeutic 5-FU. The technology described has the potential to identify both
functional RNA modulators capable of altering physiological systems and the cellular target genes altered by these
modulators.
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Introduction

The introduction of double-stranded RNA (dsRNA) into a

range of organisms induces both a potent and specific gene

silencing effect termed RNA interference (RNAi) [1]. These

dsRNAs are processed by Dicer to produce 21–23 nucleotide

duplex small interfering RNAs (siRNA) with 2 nucleotide 39 OH

overhangs that act as the effectors of gene silencing [2].

Furthermore, it has been demonstrated that chemically synthe-

sised 21 bp siRNAs can be used to induce gene silencing in

mammalian cells [3,4]. The transient nature of the gene silencing

effect invoked by siRNAs, and the prohibitively high costs of

chemical synthesis, has led to the development of DNA vectors

capable of expressing siRNAs intracellularly. Expression cassettes

have been developed using the endogenous U6 small nuclear RNA

(snRNA) or H1 RNA polymerase III promoters to drive

expression of sequence-specific small hairpin RNAs (shRNAs)

that stably regulate gene expression in mammalian cells via RNAi

[5,6]. As an alternative approach, some groups have used the co-

expression of sense and antisense RNA strands from independent

expression cassettes or a divergent promoter [7]. The use of

convergent transcription from opposing promoters to induce

RNAi-mediated gene inhibition has been reported in trypano-

somes and Drosophila [8,9]. More recently, convergent transcrip-

tion-induced RNAi has been demonstrated to be an effective way

of controlling specific gene expression in mammalian cells [10,11].

RNAi is also a powerful genetic tool for loss-of-function studies.

Large-scale RNAi libraries have been generated for use in forward

genetics screens with the aim of linking genes with specific cellular

phenotypes [12,13]. Genome-wide RNAi-based genetic screens were

first demonstrated in C.elegans and Drosophila cells [14,15]. More

recently, this genetic screening approach has been applied to

mammalian cell systems using different forms of RNAi libraries.

Initially, large-scale shRNA expression libraries were constructed

using computational algorithms and ‘‘bar-coded’’ oligonucleotides

[16,17]. With a better understanding of the characteristics associated

with natural miRNA processing and to improve the efficiency of

shRNA activity, second generation genome-wide shRNA libraries

were produced using pre-miRNA flanking sequences [18]. The above

libraries have been used for loss-of-function studies in mammalian cell

culture and to identify pre-selected genes contributing to complex

cellular phenotypes. In an alternative strategy for producing targeted

shRNA libraries, several groups have developed enzymatic methods

for converting cDNAs into shRNAs for use in genetic screening [19–

21]. All of the aforementioned libraries target specific protein coding

genes or restricted cDNA sub-populations and are particularly useful

for identifying single gene targets involved in a biological or disease

process. These libraries do not necessarily permit the identification of

completely novel small RNAs or targets involved in complex cellular

physiology.

In addition to the use of shRNAs several groups have reported on

the use of convergent transcription to direct RNAi-mediated
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silencing of specific genes [10,11,22]. In this strategy two opposing

RNA polymerase II or III promoters are used to drive transcription

of sense and antisense RNAs from a single DNA insert. The

complementary RNAs then form a duplex RNA which is processed

by Dicer and loaded into the RNA induced silencing complex

(RISC). Different forms of convergent RNAi libraries have been

produced and used in genetic selections [22–24]. However, as with

the majority of genome-wide shRNA libraries, these libraries are

restricted to surveying previously reported target genes.

One alternative to the production of RNAi expression libraries

using known genes involves the generation of random libraries

capable of expressing a universal set of shRNAs or siRNAs.

Several enzymatic methods have been described for the produc-

tion of shRNA expression libraries using degenerate oligonucle-

otides [25–27]. Most recently, a random shRNA-encoding

retroviral library was used to identify shRNA sequences that

double the survival of mouse pro-B cells following IL-3 withdrawal

[28]. Random mutagenesis and re-screening were then used to

further optimize the shRNA hits toward the development of novel

therapeutics. Convergent promoter-based random siRNA expres-

sion libraries have been produced by cloning random 19-mer

DNA sequences between two opposing RNA polymerase III

promoters in plasmid vectors [29]. This library was used for

phenotype-driven screening to identify siRNAs inducing cell

growth. The advantages associated with using a convergent

promoter format for producing random RNAi libraries are the

potential for producing small RNAs that operate by canonical and

non-conventional mechanisms to control single or multiple target

genes and the possibility of discovering novel, multifunctional

small RNAs capable of modifying complex cellular phenotypes.

