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SUMMARY
Peripheral neuroblastic tumors (PNTs) represent a spectrum of neural-crest-derived tumors, including neu-
roblastoma, ganglioneuroblastoma, and ganglioneuroma. Malignant cells in PNTs are theorized to intercon-
vert between adrenergic/noradrenergic and mesenchymal/neural crest cell states. Here, single-cell RNA-
sequencing analysis of 10 PNTs demonstrates extensive transcriptomic heterogeneity. Trajectory modeling
suggests that malignant neuroblasts move between adrenergic and mesenchymal cell states via an interme-
diate state that we term ‘‘transitional.’’ Transitional cells express programs linked to a sympathoadrenal
development and aggressive tumor phenotypes such as rapid proliferation and tumor dissemination. Among
primary bulk tumor patient cohorts, high expression of the transitional gene signature is predictive of poor
prognosis compared with adrenergic and mesenchymal expression patterns. High transitional gene expres-
sion in neuroblastoma cell lines identifies a similar transitional H3K27-acetylation super-enhancer landscape.
Collectively, our study supports the concept that PNTs have phenotypic plasticity and uncovers potential
biomarkers and therapeutic targets.
INTRODUCTION

Peripheral neuroblastic tumors (PNTs) represent a spectrum of

tumors derived from the neural crest and account up to 8%–

10% of all pediatric malignancies. A salient feature of PNTs is

a heterogeneous clinical course ranging from spontaneous

regression to persistent disease progression (Matthay et al.,

2016). Histologically, PNTs comprise four variants: neuroblas-

toma, ganglioneuroblastoma nodular (GNBn), ganglioneuroblas-

toma intermixed (GNBi), and ganglioneuroma (GN) (Matthay

et al., 2016). GN and GNBi are low grade in nature and usually

curable by surgical resection alone (De Bernardi et al., 2008).

In contrast, the most common subtype, neuroblastoma, is often

lethal. Despite intensive treatments, the long-term survival of

high-risk neuroblastoma is less than 50% (Pinto et al., 2015).
This is an open access article under the CC BY-N
Around half of high-risk patients relapse after initial treatment

response, and salvage therapies for relapsed patients are rarely

effective (Matthay et al., 2016). Moreover, genomics studies

comparing longitudinal samples from the same patient show

that clonal evolution is a prominent feature of disease progres-

sion (Schramm et al., 2015; Eleveld et al., 2015; Padovan-Merhar

et al., 2016). Therefore, a better understanding of tumor hetero-

geneity will be required to improve therapy for patients.

Recent single-cell studies in neuroblastoma have elegantly

characterized malignant cells of neuroblastoma tumors in terms

of normal cell counterparts of the sympathoadrenal develop-

ment, in particular, aiming to provide insight to a neuroblastoma

cell of origin (Bedoya-Reina et al., 2021; Kameneva et al., 2021;

Jansky et al., 2021; Kildisiute et al., 2021; Hanemaaijer et al.,

2021; Dong et al., 2020). Interestingly, these studies have not
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Figure 1. scRNA-seq of peripheral neuroblastic tumors

(A) Representative hematoxylin and eosin (H&E) staining in neuroblastoma (n = 5), GNB (n = 4), and ganglioneuroma (n = 1) tumor samples. Scale bar: 20 mm.

(B) Uniform manifold approximation and projection (UMAP) plots of 5,301 cells from 10 tumor samples colored by original sample.

(C) UMAP plots of 5,301 cells from 10 tumor samples colored by transcriptomic cluster.

(D) Left: UMAP plots of 5,301 cells classified by preliminary cell type based on marker gene expression from Figure 1E. Right: proportion of preliminary cell types

within each sample.

(E) UMAP plots of 5,301 cells from all 10 tumor samples showing expression of marker gene signatures (blue, low; dark red, high). Arrows indicate regions of high

expression.

