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Abstract
The management and analytics of big data generated from IoT sensors deployed in smart buildings pose a real challenge in 
today’s world. Hence, there is a clear need for an IoT focused Integrated Big Data Management and Analytics framework to 
enable the near real-time autonomous control and management of smart buildings. The focus of this paper is on the develop-
ment and evaluation of the reference architecture required to support such a framework. The applicability of the reference 
architecture is evaluated by taking into account various example scenarios for a smart building involving the management 
and analysis of near real-time IoT data from 1000 sensors. The results demonstrate that the reference architecture can guide 
the complex integration and orchestration of real-time IoT data management, analytics, and autonomous control of smart 
buildings, and that the architecture can be scaled up to address challenges for other smart environments.

Keywords  Internet of things · Smart buildings · Data analytics · Big data management

Introduction

An increasing number of Internet of Things (IoT) initiatives 
have been proposed in recent times to improve the quality of 
human life. Those initiatives pose real-time challenges which 
have been the focus of many researchers and practitioners in 
recent times [1–5]. Indeed, IoT and big data sources can be 
found in a number of applications, e.g., smart homes [6, 7], 
smart buildings [8, 9], smart grids [10], transportation [11], 
healthcare [12], disaster management [13], financial sector 
[14], retail management [15], and smart cities [16, 17]. IoT 
sensors can be deployed in a smart building environment 
to continuously monitor various environmental parameters, 
including smoke, parking lot usage, user comfort, energy 
consumption, waste management, and many others. The aim 
of this paper is to facilitate the use of analytics and dealing 

with the concomitant large data sets in smart buildings for 
the effective control and management of smart building.

Within a smart building, the number of sensors could 
range from few hundreds to thousands. Big data analytics 
and machine learning techniques can only be effective, if 
the data from sensors are effectively managed and are made 
available and ready for real-time analytics. This real-time 
‘Big Data’ needs to be extracted and ingested into a central-
ized location from where it can be extracted, cleaned, trans-
formed, analyzed, and visualized on-demand or in real time 
[18] to obtain useful insights, to make effective decisions, 
and eventually trigger alerts and actuate various controls in 
a smart building.

Real-time strict definition is that “an upper bound” on 
the response time actually exists [19]. We use the term ‘near 
real-time’ in this work as there is an insignificant data pro-
cessing delay involved when analyzing IoT sensor data [20]. 
Strictly speaking near real-time can be defined as “in more 
than 95% of cases, an upper bound on the response time of 
1 s will not be exceeded”. In the context of smart buildings, 
some of the challenges include responding to emergency 
situations in real time and the possibility of autonomously 
eliminating or reducing it.

To deal with the challenges of real-time big data manage-
ment and analytics in the smart building context, a coherent 
framework which incorporates a metamodel and a reference 
architecture is needed. This research is aimed at bridging 
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this gap in the literature. The metamodel provides the list of 
essential elements in a smart building ecosystem and how 
these elements interact with each other. The reference archi-
tecture on the other hand provides an end-to-end blueprint to 
enable real-time management and analytics of huge amounts 
of IoT data coming from various IoT sensors. It also intends 
to provide autonomous near real-time control of smart build-
ings by analyzing, monitoring, and controlling various facili-
ties within the smart buildings. The reference architecture 
and the metamodel are linked to each other through five 
contextual elements.

IoT sensors deployed inside a smart building gather useful 
information like residents’ occupancy, oxygen levels, lumi-
nosity levels, etc., which help manage and secure the smart 
building more efficiently. IoT is the core building block for 
today’s smart buildings, and it enables artificial intelligence 
and big data analytics for smart building operations. With 
IoT, data from various buildings can be observed, gathered, 
and analyzed, and the IoT sensors can be updated with the 
latest software from anywhere across the globe. This paper is 
an extension to our work presented in [21] and [22]. In [21], 
we presented the idea of an IBDMA (Integrated Big Data 
Management and Analytics) framework, which comprises 
of a metamodel and reference architecture. The proposed 
IBDMA framework is aimed at addressing two issues: (1) 
how to effectively manage and analyze data generated by 
IoT sensors deployed inside smart buildings, and (2) how 
to holistically identify all the elements and the relationship 
between these elements to effectively manage and analyze, 
i.e., data in IoT-enabled smart buildings. The first issue is 
addressed by this paper, while the second issue has been 
addressed in [21]. There is no coherent framework which 
provides a metamodel and a reference architecture to address 
the issues outlined above. The existing frameworks in the 
literature either provide a reference architecture or a meta-
model, but there is no framework in the literature which 
provides a coherent view of the two. The aim of the IBDMA 
framework is to enable developers design the smart building 
by providing a comprehensive list of components required 
in a smart building by utilizing the IBDMA metamodel. The 
metamodel will also enable to convert an existing building 
into the smart building. The IBDMA reference architecture 
enables researchers and practitioners to manage and analyze 
IoT data in a smart building efficiently. The metamodel work 
has been presented in [21]. In this paper, we present the 
second component of the IBDMA framework: the IBDMA 
reference architecture. The aim of the IBDMA reference 
architecture is to enable big data management and analytics 
within smart buildings while autonomously monitoring and 
controlling various facilities within the smart building.

The applicability of the IBDMA reference architecture 
is demonstrated using it for smart building experimental 
scenarios to monitor and control oxygen concentration 

levels, luminosity levels, smoke levels, parking lot spaces, 
and waste management with a view to improve residents’ 
safety, health, and comfort. The IoT data are presented using 
multiple data visualization tools. We use ARIMA (Auto 
Regressive Integrated Moving Average) [23] model to fore-
cast values of IoT sensors, and suggest that the reference 
architecture can be employed and extended in the machine 
learning domain for data scientists and machine learning 
practitioners. However, the choice of ARIMA model, its fine 
tuning, and evaluation are beyond the scope of the paper.

The rest of the paper is organized as follows: “Research 
Background and Related Work” presents the research back-
ground and related work. “Research Method” discusses the 
method used in this research. “The IBDMA Framework” 
presents the conceptual level IBDMA framework. “Ref-
erence Architecture Development Process” discusses the 
development and iterative process of the IBDMA reference 
architecture. “Reference Architecture Implementation” pro-
vides implementation details of the architecture. “Frame-
work Evaluation Results” presents the evaluation details 
and the evaluation results. "Conclusions and Future Work" 
concludes and discusses future research directions.

Research Background and Related Work

Research Background

This section discusses the research background related to 
the development of the IBDMA framework. It elucidates the 
background knowledge required to understand the IBDMA 
framework. Since this research focuses on a reference archi-
tecture for IoT-enabled smart buildings, there are two impor-
tant concepts to understand, which are explained below:

Internet of Things

The Internet of Things (IoT) refers to a network of intercon-
nected devices with the ability to exchange information via 
Internet [24]. IoT has become an increasingly popular topic 
of interest both in academia and industry. This includes eve-
rything from wearable devices, mobile phones, heart moni-
tor implants, or any other type of sensors (oxygen, luminos-
ity, garbage detection, etc.), which have the ability to transfer 
data over the Internet. IoT applications can be found in many 
domains ranging from precision agriculture, smart cities, 
smart buildings, smart grids, healthcare, transportation, and 
many more.

IoT has seen a tremendous growth in the past couple of 
years and this growth rate is expected to increase in the 
upcoming years. It holds a lot of promises [25]. According 
to Ericsson [26], the number of interconnected objects is 
expected to rise above 50 billion mark by 2020. The IoT 
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devices range from sensors used inside homes for home 
automation [27], sensors deployed in smart buildings [28], 
sensors installed in vehicles [29], sensors inside a warehouse 
[30], sensors integrated inside wearable devices [31], and 
many others [32, 33]. According to another report, consider-
ing this tremendous pool of sensing devices, it is anticipated 
that the number of IoT devices will reach trillions of number 
[34] in the upcoming years. However, such an increase in 
the number of IoT devices will also increase the amount of 
data generated from these sensors. This increasing number 
of sensors and huge amount of data raise new challenges and 
concerns for data management and analytics practitioners, 
scientists, researchers, and data architects. An IoT system 
comprises of four high-level layers or blocks, as shown in 
Fig. 1. Perception layer consists of sensors and actuators. 
Sensors gather data from the environment and actuators are 
activated based on the data gathered from the sensors. Net-
work layer enables sensors to connect to internet. Middle-
ware later consists of data storage and computing engines. 
The application layer consists of applications including 
dashboards and reports.

In this research, we use five different types of sensors 
which monitor the environment, sense various parameters 
depending on the type of the sensor and generate data at 
a specified frequency. The generated data through TCP/IP 
(Network Layer) are stored into a central location (Middle-
ware Layer). The data are analyzed (Middleware Layer) and 
are reported using visualizations (Application Layer). The 
next section explains the data generated by IoT sensors in 
more detail.

Real‑Time Big Data

The concept of real-time (or near real-time) data manage-
ment and analytics (within the IoT paradigm) refers to cap-
turing, storing, and analyzing the data streams as soon as 
they are received from the IoT sensors. IoT sensors deployed 
in the smart building generate a lot of data at a high velocity, 
comprising big data. Big data management refers to sourc-
ing, storage, and distribution of data. Analytics refers to 
finding patterns and valuable insights using various analyti-
cal techniques and algorithms [36]. In today’s fast-moving 

digital age, businesses want to stay ahead of their competi-
tors by focusing on the immediate implications of managing 
and analyzing real-time data. Real-time data management 
and analytics can be categorized into two types—On-
Demand and Continuous [37], which are distinguished by 
the reactive and proactive approaches [38]—or pull and 
push [39]. For instance, On-Demand Real-Time Analytics 
is reactive. It waits for user to initiate a query and it delivers 
the results. Continuous Real-Time Analytics, on the other 
hand, is more proactive and keeps on delivering the analytics 
results to the users in real-time. Both above-mentioned types 
of real-time data analytics have their own use cases and can 
be used to provide valuable information and insights to a 
business to make effective decisions. In this research, we 
focus on both data analytics techniques.

The duology of IoT and, near real-time big data manage-
ment and analytics is complex in nature. There is a lack 
of integrated and coherent framework. This research inte-
grates a metamodel and a reference architecture to address 
the real-time big data management and analytics challenges 
in smart buildings. This research aims to address this impor-
tant challenge by proposing the IBDMA framework’s refer-
ence architecture using the well-known DSR [40] method. 
The IBDMA framework has five key contextual elements: 
people, process, technology, information, and facility. The 
metamodel and the reference architecture are connected 
through these five key elements.

