
Vol.:(0123456789)

SN Computer Science (2022) 3:493
https://doi.org/10.1007/s42979-022-01401-9

SN Computer Science

ORIGINAL RESEARCH

A Reference Architecture for IoT‑Enabled Smart Buildings

Muhammad Rizwan Bashir1 · Asif Qumer Gill2 · Ghassan Beydoun1

Received: 21 August 2021 / Accepted: 5 September 2022 / Published online: 27 September 2022
© The Author(s) 2022

Abstract
The management and analytics of big data generated from IoT sensors deployed in smart buildings pose a real challenge in
today’s world. Hence, there is a clear need for an IoT focused Integrated Big Data Management and Analytics framework to
enable the near real-time autonomous control and management of smart buildings. The focus of this paper is on the develop-
ment and evaluation of the reference architecture required to support such a framework. The applicability of the reference
architecture is evaluated by taking into account various example scenarios for a smart building involving the management
and analysis of near real-time IoT data from 1000 sensors. The results demonstrate that the reference architecture can guide
the complex integration and orchestration of real-time IoT data management, analytics, and autonomous control of smart
buildings, and that the architecture can be scaled up to address challenges for other smart environments.

Keywords Internet of things · Smart buildings · Data analytics · Big data management

Introduction

An increasing number of Internet of Things (IoT) initiatives
have been proposed in recent times to improve the quality of
human life. Those initiatives pose real-time challenges which
have been the focus of many researchers and practitioners in
recent times [1–5]. Indeed, IoT and big data sources can be
found in a number of applications, e.g., smart homes [6, 7],
smart buildings [8, 9], smart grids [10], transportation [11],
healthcare [12], disaster management [13], financial sector
[14], retail management [15], and smart cities [16, 17]. IoT
sensors can be deployed in a smart building environment
to continuously monitor various environmental parameters,
including smoke, parking lot usage, user comfort, energy
consumption, waste management, and many others. The aim
of this paper is to facilitate the use of analytics and dealing

with the concomitant large data sets in smart buildings for
the effective control and management of smart building.

Within a smart building, the number of sensors could
range from few hundreds to thousands. Big data analytics
and machine learning techniques can only be effective, if
the data from sensors are effectively managed and are made
available and ready for real-time analytics. This real-time
‘Big Data’ needs to be extracted and ingested into a central-
ized location from where it can be extracted, cleaned, trans-
formed, analyzed, and visualized on-demand or in real time
[18] to obtain useful insights, to make effective decisions,
and eventually trigger alerts and actuate various controls in
a smart building.

Real-time strict definition is that “an upper bound” on
the response time actually exists [19]. We use the term ‘near
real-time’ in this work as there is an insignificant data pro-
cessing delay involved when analyzing IoT sensor data [20].
Strictly speaking near real-time can be defined as “in more
than 95% of cases, an upper bound on the response time of
1 s will not be exceeded”. In the context of smart buildings,
some of the challenges include responding to emergency
situations in real time and the possibility of autonomously
eliminating or reducing it.

To deal with the challenges of real-time big data manage-
ment and analytics in the smart building context, a coherent
framework which incorporates a metamodel and a reference
architecture is needed. This research is aimed at bridging

 * Muhammad Rizwan Bashir
 rizwan.bashir@student.uts.edu.au

 Asif Qumer Gill
 asif.gill@uts.edu.au

 Ghassan Beydoun
 ghassan.beydoun@uts.edu.au

1 School of Information Systems and Modelling, University
of Technology Sydney, Ultimo, NSW 2007, Australia

2 School of Computer Science, University of Technology
Sydney, Ultimo, NSW 2007, Australia

http://orcid.org/0000-0001-6326-9267
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01401-9&domain=pdf

 SN Computer Science (2022) 3:493493 Page 2 of 31

SN Computer Science

this gap in the literature. The metamodel provides the list of
essential elements in a smart building ecosystem and how
these elements interact with each other. The reference archi-
tecture on the other hand provides an end-to-end blueprint to
enable real-time management and analytics of huge amounts
of IoT data coming from various IoT sensors. It also intends
to provide autonomous near real-time control of smart build-
ings by analyzing, monitoring, and controlling various facili-
ties within the smart buildings. The reference architecture
and the metamodel are linked to each other through five
contextual elements.

IoT sensors deployed inside a smart building gather useful
information like residents’ occupancy, oxygen levels, lumi-
nosity levels, etc., which help manage and secure the smart
building more efficiently. IoT is the core building block for
today’s smart buildings, and it enables artificial intelligence
and big data analytics for smart building operations. With
IoT, data from various buildings can be observed, gathered,
and analyzed, and the IoT sensors can be updated with the
latest software from anywhere across the globe. This paper is
an extension to our work presented in [21] and [22]. In [21],
we presented the idea of an IBDMA (Integrated Big Data
Management and Analytics) framework, which comprises
of a metamodel and reference architecture. The proposed
IBDMA framework is aimed at addressing two issues: (1)
how to effectively manage and analyze data generated by
IoT sensors deployed inside smart buildings, and (2) how
to holistically identify all the elements and the relationship
between these elements to effectively manage and analyze,
i.e., data in IoT-enabled smart buildings. The first issue is
addressed by this paper, while the second issue has been
addressed in [21]. There is no coherent framework which
provides a metamodel and a reference architecture to address
the issues outlined above. The existing frameworks in the
literature either provide a reference architecture or a meta-
model, but there is no framework in the literature which
provides a coherent view of the two. The aim of the IBDMA
framework is to enable developers design the smart building
by providing a comprehensive list of components required
in a smart building by utilizing the IBDMA metamodel. The
metamodel will also enable to convert an existing building
into the smart building. The IBDMA reference architecture
enables researchers and practitioners to manage and analyze
IoT data in a smart building efficiently. The metamodel work
has been presented in [21]. In this paper, we present the
second component of the IBDMA framework: the IBDMA
reference architecture. The aim of the IBDMA reference
architecture is to enable big data management and analytics
within smart buildings while autonomously monitoring and
controlling various facilities within the smart building.

The applicability of the IBDMA reference architecture
is demonstrated using it for smart building experimental
scenarios to monitor and control oxygen concentration

levels, luminosity levels, smoke levels, parking lot spaces,
and waste management with a view to improve residents’
safety, health, and comfort. The IoT data are presented using
multiple data visualization tools. We use ARIMA (Auto
Regressive Integrated Moving Average) [23] model to fore-
cast values of IoT sensors, and suggest that the reference
architecture can be employed and extended in the machine
learning domain for data scientists and machine learning
practitioners. However, the choice of ARIMA model, its fine
tuning, and evaluation are beyond the scope of the paper.

The rest of the paper is organized as follows: “Research
Background and Related Work” presents the research back-
ground and related work. “Research Method” discusses the
method used in this research. “The IBDMA Framework”
presents the conceptual level IBDMA framework. “Ref-
erence Architecture Development Process” discusses the
development and iterative process of the IBDMA reference
architecture. “Reference Architecture Implementation” pro-
vides implementation details of the architecture. “Frame-
work Evaluation Results” presents the evaluation details
and the evaluation results. "Conclusions and Future Work"
concludes and discusses future research directions.

Research Background and Related Work

Research Background

This section discusses the research background related to
the development of the IBDMA framework. It elucidates the
background knowledge required to understand the IBDMA
framework. Since this research focuses on a reference archi-
tecture for IoT-enabled smart buildings, there are two impor-
tant concepts to understand, which are explained below:

Internet of Things

The Internet of Things (IoT) refers to a network of intercon-
nected devices with the ability to exchange information via
Internet [24]. IoT has become an increasingly popular topic
of interest both in academia and industry. This includes eve-
rything from wearable devices, mobile phones, heart moni-
tor implants, or any other type of sensors (oxygen, luminos-
ity, garbage detection, etc.), which have the ability to transfer
data over the Internet. IoT applications can be found in many
domains ranging from precision agriculture, smart cities,
smart buildings, smart grids, healthcare, transportation, and
many more.

IoT has seen a tremendous growth in the past couple of
years and this growth rate is expected to increase in the
upcoming years. It holds a lot of promises [25]. According
to Ericsson [26], the number of interconnected objects is
expected to rise above 50 billion mark by 2020. The IoT

SN Computer Science (2022) 3:493 Page 3 of 31 493

SN Computer Science

devices range from sensors used inside homes for home
automation [27], sensors deployed in smart buildings [28],
sensors installed in vehicles [29], sensors inside a warehouse
[30], sensors integrated inside wearable devices [31], and
many others [32, 33]. According to another report, consider-
ing this tremendous pool of sensing devices, it is anticipated
that the number of IoT devices will reach trillions of number
[34] in the upcoming years. However, such an increase in
the number of IoT devices will also increase the amount of
data generated from these sensors. This increasing number
of sensors and huge amount of data raise new challenges and
concerns for data management and analytics practitioners,
scientists, researchers, and data architects. An IoT system
comprises of four high-level layers or blocks, as shown in
Fig. 1. Perception layer consists of sensors and actuators.
Sensors gather data from the environment and actuators are
activated based on the data gathered from the sensors. Net-
work layer enables sensors to connect to internet. Middle-
ware later consists of data storage and computing engines.
The application layer consists of applications including
dashboards and reports.

In this research, we use five different types of sensors
which monitor the environment, sense various parameters
depending on the type of the sensor and generate data at
a specified frequency. The generated data through TCP/IP
(Network Layer) are stored into a central location (Middle-
ware Layer). The data are analyzed (Middleware Layer) and
are reported using visualizations (Application Layer). The
next section explains the data generated by IoT sensors in
more detail.

Real‑Time Big Data

The concept of real-time (or near real-time) data manage-
ment and analytics (within the IoT paradigm) refers to cap-
turing, storing, and analyzing the data streams as soon as
they are received from the IoT sensors. IoT sensors deployed
in the smart building generate a lot of data at a high velocity,
comprising big data. Big data management refers to sourc-
ing, storage, and distribution of data. Analytics refers to
finding patterns and valuable insights using various analyti-
cal techniques and algorithms [36]. In today’s fast-moving

digital age, businesses want to stay ahead of their competi-
tors by focusing on the immediate implications of managing
and analyzing real-time data. Real-time data management
and analytics can be categorized into two types—On-
Demand and Continuous [37], which are distinguished by
the reactive and proactive approaches [38]—or pull and
push [39]. For instance, On-Demand Real-Time Analytics
is reactive. It waits for user to initiate a query and it delivers
the results. Continuous Real-Time Analytics, on the other
hand, is more proactive and keeps on delivering the analytics
results to the users in real-time. Both above-mentioned types
of real-time data analytics have their own use cases and can
be used to provide valuable information and insights to a
business to make effective decisions. In this research, we
focus on both data analytics techniques.

The duology of IoT and, near real-time big data manage-
ment and analytics is complex in nature. There is a lack
of integrated and coherent framework. This research inte-
grates a metamodel and a reference architecture to address
the real-time big data management and analytics challenges
in smart buildings. This research aims to address this impor-
tant challenge by proposing the IBDMA framework’s refer-
ence architecture using the well-known DSR [40] method.
The IBDMA framework has five key contextual elements:
people, process, technology, information, and facility. The
metamodel and the reference architecture are connected
through these five key elements.

Related Work

Increasing interest in the areas of IoT, big data management,
and big data analytics in recent years has been observed
both in academia and industry. In [41], authors put forward
different big data analytics techniques and specifically dis-
cuss Apache Spark in the context of smart grid big data. In
[42], the authors propose a real-time semantic annotation
reference architecture for Smart City IoT streaming applica-
tions. The work presented in this paper provides a founda-
tion for the development of a comprehensive framework that
could be useful in improving the performance capability of a
smart city. In another recent study [36], an IoT-based Wire-
less Sensing and Monitoring platform has been proposed

Fig. 1 IoT architecture [35]

 SN Computer Science (2022) 3:493493 Page 4 of 31

SN Computer Science

to detect environment conditions in the context of building
automation. The work presented in this research does not,
however, discuss the real-time data analytics for the IoT-
enabled smart environments.

In [43], the authors discuss the advantages of sensing and
analyzing big data from various sensors in a smart city. This
paper provides a conceptual overview and the advantages
of applying big data techniques over IoT data coming from
sensors deployed in the smart city. It also highlights the dif-
ference between static and mobile data sources and proposes
the best data extraction techniques for both types of data
sources. Similarly, in [44], the authors discuss different big
data analytics techniques suitable in a smart city scenario.
This paper also discusses some of the major challenges in
the data analytics process for smart cities data. In [45], the
authors survey IoT, Cloud Computing, Big Data, and Sensor
technologies with the aim to find their common operations
and combine them. The authors then propose new methods
to collect and manage sensors’ data in a smart building. In
[46], the authors present a distributed system for storing and
processing building data. Based on the big data technolo-
gies, the platform enables new potentials in terms of data
analytics for smart buildings’ applications. These papers,
however, do not provide an insight or concrete guidelines
and implementation architecture, as discussed in this paper,
about which and how different components can be integrated
and implemented to design real-time data management and
analytics architecture and solutions.