(F) Heatmap of copy number variations (CNVs) in the NB2 sample for individual cells (rows), visualized by a rolling gene expression average centered on 100 gene

windows at each chromosomal position (columns). Dark red, copy number gains; blue, copy number losses.

(G) Left: two-component Gaussianmixturemodels (GMMs) for NB2Ch17 region. GMMcomponents are shown in different colors and overlaid on a density plot of

100-gene rolling average expression. Right: scatterplot visualization 100-gene rolling average expression for each cell. Malignant cells, red; non-malignant cells,

gray.

(legend continued on next page)

2 Cell Reports 41, 111455, October 4, 2022

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
entirely agreed on their description of cell types in neuroblas-

toma, which has most likely arisen due to disparate use of cell

type markers and variable methods of cell type annotation or

technologies/samples used (Ponzoni et al., 2022). Nevertheless,

these studies generally have a consensus that the majority of

neuroblastoma cells appear to have a developmental origin

similar to committed sympathoadrenal cell types such as sym-

pathoblasts or chromaffin cells (Ponzoni et al., 2022). There are

observations, though, that link to less differentiated cell types

such as undifferentiated chromaffin or sympathoblast subtypes,

as well as more immature cells of neural crest development with

mesenchymal-like features such as Schwann cell precursors,

and so-called bridge cells (Bedoya-Reina et al., 2021; Kameneva

et al., 2021; Jansky et al., 2021; Kildisiute et al., 2021; Hane-

maaijer et al., 2021; Dong et al., 2020; Ponzoni et al., 2022).

Moreover, a recent article suggested that high-risk neuroblas-

toma may arise within postnatal cholinergic progenitors, poten-

tially explaining the long-recognized disparity between neuro-

blastoma in older (>18 months) and younger individuals

(<18 months) in terms of genetic features and their long-term

prognosis (Bedoya-Reina et al., 2021). Collectively, while

creating valuable insights into the developmental origins of neu-

roblastoma, the variable interpretations from these studies also

highlight the challenges associated with malignant cell type clas-

sification using normal cell counterparts as a reference.

Another feature of recent single-cell studies in neuroblastoma

is that malignant cell types likely represent a continuum of differ-

entiation intermediates rather than discrete classes and highlight

potential for neuroblastoma cell plasticity. Variable cell pheno-

types may arise due to a unique cell of origin in different tumors,

processes of dedifferentiation driven by genetic alteration in tu-

mor cells or using mechanisms akin to noradrenergic to mesen-

chymal transition or vice versa based on environmental expo-

sure (Ponzoni et al., 2022; Gautier et al., 2021). Importantly,

emerging evidence proposes that spontaneous tumor plasticity

is readily observed in neuroblastoma cells and that cell identity

can be reprogrammedwith lineage-associated transcription fac-

tors PHOX2B, PRRX1, ASCL1, and NOTCH3 (van Groningen

et al., 2017, 2019; Boeva et al., 2017; Wang et al., 2019). These

studies conjointly suggest that neuroblastoma is composed of

transdifferentiating malignant cells, for which unique core-regu-

latory transcription factor circuits control distinct epigenetic and

transcriptomic landscapes. In these studies, tumors and neuro-

blastoma cell lines were subtyped according to a two-group

classification conforming to an adrenergic/noradrenergic state

or a mesenchymal/neural crest cell state. Importantly, cell state

was seen to be relevant for therapeutic efficacy, with mesen-

chymal neuroblastic cells more resistant to conventional anti-

cancer therapies and enriched in relapsed tumors (van Gronin-

gen et al., 2017; Gartlgruber et al., 2021;Westerhout et al., 2022).
(H) Representative images for fluorescence in situ hybridization (FISH) of NB2 Ch1

TP53 on Ch17 p arm (green).

(I) UMAP plot of 5,301 cells colored by CNV classification. Confident CNV inferen

validated CNVs were used.

