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Abstract—Egocentric early action prediction, which aims to
recognize the on-going action in the video captured in the
first-person view as early as possible before the action is fully
executed, is a new yet challenging task due to the limited
partial video input. Pioneer studies focused on solving this
task with LSTMs as the backbone and simply compiling the
observed video segment and unobserved video segment into
a single vector, which hence suffer from two key limitations:
lack the non-sequential relation modeling with the video snippet
sequence and the correlation modeling between the observed
and unobserved video segment. To address these two limitations,
in this paper, we propose a novel TransfoRmer-based duAl
aCtion prEdiction (TRACE) model for the task of egocentric
early action prediction, which consists of two key modules:
the early (observed) segment action prediction module and the
future (unobserved) segment action prediction module. Both
modules take Transformer encoders as the backbone for encoding
all the potential relations among the input video snippets,
and involve several single-modal and multi-modal classifiers for
comprehensive supervision. Different from previous work, each
of the two modules outputs two multi-modal feature vectors:
one for encoding the current input video segment, and the other
one for predicting the missing video segment. For optimization,
we design a two-stage training scheme, including the mutual
enhancement stage and end-to-end aggregation stage. The former
stage alternatively optimizes the two action prediction modules,
where the correlation between the observed and unobserved video
segment is modeled with a consistency regularizer, while the latter
seamlessly aggregates the two modules to fully utilize the capacity
of the two modules. Extensive experiments have demonstrated the
superiority of our proposed model. We have released the codes
and the corresponding parameters to benefit other researchers1.
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Fig. 1. Comparison between the tasks of egocentric action recognition and
egocentric early action prediction.

I. INTRODUCTION

V IDEO action recognition is an essential research problem
in computer vision domain, which aims to classify the

action of the person in the video segment. Early studies [1]–
[3] focus on the action recognition for videos recorded in
the third-person view. Later, with the rapid development of
wearable devices, increasing research efforts have been ded-
icated to the action recognition [4]–[7] for videos recorded
in the first-person view, i.e., egocentric action recognition.
Moreover, in many real-world scenarios, like autonomous
driving [8], [9], we may expect to recognize the action as
early as possible. Accordingly, several pioneer studies have
paid attention to the new task of egocentric early action
prediction [10]–[12]. As shown in Figure 1, different from
the egocentric action recognition whose input is the fully
observed video segment, egocentric early action prediction
aims to recognize the on-going action in the video captured
in the first-person view as early as possible. In other words,
the input for egocentric early action prediction is the partial
video segment with incomplete action execution.

Although the pioneer research studies [13]–[16] on egocen-
tric early action prediction have achieved promising progress,
they suffer from two key limitations.

• L1: Lack the non-sequential relation modeling among
video snippets. Existing studies mainly utilize LSTMs to
encode the video segment, which can capture the tempo-
ral sequential relation modeling among video snippets.
Nevertheless, LSTMs cannot model the non-sequential
relations among video snippets well. For example, there
may be some correlations among discrete video snippets
at different time steps. Such correlations could be hard
to be captured by LSTMs.
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• L2: Lack the correlation modeling between the ob-
served and unobserved video segment. Although ex-
isting studies have incorporated the future (unobserved)
video segment to enhance the representation learning of
early (observed) video segment in the training phrase,
they entangled the clues in both observed and unobserved
segments into a single vector, and overlook the correlation
modeling between the two video segments. Intuitively,
we can predict the person’s following behavior in the
unobserved video segment based on the observed video
segment, and vice versa.

To address these limitations, we propose a novel
TransfoRmer-based duAl aCtion prEdiction (TRACE) model
for the task of egocentric early action prediction, which con-
sists of two key modules: the early segment action prediction
module and the future segment action prediction module. The
former aims to predict the person’s action based on the early
observed video segment, while the latter targets predicting
that based on the future unobserved video segment. Both
modules share the same architecture. Specially, each module is
composed by a Transformer-based video encoder and several
single-modal and multi-modal action classifiers. Moreover, the
video encoder in each module consists of M Transformer
subencoders corresponding to the single-modal feature en-
coding, as well as two fully connected layers for deriving
two multi-modal features for encoding the current input video
segment and the missing video segment, respectively. The
motivation for using Transformer lies in its powerful capability
in the non-sequential relation modeling in many computer
vision tasks [17], [18]. For optimization, we design a two-stage
training paradigm that optimizes the model through two stages:
mutual enhancement stage and end-to-end aggregation stage.
The goal of the former stage is to alternatively train the early
and future segment action prediction modules by allowing the
knowledge transfer between the two modules, while that of
the latter stage is to seamlessly aggregate the two modules to
promote the final model performance.

Our main contributions can be summarized threefold:

• We present a novel Transformer-based dual action pre-
diction model for the task of egocentric early action
prediction. To the best of our knowledge, we are the first
to incorporate Transformer architecture to enhance the
performance of egocentric early action prediction.

• We devise a dual action prediction model, where we take
into account the coherence of the full video segment and
assume that the feature of the future video segment can
be inferred based on the early video segment, while that
of the early video segment can be also inferred by mining
the future video segment.

• We design a two-stage optimization scheme, including
the mutual enhancement stage and end-to-end aggregation
stage. The former stage allows the knowledge transferring
between the two action prediction modules, while the
latter one fully utilizes the capacity of the two modules.
Extensive experiments have demonstrated the superiority
of our proposed model.