Related Work

Increasing interest in the areas of IoT, big data management, 
and big data analytics in recent years has been observed 
both in academia and industry. In [41], authors put forward 
different big data analytics techniques and specifically dis-
cuss Apache Spark in the context of smart grid big data. In 
[42], the authors propose a real-time semantic annotation 
reference architecture for Smart City IoT streaming applica-
tions. The work presented in this paper provides a founda-
tion for the development of a comprehensive framework that 
could be useful in improving the performance capability of a 
smart city. In another recent study [36], an IoT-based Wire-
less Sensing and Monitoring platform has been proposed 

Fig. 1   IoT architecture [35]
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to detect environment conditions in the context of building 
automation. The work presented in this research does not, 
however, discuss the real-time data analytics for the IoT-
enabled smart environments.

In [43], the authors discuss the advantages of sensing and 
analyzing big data from various sensors in a smart city. This 
paper provides a conceptual overview and the advantages 
of applying big data techniques over IoT data coming from 
sensors deployed in the smart city. It also highlights the dif-
ference between static and mobile data sources and proposes 
the best data extraction techniques for both types of data 
sources. Similarly, in [44], the authors discuss different big 
data analytics techniques suitable in a smart city scenario. 
This paper also discusses some of the major challenges in 
the data analytics process for smart cities data. In [45], the 
authors survey IoT, Cloud Computing, Big Data, and Sensor 
technologies with the aim to find their common operations 
and combine them. The authors then propose new methods 
to collect and manage sensors’ data in a smart building. In 
[46], the authors present a distributed system for storing and 
processing building data. Based on the big data technolo-
gies, the platform enables new potentials in terms of data 
analytics for smart buildings’ applications. These papers, 
however, do not provide an insight or concrete guidelines 
and implementation architecture, as discussed in this paper, 
about which and how different components can be integrated 
and implemented to design real-time data management and 
analytics architecture and solutions.

In [47], the authors propose a social media data analytics 
platform that uses tweeter posts to improve the smart city 
experience for the residents of the city. It aims to improve 
the residents experience by analyzing real-time Twitter 
posts. The overall results suggest that this platform can help 
improve the effective management of the smart city. This 
paper, however, only takes into account residents’ sentiments 
and twitter posts without taking into account IoT sensor data 
and actuation of the controls. An IoT-based system has been 
implemented in [48], this paper focuses on obtaining real-
time sensor data from IoT sensors deployed in a smart city 
and performs the real-time analytics on it. A practical dem-
onstration has been presented in the paper using Hadoop 
ecosystem. This paper, however, does not address the smart 
city control and end-to-end data management scenario.

In [49], the authors present a scalable architecture for 
ingesting and analyzing IoT data called the hut architec-
ture. It utilizes historical data analysis to provide context 
for real-time analysis. The applicability of the architecture 
is demonstrated using two real-world smart city scenarios 
in transportation and energy management.

In [50], the authors present an initial version of Big Data 
analytical framework for Internet of Things and Smart City 
application. This work demonstrates how such a framework 
can be used by presenting a case study in the smart grid 

domain. However, this framework is a high-level and initial 
version addressing some of the volume and velocity chal-
lenges. The implementation details around the use of tools 
and the data ingestion pipelines are not made clear. Moreo-
ver, the results obtained from the analytics have not been 
used to autonomously control the smart city or smart grids 
based on the received data.

In [51], the authors presented a Big Data architecture 
for the Smart Supply Chains fields. Data were ingested into 
Hadoop and Machine Learning models were used to address 
data-related challenges in Supply Chains. However, this 
paper lacks details in explaining the significance of the work, 
and how it can be applied in real-life scenarios. It presents 
only the architecture of an IoT pipeline which is missing the 
near real-time visualizations as presented in our work. And 
more importantly lacks the framework we have developed 
with five elements: 1—People, 2—Process, 3—Technology, 
4—Information, and 5—Facility, and how these elements are 
related to the underlying Big Data Management architecture 
and to Smart Buildings.

In [52], the authors presented the use of machine intel-
ligence and data analytics algorithms on data acquired from 
the sensing networks’ integral to smart city applications. 
However, the paper lacks the conceptual framework and 
lacks the implementation details of the proposed architec-
ture. However, it presents a very high-level architecture 
which lacks any conceptual framework and implementation 
details of how the authors performed their experiments and 
evaluation. It is a very generic paper listing some of the 
machine learning and data analytics challenges in smart 
cities.

In [53], the authors explore the IoT issues in smart build-
ings and compare two network protocols used for IoT devices 
to improve energy efficiency in smart buildings. However, 
this paper lacks a focus on the big data management and 
analytics of IoT data in smart buildings. It also lacks the dis-
cussion on the control and management of various controls 
and facilities within the smart building.

In [54], the authors present a technique for the facial rec-
ognition in smart cities. This paper lacks a reference archi-
tecture for smart buildings. Kuma et al. [55] discuss IoT 
applications and challenges in various domains. It lacks big 
data analytics focus and highlights that it is a key challenge. 
Kuma et al. [56] present IoT-based fog computing model. It 
lacks a focus on big data management and analytics for IoT 
data. It also does not focus on smart building domain.

In [57], the authors focus on the service-oriented archi-
tecture and the networking layer. It does not focus on big 
data management and analytics, near-real time visualization, 
and the autonomous control of smart buildings. In [58], the 
authors focus primarily on the networking layer, identifying 
which protocols are available and a comparison of those 
communication protocols. It identifies the future challenges, 
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but it does not mention the data management and analytics in 
smart buildings. It is a survey paper which does not specify 
any framework or reference architecture like the IBDMA. 
It also lacks discussion about the real-time analytics and 
control of the smart buildings. In [59], the authors suggest a 
big data mining IoT system. It does not focus on autonomous 
control of the facilities in general and smart building con-
trols in particular. It mentions about the generic data gather-
ing systems, but details about the implementation and evalu-
ation of the suggested system are missing. In [60], Gubbi 
et al. present the architectural elements in IoT paradigm, but 
lack a focus on (1) data management and analytics, (2) near 
real-time analysis, (3) near real-time visualization, and (4) 
near real-time control of facilities within smart building. It 
also lacks the integration of the architecture with a meta-
model which the IBDMA framework provides.

In [24], the authors present a high-level IoT architecture. 
It does not mention any details about big data management 
and analytics, near-real time visualization, and the autono-
mous control of smart buildings. In [61], the authors present 
high-level IoT architecture and challenges faced in the IoT 
domain. It lacks autonomous control of the facilities in gen-
eral and smart building controls in particular. It is a survey 
paper which does not specify any framework or reference 
architecture like the IBDMA. It also lacks discussion about 
the real-time analytics and control of the smart buildings. 
In [21], the IBDMA framework’s second component, i.e., 
the metamodel is presented. The metamodel presents the 
key elements and the relationship between these elements 
that are required in the big data management and analytics 
ecosystem for smart buildings. However, the paper does not 
present the reference architecture, and hence, this research 
focuses on the second component of the framework, i.e., the 
reference architecture.

Table 1 summarizes the research gaps and the corre-
sponding studies where we observed the research gap.

Based on the literature review and Table 1, it is quite 
evident the literatures lacks focus on real-time big data man-
agement and analytics, integration of a reference architec-
ture and metamodel, and real-life validation scenarios in the 
smart buildings context; and hence, there is an urgent need 
for a vendor independent practical research-based integrated 
comprehensive framework for IoT real-time big data man-
agement and analytics. In this research, we presented the 
IBDMA framework, which is an attempt to fill the research 

gap. This sets a foundation for more studies in this important 
area of research.

Research Method

This research adopts the DSR approach [62]. DSR pro-
poses a practical research approach supporting the creation 
of artifacts to solve real-life problems [63]. DSR encom-
passes the formation of new information through the design 
of novel artifacts. It involves the performance analysis of 
such artifacts to understand and improves the behavioral of 
aspects of IS (Information Systems) [64]. These artifacts 
may include algorithms, methodologies of system design, 
and human/computer interfaces. DSR researchers can be 
found in various domains, e.g., Engineering, Information 
Systems and Computer Sciences. In [65], DSR activities are 
described for the IS discipline using a conceptual frame-
work. We adopt the guidelines from [63, 65] in conduct-
ing this research, as shown in Table 2. The rationale behind 
using the DSR approach for this research is that; first, the 
research involves incremental development of the reference 
architecture; second, the DSR focuses on solving real-world 
problems, and for this research, we address the challenge 
of big data management and analytics by developing a ref-
erence architecture; thirdly, DSR tries to address the gap 
between theory and practice, and for this research, we are 
trying to address the gap in the areas of BDMA for IoT-
enabled smart buildings.

For assessing the quality of our DSR, we follow the 
checklist questionnaire also from [31]. The checklist is pre-
sented in Table 3.

We adopt the ‘Three Cycle’ DSR framework from [66] 
for conducting our research. The Relevance Cycle links the 
contextual environment with the DSR activities. The Rigor 
Cycle bridges the DSR activities with the knowledge base 
of scientific theories and methods, that inform the research. 
The centrally located Design Cycle continuously iterates 
between the development and evaluation elements of the 
DSR. The three cycles mentioned above must exist in DSR 
project and must be distinguished clearly from each other. 
Following these research cycle and the checklist questions 
of Table 3, we first identified the research question. Then, we 
defined the artifacts and the design processes that would be 
used to build those artifacts. The literature was reviewed to 

Table 1   Research gap

Research gap Studies where gap was observed

Lack of real-time big data management and analytics in smart buildings context [24, 36, 41–44, 46–61]
Lack of integration between reference architecture and metamodel in smart building context [24, 45, 60]
Lack of real-life validation of reference architecture in smart building context [52, 59]
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determine if the knowledge base provides support to the arti-
fact design. The artifacts were then designed, and an evalu-
ation method was proposed to test the designed artifacts. 
Finally, the research is communicated in the form of publica-
tion. Figure 2 represents these three research cycles and each 
checklist question from Table 3 mapped onto appropriate 
phases of the three-cycle DSR approach.

There are five main steps involved in the DSR, as shown 
in Fig. 3. In the first step, the problem is identified by finding 
the research gap. We performed literature review to identify 

the research gap, and eventually helped us identify the prob-
lem. We then proposed the design of an IBDMA framework 
which consists of a metamodel and a reference architecture 
to bridge the research gap. The IBDMA framework compo-
nents (metamodel and reference architecture) were designed 
and developed to address big data management and analytics 
challenges in smart buildings by providing a holistic view 
of all the elements required in a smart building ecosystem. 
The IBDMA framework components were then evaluated, 
and then, the evaluation results are presented as outcomes of 

Table 2   DSR guidelines [35]

# Guideline Description

1 Design as an artifact DSR must produce a reasonable artifact in the form of a concept, a model, a process, or an instantiation
2 Problem relevance The goal of DSR is the design and analysis of technical solutions to address vital real-life issues
3 Design evaluation The usefulness and effectiveness of a design artifact must be tested comprehensively using well-defined evalua-

tion standards
4 Research contributions DSR must contribute effectively and clearly in the areas of the design artifact, design methodologies, and design 

foundations
5 Research rigor DSR depend on the application of rigorous methods in both the development and evaluation of the design 

artifact
6 Design as a search process Finding an effective design artifact relies on utilizing available resources to achieve the objectives while satisfy-

ing rules in the problem environment
7 Communication of research The findings of the DSR must be communicated effectively to both technical and non-technical audiences

Table 3   Checklist to assess 
design science research [65]

# Questions

1 What are the design requirements or research question?
2 What is the artifact and how is it denoted?
3 How to build the artifact from the design processes?
4 How the knowledge base lays the foundation of generating the artifacts?
5 During the design cycles, what evaluations are done? Are there any design 

improvements that are identified during each design cycle?
6 How is the newly generated artifact introduced and is evaluated in the field? 