(J) Proportion of cells within each cluster based on CNV classification. Clusters 1

(K) UMAP plots showing preliminary cell type classification of left, malignant cell

(L) UMAP plots showing original sample identity of left, malignant cells (n = 2,30
Considering the variable interpretations from single-cell

studies with respect to neuroblastoma cell of origin and cell

identity (Ponzoni et al., 2022), here we present an alternative

single-cell RNA sequencing (scRNA-seq)-based classification

approach for primary neuroblastoma that does not utilize a

normal adrenal cell reference to supervise annotation. Our

focus is to describe malignant cells in terms of an observed

transdifferentiation spectrum between adrenergic and mesen-

chymal cell types. For this, we conducted modified Smart-

seq2-based scRNA-seq on more than 5,301 cells of fresh, sur-

gically resected tissues from 10 PNT patients, which spanned

all histological variants, including five neuroblastoma, two

GNBn, two GNBi, and one GN lesion. Cell type abundance of

PNT microenvironments differs between neuroblastoma and

other PNT subtypes. Moreover, our results suggest that malig-

nant neuroblasts can exist as an intermediate between adren-

ergic and mesenchymal transcriptional states via a previously

undescribed transitional population. Transitional neuroblasts

have an aggressive neurodevelopmental phenotype not

ascribed as a particular feature of the sympathetic of chro-

maffin lineage, and are similar to highly proliferative, dissemi-

nated tumor cells. Finally, we found that transitional gene

expression signatures predict poorer patient prognosis in large

cohorts of neuroblastoma.

RESULTS

Single-cell transcriptomics analysis of PNTs
We conducted scRNA-seq using a modified 30 unique molec-

ular identifier (UMI) based version of the Smart-seq2 protocol

(Picelli et al., 2014) on 10 PNTs (Figure S1A). We used viable

single cells (DRAQ5+/Calcein Blue+) derived from five neuro-

blastomas, four ganglioneuroblastomas (GNBs), and one GN

(Figure S1B). Samples were acquired from surgical resection

and had a range of clinical and histological features (Figure 1A

and Table S1). We used quality control measures, such as the

number of detected genes/cell (500 > n > 750,000 UMI per

cell, 500 < 3 < 9,500 unique genes per cell, where a given

gene had to be expressed in at least three cells), proportion

of mitochondrial gene counts per cell (<0.15), and proportion

of ribosomal gene counts per cell (<0.3), to filter out poor-qual-

ity cells (Figures S1C–S1G). Following quality control, the me-

dian read depth was 27,228 UMIs per cell with 1,568 unique

genes detected per cell (Figures S1D and S1E). Ultimately,

we yielded 5,301 high-quality single-cell transcriptomes for

downstream analysis across the 10 PNTs (range, 49–892 sin-

gle cells per tumor). Using 4,000 highly variable genes, we im-

plemented principal-component analysis (PCA) and selected

the top 12 principal components for graph-based cell clus-

tering (Figures S1H and S1I). This analysis identified 19 distinct
7 copy number gain. Probes for MPO gene onCh17 q-arm (red) compared with

ces were made for cells with a posterior probability >0.75 of CNV. Only FISH-

, 15, 10, 6, 8, 2, and 7 were considered to be malignant.

s (n = 2,307), or right, non-malignant cells (n = 2,994).

7), or right, non-malignant cells (n = 2,994).
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clusters (clusters 0–18), which were projected by uniform

manifold approximation and projection (UMAP) (Figures 1B

and 1C).

To assign each cluster to a cell phenotype, we undertook a

preliminary sub-classification that considers differential expres-

sion and the expression of marker genes for major cell lineages

(Figures 1D, 1E, S1J, and S1K). Established markers were used

for these assignments, with the cycling cluster annotated based

on high expression of a cell cycle gene set (Tirosh et al., 2016).

Based on these cell type assignments, the proportion of cell

types within individual tumors differed markedly (Figure 1D).