In [47], the authors propose a social media data analytics
platform that uses tweeter posts to improve the smart city
experience for the residents of the city. It aims to improve
the residents experience by analyzing real-time Twitter
posts. The overall results suggest that this platform can help
improve the effective management of the smart city. This
paper, however, only takes into account residents’ sentiments
and twitter posts without taking into account IoT sensor data
and actuation of the controls. An IoT-based system has been
implemented in [48], this paper focuses on obtaining real-
time sensor data from IoT sensors deployed in a smart city
and performs the real-time analytics on it. A practical dem-
onstration has been presented in the paper using Hadoop
ecosystem. This paper, however, does not address the smart
city control and end-to-end data management scenario.

In [49], the authors present a scalable architecture for
ingesting and analyzing IoT data called the hut architec-
ture. It utilizes historical data analysis to provide context
for real-time analysis. The applicability of the architecture
is demonstrated using two real-world smart city scenarios
in transportation and energy management.

In [50], the authors present an initial version of Big Data
analytical framework for Internet of Things and Smart City
application. This work demonstrates how such a framework
can be used by presenting a case study in the smart grid

domain. However, this framework is a high-level and initial
version addressing some of the volume and velocity chal-
lenges. The implementation details around the use of tools
and the data ingestion pipelines are not made clear. Moreo-
ver, the results obtained from the analytics have not been
used to autonomously control the smart city or smart grids
based on the received data.

In [51], the authors presented a Big Data architecture
for the Smart Supply Chains fields. Data were ingested into
Hadoop and Machine Learning models were used to address
data-related challenges in Supply Chains. However, this
paper lacks details in explaining the significance of the work,
and how it can be applied in real-life scenarios. It presents
only the architecture of an IoT pipeline which is missing the
near real-time visualizations as presented in our work. And
more importantly lacks the framework we have developed
with five elements: 1—People, 2—Process, 3—Technology,
4—Information, and 5—Facility, and how these elements are
related to the underlying Big Data Management architecture
and to Smart Buildings.

In [52], the authors presented the use of machine intel-
ligence and data analytics algorithms on data acquired from
the sensing networks’ integral to smart city applications.
However, the paper lacks the conceptual framework and
lacks the implementation details of the proposed architec-
ture. However, it presents a very high-level architecture
which lacks any conceptual framework and implementation
details of how the authors performed their experiments and
evaluation. It is a very generic paper listing some of the
machine learning and data analytics challenges in smart
cities.

In [53], the authors explore the IoT issues in smart build-
ings and compare two network protocols used for IoT devices
to improve energy efficiency in smart buildings. However,
this paper lacks a focus on the big data management and
analytics of IoT data in smart buildings. It also lacks the dis-
cussion on the control and management of various controls
and facilities within the smart building.

In [54], the authors present a technique for the facial rec-
ognition in smart cities. This paper lacks a reference archi-
tecture for smart buildings. Kuma et al. [55] discuss IoT
applications and challenges in various domains. It lacks big
data analytics focus and highlights that it is a key challenge.
Kuma et al. [56] present IoT-based fog computing model. It
lacks a focus on big data management and analytics for IoT
data. It also does not focus on smart building domain.

In [57], the authors focus on the service-oriented archi-
tecture and the networking layer. It does not focus on big
data management and analytics, near-real time visualization,
and the autonomous control of smart buildings. In [58], the
authors focus primarily on the networking layer, identifying
which protocols are available and a comparison of those
communication protocols. It identifies the future challenges,

SN Computer Science (2022) 3:493 Page 5 of 31 493

SN Computer Science

but it does not mention the data management and analytics in
smart buildings. It is a survey paper which does not specify
any framework or reference architecture like the IBDMA.
It also lacks discussion about the real-time analytics and
control of the smart buildings. In [59], the authors suggest a
big data mining IoT system. It does not focus on autonomous
control of the facilities in general and smart building con-
trols in particular. It mentions about the generic data gather-
ing systems, but details about the implementation and evalu-
ation of the suggested system are missing. In [60], Gubbi
et al. present the architectural elements in IoT paradigm, but
lack a focus on (1) data management and analytics, (2) near
real-time analysis, (3) near real-time visualization, and (4)
near real-time control of facilities within smart building. It
also lacks the integration of the architecture with a meta-
model which the IBDMA framework provides.

In [24], the authors present a high-level IoT architecture.
It does not mention any details about big data management
and analytics, near-real time visualization, and the autono-
mous control of smart buildings. In [61], the authors present
high-level IoT architecture and challenges faced in the IoT
domain. It lacks autonomous control of the facilities in gen-
eral and smart building controls in particular. It is a survey
paper which does not specify any framework or reference
architecture like the IBDMA. It also lacks discussion about
the real-time analytics and control of the smart buildings.
In [21], the IBDMA framework’s second component, i.e.,
the metamodel is presented. The metamodel presents the
key elements and the relationship between these elements
that are required in the big data management and analytics
ecosystem for smart buildings. However, the paper does not
present the reference architecture, and hence, this research
focuses on the second component of the framework, i.e., the
reference architecture.

Table 1 summarizes the research gaps and the corre-
sponding studies where we observed the research gap.

Based on the literature review and Table 1, it is quite
evident the literatures lacks focus on real-time big data man-
agement and analytics, integration of a reference architec-
ture and metamodel, and real-life validation scenarios in the
smart buildings context; and hence, there is an urgent need
for a vendor independent practical research-based integrated
comprehensive framework for IoT real-time big data man-
agement and analytics. In this research, we presented the
IBDMA framework, which is an attempt to fill the research

gap. This sets a foundation for more studies in this important
area of research.

Research Method

This research adopts the DSR approach [62]. DSR pro-
poses a practical research approach supporting the creation
of artifacts to solve real-life problems [63]. DSR encom-
passes the formation of new information through the design
of novel artifacts. It involves the performance analysis of
such artifacts to understand and improves the behavioral of
aspects of IS (Information Systems) [64]. These artifacts
may include algorithms, methodologies of system design,
and human/computer interfaces. DSR researchers can be
found in various domains, e.g., Engineering, Information
Systems and Computer Sciences. In [65], DSR activities are
described for the IS discipline using a conceptual frame-
work. We adopt the guidelines from [63, 65] in conduct-
ing this research, as shown in Table 2. The rationale behind
using the DSR approach for this research is that; first, the
research involves incremental development of the reference
architecture; second, the DSR focuses on solving real-world
problems, and for this research, we address the challenge
of big data management and analytics by developing a ref-
erence architecture; thirdly, DSR tries to address the gap
between theory and practice, and for this research, we are
trying to address the gap in the areas of BDMA for IoT-
enabled smart buildings.

For assessing the quality of our DSR, we follow the
checklist questionnaire also from [31]. The checklist is pre-
sented in Table 3.

We adopt the ‘Three Cycle’ DSR framework from [66]
for conducting our research. The Relevance Cycle links the
contextual environment with the DSR activities. The Rigor
Cycle bridges the DSR activities with the knowledge base
of scientific theories and methods, that inform the research.
The centrally located Design Cycle continuously iterates
between the development and evaluation elements of the
DSR. The three cycles mentioned above must exist in DSR
project and must be distinguished clearly from each other.
Following these research cycle and the checklist questions
of Table 3, we first identified the research question. Then, we
defined the artifacts and the design processes that would be
used to build those artifacts. The literature was reviewed to

Table 1 Research gap

Research gap Studies where gap was observed

Lack of real-time big data management and analytics in smart buildings context [24, 36, 41–44, 46–61]
Lack of integration between reference architecture and metamodel in smart building context [24, 45, 60]
Lack of real-life validation of reference architecture in smart building context [52, 59]

 SN Computer Science (2022) 3:493493 Page 6 of 31

SN Computer Science

determine if the knowledge base provides support to the arti-
fact design. The artifacts were then designed, and an evalu-
ation method was proposed to test the designed artifacts.
Finally, the research is communicated in the form of publica-
tion. Figure 2 represents these three research cycles and each
checklist question from Table 3 mapped onto appropriate
phases of the three-cycle DSR approach.

There are five main steps involved in the DSR, as shown
in Fig. 3. In the first step, the problem is identified by finding
the research gap. We performed literature review to identify

the research gap, and eventually helped us identify the prob-
lem. We then proposed the design of an IBDMA framework
which consists of a metamodel and a reference architecture
to bridge the research gap. The IBDMA framework compo-
nents (metamodel and reference architecture) were designed
and developed to address big data management and analytics
challenges in smart buildings by providing a holistic view
of all the elements required in a smart building ecosystem.
The IBDMA framework components were then evaluated,
and then, the evaluation results are presented as outcomes of

Table 2 DSR guidelines [35]

Guideline Description

1 Design as an artifact DSR must produce a reasonable artifact in the form of a concept, a model, a process, or an instantiation
2 Problem relevance The goal of DSR is the design and analysis of technical solutions to address vital real-life issues
3 Design evaluation The usefulness and effectiveness of a design artifact must be tested comprehensively using well-defined evalua-

tion standards
4 Research contributions DSR must contribute effectively and clearly in the areas of the design artifact, design methodologies, and design

foundations
5 Research rigor DSR depend on the application of rigorous methods in both the development and evaluation of the design

artifact
6 Design as a search process Finding an effective design artifact relies on utilizing available resources to achieve the objectives while satisfy-

ing rules in the problem environment
7 Communication of research The findings of the DSR must be communicated effectively to both technical and non-technical audiences

Table 3 Checklist to assess
design science research [65]

Questions

1 What are the design requirements or research question?
2 What is the artifact and how is it denoted?
3 How to build the artifact from the design processes?
4 How the knowledge base lays the foundation of generating the artifacts?
5 During the design cycles, what evaluations are done? Are there any design

improvements that are identified during each design cycle?
6 How is the newly generated artifact introduced and is evaluated in the field?

What parameters are used to evaluate the usefulness of the artifact over existing
artifacts?

7 What new information is added to the existing literature and knowledge base?
8 Does the newly generated information satisfy the research question satisfactorily?

Fig. 2 Checklist questions
mapped to three DSR cycles
[65]

SN Computer Science (2022) 3:493 Page 7 of 31 493

SN Computer Science

the research. As mentioned earlier, the metamodel develop-
ment and evaluation has been published in [21]. This paper
focuses on the IBDMA reference architecture, which is the
second component of the IBDMA framework. Following
the DSR approach, we went through five iterations of the
IBDMA reference architecture before coming up with a final
reference architecture as previous iterations did not satisfy
the evaluation criteria. The details about all five iterations,
the development, and evaluation processes are explained in
the next sections.

The framework we have developed has been evaluated
against the EC (evaluation criteria), as shown in Fig. 4. In
[67], the authors present artifact evaluation criteria in design

science research. The 13 evaluation criteria we shortlisted
(out of 20 from [67]) have been adopted from [67] based
on their relevance to our research, as some of the evalua-
tion criteria were not applicable to our research or were not
possible to be evaluated concretely (such as style, homo-
morphism, level of detail, etc.). For this research, we chose
13 ECs, i.e., EC1, EC2, EC3, …., EC13 for evaluating the
IBDMA framework and reference architecture. The details
of these ECs are presented in Fig. 4. These ECs were evalu-
ated against our research objectives of:

– Ability to have both batch and streaming analytics.
– Ability to do near real-time analytics and visualization.
– Ability to autonomously control facilities within smart

building.
– Ability to provide building management and relevant

authorities the alerts in near real time.
– Ability to scale up for any building size and for other

smart environments.
– Ability to provide a comprehensive framework compris-

ing of a reference architecture and metamodel.
– Ability to validate the proposed design using real-life

scenarios.

The evaluation results are presented in “Framework Eval-
uation Results” in Table 11.

Table 4 provides details of the research objectives, and
how they are lined to the research gaps and research aims.

The IBDMA Framework

The proposed IBDMA framework, as shown in Fig. 5, con-
sists of two components. This paper specifically covers the
reference architecture component. The metamodel part has
been developed earlier and is presented in [21]. The refer-
ence architecture is encircled in Fig. 5 to demonstrate that
this is the focus of the research. With the reference archi-
tecture, IBDMA framework will assist professionals and
researchers working in the big data and IoT domains in the
smart building context. Figure 5 represents that the context
of the research is limited to smart building, and the IBDMA
framework (applicable with the smart building) has two
components: (1) Metamodel and (2) Reference architecture.
The metamodel and the reference architecture are linked to
each other through the contextual elements.

The IBDMA framework as adopted from [68–71] has five
main contextual elements, as shown in Fig. 6.

The IBDMA framework will help building developers,
and IoT and big data professionals to have a holistic view of
which elements do they need to deploy in the smart building
while designing the smart building or converting an exist-
ing building into smart building. The metamodel helps in
identifying those elements and the relationship between

Fig. 3 DSR steps

Ar�fact evalua�on

Goal

Environment

Structure

Ac�vity

Evolu�on

Efficacy (EC1)

Validity (EC2)

Generality (EC3)

Consistency with people (EC4)

Consistency with technology (EC5)

Completeness (EC6)

Simplicity (EC7)

Clarity (EC8)

Accuracy (EC9)

Performance (EC10)

Efficiency (EC11)

Robustness (EC12)

Scalability (EC13)

Fig. 4 ECs for IBDMA evaluation (adopted from [67])

 SN Computer Science (2022) 3:493493 Page 8 of 31

SN Computer Science

those elements, while the reference architecture provides
the ability to link those elements to the physical design of
the end-to-end data management, analysis, and process flow.