What parameters are used to evaluate the usefulness of the artifact over existing 
artifacts?

7 What new information is added to the existing literature and knowledge base?
8 Does the newly generated information satisfy the research question satisfactorily?

Fig. 2   Checklist questions 
mapped to three DSR cycles 
[65]
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the research. As mentioned earlier, the metamodel develop-
ment and evaluation has been published in [21]. This paper 
focuses on the IBDMA reference architecture, which is the 
second component of the IBDMA framework. Following 
the DSR approach, we went through five iterations of the 
IBDMA reference architecture before coming up with a final 
reference architecture as previous iterations did not satisfy 
the evaluation criteria. The details about all five iterations, 
the development, and evaluation processes are explained in 
the next sections.

The framework we have developed has been evaluated 
against the EC (evaluation criteria), as shown in Fig. 4. In 
[67], the authors present artifact evaluation criteria in design 

science research. The 13 evaluation criteria we shortlisted 
(out of 20 from [67]) have been adopted from [67] based 
on their relevance to our research, as some of the evalua-
tion criteria were not applicable to our research or were not 
possible to be evaluated concretely (such as style, homo-
morphism, level of detail, etc.). For this research, we chose 
13 ECs, i.e., EC1, EC2, EC3, …., EC13 for evaluating the 
IBDMA framework and reference architecture. The details 
of these ECs are presented in Fig. 4. These ECs were evalu-
ated against our research objectives of:

–	 Ability to have both batch and streaming analytics.
–	 Ability to do near real-time analytics and visualization.
–	 Ability to autonomously control facilities within smart 

building.
–	 Ability to provide building management and relevant 

authorities the alerts in near real time.
–	 Ability to scale up for any building size and for other 

smart environments.
–	 Ability to provide a comprehensive framework compris-

ing of a reference architecture and metamodel.
–	 Ability to validate the proposed design using real-life 

scenarios.

The evaluation results are presented in “Framework Eval-
uation Results” in Table 11.

Table 4 provides details of the research objectives, and 
how they are lined to the research gaps and research aims.

The IBDMA Framework

The proposed IBDMA framework, as shown in Fig. 5, con-
sists of two components. This paper specifically covers the 
reference architecture component. The metamodel part has 
been developed earlier and is presented in [21]. The refer-
ence architecture is encircled in Fig. 5 to demonstrate that 
this is the focus of the research. With the reference archi-
tecture, IBDMA framework will assist professionals and 
researchers working in the big data and IoT domains in the 
smart building context. Figure 5 represents that the context 
of the research is limited to smart building, and the IBDMA 
framework (applicable with the smart building) has two 
components: (1) Metamodel and (2) Reference architecture. 
The metamodel and the reference architecture are linked to 
each other through the contextual elements.

The IBDMA framework as adopted from [68–71] has five 
main contextual elements, as shown in Fig. 6.

The IBDMA framework will help building developers, 
and IoT and big data professionals to have a holistic view of 
which elements do they need to deploy in the smart building 
while designing the smart building or converting an exist-
ing building into smart building. The metamodel helps in 
identifying those elements and the relationship between 

Fig. 3   DSR steps

Ar�fact evalua�on

Goal

Environment

Structure

Ac�vity

Evolu�on

Efficacy (EC1)

Validity (EC2)

Generality (EC3)

Consistency with people (EC4)

Consistency with technology (EC5)

Completeness (EC6)

Simplicity (EC7)

Clarity (EC8)

Accuracy (EC9)

Performance (EC10)

Efficiency (EC11)

Robustness (EC12)

Scalability (EC13)

Fig. 4   ECs for IBDMA evaluation (adopted from [67])
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those elements, while the reference architecture provides 
the ability to link those elements to the physical design of 
the end-to-end data management, analysis, and process flow.

The reference architecture (which is the focus of this 
paper) is novel in that it provides a scalable architecture 

which focuses on big data management and analytics for 
smart buildings and can be extended to other smart envi-
ronments (smart homes, smart grids, and smart cities). The 
reference architecture also provides an ability to mitigate the 
risks and improve residents’ experience in smart building by 
providing the ability to autonomously control various facili-
ties within the building.

The integration of metamodel and reference architecture 
is important to provide a holistic view of the IoT-enabled 

Table 4   Research objectives linked to research gaps and research aims

Research objectives Research gaps Research aims

Ability to have both batch and streaming 
analytics

Lack of real-time big data management and 
analytics in smart buildings context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Ability to do near real-time analytics and 
visualization

Lack of real-time big data management and 
analytics in smart buildings context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Ability to autonomously control facilities 
within smart building

Lack of real-time big data management and 
analytics in smart buildings context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Ability to provide building management and 
relevant authorities the alerts in near-real 
time

Lack of real-time big data management and 
analytics in smart buildings context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Ability to scale up for any building size and 
for other smart environments

Lack of real-time big data management and 
analytics in smart buildings context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Ability to provide a comprehensive frame-
work comprising of a reference architecture 
and metamodel

Lack of integration between reference archi-
tecture and metamodel in smart building 
context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

How to holistically identify all the elements and 
the relationship between these elements to 
effectively manage and analyze, i.e., data in 
IoT-enabled smart buildings

Ability to validate the proposed design using 
real-life scenarios

Lack of real-life validation of reference archi-
tecture in smart building context

How to effectively manage and analyze data 
generated by IoT sensors deployed inside 
smart buildings

Fig. 5   IBDMA framework and scope of the paper

Technology
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Informa�on

Facility

Process

Fig. 6   IBDMA framework—contextual elements



SN Computer Science (2022) 3:493	 Page 9 of 31  493

SN Computer Science

smart building ecosystem for big data management and ana-
lytics of IoT data. The integration of the metamodel and 
the reference architecture not only assists in developing new 
smart buildings but also provides the ability to transform an 
existing building into a smart building by enabling big data 
management and analytics for IoT data. In the initial phase 
of transformation, the metamodel will be used by the build-
ing developers, architects, and administrators along with 
IoT experts to identify which elements do they need and to 
understand the relationship between these elements. Once 
this has been achieved, the big data developers and archi-
tects can utilize the reference architecture to implement the 
big data management and analytics processes in the smart 
building ecosystem.

As shown in Fig. 6, ‘People’ element is the core IBDMA 
element. This includes the ‘residents’, ‘policy-makers’, as 
well as the developers of the smart buildings. The ‘policy-
makers’ make policies which enable and govern the smart 
buildings ecosystems. The ‘developers’ develop the smart 
buildings adhering to policies compiled by the ‘policy-mak-
ers’. The ‘residents’ may include students, staff, home own-
ers, shop owners, etc. These are beneficiaries of the smart 
building ecosystem. The ‘developers’ and ‘policy-makers’ 
make policies which help identify ‘Process’ element of 
IBDMA. The ‘Process’ element encompasses all processes 
which are required for the effective management and analy-
sis of the smart building data. The ‘technology’ element 
consists of the technology stack that supports the processes 
as defined by the ‘process’ element of the framework. The 
overlap of these elements results in useful information which 
makes up the fourth element of IBDMA known as ‘informa-
tion’. The information is then autonomously used to control 
various facilities within smart buildings, which fall under the 
‘facility’ element of IBDMA. The ‘process’ element links 
all other elements, as shown in Fig. 6. The way these dif-
ferent elements are linked and interacted is explained in the 
upcoming sub-sections.

People

‘People’ element which is the first element IBDMA. It 
includes policy-makers, developers, and building residents, 
as shown in Fig. 7. These can be broken down into two 
groups, one consisting of policy-makers and developers, 
and another consisting of building residents.

Policy‑Makers and Developers

The policy-makers define policies which govern the poli-
cies of the building. These policies define the key require-
ments from the stakeholders and help propose the optimum 
solution to meet the expectations of the stakeholders and 
residents.

The developers include the building developers who 
develop the smart building in line with the policies and 
regulations. Their role is to ensure the safety, security, and 
comfort of the residents of the building.

Residents

The residents of the building may include students, staff, ten-
ants, homeowners, shopkeeper, etc. depending on the nature 
of the smart building. They are the users or beneficiaries of 
the smart building ecosystem.

IBDMA proposes that based on the policies defined by 
the policy-makers, the “processes” are defined which are 
required for the effective execution of these policies. These 
“processes” help identify “technology” stack required for the 
effective execution of these “processes”. This includes tools 
and software applications required for the execution of the 
“processes”, e.g., Microsoft Power BI [72] and Tableau [73] 
for data visualization, Apache Flume [74] for data ingestion, 
Apache Spark [75] for data analysis, etc. The applicability 
and usability of each of these tools and the process elements 
is explained in detail in the next sections.

Policy-Makers and Developers (people) clearly articulate 
the requirements for the smart building. Processes are then 
identified and executed. This includes ingesting IoT data, 
storing it, and analyzing it. Hence, ‘process’ element is the 
second element that follows when applying the framework.

Process

“Process” is the second element of IBDMA framework. It 
performs a key role in defining the strategy for the imple-
mentation of IBDMA framework. Processes outline the 
operations and how various operations should be integrated 
for a concise and effective solution. Hence, to have an effec-
tive solution, processes defined in IBDMA should be trans-
parent and streamlined.

The goals, requirements, and policies defined by the 
“people” serve as input to defining the processes and form 
the basis for choosing and implementing the “processes”. 
Since this research focuses on ingesting, managing, and 
analyzing data generated by IoT sensors deployed in smart 
buildings, the IBDMA framework proposes the following 

Fig. 7   The first element of IBDMA—people
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processes to by implemented which include: monitoring 
of the smart building environment, sourcing of IoT data, 
ingestion of data, storing of data at a centralized location, 
analyzing near-real time, decision-making, visualizing of 
near real time, and autonomously controlling various smart 
facilities in the smart building in near real time as presented 
in Fig. 8. The processes depicted in Fig. 8 represent the data 
flow and hence are sequential (monitoring, data sourcing, 
ingestion, analysis, decision-making, and actuation). There 
may be several facilities that could be controlled autono-
mously within the smart building using IBDMA framework. 
However, to have a realistic scope for this research, we con-
sider five facilities which include managing oxygen levels, 
luminosity levels, garbage, parking, and fire.