II. RELATED WORKS

Our work is related to early action prediction and Trans-
former in vision.

A. Early Action Prediction

According to the manner of the video being recorded, exist-
ing early action prediction studies can be generally classified
into two groups: early action prediction in the third-person
vision [3], [11], [12], [19], [20], and that in the first-person
vision. Previous studies mainly focus on the former group.
For example, Kong et al. [12], [20] exploited the abundant
sequential context information to enrich the feature represen-
tations of the given partial videos in the context of early
action prediction. In addition, Wang et al. [10] presented a
teacher-student learning framework that distills progressive
knowledge from an action recognition network for an early
action prediction network. Moreover, Cai et al. [11] resorted
to transferring knowledge from full videos to partial videos
by a two-stage learning framework, which learns the feature
embeddings and action classifier based on the full videos in
the first stage and then transfers the knowledge obtained by
the first stage to the counterpart (i.e., the feature embedding
and action classifier learning based on the partial videos) in
the second stage. Later, owing to the rapid development of
multi-sensor wearable computing platforms, several research
efforts have been dedicated to the egocentric early action
prediction, where the input video is recorded in the first-person
view. Initially, the egocentric early action prediction task was
introduced by Furnari et al. [13], and the authors proposed a
Rolling-Unrolling LSTM architecture [14], which can predict
egocentric actions at multiple temporal scales, to solve this
task. Recently, Zheng et al. [15] presented an adversarial
knowledge distillation scheme for the task of egocentric early
action prediction, which also adopts a teacher network for
learning the comprehensive video representation based on the
full video segment, and a student network for predicting the
action only based on the partial video segment.

Although great success has been achieved by these stud-
ies, existing methods have two key limitations: lack the
non-sequential relation modeling among video snippets, and
lack the correlation modeling between the observed and un-
observed video segments. To address them, we propose the
TRACE model, which incorporates the Transformer archi-
tecture to enhance the correlation modeling among video
snippets, and adopt dual action prediction models to promote
the correlation modeling between the observed and unobserved
video segments for boosting the egocentric early action pre-
diction performance.

B. Transformer in Vision

The Transformer is a deep learning model that adopts the
self-attention mechanism, adaptively weighting the signifi-
cance of each part of the input data. It was first proposed in the
field of natural language processing (NLP) [21]. Inspired by its
exemplary performance on representation learning, it has also
been widely used in various computer vision tasks, such as im-
age recognition [22], [23], image captioning [24], [25], object
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detection [26], [27], and video understanding [17], [18], [28].
For instance, Zhao et al. [27] proposed a Transformer-based
vote refinement model to cultivate the voting results and
improve the performance of 3D object detection. In addition,
Yu et al. [24] introduced the multi-modal Transformer model
to deal with the multi-view visual representations, which
highly improves the image captioning performance. Besides,
Girdhar et al. [18] presented an end-to-end attention-based
video Transformer for predicting the future actions given
previously observed video. Although the Transformer has
made outstanding achievements in these tasks, it has never
been explored in the task of egocentric early action prediction.
Therefore, in this work, we incorporate the Transformer to
enhance the performance of egocentric early action prediction.

III. METHODOLOGY

In this section, we first formulate the research problem, and
then detail the components of our proposed transformer-based
dual action prediction scheme.

A. Problem Formulation

In this work, we focus on tackling the problem of egocentric
early action prediction. It aims to predict the person’s action by
observing only a few early video frames from the first-person
view. Formally, suppose V = {V1, V2, ..., VK} is an egocentric
video segment consisting of K snippets, and y ∈ RN denotes
the one-hot action label vector of the video segment, where
N is the number of total action label classes. In particular, we
employ the first k snippets Vk = {V1, V2, ..., Vk} as the given
partial video segment, where k ∈ [1,K] denotes the progress
level of Vk. We use k/K to denote the observation ratio. Each
snippet Vk involves M modalities, such as audio signals, visual
content, flow content and the object labels. Let xj

m ∈ Rdm
0

denote the feature vector of the j-th snippet regarding the
m-th modality, where j = 1, · · · ,K. In this work, we aim to
learn a model G(·) to predict the action class for a given partial
video segment. Mathematically, this task can be formulated as
follows,

ŷ = G(X k
1 ,X k

2 , · · · ,X k
M |Θ), (1)

where X k
m = {x1

m,x2
m, · · · ,xk

m} denotes the feature sequence
of the partial video segment Vk regarding the m-th modality. Θ
is the to-be-learned parameters of the model G(·) and ŷ ∈ RN

is predicted action label vector by the model G(·).

B. Summary

In this work, we aim to timely predict the action of the
person in the egocentric video only based on its early video
snippets. In particular, we propose a Transformer-based dual
action prediction model, which consists of two key modules:
the early segment action prediction module Po and future
segment action prediction module Pu. The former takes the
given partial video segment as the input, while the latter takes
the future video segment as the input. These two modules
share the same network architecture. One major novelty of
our model is that we take into account the coherence of full
video segment, and assume that the feature of the future

video segment can be inferred based on the early video
segment, while that of early video segment can be also
inferred by mining the future video segment. Accordingly,
each module outputs two multi-modal features: one used for
encoding the current input video segment, and the other one
used for predicting the missing video segment. Notably, to
adapt the Transformer encoder to our context, we adopt the
autoregressive pre-training for each Transformer encoder.