The reference architecture (which is the focus of this
paper) is novel in that it provides a scalable architecture

which focuses on big data management and analytics for
smart buildings and can be extended to other smart envi-
ronments (smart homes, smart grids, and smart cities). The
reference architecture also provides an ability to mitigate the
risks and improve residents’ experience in smart building by
providing the ability to autonomously control various facili-
ties within the building.

The integration of metamodel and reference architecture
is important to provide a holistic view of the IoT-enabled

Table 4 Research objectives linked to research gaps and research aims

Research objectives Research gaps Research aims

Ability to have both batch and streaming
analytics

Lack of real-time big data management and
analytics in smart buildings context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Ability to do near real-time analytics and
visualization

Lack of real-time big data management and
analytics in smart buildings context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Ability to autonomously control facilities
within smart building

Lack of real-time big data management and
analytics in smart buildings context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Ability to provide building management and
relevant authorities the alerts in near-real
time

Lack of real-time big data management and
analytics in smart buildings context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Ability to scale up for any building size and
for other smart environments

Lack of real-time big data management and
analytics in smart buildings context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Ability to provide a comprehensive frame-
work comprising of a reference architecture
and metamodel

Lack of integration between reference archi-
tecture and metamodel in smart building
context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

How to holistically identify all the elements and
the relationship between these elements to
effectively manage and analyze, i.e., data in
IoT-enabled smart buildings

Ability to validate the proposed design using
real-life scenarios

Lack of real-life validation of reference archi-
tecture in smart building context

How to effectively manage and analyze data
generated by IoT sensors deployed inside
smart buildings

Fig. 5 IBDMA framework and scope of the paper

Technology

People

Informa�on

Facility

Process

Fig. 6 IBDMA framework—contextual elements

SN Computer Science (2022) 3:493 Page 9 of 31 493

SN Computer Science

smart building ecosystem for big data management and ana-
lytics of IoT data. The integration of the metamodel and
the reference architecture not only assists in developing new
smart buildings but also provides the ability to transform an
existing building into a smart building by enabling big data
management and analytics for IoT data. In the initial phase
of transformation, the metamodel will be used by the build-
ing developers, architects, and administrators along with
IoT experts to identify which elements do they need and to
understand the relationship between these elements. Once
this has been achieved, the big data developers and archi-
tects can utilize the reference architecture to implement the
big data management and analytics processes in the smart
building ecosystem.

As shown in Fig. 6, ‘People’ element is the core IBDMA
element. This includes the ‘residents’, ‘policy-makers’, as
well as the developers of the smart buildings. The ‘policy-
makers’ make policies which enable and govern the smart
buildings ecosystems. The ‘developers’ develop the smart
buildings adhering to policies compiled by the ‘policy-mak-
ers’. The ‘residents’ may include students, staff, home own-
ers, shop owners, etc. These are beneficiaries of the smart
building ecosystem. The ‘developers’ and ‘policy-makers’
make policies which help identify ‘Process’ element of
IBDMA. The ‘Process’ element encompasses all processes
which are required for the effective management and analy-
sis of the smart building data. The ‘technology’ element
consists of the technology stack that supports the processes
as defined by the ‘process’ element of the framework. The
overlap of these elements results in useful information which
makes up the fourth element of IBDMA known as ‘informa-
tion’. The information is then autonomously used to control
various facilities within smart buildings, which fall under the
‘facility’ element of IBDMA. The ‘process’ element links
all other elements, as shown in Fig. 6. The way these dif-
ferent elements are linked and interacted is explained in the
upcoming sub-sections.

People

‘People’ element which is the first element IBDMA. It
includes policy-makers, developers, and building residents,
as shown in Fig. 7. These can be broken down into two
groups, one consisting of policy-makers and developers,
and another consisting of building residents.

Policy‑Makers and Developers

The policy-makers define policies which govern the poli-
cies of the building. These policies define the key require-
ments from the stakeholders and help propose the optimum
solution to meet the expectations of the stakeholders and
residents.

The developers include the building developers who
develop the smart building in line with the policies and
regulations. Their role is to ensure the safety, security, and
comfort of the residents of the building.

Residents

The residents of the building may include students, staff, ten-
ants, homeowners, shopkeeper, etc. depending on the nature
of the smart building. They are the users or beneficiaries of
the smart building ecosystem.

IBDMA proposes that based on the policies defined by
the policy-makers, the “processes” are defined which are
required for the effective execution of these policies. These
“processes” help identify “technology” stack required for the
effective execution of these “processes”. This includes tools
and software applications required for the execution of the
“processes”, e.g., Microsoft Power BI [72] and Tableau [73]
for data visualization, Apache Flume [74] for data ingestion,
Apache Spark [75] for data analysis, etc. The applicability
and usability of each of these tools and the process elements
is explained in detail in the next sections.

Policy-Makers and Developers (people) clearly articulate
the requirements for the smart building. Processes are then
identified and executed. This includes ingesting IoT data,
storing it, and analyzing it. Hence, ‘process’ element is the
second element that follows when applying the framework.

Process

“Process” is the second element of IBDMA framework. It
performs a key role in defining the strategy for the imple-
mentation of IBDMA framework. Processes outline the
operations and how various operations should be integrated
for a concise and effective solution. Hence, to have an effec-
tive solution, processes defined in IBDMA should be trans-
parent and streamlined.

The goals, requirements, and policies defined by the
“people” serve as input to defining the processes and form
the basis for choosing and implementing the “processes”.
Since this research focuses on ingesting, managing, and
analyzing data generated by IoT sensors deployed in smart
buildings, the IBDMA framework proposes the following

Fig. 7 The first element of IBDMA—people

 SN Computer Science (2022) 3:493493 Page 10 of 31

SN Computer Science

processes to by implemented which include: monitoring
of the smart building environment, sourcing of IoT data,
ingestion of data, storing of data at a centralized location,
analyzing near-real time, decision-making, visualizing of
near real time, and autonomously controlling various smart
facilities in the smart building in near real time as presented
in Fig. 8. The processes depicted in Fig. 8 represent the data
flow and hence are sequential (monitoring, data sourcing,
ingestion, analysis, decision-making, and actuation). There
may be several facilities that could be controlled autono-
mously within the smart building using IBDMA framework.
However, to have a realistic scope for this research, we con-
sider five facilities which include managing oxygen levels,
luminosity levels, garbage, parking, and fire.

Monitoring In all IoT systems, the first process in imple-
menting a big data management and analytics infrastructure
is the ‘monitoring’ of the environment in which the IoT sen-
sors are deployed, which for this research is the smart build-
ing. There are various types of IoT sensors available these
days that could be deployed to monitor various parameters
and attributes of the smart buildings depending on the use
cases and requirements of the residents and stakeholders.

Data Sourcing On monitoring the environment in which
they are deployed, these sensors generate data. The output
from these sensors could be binary or continuous depending
on the nature and type of the IoT sensors.

Data Ingestion The data generated from these sensors are
then ingested into a centralized repository using an inges-
tion pipeline.

Data Storage The centralized repository is where the data
are stored for cleaning, manipulation, and further process-
ing. Once the data are at a centralized location, it is made
ready for the analysis.

Data Analytics The nature of data analysis is dependent on
a particular use case or the requirement of the stakehold-

ers. The analysis process is the process which enables us to
obtain useful insights about the smart buildings.

Decision‑Making The output of the analysis helps us in
decision-making to manage and control the smart building.
The decision-making process involves making decisions on
whether to activate or deactivate controls in the smart build-
ing based on the data received from the IoT sensors. Deci-
sion-making processes for this research include: (1) whether
an HVAC system needs to be turned ON or OFF based on
the oxygen levels in the building, (2) deciding whether the
lights need be to turned ON or OFF based on the luminos-
ity levels in the building, (3) deciding whether a fire extin-
guisher and a fire alarm need to be triggered if the smoke
levels are above a given threshold, (4) deciding whether the
garbage bins need to be emptied or not if the bins are filled
above a threshold level, and (5) whether the parking lot is
full and the incoming vehicles can be directed to another
parking lot.

Actuation/Control Based on the data analytics results and
the decision-making process, the smart building controls are
actuated and controlled in an autonomous manner, so the
building can be managed in an effective manner.

All these different processes from monitoring to inges-
tion, from storage to analysis, and from decision-making
to autonomous control of the smart building fall under the
‘Process’ element of the IBDMA which performs the core
function of integrating all the elements of the IBDMA, as
shown in Fig. 6. A more detailed implementation is pre-
sented in “Reference Architecture Implementation” where
it will become more evident on how different elements of
the IBDMA interact with each other to have an effective
solution.

Once the processes are defined following the require-
ments compiled by the ‘people’, the implementation of the
‘process’ requires ‘technology’ stack. Choosing the right
tools and software packages is imperative to the success
of an effective solution. Within IBDMA, these tools, tech-
nologies, and software packages fall under the ‘technology’

Fig. 8 The second element of
IBDMA—process

SN Computer Science (2022) 3:493 Page 11 of 31 493

SN Computer Science

element of IBDMA, and hence, it is the third element to be
discussed.

Technology

‘Technology’ is the third element of the framework. It has a
pivotal role in the effective implementation of big data man-
agement infrastructure and strategy. Hence, choosing the
right technology stack is imperative. Technology includes
tools and software packages deployed for effectively design-
ing and deploying of IBDMA, as shown in Fig. 9. In general,
the technology stack would include data ingestion tool, data
storage tool, data visualization tool, and near real-time data
analysis tool. However, for implementation and evaluation
purposes, details about specific tools are provided that were
used.

IoT Devices/IoT Application For this research, in the initial
two iterations, we use physical IoT devices for the data ana-
lytics and building control. The details of these iterations
and the use of physical IoT devices are presented in IBDMA
reference architecture development process section (see
iteration 1 and iteration 2 details). However, to have a scal-
able reference architecture which can take into account hun-
dreds or thousands of sensors, we implement a virtual IoT
sensor-based application in Python programming language
and used PyCharm (a Python IDE) for the development.
This application simulated data generation from IoT sensors
deployed in smart buildings. Iterations 3, 4, and 5 present
details of the IoT application.

HDFS The data generated by these sensors are stored in
HDFS (Hadoop Distributed File System) which is a high-
performance distributed file system and provides reliable
data access to Hadoop clusters.

Apache Flume The data generated by the sensors are
ingested into HDFS using data pipelines that are devel-
oped using Apache Flume which is a reliable data collec-
tion, aggregation, and transportation tool to ingest huge
amounts of batched and streaming data, including logs, IoT
data, financial data, etc., and move it to a centralized loca-
tion. Flume is a fault tolerant tool which provides failover

and recovery mechanisms and uses a simple extensible data
model that allows for online analytical application.

Apache Spark Apache spark is used to analyze the data gen-
erated by the IoT sensors. Apache spark is an in-memory
data processing engine which provides fast data analysis and
processing capabilities for various streaming and batched
applications. Its architecture is based on Resilient Distrib-
uted Dataset (RDD) which provides fault tolerant way of
maintaining multiset of data items distributed over a cluster
of machines. For this research, we use Python to write Spark
code for data analysis. The analysis helps in decision-mak-
ing and in turn enables the system to control and maintain
the smart building and its various facilities autonomously.
The aim of this autonomous is to make the smart building
comfortable and secure building residents.

Power BI For visualization, Microsoft Power BI is used.
Power BI comes with a built-in connector to connect to
HDFS and enables to write code in R and Python to per-
form predictive analytics within its environment. Hence, it
was a natural choice for the data visualization tool for this
research. However, like any other tool, Power BI has some
limitations, and it is hard to build a near-real-time dashboard
in Power BI.

Elasticsearch and Kibana Since for this research, we are
working with IoT sensors data, we needed to have the capa-
bility to present the IoT sensors data in near-real-time dash-
board to have a greater insight into monitoring the smart
building environment, so any alarms can be addressed in
near-real time. To have this near-real-time visualization
capability, we choose Elasticsearch [76] and Kibana [77].
Elasticsearch is an open-source tool built on Apache Lucene
[78] and provides distributed search and analytics engine.
New incoming data are stored as documents in Elasticsearch
using either API or an ingestion tool such as Logstash [79].
This receives and stores incoming data and augments a
searchable reference to the data (document) in the cluster’s
index. These documents can then be searched and retrieved
using the Elasticsearch API. For the data visualization, Elas-
ticsearch provides an open-source data visualization plug-in
called Kibana which provides near-real time visualization

Fig. 9 The third element of
IBDMA—technology Technology

Toolchain

Spark Power BIFlume RHDFS

 SN Computer Science (2022) 3:493493 Page 12 of 31

SN Computer Science

capabilities in accessing documents on an Elasticsearch
cluster.