Monitoring  In all IoT systems, the first process in imple-
menting a big data management and analytics infrastructure 
is the ‘monitoring’ of the environment in which the IoT sen-
sors are deployed, which for this research is the smart build-
ing. There are various types of IoT sensors available these 
days that could be deployed to monitor various parameters 
and attributes of the smart buildings depending on the use 
cases and requirements of the residents and stakeholders.

Data Sourcing  On monitoring the environment in which 
they are deployed, these sensors generate data. The output 
from these sensors could be binary or continuous depending 
on the nature and type of the IoT sensors.

Data Ingestion  The data generated from these sensors are 
then ingested into a centralized repository using an inges-
tion pipeline.

Data Storage  The centralized repository is where the data 
are stored for cleaning, manipulation, and further process-
ing. Once the data are at a centralized location, it is made 
ready for the analysis.

Data Analytics  The nature of data analysis is dependent on 
a particular use case or the requirement of the stakehold-

ers. The analysis process is the process which enables us to 
obtain useful insights about the smart buildings.

Decision‑Making  The output of the analysis helps us in 
decision-making to manage and control the smart building. 
The decision-making process involves making decisions on 
whether to activate or deactivate controls in the smart build-
ing based on the data received from the IoT sensors. Deci-
sion-making processes for this research include: (1) whether 
an HVAC system needs to be turned ON or OFF based on 
the oxygen levels in the building, (2) deciding whether the 
lights need be to turned ON or OFF based on the luminos-
ity levels in the building, (3) deciding whether a fire extin-
guisher and a fire alarm need to be triggered if the smoke 
levels are above a given threshold, (4) deciding whether the 
garbage bins need to be emptied or not if the bins are filled 
above a threshold level, and (5) whether the parking lot is 
full and the incoming vehicles can be directed to another 
parking lot.

Actuation/Control  Based on the data analytics results and 
the decision-making process, the smart building controls are 
actuated and controlled in an autonomous manner, so the 
building can be managed in an effective manner.

All these different processes from monitoring to inges-
tion, from storage to analysis, and from decision-making 
to autonomous control of the smart building fall under the 
‘Process’ element of the IBDMA which performs the core 
function of integrating all the elements of the IBDMA, as 
shown in Fig. 6. A more detailed implementation is pre-
sented in “Reference Architecture Implementation” where 
it will become more evident on how different elements of 
the IBDMA interact with each other to have an effective 
solution.

Once the processes are defined following the require-
ments compiled by the ‘people’, the implementation of the 
‘process’ requires ‘technology’ stack. Choosing the right 
tools and software packages is imperative to the success 
of an effective solution. Within IBDMA, these tools, tech-
nologies, and software packages fall under the ‘technology’ 

Fig. 8   The second element of 
IBDMA—process
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element of IBDMA, and hence, it is the third element to be 
discussed.

Technology

‘Technology’ is the third element of the framework. It has a 
pivotal role in the effective implementation of big data man-
agement infrastructure and strategy. Hence, choosing the 
right technology stack is imperative. Technology includes 
tools and software packages deployed for effectively design-
ing and deploying of IBDMA, as shown in Fig. 9. In general, 
the technology stack would include data ingestion tool, data 
storage tool, data visualization tool, and near real-time data 
analysis tool. However, for implementation and evaluation 
purposes, details about specific tools are provided that were 
used.

IoT Devices/IoT Application  For this research, in the initial 
two iterations, we use physical IoT devices for the data ana-
lytics and building control. The details of these iterations 
and the use of physical IoT devices are presented in IBDMA 
reference architecture development process section (see 
iteration 1 and iteration 2 details). However, to have a scal-
able reference architecture which can take into account hun-
dreds or thousands of sensors, we implement a virtual IoT 
sensor-based application in Python programming language 
and used PyCharm (a Python IDE) for the development. 
This application simulated data generation from IoT sensors 
deployed in smart buildings. Iterations 3, 4, and 5 present 
details of the IoT application.

HDFS  The data generated by these sensors are stored in 
HDFS (Hadoop Distributed File System) which is a high-
performance distributed file system and provides reliable 
data access to Hadoop clusters.

Apache Flume  The data generated by the sensors are 
ingested into HDFS using data pipelines that are devel-
oped using Apache Flume which is a reliable data collec-
tion, aggregation, and transportation tool to ingest huge 
amounts of batched and streaming data, including logs, IoT 
data, financial data, etc., and move it to a centralized loca-
tion. Flume is a fault tolerant tool which provides failover 

and recovery mechanisms and uses a simple extensible data 
model that allows for online analytical application.

Apache Spark  Apache spark is used to analyze the data gen-
erated by the IoT sensors. Apache spark is an in-memory 
data processing engine which provides fast data analysis and 
processing capabilities for various streaming and batched 
applications. Its architecture is based on Resilient Distrib-
uted Dataset (RDD) which provides fault tolerant way of 
maintaining multiset of data items distributed over a cluster 
of machines. For this research, we use Python to write Spark 
code for data analysis. The analysis helps in decision-mak-
ing and in turn enables the system to control and maintain 
the smart building and its various facilities autonomously. 
The aim of this autonomous is to make the smart building 
comfortable and secure building residents.

Power BI  For visualization, Microsoft Power BI is used. 
Power BI comes with a built-in connector to connect to 
HDFS and enables to write code in R and Python to per-
form predictive analytics within its environment. Hence, it 
was a natural choice for the data visualization tool for this 
research. However, like any other tool, Power BI has some 
limitations, and it is hard to build a near-real-time dashboard 
in Power BI.

Elasticsearch and  Kibana  Since for this research, we are 
working with IoT sensors data, we needed to have the capa-
bility to present the IoT sensors data in near-real-time dash-
board to have a greater insight into monitoring the smart 
building environment, so any alarms can be addressed in 
near-real time. To have this near-real-time visualization 
capability, we choose Elasticsearch [76] and Kibana [77]. 
Elasticsearch is an open-source tool built on Apache Lucene 
[78] and provides distributed search and analytics engine. 
New incoming data are stored as documents in Elasticsearch 
using either API or an ingestion tool such as Logstash [79]. 
This receives and stores incoming data and augments a 
searchable reference to the data (document) in the cluster’s 
index. These documents can then be searched and retrieved 
using the Elasticsearch API. For the data visualization, Elas-
ticsearch provides an open-source data visualization plug-in 
called Kibana which provides near-real time visualization 

Fig. 9   The third element of 
IBDMA—technology Technology

Toolchain
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capabilities in accessing documents on an Elasticsearch 
cluster.

Information

‘Information’, which is the fourth element of IBDMA, origi-
nates from the overlap of the first three elements shown in 
Fig. 6. As discussed in the previous sections, ‘people’ out-
line the policies and requirements for the smart buildings. 
Based on these policies, processes are identified to define 
the ‘technology’ stack for their implementation. Informa-
tion is generated from the data generated by the IoT sensors 
when the processes and the technology infrastructure are 
deployed successfully. There could be various forms and 
types of information that could be obtained from the data 
generated by the IoT sensors which enable us to control 
various parameters and aspects of the smart buildings for 
improved residents’ comfort and safety.

Information for Building Control

There could be numerous facilities within the smart build-
ing that could be autonomously controlled as a result of 
the information that is generated which may include: smart 
lighting based on the luminosity levels, smart parking based 
on the parking sensors, elevators’ operation, HVAC Sys-
tem, vending machine operations, and many others. How-
ever, for this research and to have a limited scope, IBDMA 
proposed the autonomous monitoring and control of five 
different facilities including: HVAC system, luminosity 
levels, parking management, garbage management, and fire 
incident management. One example scenario could be if the 
luminosity sensor indicates that the luminosity levels in a 
particular location of the building are below a certain level, 
IBDMA proposes that this ‘information’ will help improve 

the luminosity levels of the room by turning the lights on 
in that location.

Generally, IBDMA proposes that the ‘information’ ele-
ment also includes the visualization of the IoT data done 
in Power BI and Kibana, the analysis results generated by 
Apache Spark and the results for autonomous control of 
facilities within the smart building (prescriptive analytics), 
as shown in Fig. 10. The Spark program analyzes the data 
received from the IoT sensors, and based on the received 
data, it decides what action to take. For instance, the smoke 
detection sensor, sends a value indicating there is a fire in 
a certain location of the smart building, the Spark program 
will trigger the fire alarm and the fire extinguisher in that 
location. More details and specific use cases are provided 
in the next sections. As mentioned earlier, the “processes” 
integrate all the elements of the framework, hence the “pro-
cesses” integrating “information” element to the rest of the 
elements of IBDMA include ‘data visualization, ‘data analy-
sis and ‘decision making’ as represented in Fig. 17.

Facility

‘Facility’ is the final element of the framework. It includes 
numerous facilities of the smart building that are aimed to 
enhance residents’ comfort, safety, and security. The ‘infor-
mation’ generated from the IoT data enables the autonomous 
control of these ‘facilities’, as shown in Fig. 6. The facili-
ties may include but are not limited to elevator maintenance 
and management, HVAC system, and garbage management. 
For this research, we consider the following five facilities: 
HVAC system, smart parking, smart garbage management, 
smart lighting, and smart fire management, as presented in 
Fig. 11. The target facilities that need to be controlled in the 
smart building should be identified and considered before 
defining the policies and requirements of the smart building 

Fig. 10   The fourth element of 
IBDMA—Information

Fig. 11   The fifth element of 
IBDMA—facility Facility
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ecosystem. This reduces the possibility of encountering any 
major roadblocks in deploying the infrastructure for big data 
management of IoT-enabled smart buildings.

As discussed earlier, the ‘process’ element of IBDMA 
integrates all the elements of IBDMA, the process that inte-
grates and control the facilities of the smart building based 
on the information generated by the system is called ‘action’. 
The action process enables the autonomous control and man-
agement of the five facilities that fall under the scope of this 
research as represented in Fig. 17.

Reference Architecture Development 
Process

The development of the IBDMA reference architecture has 
been done in five iterations to ultimately reach to its current 
final state (iteration 5). In this section, we also provide the 
details of how the contextual-level elements of IBDMA are 
related to the physical level elements; this will be demon-
strated in iteration 4 and 5 in the sub-sections below.

