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Abstract— While measurement of blood pressure (BP) is now
widely carried out by automated noninvasive BP (NIBP) mon-
itoring devices, as they do not require skilled clinicians and
do not carry the risk of complications, their accuracy is in
doubt. A novel end-to-end deep-learning-based algorithm was
developed in this study that estimates NIBP directly from
sequences of Korotkoff sounds (KSs) rather than oscillometric
waveforms (OWs). First, sequences of segments of KSs were
formed using different signal segmentation techniques, that is,
segmentation using a sliding window with or without overlap and
segmentation using the cardiac period estimation. Each segment
within each sequence was then labeled as 1) after-systolic and
before-diastolic (AB) or 2) before-systolic or after-diastolic (BA)
such that a binary sequence-to-sequence classification problem
was achieved. To deal with the resultant sequence-to-sequence
classification problem, an algorithm was developed by combining
1-D convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). The segments associated with systolic and
diastolic BP (SBP and DBP) are then identified as the segments
at which the output target sequence switches from class BA to
class AB and later from class AB to class BA. Lastly, the values
of SBP and DBP are obtained by mapping the center point of
the switching segments to the deflation curve. To evaluate the
performance of the proposed NIBP estimation method, we used
a database of 350 NIBP samples collected from 155 participants
(87 males, age: 23–97 years, arm circumference: 10–35 cm, SBP:
81–104 mmHg, and DBP: 37–104 mmHg), and the achieved
estimation errors for SBP and DBP, relative to the reference
values, using a fivefold cross-validation approach, were 1.6 ±
3.9 mmHg (mean absolute error ± standard deviation of error)
and 2.5 ± 4.0 mmHg, respectively. We finally conclude that the
proposed end-to-end deep-learning-based NIBP estimation algo-
rithm from sequences of KSs is a novel technique that requires
modest preprocessing steps and can measure BP accurately.

Index Terms— Auscultatory noninvasive blood pressure (NIBP)
monitoring devices, combined convolutional neural networks
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(CNNs) and bidirectional long short-term memory recurrent
neural networks (LSTM-RNNs), deep-learning-based NIBP
estimation, Korotkoff sounds (KSs), noninvasive systolic and
diastolic BP (SBP and DBP) estimation.

I. INTRODUCTION

HYPERTENSION, the leading modifiable risk factor for
cardiovascular disease, affects more than one billion

people globally and kills 10.4 million people every year [1].
Hence, the management and treatment of hypertension, as a
significant global health burden, is now demanding concerted
action embracing basic science and clinical and social aspects.
In addressing the impact of hypertension across the life-course
of cardiovascular health, the Lancet Commission on Hyperten-
sion [2] has identified improved accuracy of blood pressure
(BP) measurement as one of the key actions, requesting
“better quality of BP measurement through endorsed protocols
and certified and validated BP monitors.”This has already
promoted action on understanding the current deficiencies in
BP measurement [3], [4] and unifying regulatory procedures
for device validation [5].

Continuous invasive BP is a very important vital sign
monitored during the management of critically ill patients.
To measure BP invasively, a catheter is inserted into the radial
artery, and as a result, it must be carried out by a skilled
clinician. Nevertheless, this still can put patients at different
risks such as ischemia, infection, and bleeding [6]. As a result,
noninvasive BP (NIBP) monitoring devices are now widely
used to measure BP. The accepted gold standard for NIBP
measurement is auscultatory sphygmomanometry [7], [8]
whereby a cuff is placed over the upper arm and inflated to
supra systolic BP (SBP) to ensure that the brachial artery is
fully occluded. A stethoscope placed under the occluding cuff
and over the brachial artery is used to detect the Korotkoff
sounds (KSs) during cuff deflation where systolic and diastolic
BP (DBP) correspond to the appearance and disappearance of
the KSs, respectively. However, this long-standing auscultatory
method is giving way to automated methods for NIBP mea-
surement using the oscillometric method [9], [10], where SBP
and DBP are determined by proprietary algorithms analyzing
the envelope of the cuff pressure oscillations during cuff
deflation, namely oscillometric waveform envelope (OWE).

The main focus of conventional oscillometric methods
has been on the OWE, and several conventional algorithms,
including the maximum amplitude algorithm (MAA) [11]
and the maximum/minimum slope algorithm (MMSA) [12],
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have been proposed to estimate SBP and DBP from OWE.
It was recently noted that the oscillometric pulses are also
very informative, and thus, efforts have been made to develop
algorithms to estimate SBP and DBP from the oscillometric
pulses. This approach estimates the NIBP values by modeling
the oscillometric pulses or by measuring and processing the
changes in oscillometric pulse morphology [13].