Information

‘Information’, which is the fourth element of IBDMA, origi-
nates from the overlap of the first three elements shown in
Fig. 6. As discussed in the previous sections, ‘people’ out-
line the policies and requirements for the smart buildings.
Based on these policies, processes are identified to define
the ‘technology’ stack for their implementation. Informa-
tion is generated from the data generated by the IoT sensors
when the processes and the technology infrastructure are
deployed successfully. There could be various forms and
types of information that could be obtained from the data
generated by the IoT sensors which enable us to control
various parameters and aspects of the smart buildings for
improved residents’ comfort and safety.

Information for Building Control

There could be numerous facilities within the smart build-
ing that could be autonomously controlled as a result of
the information that is generated which may include: smart
lighting based on the luminosity levels, smart parking based
on the parking sensors, elevators’ operation, HVAC Sys-
tem, vending machine operations, and many others. How-
ever, for this research and to have a limited scope, IBDMA
proposed the autonomous monitoring and control of five
different facilities including: HVAC system, luminosity
levels, parking management, garbage management, and fire
incident management. One example scenario could be if the
luminosity sensor indicates that the luminosity levels in a
particular location of the building are below a certain level,
IBDMA proposes that this ‘information’ will help improve

the luminosity levels of the room by turning the lights on
in that location.

Generally, IBDMA proposes that the ‘information’ ele-
ment also includes the visualization of the IoT data done
in Power BI and Kibana, the analysis results generated by
Apache Spark and the results for autonomous control of
facilities within the smart building (prescriptive analytics),
as shown in Fig. 10. The Spark program analyzes the data
received from the IoT sensors, and based on the received
data, it decides what action to take. For instance, the smoke
detection sensor, sends a value indicating there is a fire in
a certain location of the smart building, the Spark program
will trigger the fire alarm and the fire extinguisher in that
location. More details and specific use cases are provided
in the next sections. As mentioned earlier, the “processes”
integrate all the elements of the framework, hence the “pro-
cesses” integrating “information” element to the rest of the
elements of IBDMA include ‘data visualization, ‘data analy-
sis and ‘decision making’ as represented in Fig. 17.

Facility

‘Facility’ is the final element of the framework. It includes
numerous facilities of the smart building that are aimed to
enhance residents’ comfort, safety, and security. The ‘infor-
mation’ generated from the IoT data enables the autonomous
control of these ‘facilities’, as shown in Fig. 6. The facili-
ties may include but are not limited to elevator maintenance
and management, HVAC system, and garbage management.
For this research, we consider the following five facilities:
HVAC system, smart parking, smart garbage management,
smart lighting, and smart fire management, as presented in
Fig. 11. The target facilities that need to be controlled in the
smart building should be identified and considered before
defining the policies and requirements of the smart building

Fig. 10 The fourth element of
IBDMA—Information

Fig. 11 The fifth element of
IBDMA—facility Facility

Smoke
Monitoring

HVAC
system

Smart
Lighting

Smart
Parking

Smart Garbage
Management

SN Computer Science (2022) 3:493 Page 13 of 31 493

SN Computer Science

ecosystem. This reduces the possibility of encountering any
major roadblocks in deploying the infrastructure for big data
management of IoT-enabled smart buildings.

As discussed earlier, the ‘process’ element of IBDMA
integrates all the elements of IBDMA, the process that inte-
grates and control the facilities of the smart building based
on the information generated by the system is called ‘action’.
The action process enables the autonomous control and man-
agement of the five facilities that fall under the scope of this
research as represented in Fig. 17.

Reference Architecture Development
Process

The development of the IBDMA reference architecture has
been done in five iterations to ultimately reach to its current
final state (iteration 5). In this section, we also provide the
details of how the contextual-level elements of IBDMA are
related to the physical level elements; this will be demon-
strated in iteration 4 and 5 in the sub-sections below.

The five iterations for the development of the Big Data
and Analytics architecture, for our use case, are discussed
in detail below:

• Iteration 1 (Physical)
• Iteration 2 (Physical, real time)
• Iteration 3 (Virtual, smart building)
• Iteration 4 (Virtual, smart building, improved)
• Iteration 5 (Virtual, smart building, improved and final-

ized)

Iteration 1: In the first iteration, we extracted UTS
(University of Technology Sydney) sensor data from UTS
building 11 and imported that into RStudio by utilizing
web-scrapping techniques. The data are available publicly
on UTS’s web portal. These data were graphed and plotted
for various sensors and predictions were made about the sen-
sor data using ARIMA (AutoRegressive Integrated Moving

Average) [23] model. The implementation of graphs and
ARIMA model was done in RStudio using R. This exer-
cise was done to become familiar with the sensor types and
the data available. It also helped us in familiarizing our-
selves with tools and techniques that we could use for future
research at that time. Figure 12 demonstrates the compo-
nents and the steps that were taken in Iteration 1.

Iteration 2: In the second iteration, we prototyped a physi-
cal system consisting of an Arduino microprocessor board,
physical sensors, and a linear actuator. The data were sent
to HDFS (Hadoop Distributed File System) for storage from
where it was imported to RStudio for predictive analytics.
The problem with Iteration 1 was that the data available were
only batched data. Our focus was on both batched as well as
real-time data, so we decided to prototype a system with a
couple of physical sensors connected to a microprocessor.
The sensors considered for this iteration were temperature
and smoke detection sensors. The sensors produced real-
time data after regular intervals. A linear actuator was also
connected to the system to simulate the behavior of a fire
extinguisher scenario. The sensors generated the data in real
time, the data were stored in HDFS, and from HDFS, we
could perform predictive analytics as well as visualize it in
Tableau [80, 81]. The data generated from the sensors were
also analyzed in real time as it was generated. If the values
generated by temperature sensor and the smoke detection
sensor went above the threshold (simulating a fire scenario),
the linear actuator got activated for 5 s, simulating that the
fire extinguisher is activated to rectify the fire. The linear
actuator would go off if the sensors read a value below the
threshold. The steps and processes followed in Iteration 2
are shown in Fig. 13.

Iteration 3: In the third iteration, we focused on scaling
up the architecture developed in the second iteration. For this
iteration, we considered a smart building application sce-
nario by introducing big data pipelining, storage and analysis
tools. It was not possible to have access to a large number of
physical IoT sensors and actuators in a lab environment, and
thus, we decided to virtualize the IoT sensors by simulating

Fig. 12 Iteration 1—initial
architecture design (Analysis of
UTS Building 11 sensor data)

UTS Building
Sensor Data Web scrapping Import in

RStudio
Predic�ve Analy�cs

Fig. 13 Iteration 2—real-time
data analysis and actuation
using physical devices

Arduino +
Temperature sensor+

Smoke detec�on
sensor

HDFS

Tableau
Visualization

Analyse the
data

Actuate
controls

Predictive Analytics

 SN Computer Science (2022) 3:493493 Page 14 of 31

SN Computer Science

the sensor data. Similarly, we simulated (virtualized) the
actions taken based on the data received from the virtual
sensors. This work has been published in [22]. The architec-
ture developed for this iteration is shown in Fig. 14.

Data Sourcing

For this research, we virtualized the data generation from
fifteen virtual sensors using a Python application. These 15
sensors include five (IoT) oxygen sensors, five smoke detec-
tion sensors, and five luminosity sensors deployed in a smart
building. These 15 sensors are assumed to be deployed at
five different locations (e.g., different rooms or floors) of the
smart building in such a way that each location has a set of
these three different sensor types, i.e., oxygen, smoke, and
luminosity.

Data Ingestion and Storage

The data generated by these IoT sensors (source) are
ingested into HDFS (sink) using an Apache Flume over a
TCP (Transmission Control Protocol) port. For the imple-
mentation, we made use of the Cloudera [82, 83] Big Data
platform (Virtual Machine for the Apache Hadoop environ-
ment) for extraction, ingesting, data pipelining, storing, and
analyzing the data. For ingesting data into HDFS, Flume
was the choice of tool because of Flume’s robust integration
with HDFS as compared to Kafka [84]. MQTT is a widely
used protocol for IoT data; however, MQTT is primarily
used as Machine-to-Machine protocol for transferring data
between two physical systems. Since our goal is to move
data to HDFS, we use Flume for data ingestion. There are
a number of other tools available including Apache Beam,
Apache Flink, Apache Storm, Apache NiFi, and Apache
Ignite that can be used for streaming data analysis and event
processing. However, for the purpose of this research and

proof of concept prototype, we used Flume to ingest data
and Apache Spark for its analysis.

Data Analysis and Building Control

For the analysis of data to enable decision-making, we
developed an Apache Spark algorithm using PySpark [20].
The algorithm reads and analyzes the data from three dif-
ferent types of IoT sensors stored in HDFS in near-real
time to enable effective decision-making. For instance, if
the oxygen sensors generate data indicating a low oxygen
concentration in a given location of the smart building, the
Spark algorithm would in turn enable the HVAC System to
turn ON to ensure that comfortable oxygen concentration
levels are attained in that location. The system represents
this by outputting “HVAC X turned ON” on the Cloudera
terminal, where X represents the room or floor in a smart
building. For the oxygen concentration threshold levels to
turn the HVAC system ON or OFF, we defined the oxygen
concentration threshold value of 14. On the other hand, if the
oxygen concentration levels are above the threshold levels,
the deployed infrastructure would represent this as “Oxy-
gen level at X ok” on the Cloudera terminal, indicating that
the oxygen concentration level in a particular location is
above the comfortable threshold levels and that no further
action is required to enable or disable the HVAC System.
If the HVAC System was turned ON by the system due to
low oxygen concentration levels and the oxygen concentra-
tion levels have become normal, the system would turn the
HVAC system and will represent this by outputting “Fire
alarm X turned ON” where X represents the room or level
where smoke is detected.

Similarly, if during the data analytics process, a particular
luminosity sensor detects lower than the minimum lumi-
nosity levels, the system will turn the lights ON that are
located at that location. This is represented by the system by

Fig. 14 Iteration 3—real-time data management, analysis and actuation for smart building

SN Computer Science (2022) 3:493 Page 15 of 31 493

SN Computer Science

displaying “Lights at X turned ON” at the Cloudera terminal
where X represents the particular room or level of the smart
building.

Iteration 4: In iteration 4, we improved and extended the
architecture to conceptualize the elements in terms of peo-
ple, process, technology, information, and facility to link the
contextual elements (Fig. 6) with the physical layer compo-
nents (Fig. 14). The architecture for iteration 4 is shown in
Fig. 15. The architecture developed in iteration 3 was scaled
up and tested for a smart building application scenario by
considering 1000 virtual IoT sensors.

Data Sourcing and Ingestion

For this iteration, we considered 200 of each of the five dif-
ferent types of IoT sensors which include oxygen sensors,
smoke detection sensors, light sensors, parking spaces sen-
sors, and garbage detection sensors.

Data Storage

Ten Flume agents were configured with IoT sensor data as
the source and HDFS as the sink. The data were then visual-
ized in Tableau.

Data Analysis and Building Control

Apache Spark was used to analyze the data in near-real time
as it gets stored in HDFS. Based on the algorithm developed
in PySpark, various messages were printed on the terminal
screen simulating the feedback actuation behavior.

For oxygen sensors, if the value sent by a sensor is below
a threshold, the PySpark algorithm prints out a message on
the terminal stating the HVAC system associated with that

particular oxygen sensor has been turned ON. For smoke
detection sensors, if the value generated by a sensor exceeds
a threshold (i.e., occurrence of a fire), the PySpark algo-
rithm detects that and outputs a message on the terminal
stating that the Fire Alarm connected at the location of that
particular smoke detection sensor is turned ON. In case of
luminosity sensors, if a particular luminosity sensor gener-
ates an output value below a threshold indicating it is dark,
the PySpark algorithm outputs a message on the terminal
stating that the lights associated with that particular lumi-
nosity sensor are turned ON. For the parking space sensors,
if the value generated by a particular parking space sensor
is a 1, the PySpark algorithm displays a message on the
terminal stating that a car has been parked at that particular
parking spot. For the garbage detection sensors, if the value
generated by a particular sensor is above the threshold, the
PySpark algorithm displays a message on the terminal stat-
ing that the garbage bin associated with the particular sensor
which generated an above threshold value is full.

Iteration 5: The earlier iterations had limitations in
terms of real-time data visualization and performing pre-
dictive analytics. In the fifth and final iteration, we worked
on improving the architecture to enable real-time visuali-
zations by introducing Elasticsearch [76, 85] and Kibana
[77, 86]. We also introduced MS (Microsoft) Power BI [87,
87] for the visualization of data stored in HDFS. The main
reason for introducing MS Power BI was because Power BI
integrates well with R scripts. This integration provides the
ability to do data analysis and predictive analytics within
Power BI in an interactive way.

Moreover, we chose a hybrid model considering both
batched as well as streaming data sources.

The high-level and generic reference architecture is pre-
sented in Fig. 16.

Fig. 15 Iteration 4—updated real-time data analysis and actuation architecture

 SN Computer Science (2022) 3:493493 Page 16 of 31

SN Computer Science

However, for implementation and validation purpose, we
chose specific tools, and the resultant architecture is pre-
sented in Fig. 17.

Batched Data

We chose open data as a batched data source for our archi-
tecture. These open data are scrapped using R (can also be
done using Python) and ingested into HDFS.