The five iterations for the development of the Big Data 
and Analytics architecture, for our use case, are discussed 
in detail below:

•	 Iteration 1 (Physical)
•	 Iteration 2 (Physical, real time)
•	 Iteration 3 (Virtual, smart building)
•	 Iteration 4 (Virtual, smart building, improved)
•	 Iteration 5 (Virtual, smart building, improved and final-

ized)

Iteration 1: In the first iteration, we extracted UTS 
(University of Technology Sydney) sensor data from UTS 
building 11 and imported that into RStudio by utilizing 
web-scrapping techniques. The data are available publicly 
on UTS’s web portal. These data were graphed and plotted 
for various sensors and predictions were made about the sen-
sor data using ARIMA (AutoRegressive Integrated Moving 

Average) [23] model. The implementation of graphs and 
ARIMA model was done in RStudio using R. This exer-
cise was done to become familiar with the sensor types and 
the data available. It also helped us in familiarizing our-
selves with tools and techniques that we could use for future 
research at that time. Figure 12 demonstrates the compo-
nents and the steps that were taken in Iteration 1.

Iteration 2: In the second iteration, we prototyped a physi-
cal system consisting of an Arduino microprocessor board, 
physical sensors, and a linear actuator. The data were sent 
to HDFS (Hadoop Distributed File System) for storage from 
where it was imported to RStudio for predictive analytics. 
The problem with Iteration 1 was that the data available were 
only batched data. Our focus was on both batched as well as 
real-time data, so we decided to prototype a system with a 
couple of physical sensors connected to a microprocessor. 
The sensors considered for this iteration were temperature 
and smoke detection sensors. The sensors produced real-
time data after regular intervals. A linear actuator was also 
connected to the system to simulate the behavior of a fire 
extinguisher scenario. The sensors generated the data in real 
time, the data were stored in HDFS, and from HDFS, we 
could perform predictive analytics as well as visualize it in 
Tableau [80, 81]. The data generated from the sensors were 
also analyzed in real time as it was generated. If the values 
generated by temperature sensor and the smoke detection 
sensor went above the threshold (simulating a fire scenario), 
the linear actuator got activated for 5 s, simulating that the 
fire extinguisher is activated to rectify the fire. The linear 
actuator would go off if the sensors read a value below the 
threshold. The steps and processes followed in Iteration 2 
are shown in Fig. 13.

Iteration 3: In the third iteration, we focused on scaling 
up the architecture developed in the second iteration. For this 
iteration, we considered a smart building application sce-
nario by introducing big data pipelining, storage and analysis 
tools. It was not possible to have access to a large number of 
physical IoT sensors and actuators in a lab environment, and 
thus, we decided to virtualize the IoT sensors by simulating 

Fig. 12   Iteration 1—initial 
architecture design (Analysis of 
UTS Building 11 sensor data)
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the sensor data. Similarly, we simulated (virtualized) the 
actions taken based on the data received from the virtual 
sensors. This work has been published in [22]. The architec-
ture developed for this iteration is shown in Fig. 14.

Data Sourcing

For this research, we virtualized the data generation from 
fifteen virtual sensors using a Python application. These 15 
sensors include five (IoT) oxygen sensors, five smoke detec-
tion sensors, and five luminosity sensors deployed in a smart 
building. These 15 sensors are assumed to be deployed at 
five different locations (e.g., different rooms or floors) of the 
smart building in such a way that each location has a set of 
these three different sensor types, i.e., oxygen, smoke, and 
luminosity.

Data Ingestion and Storage

The data generated by these IoT sensors (source) are 
ingested into HDFS (sink) using an Apache Flume over a 
TCP (Transmission Control Protocol) port. For the imple-
mentation, we made use of the Cloudera [82, 83] Big Data 
platform (Virtual Machine for the Apache Hadoop environ-
ment) for extraction, ingesting, data pipelining, storing, and 
analyzing the data. For ingesting data into HDFS, Flume 
was the choice of tool because of Flume’s robust integration 
with HDFS as compared to Kafka [84]. MQTT is a widely 
used protocol for IoT data; however, MQTT is primarily 
used as Machine-to-Machine protocol for transferring data 
between two physical systems. Since our goal is to move 
data to HDFS, we use Flume for data ingestion. There are 
a number of other tools available including Apache Beam, 
Apache Flink, Apache Storm, Apache NiFi, and Apache 
Ignite that can be used for streaming data analysis and event 
processing. However, for the purpose of this research and 

proof of concept prototype, we used Flume to ingest data 
and Apache Spark for its analysis.

Data Analysis and Building Control

For the analysis of data to enable decision-making, we 
developed an Apache Spark algorithm using PySpark [20]. 
The algorithm reads and analyzes the data from three dif-
ferent types of IoT sensors stored in HDFS in near-real 
time to enable effective decision-making. For instance, if 
the oxygen sensors generate data indicating a low oxygen 
concentration in a given location of the smart building, the 
Spark algorithm would in turn enable the HVAC System to 
turn ON to ensure that comfortable oxygen concentration 
levels are attained in that location. The system represents 
this by outputting “HVAC X turned ON” on the Cloudera 
terminal, where X represents the room or floor in a smart 
building. For the oxygen concentration threshold levels to 
turn the HVAC system ON or OFF, we defined the oxygen 
concentration threshold value of 14. On the other hand, if the 
oxygen concentration levels are above the threshold levels, 
the deployed infrastructure would represent this as “Oxy-
gen level at X ok” on the Cloudera terminal, indicating that 
the oxygen concentration level in a particular location is 
above the comfortable threshold levels and that no further 
action is required to enable or disable the HVAC System. 
If the HVAC System was turned ON by the system due to 
low oxygen concentration levels and the oxygen concentra-
tion levels have become normal, the system would turn the 
HVAC system and will represent this by outputting “Fire 
alarm X turned ON” where X represents the room or level 
where smoke is detected.

Similarly, if during the data analytics process, a particular 
luminosity sensor detects lower than the minimum lumi-
nosity levels, the system will turn the lights ON that are 
located at that location. This is represented by the system by 

Fig. 14   Iteration 3—real-time data management, analysis and actuation for smart building
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displaying “Lights at X turned ON” at the Cloudera terminal 
where X represents the particular room or level of the smart 
building.

Iteration 4: In iteration 4, we improved and extended the 
architecture to conceptualize the elements in terms of peo-
ple, process, technology, information, and facility to link the 
contextual elements (Fig. 6) with the physical layer compo-
nents (Fig. 14). The architecture for iteration 4 is shown in 
Fig. 15. The architecture developed in iteration 3 was scaled 
up and tested for a smart building application scenario by 
considering 1000 virtual IoT sensors.

Data Sourcing and Ingestion

For this iteration, we considered 200 of each of the five dif-
ferent types of IoT sensors which include oxygen sensors, 
smoke detection sensors, light sensors, parking spaces sen-
sors, and garbage detection sensors.

Data Storage

Ten Flume agents were configured with IoT sensor data as 
the source and HDFS as the sink. The data were then visual-
ized in Tableau.

Data Analysis and Building Control

Apache Spark was used to analyze the data in near-real time 
as it gets stored in HDFS. Based on the algorithm developed 
in PySpark, various messages were printed on the terminal 
screen simulating the feedback actuation behavior.

For oxygen sensors, if the value sent by a sensor is below 
a threshold, the PySpark algorithm prints out a message on 
the terminal stating the HVAC system associated with that 

particular oxygen sensor has been turned ON. For smoke 
detection sensors, if the value generated by a sensor exceeds 
a threshold (i.e., occurrence of a fire), the PySpark algo-
rithm detects that and outputs a message on the terminal 
stating that the Fire Alarm connected at the location of that 
particular smoke detection sensor is turned ON. In case of 
luminosity sensors, if a particular luminosity sensor gener-
ates an output value below a threshold indicating it is dark, 
the PySpark algorithm outputs a message on the terminal 
stating that the lights associated with that particular lumi-
nosity sensor are turned ON. For the parking space sensors, 
if the value generated by a particular parking space sensor 
is a 1, the PySpark algorithm displays a message on the 
terminal stating that a car has been parked at that particular 
parking spot. For the garbage detection sensors, if the value 
generated by a particular sensor is above the threshold, the 
PySpark algorithm displays a message on the terminal stat-
ing that the garbage bin associated with the particular sensor 
which generated an above threshold value is full.

Iteration 5: The earlier iterations had limitations in 
terms of real-time data visualization and performing pre-
dictive analytics. In the fifth and final iteration, we worked 
on improving the architecture to enable real-time visuali-
zations by introducing Elasticsearch [76, 85] and Kibana 
[77, 86]. We also introduced MS (Microsoft) Power BI [87, 
87] for the visualization of data stored in HDFS. The main 
reason for introducing MS Power BI was because Power BI 
integrates well with R scripts. This integration provides the 
ability to do data analysis and predictive analytics within 
Power BI in an interactive way.

Moreover, we chose a hybrid model considering both 
batched as well as streaming data sources.

The high-level and generic reference architecture is pre-
sented in Fig. 16.

Fig. 15   Iteration 4—updated real-time data analysis and actuation architecture
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However, for implementation and validation purpose, we 
chose specific tools, and the resultant architecture is pre-
sented in Fig. 17.

Batched Data

We chose open data as a batched data source for our archi-
tecture. These open data are scrapped using R (can also be 
done using Python) and ingested into HDFS.

Streaming Data

For streaming data sources, the virtual IoT sensors send the 
data to two sinks: (1) HDFS and (2) Elasticsearch. As the 
data from the IoT sensors land into HDFS, it is analyzed 
in near-real time by the Apache Spark algorithm to enable 
decision-making for the effective management and control of 
the five facilities earlier described within the smart building. 

These data once stored in HDFS are visualized in batches 
using Power BI.

Predictive and Near‑Real Analytics:

For predictive analytics, we used R scripts to develop an 
ARIMA model within Power BI. For the second source, i.e., 
Elasticsearch, the data are indexed as it lands into Elastic-
search. Elasticsearch provides a data visualization plug-in 
called Kibana which enables the near-real-time visualization 
of IoT data.

The updated architecture is presented in Fig.  17. It 
shows how the five contextual elements shown in Fig. 6 are 
related to the physical elements of the framework. People 
are at the top-most level, which represent the stakeholders 
of the smart building environment such as building devel-
opers, building management, IT professionals, and resi-
dents of the building. Process element defines data-driven 

Fig. 16   Iteration 5—high-level 
architecture

Fig. 17   Iteration 5—updated and improved near real-time data analysis and actuation architecture
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processes, which are relevant to the smart building. This 
includes monitoring via sensors, data sourcing, ingest-
ing, storing, analysis, visualization, decision-making, 
and finally actuation. The Technology element includes 
the technology stack including Flume, R, Elasticsearch, 
HDFS, Kibana, Spark, and Power BI. The information 
includes the near-real data visualizations in Kibana, Power 
BI dashboards for the IoT data visualization and the output 
of the decision-making process using Spark. Finally, the 
Facility element represents the facilities in the smart build-
ing, including HVAC systems, fire alarms, lights, parking 
spaces, and garbage spaces.