These small RNAs have the potential to be novel therapeutics or

biological tools. Unfortunately, there have been few reports of the

use convergent random RNAi libraries for genetic screening in

mammalian cells and these have been restricted to the use of

plasmid-based libraries.

Here, we report on the development and application of a

convergent random small RNA expression library for use in

mammalian cell types to isolate novel RNAs capable of modifying

complex cellular phenotypes. This retrovirally-based expression

library was used in two independent unbiased genetic selection

assays aimed at overcoming cell death induced by the chemo-

therapeutic 5-FU or the cytokine TNF-a. Using this approach,

novel small RNA effectors were identified that alter these

phenotypes. Further analysis demonstrated that one of these

effectors operated through the canonical RNAi pathway. We

discuss the utility of this technology for finding new gene functions

through phenotypic selection and discovering novel small RNAs

that can be used to manipulate complex cellular phenotypes

associated with human disease states.

Results

Production of retroviral vector with convergent
promoters

In a previous study we reported on the use of convergent

transcription from two U6 RNA polymerase III promoters in a

plasmid-based system to induce RNAi-mediated gene silencing in

mammalian cells [10]. The suppression of target gene expression

was dependent on Dicer and the convergent promoter cassette

operated in both transiently and stably transfected cell popula-

tions. To develop a random small RNA expression library suitable

for large-scale genetic selections, we constructed a modified

pLXSN retroviral vector containing the human U6 and H1

RNA polymerase III promoters in opposite orientation to each

other (designated pHybrid). Retroviral vectors have been success-

fully used for both biased and unbiased genetic screens in

mammalian cells and provide an optimal vehicle for delivery of

highly complex genetic libraries [12].

To determine whether the convergent U6/H1 expression

cassette could produce functional siRNA that mediated effective

gene suppression, an insert encoding a p53-specific siRNA [6] was

enzymatically-generated (as described in materials and methods)

and cloned into pHybrid (Figure 1A). The pHybrid-p53 retroviral

vector was transduced into HCT116 cells and Western analysis

performed on both pooled populations and single clone isolates to

determine the effect of siRNA expression on p53 protein levels. As

shown in figure 1B, convergent transcription of the p53-specific

insert resulted in a 50% reduction in p53 protein levels within both

the pooled population (Figure 1B, lane 2), and two clonal lines

(Figure 1B, lanes 3 and 5), when compared to vector controls

(Figure 1B, lanes 1 and 4, respectively). We also examined the

responsiveness of these clones to 5-FU treatment and showed that

cells containing the pHybrid-p53 construct displayed an increased

proliferative potential and reduced apoptosis (data not shown), a

phenotypic profile consistent with resistance to 5-FU treatment.

Given the use of a convergent promoter cassette, and the

expression of two complementary RNAs with the potential to form

dsRNA, there were several possible ways by which the RNA

effector encoded in pHybrid-p53 could direct suppression of p53

gene expression. To examine the mechanism of p53 suppression,

we attenuated the levels of Dicer, a key enzyme involved in the

processing of dsRNA to produce effective siRNA, by using a

synthetic siRNA targeted against Dicer mRNA [30]. Delivery of

Dicer-specific siRNA to cells stably containing pHybrid-p53

restored p53 protein levels to basal levels in a dose-dependent

manner (Figure 1C, lanes 5–7). In contrast, the same cells

transfected with a negative control siRNA, having no known target

within mammalian cells, displayed the same 50% reduction in p53

protein (Figure 1C, lane 8). Furthermore, there was no modulation

of p53 protein in vector control cells transfected with the same

dose of siRNA specific for Dicer (Figure 1C, lanes 2–4). These

results indicate that the convergent transcription of the p53-

specific insert in pHybrid-p53 produced siRNA that was effective

at reducing p53 protein levels and this suppression was Dicer-

dependent.

Generation of a randomized small RNA retroviral
expression library

Following the confirmation of the activity of the U6 and H1

promoters within the context of the retroviral vector backbone, we

constructed and characterised an expression library in pHybrid

containing random insert sequences. The starting synthetic

oligonucleotide was composed of 19 nucleotides of randomised

sequence flanked on the 59 end with a primer-binding site, an

XhoI site and five adenosines. On the 39 side of the randomised

nucleotides was a string of five thymidines followed by an XbaI site

and a second primer-binding site. Using the enzymatic method

described in Figure 2, a pool of randomised double-stranded DNA

inserts was produced and cloned into pHybrid. To reduce the

presence of concatemers, and increase the proportion of library

members with single inserts, we used sequential end ligation [31].