Streaming Data

For streaming data sources, the virtual IoT sensors send the
data to two sinks: (1) HDFS and (2) Elasticsearch. As the
data from the IoT sensors land into HDFS, it is analyzed
in near-real time by the Apache Spark algorithm to enable
decision-making for the effective management and control of
the five facilities earlier described within the smart building.

These data once stored in HDFS are visualized in batches
using Power BI.

Predictive and Near‑Real Analytics:

For predictive analytics, we used R scripts to develop an
ARIMA model within Power BI. For the second source, i.e.,
Elasticsearch, the data are indexed as it lands into Elastic-
search. Elasticsearch provides a data visualization plug-in
called Kibana which enables the near-real-time visualization
of IoT data.

The updated architecture is presented in Fig. 17. It
shows how the five contextual elements shown in Fig. 6 are
related to the physical elements of the framework. People
are at the top-most level, which represent the stakeholders
of the smart building environment such as building devel-
opers, building management, IT professionals, and resi-
dents of the building. Process element defines data-driven

Fig. 16 Iteration 5—high-level
architecture

Fig. 17 Iteration 5—updated and improved near real-time data analysis and actuation architecture

SN Computer Science (2022) 3:493 Page 17 of 31 493

SN Computer Science

processes, which are relevant to the smart building. This
includes monitoring via sensors, data sourcing, ingest-
ing, storing, analysis, visualization, decision-making,
and finally actuation. The Technology element includes
the technology stack including Flume, R, Elasticsearch,
HDFS, Kibana, Spark, and Power BI. The information
includes the near-real data visualizations in Kibana, Power
BI dashboards for the IoT data visualization and the output
of the decision-making process using Spark. Finally, the
Facility element represents the facilities in the smart build-
ing, including HVAC systems, fire alarms, lights, parking
spaces, and garbage spaces.

Table 5 summarizes the details of various big data
tools used in the development of the IBDMA. It lists the
processes in which each of these tools are used and the
purpose of each of these tools in the IBDMA reference
architecture implementation.

Reference Architecture Implementation

The proposed design of the IBDMA architecture is imple-
mented for a smart building application scenario follow-
ing the architecture as presented in Fig. 17. As shown in
Fig. 17, we considered both streaming as well as static data.
For streaming data, we created 1000 virtual IoT sensors.
This is presented in the section marked Streaming Data
in Fig. 17. These virtual sensors are implemented using a
software application developed in Python. This application
generates data from each sensor at regular intervals. Each
sensor generated the sensor id and the value it measures
from the building environment. The sensor id represents the
location of the sensor in the building. The IoT application
has a defined range of values for each type of sensor, and
hence, the values are generated randomly between the ranges
of values by the IoT application. This is done to keep the
validation scenario simpler and to ensure that all possible
scenarios are considered during the implementation and
validation phases.

For the IoT sensors, we consider five different types of
sensors. Out of the 1000 sensors, we simulate 200 oxygen
sensors, 200 smoke detectors, 200 luminosity sensors, 200
parking spaces sensors, and 200 garbage detection sen-
sors. It is assumed that these 1000 sensors are deployed
at 200 distinct locations (including rooms or levels) of
the smart building. We implement the example scenario
using Cloudera VM (Virtual Machine) Hadoop distribu-
tion and used Python to create virtual sensor application
to generate IoT data. The VM provides most the big data
tools (Apache Flume, Apache Spark, HDFS, and Hive)
required for the implementation of the IBDMA architec-
ture. The other software packages (Pycharm IDE, Elastic-
search, and Kibana) were installed on the VM. The virtual
sensor application forwarded the IoT data to two destina-
tions. First destination is Elasticsearch where the data are
indexed and stored, so Kibana can be used to visualize it.
The second destination is multiple Flume agents ingesting
data into HDFS. We configure ten Flume agents with each
Flume agent serving 100 sensors. On ingesting the data
into HDFS, it is analyzed in near-real time using PySpark
(Python Apache Spark API) [20].

For the static data, we consider UTS smart building open
data available publicly and ingested that in HDFS using R.
This is presented in the Static Data section of Fig. 17.

The “process” element IBDMA framework integrates all
other elements. The implementation of IBDMA architecture
relies actually on the implementation of the processes, as
shown in Fig. 6 and Fig. 17. Hence, we further the pro-
cesses as shown in Fig. 8 to explain the implementation of
the IBDMA architecture.

Monitoring

As shown in Fig. 17, ‘Monitoring’ is the first process in the
IoT-enabled smart building. It includes the monitoring of
various parameters of the IoT-enabled smart building eco-
system. For static data, we choose oxygen and gas detec-
tion sensors which monitor the oxygen levels and gas levels,
respectively, within UTS Building 11.

Table 5 Elements in the IBDMA architecture and their purpose

Sr. No Element Process Purpose

1 Flume Ingestion For ingesting streaming IoT data in Elasticsearch and HDFS via TCP/IP
2 Elasticsearch Storage Indexing streaming data to be visualized in Kibana
3 Kibana Visualization Visualizing streaming IoT data in near real-time
4 HDFS Storage Storing both batched and streaming data
5 Spark Analysis/decision-making Analyzing IoT data in near real-time to enable decision-making and

actuation of smart facility
6 Power BI Visualization Visualizing batched and forecasted data
7 R Ingestion/decision-making Web scrapping and predictive analytics

 SN Computer Science (2022) 3:493493 Page 18 of 31

SN Computer Science

For streaming data, the monitoring process is accom-
plished by the virtual IoT sensors developed using a python
application which simulate the monitoring of oxygen levels,
temperature levels (fire detection), luminosity levels, gar-
bage levels, and parking spaces in the smart building.

Data Sourcing

Sourcing is the second process in the IBDMA implementa-
tion as presented in Fig. 17. As discussed above, we con-
sider both static as well as near real-time streaming data
as our data sources. For static data source, open data from
UTS (University of Technology Sydney) smart building
sensors were extracted from web using R and were stored
in HDFS. These data comprised of historical data for two
types of sensors for one of the levels/floors of UTS build-
ing 11. These sensor types include oxygen sensors and gas
detection sensors.

As a streaming data source, real-time streaming data
for 1000 virtual IoT smart building sensors were generated
using Python virtual sensor software application. These data
were ingested and stored in HDFS and we deployed big data
tools to achieve the data ingestion task as explained in detail
in the next section. Each virtual sensor had a unique sensor
id by which it is identified. We identified the first 200 virtual
sensors with sensor ids between 1 and 200 in our research
as oxygen sensors, sensors with sensor ids between 201 and
400 (both inclusive) as smoke detection sensors, the sensors
with sensor ids between 401 and 600 (both inclusive) as

parking spaces sensors, the sensors with sensor ids between
601 and 800 (both inclusive) as luminosity sensors, and the
sensors with sensor ids between 801 and 1000 (both inclu-
sive) as garbage detection sensors. The Python virtual sensor
application for data generation is developed using Pycharm
IDE community edition [88, 89]. Figure 18 shows the logic
flow diagram of the data generated from IoT sensors.

Figure 26 (Appendix) shows the screenshot of data gen-
eration part of the Python virtual sensor application.

As seen from Fig. 26 (Appendix), first, the required mod-
ules are imported including the socket and Elasticsearch
modules. The TCP IP and the port are defined. The sensor
class is defined, and the objects of the class including sensor
id, sensor value, and the sensor location (room or floor of
the smart building) are initialized. Then, in a while loop, the
sensor id and sensor location are incremented by 1. The sen-
sor value is generated randomly between a specified range
of values for each different type of sensor. For example,
Fig. 26 (Appendix) is the screenshot for the oxygen sen-
sors, in which random values between 8 and 21 are generated
which denotes the percentage oxygen concentration in air.

For this research, we have set up the data generation, such
that at one time, 10 sensors will simultaneously be generat-
ing the data which are served by ten Flume agents running
in parallel. The data are generated with 1 s interval, so the
time interval between two consecutive data readings from a
single sensor is 100 s which is found out to be a reasonable
latency to report the smart building environmental condi-
tions. This time interval can be reduced by slightly modify-
ing the Python application.

Fig. 18 Data sourcing—logic flow diagram

SN Computer Science (2022) 3:493 Page 19 of 31 493

SN Computer Science

The virtual sensor application pushes data to two desti-
nations: (1) to Elasticsearch to enable near real-time data
visualization using Kibana (2) to Flume agents to enable
near-real-time ingestion of data into HDFS. To store and
index data in Elasticsearch, it provides Python API and we
used this API to store and index data into Elasticsearch. In
the virtual sensor application, an Elasticsearch document is
defined which includes sensor id, sensor value, sensor loca-
tion and the time of generation of data. This document is
then sent to Elasticsearch index named “iot” as can be seen
in Fig.26 (Appendix).

Figure 26 (Appendix) shows the data generation code for
first 100 oxygen sensors. For the case of oxygen sensors,
the values are randomly between 8 and 21, where these val-
ues denote the percentage concentration of oxygen in air. If
the values are above 14, oxygen levels are considered nor-
mal. For smoke detection sensors, same range of values are

generated randomly with values above 14 denoting a pos-
sible fire scenario. For the case of parking space sensors,
each sensor outputs a high (1) or a low (0) value denoting
a particular parking space is full or empty. For luminosity
sensors, random values between the range of 8 and 21 are
generated with values above 14 are considered normal and
values below 14 representing luminosity levels below nor-
mal. For the case of garbage detection sensors, the sensors
generate a high (1) or low (0) to represent if a garbage bin
is full or empty.

In the last part of the code, the sensor id is reset once the
sensor id reaches from 1 to 100. Therefore, the value for
sensor 1 is generated and the cycle repeats. Finally, the TCP
connection and the connection to Elasticsearch cluster are
closed when the program is exited.

Fig. 19 Data visualization in Cloudera using Hive tables

Fig. 20 Data visualization in
tableau (min and max values
displayed top and bottom)

 SN Computer Science (2022) 3:493493 Page 20 of 31

SN Computer Science

Data Ingestion

Data ingestion is the third process, as shown in Fig. 17. For
static data, the UTS building data once extracted in the .csv
format are ingested and stored in HDFS.

For streaming data, we deploy Apache Flume to ingest
IoT sensor data into HDFS. Ten Apache Flume agents are
configured and used for data ingestion. These agents are
configured to listen to ten different TCP ports as specified
in the Virtual sensor application to reduce time latency,
increase throughput of the data and to prevent loss of data.
The configuration of these Apache Flume agents is done,
such that the virtual IoT data generated from the Python
virtual sensor application acts as the source and the HDFS
acts as the sink to store the data into HDFS as soon as it
arrives from the virtual sensors.

Figure 27 (Appendix) shows the contents of one of the
Flume configurations files out of ten configuration files.
The configuration file has three key elements: Source,
Sink, and Channel. The ‘roll-over interval’ for the Flume
agent was unchanged to the default 30 s interval setting
which means that each Flume agent will roll over files
after every 30 s, finish writing to it and create a new file in
HDFS every 30 s as. tmp file. This .tmp file gets converted
to a permanent file after the 30 s have elapsed. Specifying
0 for roll-over interval will disable rolling and will case
all events to be written to a single file.

As seen from Fig. 27 (Appendix), the Flume agent
name defined in the configuration file is ‘a1’. There are
three key components in a flume configuration file, i.e.,
source, sink, and channel. ‘Source’ binds to the incoming
source of data, while ‘Sink’ binds to the destination where
the data need to be stored. ‘Channel’ as the name suggests
provides a channel to transfer data from source to the sink.
The ‘Source’ defined in the configuration file is a netcat
source which binds to TCP IP 127.0.0.1 on port 5005. The
sink is an HDFS sink with a path hdfs://quickstart.cloud-
era:8020/user/cloudera/virtualsensor1. The channel is a
memory channel with a capacity and transaction capac-
ity of 1000 and 100, respectively. Capacity defines the
maximum number of events stored in the channel. Trans-
action capacity defines the maximum number of events
the channel will take from a source or give to a sink per
transaction.

For batched data, data ingestion process involves web-
scrapping the open data using R or Python. We used R to
download the data to our local disk and manually uploaded
the extracted data into HDFS.

Data Storage (Big Data Management)

Data storage is the fourth process, as shown in Fig. 17. For
static data, we downloaded the IoT sensor data from UTS
building 11 by performing ‘web-scrapping’ using R. The
downloaded data were first to our local disk as one single

Fig. 22 Forecasting sensor data
in power BI using R

Fig. 21 Temperature sensor
data visualization in MS Power
BI

SN Computer Science (2022) 3:493 Page 21 of 31 493

SN Computer Science

text file and then manually uploaded to HDFS at a speci-
fied folder after performing some data manipulation on the
downloaded data. The static data included data from tem-
perature, luminosity, humidity, and oxygen sensors. The data
comprised of sensor ids, the value generated by the sensors,
and the timestamp separated by commas.

For the streaming data, we store data both in Elasticsearch
as well as HDFS. The reason for storing data into Elastic-
search is to enable real-time visualization using Kibana.
HDFS is used as the other storage destination to enable near
real-time analysis using Apache Spark.