The majority of the proposed artificial intelligence (AI)-
based NIBP estimation algorithms in the literature use oscil-
lometric waveforms (OWs), and more specifically, they have
mimicked the classical MAA. In other words, these AI-based
algorithms estimate the ratios corresponding to SBP and
DBP using features extracted from OWE, and via different
AI-based algorithms, such as Gaussian mixture models
(GMMs) and Gaussian mixture regression (GMR), and deep-
learning regression methods [9]. Recently, different AI-based
NIBP estimation approaches have been developed in which
SBP and DBP are estimated using a classification problem
formed to classify feature vectors extracted from pulses of
oscillogram. Several AI-based classification methods were
used to estimate NIBP using oscillometric pulses. These
classification-based methods can be divided into two major
categories based on their ability to take into account the depen-
dencies between the neighboring pulses, for example, long
short-term memory recurrent neural networks (LSTM-RNNs)
[14] and hidden Markov models (HMMs) [15] versus
deep-belief-network deep-neural networks (DBN-DNNs)- and
feedforward neural networks (FFNNs)-based classification
models [16].

Cuff-less NIBP monitoring methods are beginning to
emerge as a popular modality for NIBP estimation. These
devices can be very useful for hypertension awareness, man-
agement, and control. However, there are currently serious
problems with the accuracy of cuff-less NIBP monitoring
devices, and the 2021 European Society of Hypertension
Guidelines on BP measurement do not recommend them for
clinical use [17].

A. Study Motivations

Oscillometric NIBP measurements are also generally con-
sidered less accurate than auscultatory measurements [18],
[19], and the oscillogram can be disturbed by cardiac arrhyth-
mia, frequently present in elderly patients aged >65 with
chronic conditions [20], [21]. To estimate NIBP directly
from KSs and further assess the accuracy of the mar-
keted oscillometric NIBP monitoring devices, a number of
smartphone-based kits have been introduced [22], [23]. On the
other hand, numerous studies have demonstrated that there
are significant differences between readings of different oper-
ators carrying out BP measurements using sphygmomanom-
etry [24], [25]. This indicates the necessity to develop
automated auscultatory techniques which are less operator-
dependent. The study in [26] proposed the so-called K2 algo-
rithm which, in fact, is a visual technique to estimate SBP
and DBP more accurately than the auscultation technique.
This is because the visual method can detect the appearance

and disappearance of K2 (higher frequency, that is, ≥20 Hz,
components of KSs) even if KSs are inaudible. The K2 method
eliminates the need for listening to KSs, which has been shown
to be dependent on the operator’s hearing acuity, the sensitivity
of the stethoscope, and the particular morphometry of the
signal. However, decisions still need to be made to determine
the onset and end of K2 sounds. This is not a straightforward
problem, and the K2 algorithm cannot be automated using
simple thresholding techniques, due to the presence of noise
in the digitized signal. So, the K2 algorithm at best is a
semiautomated algorithm and still requires human interven-
tion to detect the systolic and diastolic beats. A possible
solution is to use AI, and especially deep learning, methods.
AI-based methods proposed for NIBP estimation from KSs
can be summarized as: 1) methods that ignore the temporal
dependencies between the segments derived from KSs [27],
[28], [29] and classify each pulse independent of others; and
2) methods that consider the digitized KSs as time series and
estimate BP from sequences of KSs through dealing with
a sequence-to-sequence (seq-to-seq) classification problem
using classification algorithms, such as HMM [15], [30] and
LSTM-RNN [31].

B. Contributions to the Field

In this study, a novel end-to-end deep-learning-based tech-
nique was developed to accurately estimate NIBP from KSs,
which requires modest preprocessing and belongs to the latter
category discussed above. This approach converts the NIBP
estimation from the digitized KSs to a seq-to-seq classification
problem using two segmentation techniques that can segment
the KSs without having a parallel OW. This is unlike the exist-
ing methods proposed for forming seq-to-seq classification
problems [27], [30], [31] that require a parallel OW. Addi-
tionally, we developed and used a combination of convolu-
tional neural networks (CNNs) and bidirectional LSTM-RNNs
(BiLSTM-RNNs), namely CNN-BiLSTM-RNNs, to classify
segments derived via the segmentation techniques. This can
classify segments derived from KSs considering other (previ-
ous and future) segments, so can effectively deal with noise
in KSs which happens before systolic or after diastolic points.
This approach is also different from the current methods that
use manual feature extraction techniques (cf. [30], [31]) and
requires less preprocessing steps to process the raw KSs and
extract suitable inputs (features) for the seq-to-seq classifica-
tion algorithm.