In this process, the dsDNA oligonucleotides were ligated in excess

to a de-phosphorylated plasmid using one compatible overhang,

resulting in a pool of linear plasmids containing insert(s) in either

orientation. Further enzymatic digestion to generate the second

compatible overhang allows intramolecular ligation and plasmid

circularisation. Using this method, we produced a random small

RNA expression library composed of approximately half a million

RNA Modulators of Phenotypes
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clones. Characterisation of this library indicated that most inserts

were unique and aligned to different regions of the human

genome. Although the complexity of the library was rather low,

the use of convergent promoters provided the potential to encode

small antisense RNAs, sense RNAs, dsRNAs or microRNA-like

RNAs from a single library plasmid member.

RNA effector identification using the small RNA
expression library

The random small RNA library was used in two independent

functional screens to identify RNA effectors conferring resistance

to 5-FU- or TNF-a-induced apoptosis. This library was delivered

to HCT116 cells and a pooled population generated following

eight days of selection in the presence of G418. These cells were

subjected to either 400 uM 5-FU treatment for 18 h or 25 ng/ml

TNF-a and 50 ug/ml cycloheximide co-treatment for 72 h,

conditions that were previously determined to induce cellular

apoptosis in HCT116 cells (data not shown). The surviving

resistant clones were isolated, genomic DNA extracted, library

inserts recovered by PCR and insert sequences identified by

sequence analyses (Figure 3A). A total of 430 and 500 resistant

clones were recovered with 5-FU treatment and TNF-a plus

cycloheximide co-treatment, respectively. The number of back-

ground colonies identified using the same conditions on vector

alone cells was only 20–25% of the number obtained with the

library-containing cells (Figure 3B). This suggested that library

constituents existed that potentially overcame 5-FU or TNF-a-

induced cell death.

From the 5-FU and TNF-a genetic selections, the library insert

sequences from a total of 163 and 73 independently-derived

HCT116 resistant clones were determined, respectively. Of

particular interest was the enrichment of a single insert sequence

in 55 independent 5-FU resistant clones of the 163 clones

analysed. This insert sequence (designated 5FU55) was not

represented in the any of 384 sequences of the library prior to

selection or in any of the sequences identified among the clones

resistant to TNF-a-induced cell death. To validate this insert

sequence as conferring resistance to 5-FU, the 5FU55 DNA was

recovered by PCR from a 5-FU resistant clone in the original

screen, re-cloned into pHybrid to produce pHybrid-5FU55 and

re-delivered into HCT116 cells via retroviral transduction. Single

clones containing either the vector alone or pHybrid-5FU55 were

obtained following selection and characterised for resistance to 5-

Figure 1. RNAi-mediated suppression of p53 using convergent transcription within the retroviral vector pHybrid-p53. (A) Schematic
of the core pHybrid-p53 vector including the p53-specific insert sequence encoding sense and antisense RNAs. The core pHybrid vector contains the
human U6 and H1 promoters in opposing orientation. (B) Suppression of p53 protein levels in HCT116 pooled populations and clones stably
transduced with pHybrid-p53. HCT116 cells transduced with pHybrid-p53 were selected in G418 for eight days to produce stable pools. These pooled
populations were serially diluted to isolate stable clones (indicated by V7 for pHybrid alone and C1 and C8 for pHybrid-p53). Total protein lysates
were assessed for levels of p53 and b-actin, the latter as the loading control. (C) Dicer-dependent control of convergent transcription-induced
suppression of p53. HCT116 stable clones containing pHybrid (V7) or pHybrid-p53 (C8) were transiently transfected with different concentrations of
the Dicer-specific siRNA (Dicer) or a single concentration of the negative control siRNA (Neg). Levels of p53 and b-actin were determined from
isolated protein lysates.
doi:10.1371/journal.pone.0004758.g001
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FU using a clonogenic assay. All clones receiving pHybrid-5FU55

formed colonies following exposure to 5-FU, with cellular

resistance ranging from intermediate to robust (compare clones

8 and 6, respectively, in figure 4A). In contrast, HCT116 cells

transduced with the vector alone displayed only background

colony formation (Figure 4A). All clones receiving either pHybrid

or pHybrid-5FU55 showed similar growth profiles in the absence

of 5-FU treatment, suggesting that the small RNA effector

expressed from the 5FU55 DNA did not alter general cell

physiology.