For the model optimization, we propose the two-stage
training paradigm, which optimizes the model through two
stages: mutual enhancement stage and end-to-end aggregation
stage. In the former stage, the early and future segment action
prediction modules learn from each other, so that both of
them can infer the missing part of video and hence gain a
comprehensive understanding of the video. In the latter stage,
these two modules are seamlessly aggregated to deal with the
task of egocentric early action prediction.

C. Network Structure

Next, we describe the two key components of each module:
Transformer-based video encoder and action classifiers.

1) Transformer-based Video Encoder: Since the underlying
philosophy for the design of the two modules is similar,
we here take the video encoder of the early segment action
prediction module Po as an example.

Existing methods on egocentric early action prediction
mainly adopted LSTMs to encode the sequence of the video
snippets. Nevertheless, it is known that LSTMs cannot capture
the long-term temporal dependencies well and can only model
the sequential relations among video snippets. Beyond that,
we resort to Transformer, which has shown great success in
many computer vision tasks [22], [26], [29], [30]. Differ-
ent from LSTMs, Transformer can flexibly model the rela-
tionship among different video snippets with the multi-head
self-attention mechanism. In particular, we introduce a spe-
cific Transformer to encode each modality of the video
snippets. Formally, let T o

m denote the Transformer encoder
of the m-th modality which consists of several identical
layers. Each layer has two sub-layers: one corresponds to a
multi-head self-attention mechanism and the other one refers
to a feed-forward network. Then we feed the feature sequence
of the k snippets in the observed video segment regarding the
m-th modality {x1

m,x2
m, ...,xk

m} into it. For each modality,
we also introduce a to-be-learned [CLS] token x

[CLS],o
m to

aggregate the global feature of the m-th modality. According
to Transformer, we add the to-be-learned positional embedding
pj
m ∈ Rdm

0 , where j = 0, · · · , k, to the [CLS] token along
with each feature vector. Mathematically, we have,

zom,k = T o
m([x[CLS],o

m + p0
m;x1

m + p1
m; ...;xk

m + pk
m]), (2)

where x
[CLS],o
m ∈ Rdm

0 denotes the [CLS] token of the m-th
modality. zom,k ∈ Rd1 is the encoded feature of the given early
video segment Vk regarding the m-th modality, and d1 is the
dimension of the hidden layer.
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Fig. 2. Illustration of the proposed TRACE model, which consists of two key modules: the early segment action prediction module and future segment action
prediction module. The proposed model is optimized through two stages: mutual enhancement stage and end-to-end aggregation stage.

We then concatenate all the encoded features of the M
modalities and use a fully-connected layer to derive the final
encoded feature of the given early video segment as follows,

ho
k = Wozok + bo, (3)

where zok = [zo1,k; · · · ; zoM,k] ∈ RM∗d1 is the concatenation of
all the encoded features. ho

k ∈ Rd2 is the final encoded feature
of the early video segment, where d2 is the final encoded
feature dimension.

Previous work on egocentric early action prediction focuses
on encoding the given partial video segment into a single
vector. Most of them rely on the single vector to capture
the information of the observed video segment. Obviously,
this manner would miss the information of the future video
segment, which undoubtedly benefits the action prediction
of the video. Notably, although the future video segment is
unavailable in testing, it can be still used in the training phrase.
It is worth mentioning some efforts [15] have been dedicated
to utilize the future video segment in the training phrase with
the knowledge distillation technique. However, they also use
a single vector to compile both the observed and unobserved
video segments. Different from previous studies, we propose
to encode the partial video with two separate features: one
used for delivering the content of the observed partial video
segment, and the other one used for indicating the content
of the unobserved future video segment. In this manner, the
features for the two video segments can be disentangled, which
could benefit the feature encoding. Therefore, we introduce
another fully connected layer to predict the feature of the

future video segment based on the observed early video
segment as follows,

h̃u
k = W̃ozok + b̃o, (4)

where h̃u
k ∈ Rd2 is the predicted future feature for the given

partial video segment.
Similar to the structure of Po, the video encoder of

the future video processing module Pu is composed of M
Transformers to encode the M different modalities, and two
fully-connected layers for learning the features of the previous
video segment and the unobserved future video segment,
respectively. Specifically, we feed the future video segment
into Pu and have:
zum,k = T u

m([x[CLS],u
m + p0

m;xk+1
m + p1

m; ...;xK
m + pK−k

m ]),

zuk = [zu1,k; ...; z
u
M,k],

hu
k = Wuzuk + bu,

h̃o
k = W̃uzuk + b̃u,

(5)
where T u

m is the Transformer for encoding the m-th modality
of the unobserved video segment, x[CLS],u

m ∈ Rdm
0 denotes the

[CLS] token of the m-th modality, used for aggregating the
global feature of this modality, zum,k ∈ Rd1 is the encoded
feature of the modality m for the unobserved segments,
hu
k ∈ Rd2 and h̃o

k ∈ Rd2 are the encoded feature of the
future unobserved video segment and predicted feature of the
previous observed video segment, respectively.