II. METHODS

A. Validation Protocols and Gold Reference

A number of regulatory agencies and standards organi-
zations have introduced protocols for validation of NIBP
monitoring devices, such as the U.S. Association for the
Advancement of Medical Instrumentation (AAMI) [32], the
British Hypertension Society (BHS) [33], and the International
Organization for Standardization (ISO). A device passes the
ANSI/AAMI/ISO protocol introduced by the ANSI (American
National Standards Institute), the AAMI along with the ISO,
if the achieved absolute value of mean error (ME) and standard
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deviation of the error (SDE) over the dataset are, respectively,
≤5 and ≤8 mmHg. The BHS standard [33], on the other
hand, categorizes the NIBP monitoring devices based on the
percentages of the absolute values of the error being less
than 5, 10, and 15 mmHg. In 2018, a consensus docu-
ment was jointly published by all the standards bodies with
the intention of releasing a single AAMI/ESH/ISO standard
that will replace all other previous standards and protocols.
Based on this universal standard that is now available as
ISO 81 060-2:2018 [5], a device is acceptable if the error
of ≥85% of its estimations is less than or equal to a tolerable
value (10 mmHg).

Despite the differences between these protocols, a common
thread is the use of manual auscultatory sphygmomanometry
as the gold standard against which all automated NIBP devices
are calibrated and validated. However, numerous studies have
shown that the differences between measurements made by
different observers using sphygmomanometry can be sig-
nificant, especially for DBP determination [24]. The study
in [26] analyzed KSs in terms of the temporal and spectral
components and could detect three distinct phases (K1, K2,
and K3). It was also observed that the frequency spectrum
of the KSs contains higher frequencies (≥20 Hz) when the
K2 component is present. The study in [26] also found that
the appearance and disappearance of the K2 component are
closely correlated with the pulses associated with systolic and
diastolic pressures, respectively. This study further showed that
the so-called K2 algorithm [26], which, in fact, is a visual
technique, can estimate SBP and DBP more accurately than
the auscultation technique. This is because the visual method
can detect the appearance and disappearance of K2 even if
KSs are inaudible. It should be noted that it was also shown
in other studies [22], [23] that the NIBP estimates achieved
using a visual technique are not significantly different from
the ones achieved from the manual auscultation. In this study,
to provide SBP and DBP reference values for the proposed
supervised learning-based NIBP estimation method, we used
a visual technique.

B. Dataset

The database (Research Ethics Committee of UNSW, App-
roval Number: 12/11) used in this study comprises 350 NIBP
recordings collected via a single NIBP monitoring device
which is a multiparameter clinical monitoring unit (CMU)
from Telemedcare Pty Ltd. and has FDA approval. The CMU
is merely a data collection device and its function could
be replaced by a number of other devices. It is no longer
in production. We used the NIBP module in its normal
automated configuration. This module automatically inflates
the cuff to a preset pressure and further uses a servo control
to deflate the cuff at a rate of 2–3 mm per second. This
device records the cuff pressure, KSs, and oscillometric signals
internally between 0 and 5 V at 10-bit resolution and a
sampling rate of 500 samples s−1 and saves it as an XML
file. The methodology for collecting the data used in our
article has been extensively described in [24]. Each NIBP
recording contains the cuff pressure signal, the OW, and the

TABLE I

DETAILS OF PARTICIPANTS (n = 155)

corresponding digitized KSs. These samples were collected
from 155 participants (87 males). The maximum and the
minimum number of recordings per patient in this dataset
are 5 and 1, respectively. The details of participants are given
in Table I and can be found in [24].

C. Preprocessing

1) High-Pass Filtering: Consistent with the process
explained before for the determination of gold reference val-
ues, we high-pass filtered the KSs using a cut-off frequency
of 20 Hz.