Synthetic 5FU55 siRNA
To further define the RNA effector encoded by the 5FU55

insert, and determine whether small RNAs identified using the

random small RNA library could be converted to synthetic RNA

effectors, we designed and tested a synthetic siRNA corresponding

to the unique sequence contained in the 5FU55 insert. HCT116

cells were transiently transfected with the 5FU55-siRNA and cells

exposed to 400 uM 5-FU and examined for clone formation using

a clonogenic assay. In comparison to HCT116 cells transfected

with the negative control siRNA, cells receiving the 5FU55 siRNA

displayed a dose-dependent increase in colony formation following

exposure to 5-FU (Figure 4B). This suggests that the insert

contained within the original random library insert encoded for a

siRNA capable of modifying the chemosensitivity phenotype of

HCT116 cells. Interestingly, simple sequence alignment analysis

using the passenger or guide RNA strands of 5FU55 and the

publicly available human RefSeq database did not identify a single

target transcript with complete complementarity to these small

RNA sequences. Instead, using the criteria of at least 14 bases of

contiguous complementarity with the 59 end of the guide strand,

we identified 14 different target mRNAs with the potential to form

a partial duplex. The targets identified included the homeodo-

main-interacting protein kinase-2 (HIPK2), tektin 1, a lipid raft

Figure 2. Enzymatic synthesis of inserts for construction of the random small RNA expression library. A 63 base oligonucleotide,
composed of 19 random nucleotides (N) flanked by five adenosines and five thymidines, XhoI and XbaI restriction sites and primer binding sites, was
extended to produce a second strand using the indicated primer (A). This dsDNA template was amplified with PCR primers (B) and subject to XhoI
digestion (C). Following ligation to the SalI-digested pHybrid (D) and isolation of ligated products, the mix was digested with XbaI (E) and subjected
to intramolecular ligation to produce the final random siRNA library (F).
doi:10.1371/journal.pone.0004758.g002
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linker protein (RFTN1), and a member of the keratin protein

family (keratin 73). These results suggest that the 5FU55 siRNA

conferred resistance to 5FU by directly or indirectly modulating

the expression levels of more than one target gene product.

Discussion

In this paper we describe the construction and characterisation

of a random small RNA expression library and demonstrate the

utility of this library for identifying small RNA effectors that alter

complex cellular phenotypes. Using two different genetic selection

assays, we identified constituents within the library that encode

small RNAs capable of overcoming both 5-FU and TNF-a-

induced apoptosis. Following one round of genetic selection for

resistance to 5-FU, a single insert was enriched and contained

within 30% of the 5-FU-resistant clones. The link between this

library insert and the 5-FU resistant phenotype was confirmed by

re-delivering the specific vector containing this insert. Moreover,

the novel sequence contained within the insert was used to both

identify potential target proteins directly or indirectly suppressed

Figure 3. Overview of the cell-based genetic selection assays performed using the random small RNA expression library. (A) Plasmid
DNA from the random siRNA library was transfected into a mixture of Amphopack HEK293 and PG13 packaging cells. The viral containing medium
was used to infect 62% of HCT116 cells. Following selection in G418, stably trasnduced cells were subjected to two independent genetic selections
involving treatment with 5FU or TNF-a plus cycloheximide (chx). At 14 days after removal of the selective agent, independent surviving colonies were
isolated and subjected to PCR to recover resident library vector inserts. These sequences were used for target identification and insert 5FU55 was re-
cloned into pHybrid for re-delivery and validation. (B) Percentage and number of clones recovered from the two genetic selections. The filled portion
of the histograms represents the numbers associated with the library-containing population (positive) and the open portion indicates the vector
alone (vector).
doi:10.1371/journal.pone.0004758.g003
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by the expressed RNA effector and to produce a synthetic siRNA

capable of producing the same modified protein expression profile

and altered complex cellular phenotype.