Pre-training. To adapt the Transformer encoder to our
egocentric early action prediction task and further improve
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Fig. 3. Pre-traing for the Transformer encoder regarding the m-th modality.

the model performance, we introduce the autoregressive
pre-training [31], [32] to particularly improve the feature
encoding capability of the Transformer encoders in our two
modules. Figure 3 illustrates the pre-training paradigm for the
Transformer encoder regarding the m-th modality. Specifically,
for each Transformer encoder Tm,m = 1, · · · ,M , we expect
it can predict the feature of m-th modality for the next snippet
based on the previous k snippets of the video sequence. Hence
the Transformer encoder can fully understand the context of
the video snippet sequence.

Mathematically, the pre-training process can be formulated
as follows,

zm,k = Tm([x[CLS]
m + p0

m;x1
m + p1

m; ...;xk
m + pk

m]), (6)

where x[CLS]
m ∈ Rdm

0 is the [CLS] token feature of the modality
m, used to aggregate the information of the entire video
sequence. xi

m ∈ Rdm
0 , i ∈ [1, k] is the feature of the i-th

video snippet with respect to the m-th modality. pi
m ∈ Rdm

0 ,
i ∈ [0, k] is the positional embedding. zm,k ∈ Rd1 is the
encoded feature for the input partial video segment (i.e., the
first k snippets).

We then use a fully-connected layer Fm : Rd1 7→ Rdm
0 to

predict the feature of the next snippet (i.e., xk+1
m ) based on the

encoded feature zm,k of the previous k snippets. Finally, we
adopt the L2 norm loss function for optimization as follows,

x̂k+1
m = Wpre

m zm,k + bpre
m ,m = 1, · · · ,M

Lpre
m =

K−1∑
k=1

∥x̂k+1
m − xk+1

m ∥2,
(7)

where Wpre
m and bpre

m are parameters of the fully-connected
layer. x̂k+1

m is the predicted feature of the next snippet.
The learned parameters of these M Transformer encoders

will be used for the parameter initialization. Specifically,
for each modality m, the Transformer encoder T o

m in the
early segment action prediction module and T u

m in the future
segment action prediction module are both initialized with
parameters of Tm to enhance their encoding capabilities.

2) Action Classifier: In order to ensure the features ex-
tracted by Po can contain discriminant information for action
classification, we introduce a classifier Co with the cross-
entropy loss function as follows,{

aok = Woho
k + bo,

Lo
k = CE(aok,y),

(8)

where Wo and bo are the to-be-learned parameters of the
classifier. aok ∈ RN is the predicted action label vector based
on the learned final feature of the observed video segment.

Similarly, for the future segment action prediction module
Pu, we also introduce a classifier Cu as follows,{

auk = Wuhu
k + bu,

Lu
k = CE(auk ,y),

(9)

where Wu and bu are the to-be-learned parameters of the
classifier. auk ∈ RN is the predicted action label vector based
on the learned final feature of the future video segment.

As to supervise the feature prediction of the future video
segment by Po, we feed the predicted feature of the future
video segment into the action classifier of Pu, and use cross-
entropy loss for optimization. Conversely, we also feed the
predicted feature of the previous video segment by the future
segment action prediction module into the action classifier
of early segment action prediction module for optimization.
Formally, we have, 

ãuk = Wuh̃u
k + bu,

ãok = Woh̃o
k + bo,

L̃u
k = CE(ãuk ,y),

L̃o
k = CE(ãok,y).

(10)

Moreover, to enhance the discriminative feature learning
of each Transformer-based encoder in each module, we also
introduce a classifier Co

m for each modality. For the early
segment action prediction module, utilizing the cross-entropy
loss, we have, {

aom,k = Wo
mzom,k + bo

m,

Lo
m,k = CE(aom,k,y),

(11)

where aom,k ∈ RN is the predicted action label vector of the
early video segment based on its m-th modality. Wo

m and bo
m

are the to-be-learned parameters of the action classifier for the
m-th modality.

Similarly, for the future segment action prediction module,
we introduce M classifiers (denoted as Cu

m) and loss function,{
aum,k = Wu

mzum,k + bu
m,

Lu
m,k = CE(aum,k,y),

(12)

where aum,k ∈ RN is the predicted action label vector of the
future video segment based on its m-th modality. Wu

m and
bu
m are the to-be-learned parameters.

D. Two-stage Training

As aforementioned, we train our model with two stages:
mutual enhancement stage and end-to-end aggregation stage.
In the former stage, the two modules Po and Pu learn from
each other for gaining predictive ability iteratively. In the latter
stage, we aim to fully integrate the prediction capability of the
two modules.
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1) Mutual Enhancement Stage: As aforementioned, Po

outputs not only the observed feature but also the predicted
unobserved feature, while Pu outputs not only the future
video feature but also the predicted feature of the previous
early video segment. Intuitively, the learned features of these
two modules can be mutually used for guiding each other.
Specifically, ho

k learned by Po based on the input early
observed video segment can be used for guiding the learning
of h̃o

k predicted by Pu based on the future video segment.
Conversely, hu

k derived by Pu can be used for supervising
the learning of h̃u

k predicted by Po. Thus, we introduce the
consistency regularizer to allow the two modules to share
knowledge to each other and gain better action prediction
capability. The regularizer can be written as follows,

Lfea,o
k = ∥ho

k − h̃o
k∥2,

Lfea,u
k = ∥hu

k − h̃u
k∥2,

Lfea
k = Lfea,o

k + Lfea,u
k .