2) Root-Mean-Square Energy Calculation: The root mean
square (rms) energy (RMSEn) corresponding to each KS
signal was also calculated by applying a zero-phase moving
average digital filter (using a Hamming window of 100 ms)
to the filtered KSs. RMSEn was used in [24] as a measure of
background noise and further to improve the signal-to-noise
ratio of KSs. In this study, the peak locations of the RMSEn
signals were detected and used as the center points around
which fixed-length segments were located; see the second
segmentation technique below.

3) Normalization of the KS and RMSEn Signals: Each
high-pass-filtered KS signal was then standardized, that is,
zi = (xi − x̄/SDxi ), where xi is the i th KS sequence, x̄ is
its mean value, SDxi denotes its standard deviation, and the
corresponding RMSEn was normalized to [0, 1].

D. Segmentation of the Standardized KS Signals

As shown in Fig. 1, to form the inputs to the deep-learning-
based seq-to-seq classification algorithm (elaborated in the
following of this section), the processed KSs were segmented
using the following two methods.

1) The well-known sliding segmentation technique with
or without overlap between segments [34], hereinafter
called the first segmentation method.

2) The segments were centered with points that were
detected with Algorithm 1 that estimates the cardiac
period from the RMSEn signal and subsequently deter-
mines the center points around which fixed length
segments were located, hereinafter called the second
segmentation method. Note that f ind Peak(·, ·, ·) in
Algorithm 1 is a subroutine that receives a signal, that
is, RMSEn, and two thresholds, that is, α = 0.5 and
β = 200, and returns the indices of the peaks with a
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Algorithm 1 Cardiac Period Estimation and Center Determination for the Second Segmentation Method
Input: RMSEn, root mean squared energy of the Korotkoff sound waveform
Output: CenterLocations, center points for the second segmentation technique

Initialization:
1: α← 0.5, β ← 200, i ← 1, j ← 1, WindowSi ze← 501
2: PeakIndices← f ind Peak(RMSEn, α, β)
3: MaxPeakIndex← f ind Max(RMSEn)
4: CardiacPeriod ← PeakIndices[2:end]-PeakIndices[1:end-1]
5: MedianCardiacPeriod← median(CardiacPeriod)
6: CenterLocationsRight(i )← MaxPeakIndex + MedianCardiacPeriod
7: i ← i + 1
8: CenterLocationsLeft( j )← MaxPeakIndex − MedianCardiacPeriod
9: j ← j + 1

LOOP Process 1
10: while (MaxPeakIndex + i × MedianCardiacPeriod) < (length(RMSEn) −�WindowSize

2 �) do
11: CenterLocationsRight(i )← MaxPeakIndex + i × MedianCardiacPeriod
12: i ← i + 1
13: end while

LOOP Process 2
14: while (MaxPeakIndex − j × MedianCardiacPeriod) > �WindowSize

2 � do
15: CenterLocationsLeft( j )← MaxPeakIndex − j × MedianCardiacPeriod
16: j ← j + 1
17: end while
18: CenterLocations← concatenate(CenterLocationsLeft, MaxPeakIndex, CenterLocationsRight)
19: return CenterLocations

Fig. 1. Illustration of the proposed approach. Different signal segmenta-
tion methods were used to segment the high-frequency KSs, the proposed
CNN-BiLSTM network to classify each segment and the method to estimate
systolic and diastolic pressures through mapping the detected switching points
in the detected label sequence to the corresponding cuff pressure curve.

minimum height of α and minimum distance of β sam-
ples. Also, f ind Max(·) is a subroutine that receives a
signal and returns the location (index) of its maximum
value.

Fig. 2. Forming the input and output sequences using the segmented data.

E. Forming a Seq-to-Seq Classification Problem

Each segment derived from every KS sequence was labeled
as: 1) after-systolic and before-diastolic (AB) and 2) before-
systolic or after-diastolic (BA). Defining BA = 1 and AB = 2,
the output target for the i th segment can be written as
yi ∈ {1, 2}. Let us assume that the j th segmented KS
sequence consists of n j segments. The target sequence for
this sample can then be represented as Y j = [y1, y2, . . . , yn j ].
Using the segments obtained from the KSs, we form the
inputs (sequences of segments from the KSs) for the deep-
learning model; Fig. 2 visualizes this. Having the sequences of
segments derived from KSs and the corresponding target label
sequences, as the first step to estimate SBP and DBP from KSs,
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we formed a seq-to-seq classification problem which was
dealt with the devised CNN-BiLSTM-RNN model explained
in what follows in this section. It should be noted that the SBP
and DBP were found from the sequences of labels as follows.