Notably, most clusters conformed to broad lineage classifica-

tions that would be expected to occur in PNTs (Boeva et al.,

2017; van Groningen et al., 2017; Pezzolo et al., 2007, 2011;

Zeine et al., 2009; Asgharzadeh et al., 2012; Mina et al., 2015;

Pelizzo et al., 2018), such as sympathoadrenal, cycling, immune,

mesenchymal, endothelial, and adrenal cell types (Figures 1D

and 1E).
Identification of malignant neuroblasts by copy number
variation inference
With the knowledge that malignant cells in neuroblastic tumors

can exist in multiple differentiated forms (Boeva et al., 2017;

van Groningen et al., 2017; Bedoya-Reina et al., 2021; Kame-

neva et al., 2021; Jansky et al., 2021; Kildisiute et al., 2021;

Dong et al., 2020), classification of malignant cells using gene

expression alone may be inaccurate. We therefore aimed to

distinguish malignant cells from non-malignant cells using

copy-number analysis in single-cell RNA-sequencing (CONICS)

copy number estimation as an additional method of classifica-

tion (Muller et al., 2018). This technique uses the expression of

a sliding window of 100 genes across each chromosome to infer

copy number variations (CNVs), so that malignant cells with

greater copy number instability can be identified (Figures 1F

and S1L). Two-component Gaussian mixture models were

calculated to identify single-cell copy number estimations for

various regions of the genome, using the cells of each tumor

(for example, Figure 1G; Table S2). We verified predicted CNVs

in samples by fluorescence in situ hybridization (FISH)

(Figures 1H and S1M; Table S2). Individual cell CNV status was

calculated on the posterior probability that a cell belonged to

the predicted CNV for these FISH-validated regions. Projection

of inferred CNVs on the transcriptomic UMAP plot showed that

the CNV distribution was non-random and localized to specific

clusters of cells (Figures 1I and 1J). Using these inferred CNVs,

we therefore concluded that transcriptomic clusters (1, 2, 6, 7,

8, 10, and 15) corresponding to sympathoadrenal, cycling, and

somemesenchymal clusters were malignant cells, while all other

cells were considered non-malignant (Figures 1J and 1K). After

splitting the cells into malignant (n = 2,307) and non-malignant

(n = 2,994) groups, UMAP projection of malignant cells sepa-

rated mostly into distinct subpopulations associated with indi-

vidual patient tumors, suggesting pronounced intertumoral het-

erogeneity among cancer cells (Figure 1L, left panel). In

contrast, non-malignant cells tended to cluster independent of

tumor origin (Figure 1L, right panel), consistent with previous re-

ports showing non-malignant cells cluster by cell type rather
4 Cell Reports 41, 111455, October 4, 2022
than the tumor that they derive from (Puram et al., 2017; Tirosh

et al., 2016).

Neuroblastomas and GNBs have distinct tumor
microenvironmental cell types
Next, we examined gene expression characteristics of cells in

the PNT microenvironment. In this cohort, the proportion of infil-

trating immune cells showed a trend that indicated it was higher

in the GNB and GN tumors compared with the five neuroblas-

toma samples, although significant variation existed even within

each histological subtype (Figure 2A). When we excluded malig-

nant cells and interrogated cell type abundance in each tumor as

a proportion of all non-malignant cells, we found 12 distinct cell

clusters (Figure 2B). Based on differential expression analysis

and knownmarkers of cell type, we then classified cells into sub-

types, and found thatmain clusters conformed to recognized cell

types from the immune, adrenal, fibroblast, smooth muscle, or

endothelial lineages (Figures 2C, 2D, and S2A–S2C). When

comparing the relative abundance of different cell types, most

of the neuroblastomas showed a trend that indicated they had

fewer total infiltrating T cells, including cytotoxic T cells

(measured by CD8 and presence of cytolytic effector genes)