(13)

Ultimately, we obtain the final loss function of the early seg-
ment action prediction module Po in the mutual enhancement
stage as follows,

Lo
mut =

K∑
k=1

(
1

M

M∑
m=1

Lo
m,k + Lo

k + L̃u
k + wfeaLfea

k ), (14)

where wfea is the hyper-parameter.
Similarly, we can obtain the total loss of future segment

action prediction module Pu as follows,

Lu
mut =

K∑
k=1

(
1

M

M∑
m=1

Lu
m,k + Lu

k + L̃o
k + wfeaLfea

k ). (15)

Notably, inspired by the mutual learning framework, these
two modules are optimized alternatively. For each batch,
we first freeze Pu and only train the early segment action
prediction module Po with loss Lo

mut. Thereafter, we freeze
Po and only train the future segment action prediction module
Pu with loss Lu

mut. Ultimately, by iterative learning from each
other, both two modules can gain the discriminative feature of
the full video segment, although their inputs are incomplete.

2) End-to-end Aggregation Stage: In the former stage,
the two modules Po and Pu iteratively learn from each
other for improving their action prediction abilities, respec-
tively. Specifically, the early segment action prediction module
should be good at predicting the person’s action based on
the given partial video segment, while the future segment
action prediction module should be skilled in predicting the
person’s action based on the unobserved future video segment.
Although the unobserved future video segment is unavailable
in the testing phase, we can predict its feature h̃u

k based on
Po. Accordingly, the future segment action prediction module
can enhance the final action prediction in the testing phase
by providing the action prediction based on the predicted
feature of the unobserved future video segment output by Po.
Therefore, in the end-to-end aggregation stage, we aim to fully
integrate the prediction capability of the two modules.

In addition, we believe that early observed video and future
unobserved video segments have different levels of importance

Fig. 4. End-to-end Aggregation Stage

for the action prediction. We hence add a fully-connected
layer with the sigmoid activation function to learn the trade-off
weights between the early action prediction and future action
prediction results. In particular, the trade-off weight for the
given partial video segment can be obtained as follows,

αk = sigmoid(We[ho
k; h̃

u
k ] + be), (16)

where We and be are the to-be-learned parameters, and αk

represents the importance of early action prediction.
We then can get the final action prediction result for the

given partial video segment as follows,

aek = αka
o
k + (1− αk)ã

u
k , (17)

where aek ∈ RN denotes the final action prediction.
In this stage, we also utilize the cross entropy loss for

optimization as follows,

Le
k = CE(aek,y). (18)

Similar to previous mutual enhancement stage, we also
consider the classification loss of each single modality to
improve the discriminative feature learning. Finally, the loss
function of the end-to-end aggregation stage can be written as
follows,

Lagg =
K∑

k=1

(Le
k +

1

M

M∑
m=1

Lo
m,k). (19)

It is worth noting that in this training stage, we will fix the
backbone parameters of the two action prediction modules, but
only optimize the aggregation parameters. In this manner, the
knowledge obtained from the previous training stage can be
well retained. Algorithm 1 summarizes the two-stage training
procedure of our model.
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Algorithm 1 The Two-stage Training Procedure of Our Model
Input: Training set Ω, hyper-parameter wfea.
Output: Parameters Θo in P o, parameters Θu in Pu, weight
We and bias be.

1: Initialize T o
m and T u

m with the pretrained parameters for
each modality m.

2: repeat
3: Sample minibatch from Ω.
4: Freeze the parameters Θu and update the parameters

Θo according to Lo
mut in Eqn.(14).

5: Freeze the parameters Θo and update the parameters
Θu according to Lu

mut in Eqn.(15).
6: until Convergence
7: Freeze the parameters in T o

m for each modality m.
8: repeat
9: Sample minibatch from Ω.

10: Update the parameters Θo, We and be according to
Lagg in Eqn.(19).

11: until Convergence

E. Testing

For testing, to enhance the action prediction, apart from the
final action prediction result aek in Eqn. (13), we also take
into account the action prediction result based on each single
modality (i.e., aom,k). Specifically, we generate the final action
prediction result by the linear fusion as follows,

ak = γaek +
M∑

m=1

γmaom,k,

γ +
M∑

m=1

γm = 1,

(20)

where ak ∈ RN is the final action prediction result for testing.
γ and γm (m = 1, · · · ,M) are the trade-off hyper-parameters.

IV. EXPERIMENTS

In this section, we conducted extensive experiments over
the two real-world datasets EPIC-Kitchens55 [33] and EGTEA
Gaze+ [34] by answering the following research questions.

• RQ1: Does our model outperform state-of-the-art meth-
ods?

• RQ2: How does each component affect our model per-
formance?

• RQ3: How sensitive is our model to the key hyperparam-
eters?

• RQ4: What is the intuitive performance of our method?

A. Experimental Settings

Datasets. To evaluate our proposed method, we uti-
lized two large-scale egocentric video benchmarks: EPIC-
Kitchens55 [33] and EGTEA Gaze+ [34]. 1) EPIC-
Kitchens55. Videos of EPIC-Kitchens55 dataset are recorded
by 32 participants conducting their non-scripted daily activities
in their kitchen environments. It consists of 39, 596 video
segments annotated by 2, 513 action labels in total. As the

TABLE I
THREE DATASET SPLITS OF EGTEA GAZE+.