Elasticsearch is a scalable distributed search engine
which provides powerful APIs to enable extremely fast
data search for data discovery applications on an enter-
prise grade. Data are stored in Elasticsearch in the form
of indexed documents using APIs where Elasticsearch
adds a searchable reference to the document in the clus-
ter’s index. The documents can then be retrieved using the
Elasticsearch API. To manage Elasticsearch and the data
stored in Elasticsearch, we used Kopf plug-in based on
JavaScript + AngularJS + jQuery + Twitter bootstrap which
provides an easy-to-use web-based administration tool to
manage Elasticsearch cluster.

The IoT sensor application sends the data to Elasticsearch
where it is indexed and stored in the form of documents.
Kibana is then used to visualize the data in near-real time.
The IoT sensor application also sends data to HDFS via ten
Flume agents as discussed in previous section. Flume has a
default naming convention for storing files into the HDFS
which includes the timestamp. Since the roll-over time for
all the ten Apache Flume agents was 30 s, as discussed in
the previous section, after every 30 s, a new .tmp file was

Fig. 23 Near real-time sensor
data visualization in Kibana

Fig. 24 Smart building control messages

 SN Computer Science (2022) 3:493493 Page 22 of 31

SN Computer Science

created in the specified folder within HDFS for each Flume
agent, and after those next 30 s have elapsed, this .tmp file
gets converted automatically to a permanent file on HDFS.

The data generated from the Python IoT sensor applica-
tion contain sensor id, sensor value, and the location of the
sensor. Both the storage destinations, i.e., Elasticsearch and
HDFS, store the data generated by the Python IoT sensor
application.

Data Analysis (Big Data Analytics)

Data analysis is the fifth process in the IBDMA architec-
ture as presented in Fig. 17. To analyze the IoT sensor data
in near real time, we used PySpark—Spark Python API
(Application Programming Interface) for this research. For
the streaming data, we develop an algorithm within PySpark
which monitors the incoming data in near-real time as it is
ingested into HDFS. Depending upon data values generated
by the virtual sensors, the algorithm detects whether there
is a need to activate any controls within the smart building
or not. If, for instance, a particular smoke detection sensor
sends out a value that is too high indicating a possible fire
scenario, the PySpark algorithm detects it and outputs a text
message that the fire alarm located in the vicinity of the sen-
sors has been activated. In case of batched data, the PySpark
algorithm reads the whole file and outputs a detailed mes-
sage on the terminal for each sensor indicating whether there
was a problem detected for any of the sensors or whether all
the values received were within range. This helps to identify
the problems within the system and to improve the comfort-
ability and safety of the residents. The PySpark code for data
analysis is provided in the github repository [90].

Data Visualization

Data visualization is the sixth process in the IBDMA archi-
tecture as presented in Fig. 17. The data analysis process
is followed by data visualization process. For real-time
streaming data, we considered both near real time as well as
batched visualizations. For near real-time visualization, we
use Kibana which integrates with Elasticsearch and produces
near real-time visualizations of the received data. These
visualizations help in identifying the problems in the smart
building in near real time without going through chunky data
sets or running algorithms on the data. For batched visuali-
zation, we concatenated multiple files stored in HDFS gener-
ated as a result of the data storage process into a single file
to make the visualization process easier. We adopted various
tools to do the batched visualizations. First, we chose the
Cloudera built-in visualization tool by importing the data in
Hive table. Hue was used to create Hive tables was within
Cloudera and the data stored in HDFS were imported into
the table. The visualization done in Hue is shown in Fig. 19.

The limitation of doing visualization in Hive within Cloud-
era is that we cannot visualize more than 1000 rows of data.

Second tool we adopted for data visualization is Tableau.
Tableau has a connector which allows it to get connected
to the HDFS data. Figure 20 shows snapshots of the data
visualization done in Tableau. As compared to Hive data
visualization, the visualization in Tableau is much more flex-
ible as you can customize the results in a better way to create
more useful visualizations. Figure 20 shows the minimum
and maximum values generated by a particular sensor in a
top–bottom view with minimum values on the top in red and
maximum values on the bottom in blue.

The third tool we adopted for batched data visualization
was MS Power BI. We found MS Power BI to be the best
tool for our research as it has an easy-to-use interface, it
integrates well with HDFS, and we could write R program-
ming scripts within MS Power BI. The advantage of using R
scripts within Power BI was that we could develop and run
predictive models within Power BI. The visualization done
in Power BI for open batched data for a temperature sensor
for the last 13 months is presented in Fig. 21.

The data from the sensor were generated after every
7 min. We developed an R script to forecast the next 1000
values of the temperature sensor which corresponds to
approximately the next 5 days. We chose an ARIMA model
to do the predication. The forecast results are presented in
Fig. 22.

The discussion on the selection of the appropriate model,
its fine tuning, and evaluation are beyond the scope of this
research. However, the code we used to generate a simple
Arima model and to forecast the next 1000 values for the
temperature sensor is presented in Fig. 28 (Appendix).
Because temperature sensor values depend on the seasonal
factors, i.e., quarter of the year, month, or days of a week,
we have set seasonality is equal to ‘true’ in our ARIMA
model. The modeling can be extended to identify and predict
various parameters of the smart building, but we keep this
discussion beyond the scope of this paper.

Power BI is a great visualization tool when it comes to
visualizing extracted or static data. However, to visualize
near real-time IoT streaming data, Power BI and lot of tools
available in the market fall short. That is why, we chose
Elasticsearch and Kibana to visualize streaming data in near-
real time.

Once data are indexed in Elasticsearch as explained in
Sect. 6.4, Kibana is an open-source data visualization tool
and is used to develop near real-time visualizations and
dashboards for the documents indexed into Elasticsearch
cluster. Figure 23 shows the near real-time data visualiza-
tion in Kibana for one particular IoT sensor; it shows the
minimum and maximum values received from that particular
IoT sensor.

SN Computer Science (2022) 3:493 Page 23 of 31 493

SN Computer Science

Fig. 25 Flowchart of actuation process

Decision‑Making

Decision-Making is the seventh process in the IBDMA archi-
tecture, as shown in Fig. 17. The ‘decision making’ process
includes understanding and evaluating results from the ‘Data
Analysis’ and ‘data visualization’ processes. It involves ana-
lyzing and visualizing predictive analytics results obtained by
integrating R predictive modeling scripts with the visualiza-
tion of the virtual IoT sensor data done in MS PowerBI. The
decision-making process also involves analyzing the results
of the PySpark algorithm. The decision-making process helps
the smart building stake holders in making better data-driven
decisions to improve the comfortability, safety, security, effi-
ciency, and safety of the smart building.

Action: Smart Building Control

Action is the last process in the IBDMA architecture, as
shown in Fig. 17. Once a decision is made based on the data
analysis and data visualization results, the smart building
facilities are controlled autonomously by the IBDMA. This
is accomplished by triggering the appropriate controls of
the facilities deployed in the smart building as a result of the
data produced by the corresponding IoT sensor. To simulate
this behavior, the system displays the results in the form of
textual output displayed on the Cloudera terminal.

The oxygen concentration is controlled and maintained
by analyzing the data generated from the Oxygen sensors
deployed in the smart building. As soon as the data from the
oxygen sensor are ingested into HDFS, the Apache Spark
algorithm analyzes these incoming data, and if the value
received by a sensor is below 14 (which reflects the oxygen
concentration level), the Spark algorithm considers it a value
below the appropriate threshold and triggers the correspond-
ing HVAC ON. For the purpose of our research, we simu-
late this by displaying “HVAC system X turned ON” on the
Cloudera terminal, where X represents a particular location
in the building. Now, when the HVAC system stays ON for
some time, the Oxygen concentration levels in that particular
location will start going up and soon, the levels will be in
the acceptable range. When this happens, the system turns
the HVAC system OFF. For the purpose of this research,
we simulate this behavior by displaying “HVAC system
X turned OFF”. On the other hand, if another oxygen sen-
sor deployed at another location within the smart building
already is reading acceptable oxygen concentration levels,
the proposed IBDMA reference architecture does not take
any triggering actions. In this case, the PySpark algorithm
outputs “Oxygen level at X OKAY”, depicting that oxygen
levels detected by sensor id X are okay.

To maintain a safe and productive environment for the resi-
dents, we need to ensure that the smoke detection sensors are

installed to monitor any smoke or fire hazards. The smoke
detection IoT sensors continuously monitor the environment
for a fire hazard and in case of a fire send a value above a pre-
defined threshold value indicating a fire in the smart building.
When this happens, the proposed architecture triggers the cor-
responding fire alarm location in the same location as the sen-
sor where fire was detected. For the purpose of our research,
the Spark algorithm outputs “Fire alarm X turned ON” on
the Cloudera terminal simulating the behavior of turning a
fire alarm ON where X represents the location or room of the
smart building where the sensor detected smoke or fire. On
the other hand, in normal situations where there is no fire or
smoke detected, the IBDMA architecture will not produce
alerts and will keep performing normally by outputting “No
fire at X” on the Cloudera terminal. The system will do this
for all the locations of the smart building.

 SN Computer Science (2022) 3:493493 Page 24 of 31

SN Computer Science

To monitor and effectively maintain the parking spaces of
the smart building, parking sensors are deployed in the smart
building. When a parking space is filled, the IBDMA archi-
tecture displayed “Parking X is occupied” where X repre-
sents the parking spot which has been occupied by a vehicle.
When the vehicle leaves the parking spot, the architecture
prints out the text saying, “Parking X is empty”. These data
can be collected and analyzed to make a decision on how to
improve the parking areas for the residents.

The luminosity sensors deployed in the smart build-
ing monitor the luminosity levels in numerous locations
of the smart building. The data generated by these sen-
sors once ingested into HDFS are analyzed by the Spark
algorithm, and if the value sent by the sensor is below a
threshold luminosity level, the proposed architecture will
turn the lights in that location ON. For the purpose of
our research, we simulate this by outputting “Lights at X
turned ON” on the Cloudera terminal where X represents
the sensor id or location of the smart building where low
luminosity levels were detected. On the other hand, if the
luminosity levels in a particular room are already within
the acceptable range, the proposed architecture displays
“Luminosity level at X OKAY”, illustrating that luminos-
ity levels at that particular location are okay, and hence, no
action is required. However, in cases where the lights need
to be turned OFF at a particular location, the proposed
architecture is capable of handling this and simulates this
be displaying “Lights at X turned OFF” on the Cloudera
terminal.

To effectively and efficiently manage the garbage in the
building, garbage detection sensors are deployed in the smart

building which monitor the garbage bin levels of the bins
placed in the garbage areas of the smart building. When a
garbage bin becomes full, the proposed architecture gener-
ates a warning by displaying, “Garbage at X is Full” where
X is the location of the garbage detection sensor where it
detected a garbage bin is full. For all the garbage bins which
have space for more garbage, the proposed architecture con-
tinuously monitors the garbage levels and prints out “Gar-
bage at X has space” for all the bins in the building. This
enables more effective and efficient management of the gar-
bage within the smart building. Further decisions about the
installation of more garbage bins and the garbage collection
times can also be made by looking at the trend of the data
generated by garbage detection sensors.

Figure 24 demonstrates the outputs displayed by the
reference architecture on the Cloudera terminal as a result
of the analysis if incoming data are from the IoT sensors.
The actuation process is presented in a simplified flow
chart as presented in Fig. 25.

Framework Evaluation Results

IBDMA framework and reference architecture was evalu-
ated by testing five test cases against the 13 ECs presented
in Fig. 4 of “Research Method”. Streaming data from vir-
tual sensor application were generated and the Cloudera
big data platform was set up as explained in the previ-
ous section. The details of the test cases are mentioned
below in Tables 6, 7, 8, 9 and 10.