Most of the gene-expressed RNAi libraries used for target

identification and validation have been produced using computer

algorithms and previously known genes or gene families. These

designs have incorporated single promoters controlling shRNAs

[16,17] or dual opposing promoters driving expression of

complementary sense and antisense RNAs [22], and required

computational prediction of accessible target sites. One alternative

that complements these targeted libraries, and eliminates the need

for computational prediction and experimental confirmation of

effective RNAi effectors, is the use of RNAi expression libraries

containing randomised inserts. In this study we report on the

construction, characterisation and application of a random RNAi

library using convergent RNA polymerase III promoters based in

a retroviral vector. There are several advantages associated with

this form of RNAi expression library. Firstly, the opposing

promoter arrangement leads to the production of two comple-

mentary RNAs that have the potential to form not only dsRNA

and mediate RNAi-directed gene silencing, but also small RNA

effectors that can operate through other pathways. These include

single stranded antisense RNA, sense RNA, or miRNAs [32]. This

expands the kind of RNA effectors and therefore the intracellular

pathways that can be used for silencing gene expression. Secondly,

the library reported in this study is replete of repeat sequences thus

eliminating instability. Thirdly, the RNA polymerase III promot-

ers can be used in different cellular systems, thus expanding the

applicability of the library. Fourthly, a random library is not

restricted to known genes or protein coding genes as targets. It can

encode small RNA effectors capable of targeting ncRNAs, the

latter of which have been shown to contribute to complex disease-

associated phenotypes [33]. Finally, this form of RNAi library is

cost-effective and amenable to use in both small and large

laboratories for gene discovery and identification of small RNA

effectors, especially when used in combination with functional

genetic screens or selections.

One of the criticisms associated with the use of randomized

RNAi expression libraries is the limited number of representative

inserts that can be incorporated into an expression vector. For

example, it is not possible to construct and screen all insert

sequences of 19 bases as this would require a library of 2.761011

different constructs. However, it has been well reported that small

RNAs can be effective against single and multiple target mRNAs

with incomplete complementarity [34,35]. Studies with synthetic

siRNAs have identified the limited requirements for an effective

guide strand [36–38]. Mutations within termini of siRNA do not

significantly impact silencing [39]. Moreover, mRNAs with as few

as 11 nucleotides of homology can be regulated by a siRNA [34].

Even if mismatches within the body of a siRNA reduce or

eliminate its ability to mediate target mRNA cleavage, it is possible

that this duplex RNA could still operate as a miRNA-like

translational inhibitor [36]. Furthermore, naturally occurring

miRNAs only require matches within an eight base seed region

to mediate control of up to 200 different protein coding targets

[40]. The above indicates that convergent small RNA libraries

have the potential to encode multiple effectors without the need

for precise sequence complementarity.

By combining the random RNAi library with cell-based genetic

selections, it is possible to identify RNA modulators of complex

phenotypes both for use as biological tools and potential

therapeutics. In this study we used the library in two functional

genetic selection assays to identify small RNA effectors capable of

overcoming cell death induced by a chemotherapeutic agent (5FU)

or a cytokine (TNF-a). Unique insert sequences were identified

within each genetic selection with few clones containing the same

insert sequence. This is not surprising considering that most

genetic selections require multiple rounds of re-selection to enrich

for specific inserts [12]. There were no shared sequences between

the two different genetic selections. This may reflect the different

biological pathways used by 5-FU and TNF-a for mediating cell

death. Furthermore, the sequences identified following genetic

selection in mammalian cells were not present among the bacterial

plasmids sequenced in the pre-selected library. Interestingly, even

with a single round of genetic selection, we were able to identify a

single insert enriched in a third of all 5FU resistant clones. More

recently, we have expanded the utility of this expression library

and identified ten small RNA effectors conferring resistance to

cellular infection by the respiratory syncytial virus (Fred

Delvecchio, unpublished results). Further analysis of the insert

sequences identified through the different genetic selections did

not reveal the presence of common ‘‘seed’’ regions or extended

sequence similarity or complementarity with previously reported

human miRNAs. The power of this approach is its unbiased

nature that permits the cell itself to identify effective RNA agents

that alter specific cellular phenotypes without directing cell

toxicity. These RNA modulators have the potential to be used

as gene-expressed or synthetic RNA leads for therapeutic

development [28].