Dataset Training sets Testing sets
EGTEA Gaze+ S1 8, 299 2, 022
EGTEA Gaze+ S2 8, 299 2, 022
EGTEA Gaze+ S3 8, 230 2, 021

testing set of EPIC-Kitchens55 is unavailable, similar to [13],
[15], we re-split the public training dataset including 28, 472
video segments, into two parts: 23, 493 video segments for
training and 4, 979 video segments for testing. Notably, video
segments for training are derived from 232 videos, while that
for testing are extracted from the other 40 videos. And 2)
EGTEA Gaze+. As to the EGTEA Gaze+ [34] dataset, it
consists of 10, 328 video segments annotated by 106 action
labels. Specifically, EGTEA Gaze+ [34], [35] provides three
different dataset splits, as shown in Table I. Each split was
randomly sampled from the whole dataset, where 80% of the
samples per action is used for training and the rest for testing.
Consequently, we comprehensively evaluated our model and
baseline methods on these three splits for the EGTEA Gaze+
dataset, respectively.

For both datasets, we uniformly sampled K = 8 video
snippets from each action segment. To validate the model
performance, we adopted the top-1 accuracy as the evaluation
metrics for the following observation ratios (i.e., k/K): 12.5%,
25%, 37.5%, 50%, 62.5%, 75%, 87.5%, and 100%.

Modality Features. We employed four different modalities
in the EPIC-Kitchens55 dataset: visual content, flow content,
object labels, and audio signals. For fair comparison, we
adopted the same features with the work [15]. In particular,
we utilized the features of visual content, flow content, and
objected labels provided by [13], the dimensions of which are
1, 024, 1, 024, and 352, respectively. Meanwhile, we used the
features of audio modality provided by [16], the dimension of
which is 1, 024. The four modalities are arranged in the order
of “[visual modality, flow modality, object modality, audio
modality]” as the input of our model. As for the EGTEA
Gaze+ dataset, it only provides three modalities of videos,
including the visual content, the flow content, and the object
labels. Therefore, for this dataset, the input of our model
involves three modalities arranged in the order of “[visual
modality, flow modality, object modality]” as the input of our
model. We directly adopted the features released by [15]. The
dimensions of the visual and flow content features are both
1, 024, while that of the object label feature is 352.

Implementation Details. For encoding the input sequence
of each modality in both datasets, we utilized a Transformer
encoder with 2 layers, where the number of attention heads
is set to 8. The hidden layer dimension of the Transformer
encoder in both datasets is d1 = 768. The dimension of the
multi-modal fused feature in EPIC-Kitchens55 is d2 = 1024,
while that in EGTEA Gaze+ is 512. For both datasets, in the
mutual enhancement stage, we trained 30 epochs in total. The
weight of the consistency regularization is set to wfea = 5.
For EPIC-Kitchens55, we employed the Adam optimizer with
an initial learning rate of 0.0001, which multiplies 0.5 at the
15-th and 20-th epochs, respectively. As for EGTEA Gaze+,
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TABLE II
PERFORMANCE COMPARISON AMONG DIFFERENT METHODS IN TERMS OF TOP-1 ACCURACY (%) OVER THE EPIC-KITCHENS55 DATASET WITH

DIFFERENT OBSERVATION RATIOS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Observation ratio 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100% avg.
LSTM-late 25.48 29.51 31.54 32.58 33.57 34.45 34.65 34.35 32.02

LSTM-early 24.96 28.18 30.01 31.52 32.92 33.11 33.45 33.17 30.91
RULSTM (Furnari et al. 2022) [13] 24.48 27.63 29.44 30.93 32.16 33.09 33.63 34.07 30.68

RULSTM-audio (Kazakos et al. 2022) [16] 25.46 28.92 31.09 32.90 34.61 35.38 35.78 36.12 32.53
AANet (Kong et al. 2022) [12] 21.38 25.14 28.92 31.09 32.30 33.63 34.11 34.21 30.10
PTSN (Wang et al. 2022) [10] 25.82 29.02 30.95 32.64 34.05 34.73 35.14 34.69 32.13

AKT (Cai et al. 2022) [11] 24.66 27.35 27.19 30.23 31.94 33.61 34.21 34.96 30.52
AKD (Zheng et al. 2022) [15] 27.65 31.26 33.07 34.98 35.90 36.99 37.45 37.55 34.36

TRACE 28.74 33.00 36.02 37.33 38.35 39.08 39.26 39.66 36.43

Fig. 5. Performance comparison among different methods with different observation ratios on the (a) EGTEA Gaze+ S1, (b) EGTEA Gaze+ S2 and (c)
EGTEA Gaze+ S3, respectively.

the initial learning rate is set to 0.0001, which multiplies 0.5
at the 9-th and 12-th epochs, respectively. The batch size for
EPIC-Kitchens55 and EGTEA Gaze+ is set to 256 and 128, re-
spectively. The dropout rate of the model for EPIC-Kitchens55
and EGTEA Gaze+ is set to 0.3 and 0.15, respectively. In
the end-to-end aggregation stage, for both datasets, we froze
all the parameters of the Transformer encoder, and the initial
integration weight of the fully-connected layer is set to 0. For
EPIC-Kitchens55, we trained 80 epochs in total. The dropout
rate in this stage is set to 0.95 and the batch size is set to
1024. For EGTEA Gaze+, the number of training epochs is
set to 20, the dropout rate is set to 0.9, and the batch size is
set to 1024. In this stage, we also employed Adam optimizer
for both datasets. The learning rate for EPIC-Kitchens55 and
EGTEA Gaze+ was gradually improved to 0.0004 and 0.0007,
respectively, by using the warmup strategy in the first four
epochs and maintaining till the end. Ultimately, for EPIC-
Kitchens55, the trade-off hyperparameter for the multi-modal
action prediction in Eqn. (20) is set to γ = 0.48, while that
for the single-modal action predictions (i.e., {γm}) are set
to {0.02, 0.10, 0.18, 0.22}, respectively. Pertaining to EGTEA
Gaze+, the trade-off hyperparameter γ = 0.6, while that for
the single-modal action predictions (i.e., {γm}) are set to
{0.12, 0.27, 0.01}, respectively.