Table 5 summarizes the details of various big data 
tools used in the development of the IBDMA. It lists the 
processes in which each of these tools are used and the 
purpose of each of these tools in the IBDMA reference 
architecture implementation.

Reference Architecture Implementation

The proposed design of the IBDMA architecture is imple-
mented for a smart building application scenario follow-
ing the architecture as presented in Fig. 17. As shown in 
Fig. 17, we considered both streaming as well as static data. 
For streaming data, we created 1000 virtual IoT sensors. 
This is presented in the section marked Streaming Data 
in Fig. 17. These virtual sensors are implemented using a 
software application developed in Python. This application 
generates data from each sensor at regular intervals. Each 
sensor generated the sensor id and the value it measures 
from the building environment. The sensor id represents the 
location of the sensor in the building. The IoT application 
has a defined range of values for each type of sensor, and 
hence, the values are generated randomly between the ranges 
of values by the IoT application. This is done to keep the 
validation scenario simpler and to ensure that all possible 
scenarios are considered during the implementation and 
validation phases.

For the IoT sensors, we consider five different types of 
sensors. Out of the 1000 sensors, we simulate 200 oxygen 
sensors, 200 smoke detectors, 200 luminosity sensors, 200 
parking spaces sensors, and 200 garbage detection sen-
sors. It is assumed that these 1000 sensors are deployed 
at 200 distinct locations (including rooms or levels) of 
the smart building. We implement the example scenario 
using Cloudera VM (Virtual Machine) Hadoop distribu-
tion and used Python to create virtual sensor application 
to generate IoT data. The VM provides most the big data 
tools (Apache Flume, Apache Spark, HDFS, and Hive) 
required for the implementation of the IBDMA architec-
ture. The other software packages (Pycharm IDE, Elastic-
search, and Kibana) were installed on the VM. The virtual 
sensor application forwarded the IoT data to two destina-
tions. First destination is Elasticsearch where the data are 
indexed and stored, so Kibana can be used to visualize it. 
The second destination is multiple Flume agents ingesting 
data into HDFS. We configure ten Flume agents with each 
Flume agent serving 100 sensors. On ingesting the data 
into HDFS, it is analyzed in near-real time using PySpark 
(Python Apache Spark API) [20].

For the static data, we consider UTS smart building open 
data available publicly and ingested that in HDFS using R. 
This is presented in the Static Data section of Fig. 17.

The “process” element IBDMA framework integrates all 
other elements. The implementation of IBDMA architecture 
relies actually on the implementation of the processes, as 
shown in Fig. 6 and Fig. 17. Hence, we further the pro-
cesses as shown in Fig. 8 to explain the implementation of 
the IBDMA architecture.

Monitoring

As shown in Fig. 17, ‘Monitoring’ is the first process in the 
IoT-enabled smart building. It includes the monitoring of 
various parameters of the IoT-enabled smart building eco-
system. For static data, we choose oxygen and gas detec-
tion sensors which monitor the oxygen levels and gas levels, 
respectively, within UTS Building 11.

Table 5   Elements in the IBDMA architecture and their purpose

Sr. No Element Process Purpose

1 Flume Ingestion For ingesting streaming IoT data in Elasticsearch and HDFS via TCP/IP
2 Elasticsearch Storage Indexing streaming data to be visualized in Kibana
3 Kibana Visualization Visualizing streaming IoT data in near real-time
4 HDFS Storage Storing both batched and streaming data
5 Spark Analysis/decision-making Analyzing IoT data in near real-time to enable decision-making and 

actuation of smart facility
6 Power BI Visualization Visualizing batched and forecasted data
7 R Ingestion/decision-making Web scrapping and predictive analytics
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For streaming data, the monitoring process is accom-
plished by the virtual IoT sensors developed using a python 
application which simulate the monitoring of oxygen levels, 
temperature levels (fire detection), luminosity levels, gar-
bage levels, and parking spaces in the smart building.

Data Sourcing

Sourcing is the second process in the IBDMA implementa-
tion as presented in Fig. 17. As discussed above, we con-
sider both static as well as near real-time streaming data 
as our data sources. For static data source, open data from 
UTS (University of Technology Sydney) smart building 
sensors were extracted from web using R and were stored 
in HDFS. These data comprised of historical data for two 
types of sensors for one of the levels/floors of UTS build-
ing 11. These sensor types include oxygen sensors and gas 
detection sensors.

As a streaming data source, real-time streaming data 
for 1000 virtual IoT smart building sensors were generated 
using Python virtual sensor software application. These data 
were ingested and stored in HDFS and we deployed big data 
tools to achieve the data ingestion task as explained in detail 
in the next section. Each virtual sensor had a unique sensor 
id by which it is identified. We identified the first 200 virtual 
sensors with sensor ids between 1 and 200 in our research 
as oxygen sensors, sensors with sensor ids between 201 and 
400 (both inclusive) as smoke detection sensors, the sensors 
with sensor ids between 401 and 600 (both inclusive) as 

parking spaces sensors, the sensors with sensor ids between 
601 and 800 (both inclusive) as luminosity sensors, and the 
sensors with sensor ids between 801 and 1000 (both inclu-
sive) as garbage detection sensors. The Python virtual sensor 
application for data generation is developed using Pycharm 
IDE community edition [88, 89]. Figure 18 shows the logic 
flow diagram of the data generated from IoT sensors.

Figure 26 (Appendix) shows the screenshot of data gen-
eration part of the Python virtual sensor application.

As seen from Fig. 26 (Appendix), first, the required mod-
ules are imported including the socket and Elasticsearch 
modules. The TCP IP and the port are defined. The sensor 
class is defined, and the objects of the class including sensor 
id, sensor value, and the sensor location (room or floor of 
the smart building) are initialized. Then, in a while loop, the 
sensor id and sensor location are incremented by 1. The sen-
sor value is generated randomly between a specified range 
of values for each different type of sensor. For example, 
Fig. 26 (Appendix) is the screenshot for the oxygen sen-
sors, in which random values between 8 and 21 are generated 
which denotes the percentage oxygen concentration in air.

For this research, we have set up the data generation, such 
that at one time, 10 sensors will simultaneously be generat-
ing the data which are served by ten Flume agents running 
in parallel. The data are generated with 1 s interval, so the 
time interval between two consecutive data readings from a 
single sensor is 100 s which is found out to be a reasonable 
latency to report the smart building environmental condi-
tions. This time interval can be reduced by slightly modify-
ing the Python application.

Fig. 18   Data sourcing—logic flow diagram
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The virtual sensor application pushes data to two desti-
nations: (1) to Elasticsearch to enable near real-time data 
visualization using Kibana (2) to Flume agents to enable 
near-real-time ingestion of data into HDFS. To store and 
index data in Elasticsearch, it provides Python API and we 
used this API to store and index data into Elasticsearch. In 
the virtual sensor application, an Elasticsearch document is 
defined which includes sensor id, sensor value, sensor loca-
tion and the time of generation of data. This document is 
then sent to Elasticsearch index named “iot” as can be seen 
in Fig.26 (Appendix).

Figure 26 (Appendix) shows the data generation code for 
first 100 oxygen sensors. For the case of oxygen sensors, 
the values are randomly between 8 and 21, where these val-
ues denote the percentage concentration of oxygen in air. If 
the values are above 14, oxygen levels are considered nor-
mal. For smoke detection sensors, same range of values are 

generated randomly with values above 14 denoting a pos-
sible fire scenario. For the case of parking space sensors, 
each sensor outputs a high (1) or a low (0) value denoting 
a particular parking space is full or empty. For luminosity 
sensors, random values between the range of 8 and 21 are 
generated with values above 14 are considered normal and 
values below 14 representing luminosity levels below nor-
mal. For the case of garbage detection sensors, the sensors 
generate a high (1) or low (0) to represent if a garbage bin 
is full or empty.

In the last part of the code, the sensor id is reset once the 
sensor id reaches from 1 to 100. Therefore, the value for 
sensor 1 is generated and the cycle repeats. Finally, the TCP 
connection and the connection to Elasticsearch cluster are 
closed when the program is exited.

Fig. 19   Data visualization in Cloudera using Hive tables

Fig. 20   Data visualization in 
tableau (min and max values 
displayed top and bottom)
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Data Ingestion

Data ingestion is the third process, as shown in Fig. 17. For 
static data, the UTS building data once extracted in the .csv 
format are ingested and stored in HDFS.

For streaming data, we deploy Apache Flume to ingest 
IoT sensor data into HDFS. Ten Apache Flume agents are 
configured and used for data ingestion. These agents are 
configured to listen to ten different TCP ports as specified 
in the Virtual sensor application to reduce time latency, 
increase throughput of the data and to prevent loss of data. 
The configuration of these Apache Flume agents is done, 
such that the virtual IoT data generated from the Python 
virtual sensor application acts as the source and the HDFS 
acts as the sink to store the data into HDFS as soon as it 
arrives from the virtual sensors.

Figure 27 (Appendix) shows the contents of one of the 
Flume configurations files out of ten configuration files. 
The configuration file has three key elements: Source, 
Sink, and Channel. The ‘roll-over interval’ for the Flume 
agent was unchanged to the default 30 s interval setting 
which means that each Flume agent will roll over files 
after every 30 s, finish writing to it and create a new file in 
HDFS every 30 s as. tmp file. This .tmp file gets converted 
to a permanent file after the 30 s have elapsed. Specifying 
0 for roll-over interval will disable rolling and will case 
all events to be written to a single file.

As seen from Fig.  27 (Appendix), the Flume agent 
name defined in the configuration file is ‘a1’. There are 
three key components in a flume configuration file, i.e., 
source, sink, and channel. ‘Source’ binds to the incoming 
source of data, while ‘Sink’ binds to the destination where 
the data need to be stored. ‘Channel’ as the name suggests 
provides a channel to transfer data from source to the sink. 
The ‘Source’ defined in the configuration file is a netcat 
source which binds to TCP IP 127.0.0.1 on port 5005. The 
sink is an HDFS sink with a path hdfs://quickstart.cloud-
era:8020/user/cloudera/virtualsensor1. The channel is a 
memory channel with a capacity and transaction capac-
ity of 1000 and 100, respectively. Capacity defines the 
maximum number of events stored in the channel. Trans-
action capacity defines the maximum number of events 
the channel will take from a source or give to a sink per 
transaction.

For batched data, data ingestion process involves web-
scrapping the open data using R or Python. We used R to 
download the data to our local disk and manually uploaded 
the extracted data into HDFS.

