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Abstract We present a novel Bayesian/Maximum Entropy method to
detect and resolve the modal characteristics of size distributions from x-ray
diffraction line profiles. To our knowledge, none of the existing alternative
methods are capable of extracting this information from experimental data.

1. Introduction
The mass production of functional nanoparticles will be a key element in the

development of smart appliances and technologies [I], requiring both the ability to grow
particles in various shapes to serve as a basis for more complex structures [1-4], and
relatively fast experimental/analytical techniques for characterising microstructural properties
(e.g. shape, size distribution, and internal defect content).

Although recent advances in x-ray line profile analysis already provide the means for
obtaining microstructural information in an industrial environment [5-10], the development
of a NIST particle size Standard Reference Material (SRM 1979) will allow routine
assessment of analytical and experimental methods for characterising nanoparticles. The
SRM will consist of two materials, viz. cerium oxide (l0-40 nm) and zinc oxide (40-60 nm),
with spherical and cylindrical morphologies, respectively. The range of sizes and shapes will
allow for a variety of methods and models to be applied to obtain an XRD "bulk" picture of
materials. Bayesian/Maximum Entropy methods have been developed to analyse particle
shape and size distribution information from line profile data [11, 5]; these methods will be -
used to certify the SRM. Here we present an overview of the application of the method for
detecting and resolving bimodal size distributions from x-ray line profile data.

2. Outline of Theory & Results
An observed XRD line profile is made up of a number of broadening contributions,

including instrumental effects (diffractometer), specimen effects, background effects and
statistical noise. Assuming specimen broadening is only defined by size/shape effects, the
observed profile can be expressed as a function of the scattering vector s by

00

g(s) = fK(s,D)P(D)dD+b(s)+n(s), VSE[-OO,OO] (1)
o

where K(s,D) combines the scattering kernels of the crystallites and the instrument (see
eqns. 8.7-13 in [5]) and P(D) defines the size distribution of the crystallites, where
D= {D], D2, D3} corresponds to the crystallite dimensions. Finding P(D) from (l) requires
solving an inverse problem, but because K(s,D) is generally ill-conditioned many possible
solutions may fit the observed data. P(D) is of course expected to correspond to the
distribution determined from direct observations, such as TEM.
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The problem of determining the modal characteristics of a size distribution from the
line profile data is essentially a selection problem between competing models [12]. Using
Bayes' theorem, we can state the a posteriori probability that the size distributions is
bimodal, say model M" defined by two lognormal distribution functions with modes DOl M"

and D02,M2' lognormal standard deviations, aO"M2 and a02,M2' and a relative mixture 1] of
the two ( with 0 ~ 1] ~ 1) as

Pr(M, Ig,a,!) =Pr(M"I)Pr(g 1M, ,a,!)/Pr(g Ia,!) (2)
where g defines the observed diffraction profile given in (I); a is the standard deviation of

the intensity, which can be approximated as a ~Ii ;and I is any information we have about
the problem and distributions. Pr(M1,!) defines an a priori probability for MI, and
Pr(g IM, ,a,!) is the integrated likelihood probability distribution for M] such that

Pr(gIM],a,I)= Jd~Pr(~,gIM],a,I), with Pr(~,gIM"a,I) defining the joint probability

for the parameters, ~={Dol,MI,D02,MI,aol,MI,a02,MI,1]} and g. The denominator in (2) is

defined as Pr(g Ia,!) = I:IPr(M;,gla,!) for N models. Similarly, we can define a second

model M 2 which assumes that the size distribution is mono-modal, defined by a lognormal
distribution function with parameters DOl M2 and a02 M2' The model which produces the, ,

greatest probability is clearly "best" and can serve in the MaxEnt approach as the a priori
model [5].

Using the procedure outlined in [11], simulated diffraction data for the 200 peak was
generated for spherical gold nanoparticles with a lognormal bimodal size distribution. Figure
I(a) shows the simulated observed profile, instrument profile and estimated background
level. The instrument profile was modelled on the settings given in Fig. 7 of [11]. Figure 1(b)
shows the MaxEnt distribution for a uniform model which assumes the size distribution has
no structure for all values of D E [0,85 run]. The range of D can be determined from the
Fourier coefficients of the specimen profile [11, 5]. The MaxEnt solution for this model
indicates that there is structure in the data and warrants further investigation. At this point,
the model selection theory outlined above is used to select between the two possible models:
M] predicts the size distribution is bimodal defined by a lognormal distribution function; M 2

predicts a monomodal distribution with a lognormal function. A Markov Chain Monte Carlo
(MCMC) method described in [5] was used to determine the optimum parameters and
probabilities for each model (also see [13]). The MCMC method used 6.0 x 104 samples in
each case, determined by trial and error to produce representative statistics for each model.
Figure I(c) shows the two models compared with the theoretical distribution. The fit between
M, and the theoretical distribution is very good, while for M 2 the MCMC method has tried
to compensate by producing a monomodal distribution with a greater average particle size in
order to fit the observed data. The probabilities determined for each model were:
log,0[Pr(M,lg,a)]~-245.59 and loglO[Pr(M2Ig,a)]~-252.84. This application of Bayesian
model selection confirms the results in Figure I(c). Although the probabilities are very small,
they take into account the variance of the diffraction data and uncertainty in the estimated
background level, and have been normalised. Using M1 as the a priori model in the MaxEnt
method, further refinement and full quantitative determination of P(D) can be achieved. This
is shown in Figure led), with the error-bars arising from uncertainties in the counting
statistics and background estimation. Figure 1(d) shows the effectiveness of the
BayesianlMaxEnt method in determining a P(D) with bimodal properties.
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Fig. 1. Simulated diffraction data, MCMC & Bayesian size distribution results for Au spherical
nanocrystallites. (a) The simulated "observed" line profile (red), instrument profile (green) and
estimate background level (blue). (b) Theoretical bimodal size distribution (red) and MaxEnt solution
(blue) for a uniform model (green). (c) Theoretical bimodal size distribution (red), the MCMC
models: monomodal distribution (blue) and bimodal distribution (green); (d) Theoretical bimodal size
distribution (red) and MaxEnt solution for a bimodal model (blue + error-bars); the MCMC bimodal
model (green) from (c) is also shown.

3. Conclusion
The Bayesian/MaxEnt method outlined here has demonstrated it can detect and resolve

bimodal particle distributions from analysis of their XRD diffraction patterns. This has been
achieved through Bayesian model selection from which an a priori model was determined.
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Note from the Editor

WAGGA 2004 was the "28th Annual Condensed Matter And Materials Meeting"
in the WAGGA series, held at Charles Sturt University, 3 - 6 February 2004, Wagga
Wagga, NSW, Australia. The conference attracted 143 registered delegates including
overseas visitors from Israel, Germany, Pakistan, Japan and New Zealand.

The technical program consisted of 6 invited papers and 95 contributing papers for
oral (24) and poster (71) presentations in a total of 12 sessions during two and half
days of the conference. This program together with the abstracts and list of
participants can be found in the Conference Book of Abstracts.

Delegates were invited to submit a three-page manuscript for publication in the
conference proceedings. Thirty two (32) manuscripts were submitted for peer-review,
and thirty (30) of these were accepted for electronic publication on the website of the
Australian Institute of Physics.
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