F. BP Estimation From Sequence of Labels

To estimate SBP and DBP from the sequence of labels,
we first identified the segments at which the output target
sequence, detected via the proposed deep-learning method,
switches from class BA to class AB, and later from class
AB to class BA. The SBP and DBP were then obtained
as the CP values associated with the center point of the
switching segments. In other words, we found the SBP and
DBP by mapping the center point of the switching segments
to the deflation curve associated with the collected KSs.
Fig. 1 illustrates the diagram of the developed AI-based NIBP
estimation method.

G. Network Architecture Used to Solve the Seq-to-Seq
Classification Problem

This article proposes a new end-to-end DNN classification
model for BP estimation from sequences of KSs. This model
comprises both recurrent and convolutional layers. The con-
volutional layers were used to extract features from signal
segments, and the recurrent (BiLSTM) layers were used to
model the temporal dynamics in the feature maps.

A feature map using a 1-D convolution operation can be
formulated as

x (l+1)
m (τ ) = ELU

�
bl

m +
Sl�

i=1

K l
mi (τ ) ∗ xl

i (τ )

�

= ELU

⎛
⎝bl

m +
Sl�

i=1

Ql�
q=1

K l
mi (q)xl

i (τ − q)

⎞
⎠ (1)

where xl
m , Sl , bl

m , and Ql denote the feature map m, the
number of feature maps, the bias, and the length of kernels,
respectively, in the lth layer. Additionally, K l

mi represents the
kernel convolved over the feature map i in the lth layer to
generate the feature map m in the layer l+ 1 and ELU means
exponential linear unit which computes the function

f (x) =
	

x, x > 0

α(ex − 1), x ≤ 0
(2)

where α > 0 is the scale for the negative factor, and in this
study, was set to 1. The stride length used here is 1, that is,
the kernels were always shifted by one sample.

Features extracted using CNN layers are passed to bidirec-
tional LSTM-RNNs (BiLSTM-RNNs) [35], which can process
the data sequence in both forward and backward directions
using two separate recurrent layers. These layers are then
merged into the same output layer, that is,

h f
t = H



xt , h f

t−1, W f
�

hb
t = H

�
xt , hb

t−1, W b


(3)

where hb
t and h f

t denote the backward and forward hidden
states, respectively, W b and W f represent the corresponding

weights, and H (·, ·, ·) refers to the LSTM unit formula-
tion [36]. The output of the hidden layer of a BiLSTM-
RNN, h, is achieved by concatenating the two unidirectional
LSTM layers’ outputs as ht = concat(h f

t , hb
t ). The output

probabilities ŷ are obtained as

ŷt = σ(bt +Wzht ). (4)

In this study, for training the proposed deep-learning-based
model, we used the back-propagation algorithm to minimize
the cross-entropy below

J = −
�Nm

i=1

�Tk

t=1
yt(log ŷt(W, b))+ γ 	ξ	 (5)

where ŷt(W, b) and yt are the predicted probability of the
output and the target output, respectively, corresponding to
the input xt , and Nm denotes the mini-batch size. In the above
index function, 	·	 denotes the L2 norm and ξ represents the
model parameters, and γ is the penalty coefficient. Besides,
Tk represents the length of zero-padded sequences in the kth
mini-batch. Note that k = 1, . . . , (Ntr /Nm), where Ntr repre-
sents the training data size.

In this study, we used a fivefold cross-validation method,
that is, the dataset was randomly split into five subsets
each of which included 70 samples, and in each run, four
subsets were used for training the deep-learning model, and
a subset was used as the test dataset. Although the number
of features extracted from each segment using the CNN is
identical for each sample, the number of segments derived
from different KS samples and thus the lengths of the resulting
input sequences would not be fixed. Therefore, as the input
to the devised network must be a tensor with fixed dimen-
sions, we divided the training data into a number of subsets
(mini-batches) and further post zero-padded the sequences
within each mini-batch (see Fig. 2). Furthermore, if samples
in a mini-batch have very different lengths, the zero-padding
required to make their lengths identical can have a negative
impact on the model performance. To overcome this, in this
study, it was attempted to accumulate the sequences with a
relatively similar length in a mini-batch. To this end, we sorted
the training samples (i.e., Ntr = 280) based on their size and
divided them into subsets of size Nm = 10 (i.e., mini-batch
size was 10) to ensure that the sequences in each mini-batch
were of the relatively similar length and thus the zero-padding
used to make their length identical was modest. The so-called
masking technique [37] was also used to ignore the padded
time steps during the loss calculations.