Table 6 Test case 01—detection of oxygen levels

Test case 01 Detection of low oxygen level and autonomously activating HVAC system

Context Oxygen levels fall below the human comfort levels at a specified location in the building
Problem Low oxygen levels in the smart building may get unnoticed by the smart building management that could result in

the discomfort of the residents and could potentially prove fatal
Solution Oxygen level falls down and is detected by the IBDMA reference architecture. The management is notified, and the

HVAC is autonomously activated within two minutes
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying

the HVAC turned ON when the value of the sensor fell below the threshold
Description Oxygen levels in the smart building fall, the oxygen sensor senses that the levels of oxygen at a particular location

have fallen below the threshold levels and sends the data to HDFS via Flume. The system detects the low oxygen
levels, activates the associated HVAC system installed at that particular location and notifies the Smart Building
Management within two minutes. The system autonomously turns the HVAC system off when the oxygen levels are
in the acceptable range

Consequences/improved
performance metrics

The residents enjoy comfortable environment. The smart building management are notified within two minutes if the
levels fall down below the threshold levels and the HVAC system is turned ON or OFF based on the oxygen level

‘As-as’ vs ‘to-be’ solution Literature is scarce on the integrated topic of near real-time alerts and visualizations for building management.
Moreover, the ability to trigger the HVAC system autonomously within required time (e.g., two minutes) has not
been discussed. The proposed reference architecture addresses both the above-mentioned challenges

SN Computer Science (2022) 3:493 Page 25 of 31 493

SN Computer Science

Table 7 Test case 02—detection of fire

Test case 02 Detection of fire and alerting local community

Context A fire erupts at a specified location in the building
Problem Fire erupts in the smart building and may get unnoticed by the smart building management for a longer period poten-

tially resulting in the loss of infrastructure, investment and lives
Solution Fire erupts and is detected by the IBDMA reference architecture. The management including the Fire Brigade is noti-

fied within two minutes of the Fire eruption and a Fire Alarm at that location is turned ON and the fire extinguisher
located in that area is triggered

Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying
the Fire Alarm turned ON when the value of the sensor went above the threshold

Description Fire erupts in a smart building; the IoT smoke detector sensor senses fire and sends the data to HDFS via Flume. The
system detects fire, activates the associated fire alarm installed at that particular location alerting the local commu-
nity and notifies the smart building management including the relevant fire brigade team within two minutes. The
fire brigade team then acts on the notification by eradicating fire at the location

Consequences/improved
performance metrics

The local community is alerted by activating the fire alarm so that they can move to safe areas. The fire brigade and
building management are notified within two minutes so that they can respond to the fire to minimize loss of infra-
structure, investment and precious lives

‘As-is’ vs ‘to-be’ solution Literature is scarce on the topic of near real-time alerts and visualizations for building management. Moreover, the
ability to trigger the fire extinguisher autonomously (e.g., within two minutes) has not been discussed before. The
proposed reference architecture addresses both the above-mentioned challenges

Table 8 Test case 03—detection of luminosity

Test case 03 Detection of low luminosity level and autonomously activating smart lights

Context Luminosity levels fall below the human luminous comfort levels at a specified location in the smart building
Problem Low luminous levels in the smart building may get unnoticed by the smart building management that could not only

result in the discomfort of the residents but could also prove to be a safety hazard for the residents
Solution Luminosity level falls and is detected by the IBDMA architecture. The management is notified, and the smart lights

are autonomously activated within two minutes
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying

the Lights turned ON when the value of the luminosity sensor fell below the threshold
Description The luminosity sensor detects that the luminosity levels at a specified location have fallen below the threshold

levels and sends the data to HDFS via Flume. The system detects the low luminous levels, activates the associated
smart lights installed at that location and notifies the smart building management within two minutes. The system
autonomously turns the smart lights off when the luminosity levels are in the acceptable range

Consequences/improved
performance metrics

The residents enjoy comfortable luminous levels. The smart building management are notified within two minutes if
the levels fall below the threshold levels

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the
ability to control lights autonomously has not been covered. The proposed reference architecture addresses both the
above-mentioned challenges

 SN Computer Science (2022) 3:493493 Page 26 of 31

SN Computer Science

The five test cases discussed above were evaluated against
the 13 ECs presented in Fig. 4 and the results of the evalua-
tion are presented in Table 11.

Conclusions and Future Work

This paper presented the IBDMA framework and its refer-
ence architecture, which was developed and evaluated for a
smart building example scenario. The framework has five
key integrated components: (1) People, (2) Process, (3)
Technology, (4) Information, and (5) Facility. The reference
architecture was evaluated using five iterations for the smart

building scenario. The final iteration was implemented with
a total of 1000 sensor involving 200 virtual oxygen sensors,
200 virtual smoke/hazardous gas detectors, 200 luminos-
ity sensors, 200 parking sensors, and 200 garbage detec-
tion sensors. The evaluation was performed following the
DSR approach [65] using the five different use cases against
thirteen evaluation criteria taken from the literature. The
results of the evaluation indicate how a systematic frame-
work like IBDMA can assist for managing and analyzing
the near real-time big data streams for smart buildings. It
also demonstrates that and how various elements of a smart
building including IoT sensors and control systems can be
autonomously monitored and controlled in near-real time
using the proposed IBDMA framework. Thus, the proposed

Table 9 Test case 04—detection of parking space usage

Test case 04 Detect if parking lot becomes full and alert the residents

Context A parking space gets filled with car in the smart building
Problem Parking space in the smart building becomes full and may get unnoticed by the residents for a longer period resulting

in a lot of inconvenience for the residents
Solution Parking space becomes full and is detected by the IBDMA architecture. The smart building residents are notified

within two minutes of the parking space becoming full and are notified to move to alternate parking areas
Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying

the Parking space is occupied when the value of the sensor was ‘1’
Description Parking lot becomes full in the smart building the IoT parking lot sensor senses it and sends the data to HDFS via

Flume. The system alerts the local community and notifies the smart building management within two minutes
Consequences/improved

performance metrics
The residents are alerted so that they can move to alternative parking spaces or areas. The building management is

notified within two minutes so that they can respond to the growing needs of the residents by planning out more
parking lots in the areas

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the
ability to address parking lots autonomously is also something new discussed in this paper. The proposed reference
architecture addresses both the above-mentioned challenges

Table 10 Test case 05—detection of garbage

Test case 05 Detect if garbage bin becomes full and alert the residents

Context A garbage bin becomes full in the smart building
Problem Garbage bin in the smart building becomes full and may get unnoticed by the smart building garbage management

team for a longer period resulting in a lot of inconvenience for the residents
Solution Garbage bin becomes full and is detected by the IBDMA reference architecture. The smart building management is

notified within two minutes of the garbage bin becoming full and the residents are notified to wither wait or throw
their garbage at alternative locations

Test metrics Test duration: 60 min, number of records in data: 60, detection measure: The terminal displayed the message saying
the garbage bin is full when the value of the sensor was ‘1’

Description Garbage bin becomes full in the smart building; the IoT garbage detection sensor senses it and sends the data to
HDFS via Flume. The system alerts the local community and notifies the smart building management within two
minutes. The smart building garbage management team sends the garbage collector to empty the garbage at the
location

Consequences/improved
performance metrics

The residents are alerted so that they can throw the garbage to alternative garbage bins. The smart building garbage
management team is notified within two minutes so that they can respond to the growing needs of the residents by
sending garbage collectors more often to the specified location

‘As-is’ vs ‘to-be’ solution Literature is scarce on near real-time alerts and visualizations available to the building management. Moreover, the
ability to manage garbage autonomously is addressed in this paper as well. The proposed reference architecture
addresses both the above-mentioned challenges

SN Computer Science (2022) 3:493 Page 27 of 31 493

SN Computer Science

Table 11 Evaluation results for evaluating each test case against the
13 ECs

Test case Evaluation criteria Pass ✔/fail✘

01 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

02 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

03 EC1 ✔
EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

04 EC1 ✔

EC2 ✔

EC3 ✔

EC4 ✔

EC5 ✔

EC6 ✔

EC7 ✔

EC8 ✔

Table 11 (continued)

Test case Evaluation criteria Pass ✔/fail✘

EC9 ✔

EC10 ✔

EC11 ✔

EC12 ✔

EC13 ✔
05 EC1 ✔

EC2 ✔
EC3 ✔
EC4 ✔
EC5 ✔
EC6 ✔
EC7 ✔
EC8 ✔
EC9 ✔
EC10 ✔
EC11 ✔
EC12 ✔
EC13 ✔

IBDMA framework is unique in a way that it integrates
together end-to-end sensing, data management, autonomous
actuation capabilities with the ability to do near real-time
data management and analytics, which have not been dis-
cussed before, in particular in the smart building context.
This marks the important contribution of this research. The
framework is applicable to find a number of applications
and can be further extended to other smart environments,
such as smart homes, smart cities, and smart grids. As part
of this research, we considered all the sensors data values or
parameters independently. This research can be extended by
considering the inter-dependence of these sensors or param-
eters on each other to extract further insights from the data.

IBDMA Framework Evaluation Repository

The configuration files and the code for the IBDMA refer-
ence architecture are available at the GitHub repository [90].

Appendix

See Figs. 26, 27, 28.

 SN Computer Science (2022) 3:493493 Page 28 of 31

SN Computer Science

Fig. 26 Sensor data generation code

SN Computer Science (2022) 3:493 Page 29 of 31 493

SN Computer Science

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Declaration

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Cisco, the internet of things how the next evolution of the internet
is changing everything. 2011.Available from https:// www. cisco.
com/c/ dam/ en_ us/ about/ ac79/ docs/ innov/ IoT_ IBSG_ 0411F INAL.
pdf. Accessed 22 July 2022.

 2. Al-Sai ZA, Abdullah R, Husin MH. Big data impacts and chal-
lenges: a review. In 2019 IEEE Jordan International Joint Con-
ference on Electrical Engineering and Information Technology
(JEEIT). 2019.

 3. Varma C. Performance analysis and challenges of the map reduce
framework in big data analytics. In 2018 International Conference
on Current Trends towards Converging Technologies (ICCTCT).
2018.

 4. Jamil A, et al. Comprehensive review of challenges & technolo-
gies for big data analytics. In 2018 IEEE International Confer-
ence on Computer and Communication Engineering Technology
(CCET). 2018.

 5. Desai PV. A survey on big data applications and challenges.
In 2018 Second International Conference on Inventive

Fig. 27 Flume configuration file

Fig. 28 Forecasting sensor
values using ARIMA model

http://creativecommons.org/licenses/by/4.0/
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

 SN Computer Science (2022) 3:493493 Page 30 of 31

SN Computer Science

Communication and Computational Technologies (ICICCT).
2018.

 6. Caragliu A, Del Bo C, Nijkamp P. Smart cities in Europe. J Urban
Technol. 2011;18(2):65–82.

 7. Vasicek D, et al. IoT Smart Home Concept. In 2018 26th Telecom-
munications Forum (TELFOR). 2018.

 8. Arnone D, et al. Energy management of multi-carrier smart build-
ings for integrating local renewable energy systems. In 2016 IEEE
International Conference on Renewable Energy Research and
Applications (ICRERA). 2016.

 9. El-Shafie M, Fakeih L. The smart environment of commercial
buildings. In 2018 15th Learning and Technology Conference
(L&T). 2018.

 10. Chen S-Y, et al. Survey on smart grid technology. Power Syst
Technol. 2009;8:1–7.

 11. Adeli H, Jiang X. Intelligent infrastructure: neural networks,
wavelets, and chaos theory for intelligent transportation systems
and smart structures. Boca Raton: Crc Press; 2009.

 12. Demirkan H. A smart healthcare systems framework. It Profes-
sional. 2013;15(5):38–45.

 13. Saha HN, et al. Disaster management using Internet of Things. In
2017 8th Annual Industrial Automation and Electromechanical
Engineering Conference (IEMECON). 2017.

 14. Dineshreddy V, Gangadharan GR. Towards an “Internet of
Things” framework for financial services sector. In 2016 3rd Inter-
national Conference on Recent Advances in Information Technol-
ogy (RAIT). 2016.

 15. Dlamini NN, Johnston K. The use, benefits and challenges of
using the Internet of Things (IoT) in retail businesses: A litera-
ture review. In 2016 International Conference on Advances in
Computing and Communication Engineering (ICACCE). 2016.

 16. Chourabi H, et al. Understanding smart cities: an integrative
framework. In System Science (HICSS), 2012 45th Hawaii Inter-
national Conference on. IEEE. 2012.

 17. Zhang K, et al. Security and privacy in smart city applications:
challenges and solutions. IEEE Commun Mag. 2017;55(1):122–9.

 18. Nath NR, Narayanaswami P, Mohan GG. Intelligent query place-
ment strategy for progressive-real time analytics in big data. In
2016 10th International Conference on Intelligent Systems and
Control (ISCO). 2016.

 19. Ashamalla A, Beydoun G, Low G. Model driven approach for
real-time requirement analysis of multi-agent systems. Comput
Lang Syst Struct. 2017;50:127–39.

 20. Miller RB. Response time in man-computer conversational
transactions. In Proceedings of the December 9–11, 1968, fall
joint computer conference, part I. 1968.

 21. Bashir MR, et al. Big data management and analytics meta-
model for IoT-enabled smart buildings. IEEE Access.
2020;8:169740–58.

 22. Bashir MR, Gill AQ. Towards an IoT big data analytics frame-
work: smart buildings systems. In 2016 IEEE 18th International
Conference on High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE. 2016.

 23. Autoregressive integrated moving average. 2018. Available from:
https:// en. wikip edia. org/ wiki/ Autor egres sive_ integ rated_ moving_
avera ge. Accessed 2018 March 05.

 24. Patel K, et al. Internet of things-IOT: definition, characteristics,
architecture, enabling technologies, application & future chal-
lenges. In International journal of engineering sciencecomputing
2016.

 25. Antón-Haro C, Dohler M. 1 - Introduction to machine-to-
machine (M2M) communications. In: Machine-to-machine
(M2M) communications. Oxford: Woodhead Publishing; 2015.
p. 1–23.

 26. Ericsson. More than 50 billion connected devices. 2011. Avail-
able from https:// www. seman ticsc holar. org/ paper/ More- than-
50- billi on- conne cted- devic es/ c27a6 e0d36 e636b 4904a d78e2
13682 9602b 3f150# extra cted. Accessed 20 Aug 2020.