than the non-neuroblastoma samples (Figures 2D, S2B, and

S2C, upper panels). Consistent with these findings, immunohis-

tochemistry of tissue sections from each of the 10 tumors

showed that pan-T (CD3)-positive cells were more abundant in

GNB2, GNB3, and GN samples than most neuroblastomas (Fig-

ure S2D). Evaluation of other cell types revealed that the majority

of neuroblastoma samples had more macrophages, including

non-inflammatory macrophages, with increased expression of

the M2-polarization marker CD163 (Figures 2D, S2B, and S2C,

lower panels). Our analysis of the cellular makeup of the tumor

microenvironment (TME) showed a trend of increased T cell infil-

tration in GNBs and increased macrophage infiltration in neuro-

blastoma. This suggests a potential role of immune evasion and

a pro-tumorigenic microenvironment in the more aggressive

neuroblastomas, compared with non-neuroblastomas, although

more samples and more specific technologies would be better

suited to confirm this finding.

Modeling of adrenergic/mesenchymal
transdifferentiation identifies a transitional cell
phenotype
For the malignant cell analysis, we then evaluated specific

expression patterns. Given that cells detected as CNV positive

included those cells annotated as cycling, we accounted for

this by regressing cell cycle scores during normalization (Tirosh

et al., 2016). To evaluate cell phenotype among malignant cells,

we conducted differential expression analysis and identified

divergent cell transcriptomes highlighted byexpression of adren-

ergic (CHGA, CHGB, PHOX2B, DBH) and mesenchymal marker

genes (COL1A1, COL1A2) (Figures S3A and S3B). We therefore

investigated the possibility that malignant cells exist in either an

adrenergic/noradrenergic or mesenchymal/neural crest cell

state, as proposed by Boeva et al. (2017) and van Groningen

et al. (2017). We first examined expression patterns of signatures

for these cell states. UMAP projection of these two gene signa-

tures showed expression that was enriched in distinct clusters



Figure 2. Neuroblastomas and GNBs have distinct tumor microenvironmental cell types

(A) UMAP plot showingmalignant (n = 2,307), immune (n = 2,684), and other (n = 310) cell types from 10 tumors. The proportion of cell types within each tumor and

major tumor types are also shown. NB, neuroblastoma; GNB_GN, GNB plus ganglioneuroma.

(B) UMAP plot of 2,994 non-malignant cells from 10 tumors colored based on transcriptomic cluster.

(C) UMAP plot of 2,994 non-malignant cells from 10 tumors showing expression of marker gene signatures (blue, low; dark red, high). Arrows indicate regions of

high expression.

(D) Left: UMAP plot showing non-malignant cell subtypes of non-malignant cells (n = 2,994) from 10 tumors. Right: the proportion of non-malignant cell types

within each tumor and major tumor types.
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whether using the van Groningen (adrenergic/mesenchymal) or

Boeva signatures (noradrenergic/neural crest cell) (Figures 3A–

3D). When comparing directly, the expression patterns of adren-

ergic and mesenchymal signatures showed a strong inverse as-

sociation, with cells existing in a continuum between high-ex-

pressing adrenergic and mesenchymal cells (Figures S3C and

S3D). This suggests that cells may have an identity that reflects
various points of transdifferentiation between adrenergic and

mesenchymal cell states, similar to the model proposed by van

Groningen et al. (2017) andBoeva et al. (2017). To explore this hy-

pothesis further, we conducted pseudotemporal ordering of cells

(Trapnell et al., 2014) to model cell transitions that would occur

during adrenergic-mesenchymal transdifferentiation (Figure 3E).

Interestingly, the predicted trajectory was more complex than a
Cell Reports 41, 111455, October 4, 2022 5



Figure 3. Trajectory modeling of malignant neuroblasts identifies a transitional phenotype as an intermediate state between adrenergic and

mesenchymal states
(A–D) UMAP of 2,307 malignant cells showing expression of previously published marker gene signatures (van Groningen et al., 2017; Boeva et al., 2017) (blue,

low; dark red, high) (van Groningen et al., 2017) (Boeva et al., 2017) (Boeva et al., 2017).