B. On Model Comparison (RQ1)

To validate the effectiveness of our proposed methods, we
chose the following baselines for comparison.

• LSTM-late. This baseline utilizes a one-layer LSTM
with the size of the hidden layer as 1, 024 for each
modality and fused all the modalities with the late fusion
strategy.

• LSTM-early. Similar to LSTM-late, this method adopts
the early fusion strategy to concatenate the feature vectors
of all modalities.

• RULSTM. This method utilizes a rolling-unrolling
LSTM architecture to solve the egocentric action antici-
pation task, which jointly explores three modalities (i.e.,
flow contents, visual contents and object labels) of the
video segment.

• RULSTM-audio. As for a fair comparison, we design
this baseline by extending RULSTM to incorporate the
audio signal modality.

• PTSN. This baseline, devised for early action predic-
tion from the third-person view, uses a teacher-student
learning block for distilling progressive knowledge from
teacher to student, where the teacher is an action recog-
nition model and the student is the to-be-learned early
action prediction model.

• AANet. This is an adversarial action prediction frame-
work, which aims to learn the representative and discrimi-
native features to enhance the performance of early action
prediction from the third-person view.

• AKT. This baseline employs the knowledge transfer
learning from fully observed videos to boost the third-
person view early action prediction performance.

• AKD. This is a multi-modal adversarial knowledge dis-
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TABLE III
ABLATION STUDY RESULTS OVER THE EPIC-KITCHENS55 DATASET.

Observation ratio 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100% Avg.
w/o Pre-training 28.64 32.46 35.04 36.56 37.41 38.48 38.74 39.20 35.82

w/o Single-Modal Classification 27.84 31.86 34.43 35.96 36.89 37.83 38.19 37.17 35.02
w/o Consistency Regularizer 28.76 32.32 34.69 36.20 36.93 37.47 37.85 38.21 35.31

w/o Mutual Enhancement Stage 27.80 31.62 33.71 35.94 36.77 37.01 37.43 37.57 34.73
w/o End-to-end Aggregation Stage 28.78 32.68 35.66 37.13 37.95 38.46 38.98 39.02 36.08

TRACE 28.74 33.00 36.02 37.33 38.35 39.08 39.26 39.66 36.43

tillation framework for egocentric early action prediction,
which involves a teacher network to learn a comprehen-
sive video representation based on the multi-modal full
video segment, and a student network to predict the action
only based on the partial video segment.

Table II and Figure 5 show the performance comparison
among different methods in terms of Top-1 accuracy (%) over
the EPIC-Kitchens55 dataset and EGTEA Gaze++ dataset with
different observation ratios, respectively. As can be seen, our
TRACE model almost consistently outperform all the baseline
methods on all observation ratios, which demonstrates the
effectiveness of the proposed Transformer-based dual action
prediction model for the egocentric early action prediction.
Specifically, on average, our TRACE model exceeds the best
baseline (i.e., AKD) by 2.07% regarding the Top-1 accuracy
on the EPIC-Kitchens55 dataset. This may be due to three
reasons. 1) All the baseline methods adopted LSTM as the
backbone for encoding the video segment, while our TRACE
model utilizes the Transformer encoder, which can model
the non-sequential correlations among the discrete snippets in
the video segment. 2) Different from all the baselines, our
TRACE model incorporates the correlation modeling between
the observed video segment and unobserved video segment
with two separate multi-modal features. 3) Beyond all the
baseline methods, we optimize the model by two stages,
where the two action prediction modules (i.e., early segment
action prediction module and future segment action prediction
module) can mutually share knowledge to each other, and fully
aggregated in the testing phase.

C. On Ablation Study (RQ2)

We conducted the ablation study on our model with the
following model derivatives. 1) w/o Pre-training: To verify
the effectiveness of autoregressive pre-training, we randomly
initialized all the Transformer parameters and then adopted the
two-stage optimization training. 2) w/o Single-Modal Classi-
fication: To explore the function of the single-modal classifi-
cations, we removed the losses of single-modal classifications
in both training stages, and eliminated the single-modal action
prediction results in the testing phase. 3) w/o Consistency
Regularizer: To justify the effect of h̃u

k , we removed the
feature consistency regularization from the mutual learning
enhancement stage. 4) w/o Mutual Enhancement Stage: To
study the impact of the mutual learning enhancement stage,
we removed the mutual learning enhancement training stage
and directly carried out the end-to-end aggregation training
stage. In this derivative, to improve the modal capacity, the

parameters of the Transformer were not frozen in the training
stage. And 5) w/o End-to-end Aggregation Stage: Similarly,
to investigate the effect of end-to-end aggregation stage, we
directly removed the end-to-end aggregation training stage.