The structure of the developed CNN-BiLSTM model is
depicted in Figs. 1 and 3. As it is shown in Fig. 3, the
first layer in the proposed CNN is a special layer obtained
by concatenating three convolution layers with kernel sizes
of 3, 4, and 5, each of which included three kernels. The
kernel size of the following convolutional layers is 3. The
number of kernels in the first three convolutional layers after
the depth concatenation layer and the rest of the layers
is 12 and 24, respectively. Moreover, there are skip architec-
tures in the proposed network. In Block A, a global pooling
strategy is obtained by subtracting the output of global-
average-pooling (taking the average value per features map)
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TABLE II

HYPERPARAMETERS OF THE DEVISED CNN-BILSTM

Fig. 3. Proposed CNN architecture for feature extraction from segments
of KSs.

from the output of global-max-pooling (taking the maximum
per features map). To prevent overfitting, dropout layers with
a rate of 0.1 (i.e., at each update of the training phase 10% of
the outgoing edges of hidden units are randomly set to 0) are
also used in this structure.

III. RESULTS

The results reported here are the average of the five values
yielded from five different test sample sets. We tuned the
hyperparameters of the devised CNN-BiLSTM using extensive
experiments on 80% of the NIBP samples and validated on the
remaining 20% of samples, as shown in Table II. Hence, the
sensitivity of the achieved results to the tuned hyperparameters
is modest.

In this study, we tested ten different models that used
CNN architecture in Fig. 3 for feature extraction, with the
structures/parameters presented in Table III. Table IV presents
the results obtained from different models using different
segmentation methods.

As highlighted in Table IV, the best results were achieved
by the proposed CNN-BiLSTM model using the second seg-
mentation technique that provided sequences of segments with
a length of 501 samples to the DL model. Besides, among the
models trained on the sequences of segments generated by
the first segmentation technique, that is, the sliding window
technique, Model 6, which used sequences of segments with

TABLE III

STRUCTURE OF DIFFERENT CONVOLUTIONAL NEURAL
NETWORK-BASED MODELS TESTED IN THIS STUDY

a length of 250 samples with an overlap of 100 achieved the
best results.

To check that the results achieved by the fivefold cross-
validation scheme will generalize to independent datasets,
another cross-validation scheme was used as well; leave-one-
fifth-of-subjects-out CV (LOFOSOCV). This CV scheme was
used to check that the achieved results are subject-independent
and was carried out by keeping all the samples from 20% of
subjects for validation and using the rest for training. As seen
from Table IV, the achieved results by these two CV schemes
are very close to the ones achieved by the fivefold CV scheme.

Table IV further presents the results achieved by the unidi-
rectional LSTM network and beat-by-beat time-domain hand-
crafted features proposed in [31].

IV. DISCUSSION

As evident from Table IV, Model 1, that is, a CNN-BiLSTM
model trained by segments of KSs obtained by the second pro-
posed segmentation technique, which requires the estimation
of the cardiac period, achieves the best results. Table IV further
reveals that, among the models using inputs derived from
the sliding segmentation technique with or without overlap,
Model 6, that is, a CNN-BilSTM network trained by inputs
from a sliding segmentation technique with a window width of
250 samples and an overlap of 100 samples, achieved the best
results. While this model gave relatively less accurate results
in regard to mean absolute error (MAE) and SDE compared
to Model 1, an advantage of this approach is that it does not
require the estimation of the cardiac period. It can also be
seen from Table IV that on average the absolute error of SBP
estimation using Model 6 in 91% of cases was ≤5 mmHg,
while Model 1 only in 86.7% of cases could estimate SBP
with an absolute error of ≤5 mmHg. On the other hand,
the absolute error of 2.5% of the SBP estimates was more
than 15 mmHg with Model 6, while this rate was about 1.7%
with Model 1. This can explain why the SDE and MAE
achieved by Model 6 were relatively higher than Model 1.
Furthermore, as seen, by reducing the sliding window’s width
down to 250 samples, the accuracy of the seq-to-seq deep-
learning-based method developed for BP estimation increases.
It is also noted that a window width of 150 samples could