One common theme observed in using random RNAi

expression libraries in unbiased genetic screens is the difficulty in

translating the identified small RNA effector sequence into

identification of the direct targets, the latter of which provide a

better understanding of the underlying mechanism associated with

modifying a complex disease-associated phenotype and specific

candidates for conventional drug development [28]. In this study a

simple sequence homology search indicated that the inserts

identified through the two different selection assays did not

recognise any sequences within the human transcriptome with

complete complementarity and instead recognised between 7 and

20 different targets, using the criteria of 14 bases of contiguous

homology. This suggested that all the effectors identified operate

through control of multiple target genes to alter the phenotype

under study, most probably through the promiscuous nature of the

RNAi/miRNA machinery in mammalian cells [41,42]. Given the

random nature of the convergent RNAi expression library it was

not surprising that it was difficult to identify precise targets of the

effector RNAs. It is likely that these sequences do not exist in

nature, may act through novel mechanisms and have both direct

and indirect targets. Work with random shRNA libraries identified

Figure 4. Resistance to 5FU conferred by 5FU55. (A) Re-delivery and validation of pHybrid-5FU55 as conferring resistance to 5FU. The original
5FU55 insert was subcloned into pHybrid and re-delivered to HCT116 cells via retroviral transduction. Independent clones were isolated, exposed to
5FU for 48 h and then assessed for colony numbers at 14 days. Panel 1: pHybrid vector alone treated with 5FU. Panel 2: clone 6 containing the
pHybrid-5FU55 vector and treated with 5FU. Panel 3: clone 8 containing the pHybrid-5FU55 vector and treated with 5FU. Panel 4: clone 8 containing
the pHybrid-5FU55 vector without prior exposure to 5FU. (B) Transient transfection with 5FU55 siRNA produces increased resistance to 5FU. HCT116
cells were transfected with two different concentrations (open histograms = 30 nM; filled histograms = 60 nM) of either negative control siRNA or
5FU55 siRNA. After 48 h, cells were exposed to 5FU for 18 h and then re-seeded. At 14 days, colonies were stained with crystal violet and counted.
doi:10.1371/journal.pone.0004758.g004
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several shRNAs capable of overcoming IL3-dependent cell death;

however these authors could not identify specific targets using

simple homology searches or miRNA target prediction algorithms

[28]. Further experimentation will be required in order to expand

the random small RNA library approach to gene identification.

Toward this end, the ‘‘rules’’ being identified for naturally-

occurring miRNAs may provide an inroad to deciphering the

molecular targets of the identified functional small RNAs.

In the case of the 5FU55 effector, we identified homeodomain-

interacting protein kinase-2 (HIPK2) as one potential target. The

development of resistance to 5FU is multifactorial and several

different mechanisms have been reported [43–45]. These include

loss of sensitivity to apoptosis, increased expression of DNA repair

genes, changes in fluoropyrimidine metabolism, and altered drug

transport. Our observation that HIPK2 is a potential target for the

5FU55 siRNA implicates one alternative pathway for invoking

cellular resistance to 5FU. HIPK2 is a transcriptional co-repressor,

and its suppression has been shown to inhibit chemotherapeutic

drug-induced apoptosis [46]. For example, DNA damage induced

by cisplatin or adriamycin activates HIPK2, leading to phosphor-

ylation of p53 on serine 46 and activation of p53-mediated

apoptosis [46–48]. A block in this cellular response pathway can

lead to chemotherapeutic resistance. In the present study,

inhibition of HIPK2 by the 5FU55 siRNA may have prevented

transcriptional repression of the HIF-1 transcriptional activator.

One result would be the induction of HIF-1 targets genes

including the multidrug resistance gene MDR1 and the anti-

apoptotic protein Bcl2 [49]. In addition, a reduced level of HIPK2

would impair activation of p53-directed apoptosis via DNA

damage resulting from FdUTP misincorporation into DNA. The

end result would be a multifactorial response leading to 5FU

resistance. Interestingly, a subunit of HIF-1, HIF-1a, has been

reported as being overexpressed in colorectal tumors and

contributing to chemotherapeutic resistance [50]. The validity of

these proposed mechanisms will require further experimentation.

The integrative approach using random small RNA libraries

and cell-based genetic selection provides a novel technology

platform for identifying RNA effectors capable of modifying

complex cellular phenotypes through control of the expression

level of multiple targets. These RNA effectors have the potential to

be used as novel therapeutic candidates and tools for deciphering

the underlying molecular pathways contributing to normal and

disease-related phenotypes.

Materials and Methods

Cell culture
HCT116 colorectal cancer cells were cultured in McCoy’s

medium (Invitrogen) containing 10% FBS, penicillin, streptomy-

cin, and glutamine. Amphopack HEK293 (Invitrogen) and PG13

packaging cell lines were maintained in Dulbecco’s modified

Eagle’s medium (Invitrogen) containing 10% FBS, penicillin,

streptomycin, glutamine and sodium pyruvate.