(E–G) Trajectory-based inference of malignant cells (n = 2,307) using Monocle2 (DDRTree) (Trapnell et al., 2014). (E) Pseudotime was modeled based on ex-

pressed genes from previously defined signatures (van Groningen et al., 2017) (yellow: low, green: high), (F) Adrenergic marker gene signature expression (van

Groningen et al., 2017) (blue, low; dark red, high), (G) Mesenchymal marker gene signature expression (van Groningen et al., 2017) (blue, low; dark red, high).

(H) Cells colored by inferred cell state.

(I) Violin plots of adrenergic (left) andmesenchymal (right) gene signatures for all malignant cells split by inferred cell state in Figure 3H. Cells are colored according

to transcriptomic cluster in Figure S3A, and p values determined using t test (***p < 0.001).

(J) Proportion of malignant cells that are either in an adrenergic, transitional, or mesenchymal cell state, within each tumor.

(K) Trajectory plots split by tumor sample, showing malignant cell state (in H).
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simple linear path runningbetweenadrenergic andmesenchymal

cell states. Examination of the adrenergic andmesenchymal sig-

natures showed a unique state as a separate arm between the

high adrenergic and highmesenchymal expression states, which

we refer to as transitional cells (Figures 3F–3H). Gene expression

analysis of this transitional cell state demonstrated an intermedi-

ate expression level between adrenergic and mesenchymal sig-

natures that mostly corresponded to cluster 2, 3, and 5 cells (Fig-

ure 3I). Moreover, since transitional cells predominantly formed
6 Cell Reports 41, 111455, October 4, 2022
as a separate cluster, they showed similar proportion of CNV-

positive cells as other malignant clusters (Figure 1J, see cluster

10). We also considered whether cells derived from each tumor

contained cells from more than one neuroblastic state, as would

beexpected if cells had the capacity to transdifferentiate. Indeed,

most tumors had evidence of cells in more than one neuroblastic

state,with a tendency that one subtypewould bedominantwith a

secondary minor population (Figures 3J, 3K, and S3E). These

data suggest that extensive cell phenotype heterogeneity exists



Figure 4. Malignant neuroblasts in PNTs have gene expression characteristics representative of various differentiated stages in the

developing neural crest

(A) Gene expression heatmap of the representative differentially expressed genes (rows) of cells in either an adrenergic, transitional, or mesenchymal cell state

(annotated columns). Gene expression Z scores (purple, low; yellow, high).

(B and C) Gene (B) or gene ontology (GO) (C) signature expression of individual cells ordered by pseudotime along arms of the trajectory in Figure 3H. Dashed line

represents natural cubic splines fit. Pseudotime was calculated considering different arms of the trajectory.
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in PNTs, with cell state corresponding to various points along a

modeled transdifferentiation trajectory between adrenergic and

mesenchymal cell types.

Transitional neuroblasts are defined by an aggressive
neurodevelopmental phenotype
In order to clarify transcriptomic change during cell state transi-

tion, we identified marker genes in each of the three cell states,

adrenergic, transitional, andmesenchymal (Figures 4A, S4A, and

S4B). Evaluation of changes in gene expression using pseudo-

time to visualize cell trajectories showed that the expression of

these genes progressively changed when comparing different

states (Figures 4B and S4C). Key noradrenergic and catechol-

aminergic enzymes expressed in the adrenergic state, DBH

and tyrosine hydroxylase (TH), were downregulated along trajec-

tories to either the transitional or mesenchymal arm (Figure 4B,

top panel). The mesenchymal state showed upregulation of

mesenchymal neuroblast markers FN1 and VIM, consistent

with a role in extracellular matrix production expected in this
cell type (Figure 4B, bottom panel). In transitional neuroblasts,