ARGHA et al.: BP ESTIMATION FROM KS SIGNALS USING END-TO-END DEEP-LEARNING-BASED ALGORITHM 4010110

TABLE IV

RESULTS ACHIEVED BY DIFFERENT DEEP-LEARNING-BASED MODELS, WITH THE DETAILS GIVEN IN TABLE III, EXAMINED FOR SYSTOLIC
AND DIASTOLIC BLOOD PRESSURE ESTIMATION FROM KS SEQUENCES. BOLD ENTRIES INDICATE THE BEST ACHIEVED RESULTS

not achieve a good result. This can be explained by the fact
that a small window width may not cover the gap between
two consecutive pulses even when a sliding window with
overlap segmentation was used, and as a result, the continuity
of the resulting input sequence cannot be guaranteed for KSs
collected during very low heart rates.

The results reported in Table IV also demonstrate that, for
DBP estimation, all the models tested could provide a Grade
A performance (BHS protocol) and could meet the AAMI
protocol, except Model 10 in which the BiLSTM layer was
replaced with a dense layer. For SBP estimation, only the
networks with a BiLSTM layer resulted in a BHS Grade A
and provided acceptable results based on the AAMI protocol.
It should be highlighted that the models using unidirectional
LSTM layers could not provide a BHS Grade A for SBP
estimation or equivalently could not estimate SBP accurately.
The low accuracy of the models without the BiLSTM layer
can be explained by the fact that these models are unable
to detect the segment associated with the systolic pressure
in the presence of noise in the presystolic phase, as an

unidirectional LSTM layer does not have access to the future
information and hence cannot avoid misclassification of a
noise as a KS. The achieved results further highlight the
fact that the most accurate results could be achieved by the
models that (1) assume that the segments derived from KSs
are temporally dependent and take into account these temporal
dependencies when classifying a segment, and additionally
(2) use both future and past information of the segment
sequences achieved from segmentation of KSs to detect the
segments associated with SBP and DBP. It should also be
noted that the output layer of the networks with the BiLSTM
layer receives both the future and past information for every
segment and more importantly, the inputs are not displaced
from their relevant targets. Hence, these models can detect the
segments associated with the SBP and DBP more accurately
when the collected KS signals are noisy.

Bland–Altman plots [41] in Fig. 4 compare the best results
achieved by the developed CNN-BiLSTM-RNN (Model 1)
with the reference values. These plots show the results
achieved on the five test subsets. It is evident from these
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Fig. 4. Bland–Altman plots comparing the output of Model 1, a CNN-BiLSTM-RNN model trained by segments of KSs obtained by the second proposed
segmentation technique which requires the estimation of the cardiac period, versus gold reference values for (a) systolic and (b) diastolic BPs.

Bland–Altman plots that the proposed method can accu-
rately estimate SBP and DBP, as most black squares are
within the dotted horizontal lines (i.e., limits of agreement:
ME ± 1.96 × SDE).

The current data-driven-based methods for BP estimation
from KSs suffer from two major problems. First, algorithms
that classify every segment derived from KSs independent of
other segments, ignore the temporal dependencies between
segments obtained from KSs (cf., [27]). Second, algorithms
that use unidirectional LSTM-RNNs [31] or other models that
can be used for seq-to-seq classification problems, for exam-
ple, GMM-HMMs [30], can only label each feature vector
extracted from a segment based on the previous information.
Hence, they cannot deal with noise in KSs that happens before
the systolic point.

Another limitation of the current data-driven-based methods
introduced for NIBP estimation from KSs is that, in these
methods, the segmentation of the KSs requires that a parallel
OW is present. Specifically, to carry out the segmentation
of KSs, the location of each oscillometric peak is used as the
center point for each segment (cf. [27], [37]). In this study,
we alternatively developed and used two more advanced seg-
mentation techniques that can segment the KSs without OWs.
This further eliminates the need for the preprocessing step
required to find the location of oscillometric peaks. Further-
more, in this study, we developed a CNN with a special struc-
ture trained to extract optimal features from segments of KSs.
This approach is quite different from the current methods that
use manual feature extraction techniques (cf. [30], [31]) and
requires less preprocessing steps to process the raw data and
provide suitable inputs for the classification algorithm.