Table III summarizes the ablation study results over the
EPIC-Kitchens55 dataset. It can be seen that our methods
consistently outperforms all the derivatives, which demon-
strates the effectiveness of each component in our pro-
posed model. Specifically, we had the following four detailed
observations. 1) The performance of w/o Pre-training and
w/o Single-Modal Classification drop largely, which indicates
that the autoregressive pre-training does improve the feature
encoding capability of the Transformer encoder in the dual
action prediction modules, and the single-modal classifica-
tion is indeed effective in enhancing the discriminative fea-
ture learning of our model. 2) w/o Consistency Regularizer
performs much worse than our model, which validates
that the consistency regularizer is useful in allowing the
two action prediction modules to share knowledge with
each other and hence gaining better action prediction
performance. 3) Both w/o Mutual Enhancement Stage and
w/o End-to-end Aggregation Stage perform inferior to our
method, which indicates that it is essential to design the
two-stage optimization paradigm.

D. On Sensitivity Analysis (RQ3)

Besides, we studied the sensitivity of our model pertaining
to the number of heads and the number of layers of the
Transformer encoder, as well as the trade-off hyperparameter
for the consistency regularizer in Eqn. (14) and Eqn. (15) with
the EPIC-Kitchens55 dataset.

1) On the number of heads of Transformer encoder: We
varied the number of heads in the transformer model in the
range of {1, 2, 4, 8, 16, 32}. Figure 6(a) shows the performance
of our model with different number of heads in terms of the
average top-1 accuracy. As can be seen, with the increase of
the number of heads used in the Transformer encoder, the
performance of our model increases first and then decreases.
In the end, our model achieves the optimal performance when
the number of heads is 8. When the number of heads is larger
than 8, the model’s performance slightly drops. This may be
due to too many heads may lead to the overfitting issue.

2) On the number of layers of Transformer encoder:
To learn the impact of the number of layers used in the
Transformer encoder, we changed the number of layers from
1 to 5 with the step of 1. As can be seen from Figure 6(b), our
model performs best when the number of layers in Transformer
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Fig. 6. Performance of our model with different numbers of heads and layers of the Transformer encoder, as well as different trade-off weight values of
wfea for the consistency regularizer.

Fig. 7. Action predictions of our model and the best baseline AKD for three testing examples in the EPIC-Kitchens55 dataset, where all observation ratios
have been tested for comprehensive comparison. For a clear illustration, we present the frames of the corresponding observation ratios for all the examples.
Incorrect predictions have been highlighted in red.

encoder is 2. One likely reason is also that too many layers
can lead to the overfitting problem.

3) On the trade-off hyperparameter for consistency regu-
larizer wfea: To explore the effect of the trade-off hyperpa-
rameter in controlling the balance between the cross-entropy
losses and the consistency regularizer in the optimization
of the mutual enhancement stage, we tuned the trade-off
hyperparameter around the optimal value 5. In particular, we
varied the trade-off hyperparameter from 1 to 9 with the step
of 2. As can be seen from Figure 6(c), the performance of
our model first goes better with the increase of the hyper-
parameter, and then goes worse with the continue increase.
This is reasonble as the too small wfea cannot guarantee the
knowledge transferring between the too modules, while too
large wfea may downgrade the discriminative feature learning
towards action prediction.

E. On Case Study (RQ4)

To gain the intuitive understanding of our TRACE model
for the task of egocentric early action prediction, we reported
the action predictions of our model and the best baseline AKD
on three testing cases in the EPIC-Kitchens55 dataset, where
all observation ratios have been tested for comprehensive
comparison. As we can see from Fig 7(a), the person is cutting
an onion in the video segment. As “cutting onion” is an action
that is easy to recognize, both our model and AKD given
the correct predictions at all observation ratios. This indicates
that both our model and AKD can predict correctly in the
relatively simple and obvious case. For the more complex
and difficult case in Fig 7(b), where the to-be-recognized
action “take lid” is highly similar to “put lid”, our model can
correctly predict the on-going action “ take lid” by observing
only 12.5% snippets, while the baseline method AKD has to
observe 37.5% snippets. This confirms the effectiveness of our
Transformer-based dual action prediction model in modeling
the correlations between the observed and unobserved video
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segments. Fig 7(c) shows a failure case of our model. As can
be seen, compared with AKD, our model fails to predict the
action labels at all observation ratios. By analyzing the video
content, we noticed that for this case, our predicted ongoing
action “take pizza” is correct, while the ground truth label
“put-down pizza” should be accidentally annotated and is a
noisy label. This also reflects the capability of our TRACE
model in solving the task of egocentric early action prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel TransfoRmer-based duAl
aCtion prEdiction (TRACE) model for the task of egocentric
early action prediction, which involves two key modules: the
early (observed) segment action prediction module and the
future (unobserved) segment action prediction module. Both
modules adopt the Transformer encoders to encode the video
segment. To model the coherence of the full video segment, we
introduce a consistency regularizer between the two modules.
Moreover, to boost the performance, we design a two-stage
optimization scheme, including the mutual enhancement stage
and end-to-end aggregation stage. Extensive experiments on
two public datasets have demonstrated the superiority of our
proposed model, and the benefit of incorporating Transformer
encoder, consistency regularizer, pre-training as well as the
two-stage training. Currently, in this work, we directly adopted
existing autoregresssive pre-training technique to pre-train our
model. In the future, we plan to investigate more advanced pre-
training scheme to further promote the model performance.
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