we found an overexpression of well-known neuroblastoma

genes EZH2 and MYCN (Figure 4B, middle panel). While

MYCN is an established driver gene in the context of neuroblas-

toma when gene amplified (Schwab et al., 1983), this was an

interesting finding since MYCN is non-amplified in all but one

of the tumors of this cohort, and, in this case (NB5), cells were

restricted to the adrenergic arm (Figures 3J and 3K). This upre-

gulation of MYCN seemsmostly to have arisen from overexpres-

sion in GNB1, the only sample dominated by a transitional cell

phenotype (Figures 3J and 3K). EZH2, on the other hand, is a

core component of polycomb repressive complex 2 and is

responsible for the catalysis of H3K27 tri-methylation. EZH2

plays an essential role in tumorigenesis in neuroblastoma, and

aberrant expression of EZH2 is strongly associated with poor

prognosis (Chen et al., 2018; Li et al., 2018; Tsubota et al.,

2017). Next, we employed Gene Ontology (GO) analysis on

gene signatures created for each of the three cell states. GO-

term enrichment identified gene sets as expected related to
Cell Reports 41, 111455, October 4, 2022 7
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neurotransmitter production and extracellular matrix as part of

the adrenergic and mesenchymal states, respectively

(Figures 4C, S4D, and S4E). Transitional neuroblasts, however,

had gene sets relating to neurogenesis (Figures 4C, S4D, and

S4E), suggesting that differentiation via transitional neuroblasts

may be a developmentally co-opted process. Indeed examina-

tion of scRNA-seq data in the E12.5 murine neural crest

compartment (Furlan et al., 2017) shows that the transitional

signature has relatively high expression in the bridge cells that

act as differentiation intermediates between the Schwann cell

precursors of the neural crest (mesenchymal-like) and the termi-

nal chromaffin cells and neuroblasts of the adrenal medulla

(adrenergic-like) (Figures S4F and S4G). However, exploration

of the developmental origins of neuroblastoma cells have been

covered more extensively in other recent single-cell studies,

which show varying interpretations (Bedoya-Reina et al., 2021;

Kameneva et al., 2021; Jansky et al., 2021; Kildisiute et al.,

2021; Hanemaaijer et al., 2021; Dong et al., 2020; Ponzoni

et al., 2022), so our conclusions around developmental origins

of the cells in our cohort are tentative.

We next investigated whether the three cell states related to

biological processes are important in tumorigenesis. To gain

more insight into the cell cycle status of the malignant cells

across the different phenotypes, we determined their cell cycling

states based on the average expression levels of genes within

the S and G2/M (dividing) and G1 (non-dividing) gene sets previ-

ously published (Tirosh et al., 2016). This analysis revealed a

markedly higher proportion of dividing cells among the transi-

tional neuroblasts compared with the other two cell states (Fig-

ure S4H). Next, we evaluated whether any of the three cell states

related to a metastatic phenotype. For this, we calculated a

disseminated tumor cell (DTC) score for gene expression in

each cell state by determining the difference between the

expression of significantly upregulated and downregulated

genes of a previously published DTC gene set (Rifatbegovic

et al., 2018). Interestingly, the transitional malignant cells shared

the highest similarity with DTCs from the bone marrow, which is

the most common distant metastatic site of neuroblastoma (Fig-

ure S4I). Consistent with this, the tumor with the highest abun-

dance of transitional neuroblasts, GNB1, was graded as stage

4 with distant metastasis by the International Neuroblastoma

Staging System (INSS), further suggesting a possible link be-

tween the transitional phenotype and metastasis. Collectively,

these data suggest the presence of distinct malignant cell sub-

populations within individual tumors, which demonstrate diver-

gent differentiation status, varying transcriptional signatures,

and potential for malignant clinical behavior.

Tumors expressing transitional neuroblast signatures
are associated with poor prognosis in neuroblastoma
patients
We next studied expression data from large primary neuroblas-

toma tumor cohorts where gene expression was derived from to-

tal tumor or bulk gene expression data (Kocak cohort, n = 649.