Data Storage (Big Data Management)

Data storage is the fourth process, as shown in Fig. 17. For 
static data, we downloaded the IoT sensor data from UTS 
building 11 by performing ‘web-scrapping’ using R. The 
downloaded data were first to our local disk as one single 

Fig. 22   Forecasting sensor data 
in power BI using R

Fig. 21   Temperature sensor 
data visualization in MS Power 
BI
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text file and then manually uploaded to HDFS at a speci-
fied folder after performing some data manipulation on the 
downloaded data. The static data included data from tem-
perature, luminosity, humidity, and oxygen sensors. The data 
comprised of sensor ids, the value generated by the sensors, 
and the timestamp separated by commas.

For the streaming data, we store data both in Elasticsearch 
as well as HDFS. The reason for storing data into Elastic-
search is to enable real-time visualization using Kibana. 
HDFS is used as the other storage destination to enable near 
real-time analysis using Apache Spark.

Elasticsearch is a scalable distributed search engine 
which provides powerful APIs to enable extremely fast 
data search for data discovery applications on an enter-
prise grade. Data are stored in Elasticsearch in the form 
of indexed documents using APIs where Elasticsearch 
adds a searchable reference to the document in the clus-
ter’s index. The documents can then be retrieved using the 
Elasticsearch API. To manage Elasticsearch and the data 
stored in Elasticsearch, we used Kopf plug-in based on 
JavaScript + AngularJS + jQuery + Twitter bootstrap which 
provides an easy-to-use web-based administration tool to 
manage Elasticsearch cluster.

The IoT sensor application sends the data to Elasticsearch 
where it is indexed and stored in the form of documents. 
Kibana is then used to visualize the data in near-real time. 
The IoT sensor application also sends data to HDFS via ten 
Flume agents as discussed in previous section. Flume has a 
default naming convention for storing files into the HDFS 
which includes the timestamp. Since the roll-over time for 
all the ten Apache Flume agents was 30 s, as discussed in 
the previous section, after every 30 s, a new .tmp file was 

Fig. 23   Near real-time sensor 
data visualization in Kibana

Fig. 24   Smart building control messages
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created in the specified folder within HDFS for each Flume 
agent, and after those next 30 s have elapsed, this .tmp file 
gets converted automatically to a permanent file on HDFS.

The data generated from the Python IoT sensor applica-
tion contain sensor id, sensor value, and the location of the 
sensor. Both the storage destinations, i.e., Elasticsearch and 
HDFS, store the data generated by the Python IoT sensor 
application.

Data Analysis (Big Data Analytics)

Data analysis is the fifth process in the IBDMA architec-
ture as presented in Fig. 17. To analyze the IoT sensor data 
in near real time, we used PySpark—Spark Python API 
(Application Programming Interface) for this research. For 
the streaming data, we develop an algorithm within PySpark 
which monitors the incoming data in near-real time as it is 
ingested into HDFS. Depending upon data values generated 
by the virtual sensors, the algorithm detects whether there 
is a need to activate any controls within the smart building 
or not. If, for instance, a particular smoke detection sensor 
sends out a value that is too high indicating a possible fire 
scenario, the PySpark algorithm detects it and outputs a text 
message that the fire alarm located in the vicinity of the sen-
sors has been activated. In case of batched data, the PySpark 
algorithm reads the whole file and outputs a detailed mes-
sage on the terminal for each sensor indicating whether there 
was a problem detected for any of the sensors or whether all 
the values received were within range. This helps to identify 
the problems within the system and to improve the comfort-
ability and safety of the residents. The PySpark code for data 
analysis is provided in the github repository [90].

Data Visualization

Data visualization is the sixth process in the IBDMA archi-
tecture as presented in Fig. 17. The data analysis process 
is followed by data visualization process. For real-time 
streaming data, we considered both near real time as well as 
batched visualizations. For near real-time visualization, we 
use Kibana which integrates with Elasticsearch and produces 
near real-time visualizations of the received data. These 
visualizations help in identifying the problems in the smart 
building in near real time without going through chunky data 
sets or running algorithms on the data. For batched visuali-
zation, we concatenated multiple files stored in HDFS gener-
ated as a result of the data storage process into a single file 
to make the visualization process easier. We adopted various 
tools to do the batched visualizations. First, we chose the 
Cloudera built-in visualization tool by importing the data in 
Hive table. Hue was used to create Hive tables was within 
Cloudera and the data stored in HDFS were imported into 
the table. The visualization done in Hue is shown in Fig. 19. 

The limitation of doing visualization in Hive within Cloud-
era is that we cannot visualize more than 1000 rows of data. 

Second tool we adopted for data visualization is Tableau. 
Tableau has a connector which allows it to get connected 
to the HDFS data. Figure 20 shows snapshots of the data 
visualization done in Tableau. As compared to Hive data 
visualization, the visualization in Tableau is much more flex-
ible as you can customize the results in a better way to create 
more useful visualizations. Figure 20 shows the minimum 
and maximum values generated by a particular sensor in a 
top–bottom view with minimum values on the top in red and 
maximum values on the bottom in blue.

The third tool we adopted for batched data visualization 
was MS Power BI. We found MS Power BI to be the best 
tool for our research as it has an easy-to-use interface, it 
integrates well with HDFS, and we could write R program-
ming scripts within MS Power BI. The advantage of using R 
scripts within Power BI was that we could develop and run 
predictive models within Power BI. The visualization done 
in Power BI for open batched data for a temperature sensor 
for the last 13 months is presented in Fig. 21.

The data from the sensor were generated after every 
7 min. We developed an R script to forecast the next 1000 
values of the temperature sensor which corresponds to 
approximately the next 5 days. We chose an ARIMA model 
to do the predication. The forecast results are presented in 
Fig. 22.

The discussion on the selection of the appropriate model, 
its fine tuning, and evaluation are beyond the scope of this 
research. However, the code we used to generate a simple 
Arima model and to forecast the next 1000 values for the 
temperature sensor is presented in Fig. 28 (Appendix). 
Because temperature sensor values depend on the seasonal 
factors, i.e., quarter of the year, month, or days of a week, 
we have set seasonality is equal to ‘true’ in our ARIMA 
model. The modeling can be extended to identify and predict 
various parameters of the smart building, but we keep this 
discussion beyond the scope of this paper.

Power BI is a great visualization tool when it comes to 
visualizing extracted or static data. However, to visualize 
near real-time IoT streaming data, Power BI and lot of tools 
available in the market fall short. That is why, we chose 
Elasticsearch and Kibana to visualize streaming data in near-
real time.

Once data are indexed in Elasticsearch as explained in 
Sect. 6.4, Kibana is an open-source data visualization tool 
and is used to develop near real-time visualizations and 
dashboards for the documents indexed into Elasticsearch 
cluster. Figure 23 shows the near real-time data visualiza-
tion in Kibana for one particular IoT sensor; it shows the 
minimum and maximum values received from that particular 
IoT sensor.
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Fig. 25   Flowchart of actuation process

Decision‑Making

Decision-Making is the seventh process in the IBDMA archi-
tecture, as shown in Fig. 17. The ‘decision making’ process 
includes understanding and evaluating results from the ‘Data 
Analysis’ and ‘data visualization’ processes. It involves ana-
lyzing and visualizing predictive analytics results obtained by 
integrating R predictive modeling scripts with the visualiza-
tion of the virtual IoT sensor data done in MS PowerBI. The 
decision-making process also involves analyzing the results 
of the PySpark algorithm. The decision-making process helps 
the smart building stake holders in making better data-driven 
decisions to improve the comfortability, safety, security, effi-
ciency, and safety of the smart building.

Action: Smart Building Control

Action is the last process in the IBDMA architecture, as 
shown in Fig. 17. Once a decision is made based on the data 
analysis and data visualization results, the smart building 
facilities are controlled autonomously by the IBDMA. This 
is accomplished by triggering the appropriate controls of 
the facilities deployed in the smart building as a result of the 
data produced by the corresponding IoT sensor. To simulate 
this behavior, the system displays the results in the form of 
textual output displayed on the Cloudera terminal.

The oxygen concentration is controlled and maintained 
by analyzing the data generated from the Oxygen sensors 
deployed in the smart building. As soon as the data from the 
oxygen sensor are ingested into HDFS, the Apache Spark 
algorithm analyzes these incoming data, and if the value 
received by a sensor is below 14 (which reflects the oxygen 
concentration level), the Spark algorithm considers it a value 
below the appropriate threshold and triggers the correspond-
ing HVAC ON. For the purpose of our research, we simu-
late this by displaying “HVAC system X turned ON” on the 
Cloudera terminal, where X represents a particular location 
in the building. Now, when the HVAC system stays ON for 
some time, the Oxygen concentration levels in that particular 
location will start going up and soon, the levels will be in 
the acceptable range. When this happens, the system turns 
the HVAC system OFF. For the purpose of this research, 
we simulate this behavior by displaying “HVAC system 
X turned OFF”. On the other hand, if another oxygen sen-
sor deployed at another location within the smart building 
already is reading acceptable oxygen concentration levels, 
the proposed IBDMA reference architecture does not take 
any triggering actions. In this case, the PySpark algorithm 
outputs “Oxygen level at X OKAY”, depicting that oxygen 
levels detected by sensor id X are okay.

To maintain a safe and productive environment for the resi-
dents, we need to ensure that the smoke detection sensors are 

installed to monitor any smoke or fire hazards. The smoke 
detection IoT sensors continuously monitor the environment 
for a fire hazard and in case of a fire send a value above a pre-
defined threshold value indicating a fire in the smart building. 
When this happens, the proposed architecture triggers the cor-
responding fire alarm location in the same location as the sen-
sor where fire was detected. For the purpose of our research, 
the Spark algorithm outputs “Fire alarm X turned ON” on 
the Cloudera terminal simulating the behavior of turning a 
fire alarm ON where X represents the location or room of the 
smart building where the sensor detected smoke or fire. On 
the other hand, in normal situations where there is no fire or 
smoke detected, the IBDMA architecture will not produce 
alerts and will keep performing normally by outputting “No 
fire at X” on the Cloudera terminal. The system will do this 
for all the locations of the smart building.
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To monitor and effectively maintain the parking spaces of 
the smart building, parking sensors are deployed in the smart 
building. When a parking space is filled, the IBDMA archi-
tecture displayed “Parking X is occupied” where X repre-
sents the parking spot which has been occupied by a vehicle. 
When the vehicle leaves the parking spot, the architecture 
prints out the text saying, “Parking X is empty”. These data 
can be collected and analyzed to make a decision on how to 
improve the parking areas for the residents.