 27. Mocrii D, Chen Y, Musilek PJIOT. IoT-based smart homes: a
review of system architecture, software, communications, pri-
vacy and security. Internet of Things. 2018;1:81–98.

 28. Akkaya K, et al. IoT-based occupancy monitoring techniques for
energy-efficient smart buildings. In 2015 IEEE Wireless com-
munications and networking conference workshops (WCNCW).
IEEE. 2015.

 29. Keertikumar M, Shubham M, Banakar R. Evolution of IoT in
smart vehicles: an overview. In 2015 International Conference
on Green Computing and Internet of Things (ICGCIoT). IEEE.
2015.

 30. Sung WT, Lu CY. Smart warehouse management based on IoT
architecture. In 2018 International Symposium on Computer, Con-
sumer and Control (IS3C). IEEE. 2018.

 31. Stavropoulos TG, et al. IoT wearable sensors and devices in
elderly care: a literature review. Sensors. 2020;20(10):2826.

 32. Talavera JM, et al. Review of IoT applications in agro-
industrial and environmental fields. Comput Electron Agric.
2017;142:283–97.

 33. Rehman HU, Asif M, Ahmad M. Future applications and research
challenges of IOT. In 2017 International conference on informa-
tion and communication technologies (ICICT). IEEE. 2017.

 34. Uusitalo MA. global vision for the future wireless world from the
WWRF. IEEE Veh Technol Mag. 2006;1(2):4–8.

 35. Inamdar M, Roy S. Internet of things: architecture, security and
applications. Int J Adv Eng Manag. 2017;2:157.

 36. Joshi YA, et al. 3rd International Conference on Innovations in
Automation and Mechatronics Engineering 2016, ICIAME 2016
05–06 February, 2016 Customized IoT enabled wireless sensing
and monitoring platform for smart buildings. Procedia Technol-
ogy. 2016;23: 256–263.

 37. Bayerdörffer E, et al. Randomized, multicenter study: on-demand
versus continuous maintenance treatment with esomeprazole in
patients with non-erosive gastroesophageal reflux disease. BMC
Gastroenterol. 2016;16:48.

 38. Lin Z, Carley K. Proactive or reactive: an analysis of the effect of
agent style on organizational decision-making performance. Intell
Syst Account Financ Manag. 1993;2(4):271–87.

 39. Dykes B. Reporting vs. analysis: what’s the difference? 2010.
Available from https:// blog. adobe. com/ en/ publi sh/ 2010/ 10/ 19/
repor ting- vs- analy sis- whats- the- diffe rence. Accessed 15 Mar
2022.

 40. Duffy A, O'Donnel FJ. A design research approach. In Proceed-
ings of the AID’98 workshop on research methods. 1998. Lisbon,
Portugal.

 41. Shyam R, et al. Apache spark a big data analytics platform for
smart grid. Procedia Technol. 2015;21:171–8.

 42. Kolozali S, et al. A knowledge-based approach for real-time IoT
data stream annotation and processing. In Internet of Things
(iThings), 2014 IEEE International Conference on, and Green
Computing and Communications (GreenCom), IEEE and Cyber,
Physical and Social Computing(CPSCom), IEEE. 2014.

 43. Moreno MV, et al. Big data: the key to energy efficiency in smart
buildings. Soft Comput. 2016;20(5):1749–62.

 44. Ismail A. Utilizing big data analytics as a solution for smart cities.
In 2016 3rd MEC International Conference on Big Data and Smart
City (ICBDSC). 2016.

 45. Plageras AP, et al. Efficient IoT-based sensor BIG Data collection–
processing and analysis in smart buildings. Futur Gener Comput
Syst. 2018;82:349–57.

 46. Linder L, et al. Big building data—a big data platform for smart
buildings. Energy Procedia. 2017;122:589–94.

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://www.semanticscholar.org/paper/More-than-50-billion-connected-devices/c27a6e0d36e636b4904ad78e2136829602b3f150#extracted
https://www.semanticscholar.org/paper/More-than-50-billion-connected-devices/c27a6e0d36e636b4904ad78e2136829602b3f150#extracted
https://www.semanticscholar.org/paper/More-than-50-billion-connected-devices/c27a6e0d36e636b4904ad78e2136829602b3f150#extracted
https://blog.adobe.com/en/publish/2010/10/19/reporting-vs-analysis-whats-the-difference
https://blog.adobe.com/en/publish/2010/10/19/reporting-vs-analysis-whats-the-difference

SN Computer Science (2022) 3:493 Page 31 of 31 493

SN Computer Science

 47. Souza A, et al. Using big data and real-time analytics to support
smart city initiatives. IFAC-PapersOnLine. 2016;49(30):257–62.

 48. Rathore MM, Ahmad A, Paul A. IoT-based smart city develop-
ment using big data analytical approach. In 2016 IEEE Interna-
tional Conference on Automatica (ICA-ACCA). 2016.

 49. Ta-Shma P, et al. An ingestion and analytics architecture for
IoT applied to smart city use cases. IEEE Internet Things J.
2017;5(2):765–74.

 50. Strohbach M, et al. Towards a big data analytics framework for
iot and smart city applications. In: Xhafa F, et al., editors. Mod-
eling and processing for next-generation big-data technologies:
with applications and case studies. Cham: Springer International
Publishing; 2015. p. 257–82.

 51. Constante-Nicolalde F-V, Pérez-Medina J-L, Guerra-Terán P. A
proposed architecture for iot big data analysis in smart supply
chain fields. Cham: Springer International Publishing; 2020.

 52. Habibzadeh H, et al. Soft sensing in smart cities: handling 3Vs
using recommender systems, machine intelligence, and data ana-
lytics. IEEE Commun Mag. 2018;56(2):78–86.

 53. Kumar A, et al. Secure and energy-efficient smart building
architecture with emerging technology IoT. Comput Commun.
2021;176:207–17.

 54. Kumar M, et al. An efficient framework using visual recogni-
tion for IoT based smart city surveillance. Multimedia Tools and
Applications. 2021;80(20):31277–95.

 55. Kumar A, et al. Revolutionary strategies analysis and proposed
system for future infrastructure in internet of things. Sustainabil-
ity. 2022;14(1):71.

 56. Kumar A, et al. Energy-efficient fog computing in internet of
things based on routing protocol for low-power and Lossy Net-
work with Contiki. Int J Commun Syst. 2022;35(4):e5049.

 57. Li S, Xu LD, Zhao S. The internet of things: a survey. Inf Syst
Front. 2015;17(2):243–59.

 58. Al-Fuqaha A, et al. Internet of things: a survey on enabling tech-
nologies, protocols, and applications. IEEE Commun Surv Tutor.
2015;17(4):2347–76.

 59. Chen F, et al. Data mining for the internet of things: literature
review and challenges. International Journal of Distributed Sensor
Networks. 2015;11(8):431047.

 60. Gubbi J, et al. Internet of things (IoT): a vision, architectural
elements, and future directions. Futur Gener Comput Syst.
2013;29(7):1645–60.

 61. Marjani M, et al. Big IoT data analytics: architecture, opportuni-
ties, and open research challenges. IEEE Access. 2017;5:5247–61.

 62. Prat N, Comyn-Wattiau I, Akoka J. Artifact evaluation in informa-
tion systems design-science research—a holistic view. In Pacis
Proceedings. 23. 2014.

 63. Vaishnavi V, Kuechler B. Design science research in information
systems. January 20, 2004 November 15, 2015; Available from:
http:// www. desri st. org/ design- resea rch- in- infor mation- syste ms/.

 64. Checkland P, Holwell S. Information, systems, and information
systems. Chichester: John Wiley & Sons; 1998.

 65. Hevner A, Chatterjee S. Design science research in information
systems. In: Design research in information systems: theory and
practice. Boston: Springer; 2010. p. 9–22.

 66. Hevner AR. A three cycle view of design science research. Scand
J Inf Syst. 2007;19(2):4.

 67. Prat N, Comyn-Wattiau I, Akoka J. Artifact evaluation in informa-
tion systems design-science research-a holistic view. In PACIS.
2014.

 68. Gill AQ. Agile enterprise architecture modelling: evaluating the
applicability and integration of six modelling standards. Inf Softw
Technol. 2015;67:196–206.

 69. Gill AQ, Adaptive cloud enterprise architecture. World Scientific.
2015. Available from https:// www. world scien tific. com/ world scibo
oks/ 10. 1142/ 9363#t= about Book. Accessed 25 May 2021.

 70. Anwar MJ, Gill AQ. A review of the seven modelling approaches
for digital ecosystem architecture. In 2019 IEEE 21st Conference
on Business Informatics (CBI). 2019.

 71. Anwar M, Gill A, Beydoun G. Using adaptive enterprise archi-
tecture framework for defining the adaptable identity ecosystem
architecture. In Australasian Conference on Information Systems.
2019.

 72. Microsoft. Microsoft Power BI. 2020. Available from: https://
power bi. micro soft. com/. Accessed 2015.

 73. Tableau. Tableau. 2020. Available from: https:// www. table au.
com/. Accessed 2020 December 10.

 74. Apache flume. 2018. Available from: https:// flume. apache. org/.
Accessed 2018 August 10.

 75. Apache Spark. Available from: http:// spark. apache. org/. Accessed
2021 August 19.

 76. Elasticsearch. 2018. Available from: https:// www. elast ic. co/ produ
cts/ elast icsea rch. Accessed 2018 March 05.

 77. Kibana. 2018. Available from: https:// www. elast ic. co/ produ cts/
kibana. Accessed 2018 March 05.

 78. Apache Lucene. 2018. Available from: http:// lucene. apache. org/.
Accessed 2018 July 07.

 79. Logstash. 2018. Available from: https:// www. elast ic. co/ produ cts/
logst ash. Accessed 2018 August 10 .

 80. Ahmed F. An IoT-big data based machine learning technique for
forecasting water requirement in irrigation field. In International
conference on research and practical issues of enterprise informa-
tion systems. 2017. Springer.

 81. Tableau. 2018. Available from: https:// www. table au. com/.
Accessed 2018 March 05.

 82. Weng T, Agarwal Y. From buildings to smart buildings—sens-
ing and actuation to improve energy efficiency. IEEE Des Test
Comput. 2012;29(4):36–44.

 83. Cloudera. 2018 Available from: www. cloud era. com. Accessed
2018 March 05.

 84. 5 Most important difference between apache kafka vs flume. 2020.
Available from: https:// www. educba. com/ apache- kafka- vs- flume/.
Accessed 19 July 2021.

 85. Adeli H, Vishnubhotla PR. Parallel processing and parallel
machines. In: Parallel processing in computational mechanics.
Boca Raton p: CRC Press; 2020. p. 1–20.

 86. Agarwal Y, et al. Occupancy-driven energy management for smart
building automation. In Proceedings of the 2nd ACM workshop
on embedded sensing systems for energy-efficiency in building.
2010.

 87. Power BI. 2018. Available from: https:// power bi. micro soft. com/
en- us/. Accessed 2018 March 05.

 88. Apache Pig. Available from: https:// pig. apache. org/. Accessed
2020 December 21.

 89. Pycharm. 2018. Available from: https:// www. jetbr ains. com/ pycha
rm/. Accessed 05 Mar 2018 .

 90. Bashir R. smartBuildings. 2017. Available from: https:// github.
com/ c3212 218/ smart Build ings. Accessed 20 July 2021.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.desrist.org/design-research-in-information-systems/
https://www.worldscientific.com/worldscibooks/10.1142/9363#t=aboutBook
https://www.worldscientific.com/worldscibooks/10.1142/9363#t=aboutBook
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://www.tableau.com/
https://www.tableau.com/
https://flume.apache.org/
http://spark.apache.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://lucene.apache.org/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.tableau.com/
http://www.cloudera.com
https://www.educba.com/apache-kafka-vs-flume/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://pig.apache.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://github.com/c3212218/smartBuildings
https://github.com/c3212218/smartBuildings

	A Reference Architecture for IoT-Enabled Smart Buildings
	Abstract
	Introduction
	Research Background and Related Work
	Research Background
	Internet of Things
	Real-Time Big Data

	Related Work

	Research Method
	The IBDMA Framework
	People
	Policy-Makers and Developers
	Residents
	Process
	Monitoring
	Data Sourcing
	Data Ingestion
	Data Storage
	Data Analytics
	Decision-Making
	ActuationControl

	Technology
	IoT DevicesIoT Application
	HDFS
	Apache Flume
	Apache Spark
	Power BI
	Elasticsearch and Kibana

	Information
	Information for Building Control

	Facility

	Reference Architecture Development Process
	Data Sourcing
	Data Ingestion and Storage
	Data Analysis and Building Control
	Data Sourcing and Ingestion
	Data Storage
	Data Analysis and Building Control
	Batched Data
	Streaming Data
	Predictive and Near-Real Analytics:

	Reference Architecture Implementation
	Monitoring
	Data Sourcing
	Data Ingestion
	Data Storage (Big Data Management)
	Data Analysis (Big Data Analytics)
	Data Visualization
	Decision-Making
	Action: Smart Building Control
	Framework Evaluation Results

	Conclusions and Future Work
	IBDMA Framework Evaluation Repository
	References