Plasmid construction
To establish a vector system in which convergent promoters drive

the expression of short complementary RNAs, we modified the

pLXSN retroviral vector (Clontech) to include convergent human U6

and H1 RNA polymerase III promoters. The U6+1 promoter

contained in pTZ(U6+1) (gift from David Engelke) was PCR-

amplified using the following forward and reverse primers: 59-

GCGCCTCGAGATAGGGAATTCGAGCTCGGTA-39 and 59-

GCGCGGATCCTTGTAAACGACGGCCAGTGC-39. Following

digestion with XhoI and BamHI, this DNA fragment was ligated into

the multiple cloning site of the retroviral vector pLXSN to produce

pLXSN(U6+1). The H1 promoter region was PCR-amplified from

pSilencer 3.0 (Ambion) using the primers 59-GCCTGCAGGA-

TATTTGCATGTCGCTATGTTCTGG-39 and 59-GCTCTA-

GAGAGTGGTCTCATACAGAACTTATAAG-39, digested with

XbaI and SbfI, and inserted into the pLXSN(U6+1) vector to

produce pHybrid.

To test the effectiveness of pHybrid for regulating the expression

of an endogenous gene, we constructed a derivative encoding

complementary p53-specific sense and antisense RNAs [6]. To this

end, the following oligonucleotide was synthesised: 59-

CGGTGATTCCCTCGAGCAAAAAGACTCCAGTGGTAAT-

CTACTTTTTCTAGAGGTAACAGGCGC-39. Following enzy-

matic generation of the second strand (as described below), the

DNA insert was digested with XhoI and XbaI and ligated between

the U6 and H1 convergent promoters in pHybrid to produce

pHybrid-p53.

Enzymatic synthesis of random siRNA insert
A 63 base oligonucleotide template (59-CGGTGATTCCCTC-

GAGCAAAAAN19TTTTTCTAGAGGTAACAGGCGC-39) con-

taining 19 random nucleotides (bold) flanked by five adenosines and

five thymidines, XhoI and XbaI restriction sites (underlined) and

primer binding sites was synthesised and PAGE-purified (Interna-

tional DNA Technologies). A DNA primer (59-

GCGCCTGTTACCTGTAG-39) was annealed to this template

and the complementary strand was synthesised by primer extension

using Klenow DNA polymerase. This double-stranded DNA was

amplified with PCR primers, 59-CGGTGATTCCCTCGAGC-39

and 59-GCGCCTGTTACCTGTAG-39. The PCR conditions

consisted of 25 cycles of 94uC for 30 sec, 60uC for 30 sec, and

72uC for 45 sec. Purified PCR amplicons were digested with XhoI

and ligated to SalI-digested and dephosphorylated pHybrid, with a

picomole end ratio of 1:250 for vector to insert. The ligation products

were separated on a 5% Nusieve agarose gel (Cambrex) and the

fragment representing the ligation product excised, extracted and

purified using a Qiagen gel extraction kit. These ligation products

were subsequently digested with XbaI, purified by phenol/chloro-

form extraction and ethanol precipitation, and subjected to

intramolecular ligation to re-circularise all plasmids.

Library construction
The ligation mixture described above was electroporated into

ElectroMAX DH5a-E competent cells (Invitrogen) and the

transformed cells plated on 10 cm LB agar plates containing

50 ug/ml carbenicillin. With 2.5 ug ligation mixture, a total of

4.56105 clones were obtained with 95% of these plasmids

containing inserts. DNA sequence analysis of 384 clones indicated

the presence of unique inserts and a random distribution of

sequences when aligned to the human genome sequence. The

library clones were amplified for 48 h at 30uC in 26LB semi-solid

agar containing 50 ug/ml carbenicillin according to the manu-

facturer’s protocol (Invitrogen). Plasmid library stocks were

obtained and plasmid DNA prepared using the Qiagen plasmid

purification kit.