The luminosity sensors deployed in the smart build-
ing monitor the luminosity levels in numerous locations 
of the smart building. The data generated by these sen-
sors once ingested into HDFS are analyzed by the Spark 
algorithm, and if the value sent by the sensor is below a 
threshold luminosity level, the proposed architecture will 
turn the lights in that location ON. For the purpose of 
our research, we simulate this by outputting “Lights at X 
turned ON” on the Cloudera terminal where X represents 
the sensor id or location of the smart building where low 
luminosity levels were detected. On the other hand, if the 
luminosity levels in a particular room are already within 
the acceptable range, the proposed architecture displays 
“Luminosity level at X OKAY”, illustrating that luminos-
ity levels at that particular location are okay, and hence, no 
action is required. However, in cases where the lights need 
to be turned OFF at a particular location, the proposed 
architecture is capable of handling this and simulates this 
be displaying “Lights at X turned OFF” on the Cloudera 
terminal.

To effectively and efficiently manage the garbage in the 
building, garbage detection sensors are deployed in the smart 

building which monitor the garbage bin levels of the bins 
placed in the garbage areas of the smart building. When a 
garbage bin becomes full, the proposed architecture gener-
ates a warning by displaying, “Garbage at X is Full” where 
X is the location of the garbage detection sensor where it 
detected a garbage bin is full. For all the garbage bins which 
have space for more garbage, the proposed architecture con-
tinuously monitors the garbage levels and prints out “Gar-
bage at X has space” for all the bins in the building. This 
enables more effective and efficient management of the gar-
bage within the smart building. Further decisions about the 
installation of more garbage bins and the garbage collection 
times can also be made by looking at the trend of the data 
generated by garbage detection sensors.

Figure 24 demonstrates the outputs displayed by the 
reference architecture on the Cloudera terminal as a result 
of the analysis if incoming data are from the IoT sensors. 
The actuation process is presented in a simplified flow 
chart as presented in Fig. 25.

Framework Evaluation Results

IBDMA framework and reference architecture was evalu-
ated by testing five test cases against the 13 ECs presented 
in Fig. 4 of “Research Method”. Streaming data from vir-
tual sensor application were generated and the Cloudera 
big data platform was set up as explained in the previ-
ous section. The details of the test cases are mentioned 
below in Tables 6, 7, 8, 9 and 10. 

Table 6   Test case 01—detection of oxygen levels

Test case 01 Detection of low oxygen level and autonomously activating HVAC system

Context Oxygen levels fall below the human comfort levels at a specified location in the building
Problem Low oxygen levels in the smart building may get unnoticed by the smart building management that could result in 

the discomfort of the residents and could potentially prove fatal
Solution Oxygen level falls down and is detected by the IBDMA reference architecture. The management is notified, and the 

HVAC is autonomously activated within two minutes
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying 

the HVAC turned ON when the value of the sensor fell below the threshold
Description Oxygen levels in the smart building fall, the oxygen sensor senses that the levels of oxygen at a particular location 

have fallen below the threshold levels and sends the data to HDFS via Flume. The system detects the low oxygen 
levels, activates the associated HVAC system installed at that particular location and notifies the Smart Building 
Management within two minutes. The system autonomously turns the HVAC system off when the oxygen levels are 
in the acceptable range

Consequences/improved 
performance metrics

The residents enjoy comfortable environment. The smart building management are notified within two minutes if the 
levels fall down below the threshold levels and the HVAC system is turned ON or OFF based on the oxygen level

‘As-as’ vs ‘to-be’ solution Literature is scarce on the integrated topic of near real-time alerts and visualizations for building management. 
Moreover, the ability to trigger the HVAC system autonomously within required time (e.g., two minutes) has not 
been discussed. The proposed reference architecture addresses both the above-mentioned challenges
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Table 7   Test case 02—detection of fire

Test case 02 Detection of fire and alerting local community

Context A fire erupts at a specified location in the building
Problem Fire erupts in the smart building and may get unnoticed by the smart building management for a longer period poten-

tially resulting in the loss of infrastructure, investment and lives
Solution Fire erupts and is detected by the IBDMA reference architecture. The management including the Fire Brigade is noti-

fied within two minutes of the Fire eruption and a Fire Alarm at that location is turned ON and the fire extinguisher 
located in that area is triggered

Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying 
the Fire Alarm turned ON when the value of the sensor went above the threshold

Description Fire erupts in a smart building; the IoT smoke detector sensor senses fire and sends the data to HDFS via Flume. The 
system detects fire, activates the associated fire alarm installed at that particular location alerting the local commu-
nity and notifies the smart building management including the relevant fire brigade team within two minutes. The 
fire brigade team then acts on the notification by eradicating fire at the location

Consequences/improved 
performance metrics

The local community is alerted by activating the fire alarm so that they can move to safe areas. The fire brigade and 
building management are notified within two minutes so that they can respond to the fire to minimize loss of infra-
structure, investment and precious lives

‘As-is’ vs ‘to-be’ solution Literature is scarce on the topic of near real-time alerts and visualizations for building management. Moreover, the 
ability to trigger the fire extinguisher autonomously (e.g., within two minutes) has not been discussed before. The 
proposed reference architecture addresses both the above-mentioned challenges

Table 8   Test case 03—detection of luminosity

Test case 03 Detection of low luminosity level and autonomously activating smart lights

Context Luminosity levels fall below the human luminous comfort levels at a specified location in the smart building
Problem Low luminous levels in the smart building may get unnoticed by the smart building management that could not only 

result in the discomfort of the residents but could also prove to be a safety hazard for the residents
Solution Luminosity level falls and is detected by the IBDMA architecture. The management is notified, and the smart lights 

are autonomously activated within two minutes
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying 

the Lights turned ON when the value of the luminosity sensor fell below the threshold
Description The luminosity sensor detects that the luminosity levels at a specified location have fallen below the threshold 

levels and sends the data to HDFS via Flume. The system detects the low luminous levels, activates the associated 
smart lights installed at that location and notifies the smart building management within two minutes. The system 
autonomously turns the smart lights off when the luminosity levels are in the acceptable range

Consequences/improved 
performance metrics

The residents enjoy comfortable luminous levels. The smart building management are notified within two minutes if 
the levels fall below the threshold levels

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the 
ability to control lights autonomously has not been covered. The proposed reference architecture addresses both the 
above-mentioned challenges
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The five test cases discussed above were evaluated against 
the 13 ECs presented in Fig. 4 and the results of the evalua-
tion are presented in Table 11.

Conclusions and Future Work

This paper presented the IBDMA framework and its refer-
ence architecture, which was developed and evaluated for a 
smart building example scenario. The framework has five 
key integrated components: (1) People, (2) Process, (3) 
Technology, (4) Information, and (5) Facility. The reference 
architecture was evaluated using five iterations for the smart 

building scenario. The final iteration was implemented with 
a total of 1000 sensor involving 200 virtual oxygen sensors, 
200 virtual smoke/hazardous gas detectors, 200 luminos-
ity sensors, 200 parking sensors, and 200 garbage detec-
tion sensors. The evaluation was performed following the 
DSR approach [65] using the five different use cases against 
thirteen evaluation criteria taken from the literature. The 
results of the evaluation indicate how a systematic frame-
work like IBDMA can assist for managing and analyzing 
the near real-time big data streams for smart buildings. It 
also demonstrates that and how various elements of a smart 
building including IoT sensors and control systems can be 
autonomously monitored and controlled in near-real time 
using the proposed IBDMA framework. Thus, the proposed 

Table 9   Test case 04—detection of parking space usage

Test case 04 Detect if parking lot becomes full and alert the residents

Context A parking space gets filled with car in the smart building
Problem Parking space in the smart building becomes full and may get unnoticed by the residents for a longer period resulting 

in a lot of inconvenience for the residents
Solution Parking space becomes full and is detected by the IBDMA architecture. The smart building residents are notified 

within two minutes of the parking space becoming full and are notified to move to alternate parking areas
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying 

the Parking space is occupied when the value of the sensor was ‘1’
Description Parking lot becomes full in the smart building the IoT parking lot sensor senses it and sends the data to HDFS via 

Flume. The system alerts the local community and notifies the smart building management within two minutes
Consequences/improved 

performance metrics
The residents are alerted so that they can move to alternative parking spaces or areas. The building management is 

notified within two minutes so that they can respond to the growing needs of the residents by planning out more 
parking lots in the areas

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the 
ability to address parking lots autonomously is also something new discussed in this paper. The proposed reference 
architecture addresses both the above-mentioned challenges

Table 10   Test case 05—detection of garbage

Test case 05 Detect if garbage bin becomes full and alert the residents

Context A garbage bin becomes full in the smart building
Problem Garbage bin in the smart building becomes full and may get unnoticed by the smart building garbage management 

team for a longer period resulting in a lot of inconvenience for the residents
Solution Garbage bin becomes full and is detected by the IBDMA reference architecture. The smart building management is 

notified within two minutes of the garbage bin becoming full and the residents are notified to wither wait or throw 
their garbage at alternative locations

Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying 
the garbage bin is full when the value of the sensor was ‘1’

Description Garbage bin becomes full in the smart building; the IoT garbage detection sensor senses it and sends the data to 
HDFS via Flume. The system alerts the local community and notifies the smart building management within two 
minutes. The smart building garbage management team sends the garbage collector to empty the garbage at the 
location

Consequences/improved 
performance metrics

The residents are alerted so that they can throw the garbage to alternative garbage bins. The smart building garbage 
management team is notified within two minutes so that they can respond to the growing needs of the residents by 
sending garbage collectors more often to the specified location

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the 
ability to manage garbage autonomously is addressed in this paper as well. The proposed reference architecture 
addresses both the above-mentioned challenges
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Table 11   Evaluation results for evaluating each test case against the 
13 ECs

Test case Evaluation criteria Pass ✔/fail✘

01 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

02 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

03 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

04 EC1 ✔

EC2 ✔

EC3 ✔

EC4 ✔

EC5 ✔

EC6 ✔

EC7 ✔

EC8 ✔

Table 11   (continued)

Test case Evaluation criteria Pass ✔/fail✘

EC9 ✔

EC10 ✔

EC11 ✔

EC12 ✔

EC13 ✔
05 EC1 ✔

EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

IBDMA framework is unique in a way that it integrates 
together end-to-end sensing, data management, autonomous 
actuation capabilities with the ability to do near real-time 
data management and analytics, which have not been dis-
cussed before, in particular in the smart building context. 
This marks the important contribution of this research. The 
framework is applicable to find a number of applications 
and can be further extended to other smart environments, 
such as smart homes, smart cities, and smart grids. As part 
of this research, we considered all the sensors data values or 
parameters independently. This research can be extended by 
considering the inter-dependence of these sensors or param-
eters on each other to extract further insights from the data.

IBDMA Framework Evaluation Repository

The configuration files and the code for the IBDMA refer-
ence architecture are available at the GitHub repository [90].

Appendix

See Figs. 26, 27, 28.
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Fig. 26   Sensor data generation code
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