While oscillometric methods are now the most popular
NIBP means of estimating SBP and DBP, all these methods are
calibrated using the auscultatory method and KSs as set by the
international standards bodies (AAMI/ESH/ISO). Improving
the accuracy of Korotkoff-based methods will thus have an
impact on the performance of all NIBP devices. It was shown
in [24] and [25] that the manual auscultatory technique can be
inaccurate due to several reasons such as the hearing acuity of

the observer, the sensitivity of the stethoscope employed, the
morphology and intensity of the KS, the patient’s anatomy, and
the indistinct or unclear KSs at systolic and diastolic points.
The end-to-end deep-learning-based NIBP estimation method
developed in this study can overcome these drawbacks and
estimate BP more accurately, as it processes the digitized KSs
rather than auscultation of KSs and thus can 1) detect indistinct
KSs at SBP and DBP and 2) recognize the difference between
a real KS and noise.

As shown in [42], the highest frequency component of
KSs can be close to 400 Hz but with very low energy.
However, phases I and IV (and V), corresponding to systolic
and diastolic beats, respectively, are related to the appearance
and disappearance of the high-frequency component, namely
K2 [26], have frequencies less than 250 and 100 Hz, respec-
tively. Although the transducer used in this study to record
KSs did not have a wide frequency response similar to the
one used in [26], its frequency response was sufficient for
the detection of systolic and diastolic beats. The high-pass
filter (≥20 Hz) we used removed low-frequency components,
namely K1 and K3, and although the remaining signal did not
exactly resemble K2 component of KSs, it was sufficient for
the goal of this study.

The total number of trainable parameters in the proposed
model (with a segment length of 501 samples) is 67 549. Also,
we used an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz
to train the model. The trained deep-learning model can
be run on microcontrollers or microcomputers, and we are
currently developing an AI-based NIBP monitoring device
using microcontrollers. A provisional patent (P0027996AU)
has been granted to facilitate the development of new NIBP
devices based on these and other developments.

Existing protocols for assessment of the accuracy of NIBP
monitors exclude people with atrial fibrillation, except in
certain circumstances [43]. Moreover, when a cardiac arrhyth-
mia is present, current guidelines for hypertension diagnosis
advise manual auscultatory NIBP measurement with repeated
measurements to compensate for the increased beat-to-beat
NIBP variability. On the other hand, the promoted method for
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hypertension diagnosis is at-home NIBP monitoring that
essentially requires automated devices [44]. Nevertheless,
as shown by few studies undertaken on the accuracy of
automated NIBP measurement in the presence of atrial fib-
rillation, none of the marketed oscillometric NIBP monitors
is in full accordance with the current protocols [45]. As the
developed deep-learning-based NIBP measurement technique
in this study uses KSs as input, it can be an alternative
algorithm for the development of automated NIBP monitoring
devices that can be used in arrhythmia. The validation of the
accuracy of the proposed method in the presence of arrhythmia
will be the subject of our future work.

A. Study Limitations

In this study, we used a dataset of 350 NIBP recordings
collected from a diverse population, following the recommen-
dations of the standards bodies. However, more recordings
from a more diverse population can make it possible to develop
a more generalizable model. We also emphasized in a review
paper [9] that “along with the development of novel AI-based
methods for accurate NIBP estimation, future research needs
to focus on validating and comparing existing models, using
a unique large dataset with different invasive BP and NIBP
samples with and without abnormalities such as measurement
noise, cardiac arrhythmia, or signal artifact, so that the advan-
tages and disadvantages of these models can be investigated.
This makes it possible to check whether the existing models
are sufficient or novel AI-based (deep learning) models should
still be developed to achieve better results.”

V. CONCLUSION

This study was devoted to the development of an end-to-
end deep-learning-based algorithm for NIBP estimation from
the sequences of KSs. Different from the current methods,
to estimate NIBP from KSs, first, a seq-to-seq classification
problem was formed, and a deep-learning-based algorithm was
then developed to deal with this problem. The systolic and
diastolic pressures were subsequently estimated by projecting
the center of segments at which the detected label sequence
changes from one class to another class, that is, before systolic
or after diastolic to after systolic and before diastolic, and
vice versa, to the corresponding cuff pressure curve. To the
best of the authors’ knowledge, this is the first end-to-end
deep-learning-based algorithm developed for NIBP estimation
from KSs. The proposed classification method is able to extract
features from segments of KSs, achieved by segmentation of
the KSs, without external intervention, and furthermore, unlike
the existing methods, is capable of using both past and future
context, thereby dealing with noise in the digitized KSs. The
trained model can be ported into a portable NIBP monitor that
is able to record KSs and can give highly accurate estimates
of SBP and DBP.
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