Retroviral delivery of pHybrid-p53 or random library and
stable cell line production

A total of 4.56106 Amphopack HEK293 and 66105 PG13

packaging cells were transfected with 30 ug retroviral-based small

RNA library plasmid DNA using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Medium containing

recombinant virus was recovered two days after transfection and
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10 ml of virus-containing medium was used to transduce 2.56106

HCT116 cells for 24 h. Infected cells were selected by adding

McCoy’s medium, containing 500 ug/ml G418, at 48 h post-

transduction. A stable pooled population was obtained eight days

post-selection. For pHybrid and pHybrid-p53, the stable pooled

populations were serially diluted to isolate single clones. For the

random small RNA library, the stable pooled population was

subjected to treatment with either 5-FU or a combination of TNF-

a and cycloheximide (see below).

Synthetic siRNA transfection
RNA oligonucleotides composing the siRNAs were annealed

according to the manufacturer’s specifications (Proligo). The

sequences were as follows: Dicer (sense: 59-UGCUUGAAGCAG-

CUCUGGA dT dT-39; antisense: 59-UCCAGAGCUGCUU-

CAAGCA dT dT-39); 5FU55 (sense: 59-AGCUAAGGAUGC-

CAGGGAAUU-39; antisense: 59-UUCCCUGGCAUCCUU-

AGCUUU-39). A non-specific siRNA (sense: 59- ACUCUAUCUG-

CACGCUGACUU-39; antisense: 59-GUCAGCGAGCAGAUA-

GAGUUU-39) was used as a negative control (Dharmacon). Various

concentrations of siRNA oligonucleotide duplexes were transfected

into 26105 HCT116 cells alone or HCT116 cells stably transfected

with pHybrid or pHybrid-p53 using Lipofectamine 2000 (Invitrogen).

At 4 h post-transfection, the transfection mixture was replaced with

medium containing 10% FBS, glutamine, penicillin and streptamy-

cin. Cells were harvested 24 and 48 h post-transfection for Western

blot analysis.

Western blot analysis
Pooled populations and stable clones of HCT116 cells,

containing pHybrid-p53, were collected at 80% confluency. Cells

transfected with synthetic siRNA oligonucleotides were harvested

48 h post-transfection. All collected cell pellets were solubilised

and 20 ug of cell lysate separated using 5–12% SDS-PAGE

(Novex). Proteins transferred to PVDF membranes (Invitrogen)

were probed for the p53 (Oncogene Research) or b-actin (Sigma)

proteins, followed by goat HRP-conjugated antibody to mouse

IgG (Santa Cruz) or HRP-conjugated antibody to rabbit IgG

(Santa Cruz) and detected by chemiluminescence. Immunoblot

signal intensity was quantified using ImageQuant software

(Molecular Dynamics).

Genetic selections
A total of 46106 HCT116 cells containing the random

expression library were treated with either 400 uM 5-FU for

18 h or 25 ng/ml TNF-a and 50 ug/ml cycloheximide for 72 h.

Cells treated with either 5-FU or TNF-a plus cycloheximide were

reseeded at 26105 cells in T150 cm2 flasks and allowed to form

colonies for 10–14 days in the absence of 5-FU. Single colonies

were isolated and genomic DNA was purified using Qiagen

genomic DNeasy tissue kit. Recovery of siRNA expression

constructs from genomic DNA was accomplished by PCR with

primers 59- GAACCTCCTCGTTCGACCCCGCCTCGATCC-

39 and 59-GAGCCTGGGGGACTTTCCACACCCTAACT-

GAC-39. The PCR conditions consisted of 40 cycles of 94uC for

1 min, 60uC for 1 min, and 72uC for 1 min. The PCR products

were subjected to DNA sequence analysis. To validate inserts from

the initial genetic selections, the recovered PCR products were

digested with XhoI and XbaI and re-ligated to pHybrid. The

recombinant plasmids were purified and re-delivered to HCT116

cells using retroviral transduction. Stable clones were isolated and

re-analysed for clonogenic growth over 10–14 days, following pre-

treatment with or without 5-FU, as indicated above.

Assessing 5FU55 siRNA in clonogenic assay
HCT116 cells were seeded at 76104 cells per well in a 6-well

plate. At 24 h after seeding, cells were transfected with 5FU55

siRNA or the non-specific control siRNA (Dharmacon) using two

different concentrations and Lipofectamine 2000 according to the

manufacturer’s instructions. Transfection efficiency was monitored

using the siGLO RISC-free siRNA (Dharmacon). At 48 h post-

transfection, cells were treated with or without 400 uM 5-FU for

18 h and then reseeded at 2.56104 cells and allowed to form

colonies for 10–14 days. Colonies were visualised and quantified

following staining with crystal violet.
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