GEO: GSE45480) (Kocak et al., 2013). We classified tumors

based on adrenergic, transitional, andmesenchymal gene signa-

tures (Figure 5A). The signatures separated five tumor groups,

ranging from adrenergic, transitional, and mesenchymal, as
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well as two mixed classes of adrenergic-transitional, and transi-

tional-mesenchymal states (Figure 5A). This is consistent with

the notion that, in some cases, bulk tumors can have mixed pro-

portions of the three cell states identified in our scRNA-seq data.

To explore whether the three cell states had prognostic rele-

vance, we conducted Kaplan-Meier analysis for the five-tumor

subgroups defined by these signatures. Transitional tumor clas-

ses were shown to predict poorer outcome than adrenergic and

mesenchymal subgroups, which was driven mostly by poorer

prognosis in the transitional-only and transitional-mesenchymal

subgroup (Figure 5B). Additionally, higher expression of transi-

tional neuroblast signatures was observed in patient subgroups

defined by poor prognostic factors: MYCN amplification and

INSS 4 disease (Figure 5C). This suggests that transitional cell

state signatures are associated with tumors with high risk of

resistance to conventional therapy and relapse. Consistent

with these findings, Kaplan-Meier analyses for gene signatures

subdividing the cohort at the median showed a similar associa-

tion between transitional neuroblasts and poor prognosis, as did

similar analyses in a separate cohort, albeit statistical signifi-

cance was dependent on the analysis conducted (Versteeg

cohort, n = 88. GEO: GSE16476) (Molenaar et al., 2012)

(Figures S5A–S5E).

Neuroblastoma cell lines with high transitional gene
signature expression have an intermediate super-
enhancer landscape between adrenergic and
mesenchymal states
Previous studies usedH3K27-acetylation (H3K27ac) landscapes

to define two distinct super-enhancer states, either adrenergic/

noradrenergic or mesenchymal/neural crest (Boeva et al.,

2017; van Groningen et al., 2017). Since our trajectory analysis

using gene expression in single cells identified a transitional pop-

ulation between these two identities, we investigated whether

transitional gene expression signatures in neuroblastoma cell

lines similarly identify intermediate super-enhancer profiles. As

before, we used adrenergic, transitional, and mesenchymal sig-

natures to classify 33 neuroblastoma cell lines with paired bulk

RNA sequencing and H3K27ac chromatin immunoprecipitation

sequencing (ChIP-seq) data (Boeva et al., 2017) into five groups:

either adrenergic, adrenergic-transitional, transitional, transi-

tional-mesenchymal, or mesenchymal (Figure S6A). We then

conducted comparisons to identify super-enhancers that were

enriched in either the adrenergic class or the mesenchymal

class. Of the 5,975 previously annotated super-enhancer loci

across these 33 cell lines (Boeva et al., 2017), we found 531

were enriched in the adrenergic state (versus mesenchymal

cell lines), and 2,004 were enriched in the mesenchymal state

(versus adrenergic cell lines) (Figures 6A and S6B). To evaluate

whether a progressive shift in H3K27ac occurs through cell lines

according to our cell state classification, we investigated

whether adrenergic or mesenchymal-associated super-en-

hancers showed any trend across different cell classes.

H3K27ac levels at adrenergic-associated super-enhancers pro-

gressively decreased through the spectrum of adrenergic,

adrenergic-transitional, transitional, transitional-mesenchymal,

and mesenchymal cell lines (Figure 6A, left panel; Figures 6B

and S6B, upper panel; Figure S6C). In contrast, H3K27ac levels



Figure 5. Tumors expressing transitional neuroblast signatures are associated with poor prognosis in neuroblastoma

(A) Heatmap showing the classification of neuroblastoma tumors from bulk mRNA expression (Kocak, n = 649 patients; Kocak et al., 2013) based on adrenergic,

transitional, and mesenchymal gene signatures. Column averages were used for each signature (shown immediately below the heatmap) to classify tumors to

tumor class subgroups.MYCN status (amplified) and neuroblastoma staging (INSS 4) for each tumor is annotated. Scale bar indicates gene expression Z scores.

(B) Kaplan-Meier plots of overall survival (top) and event-free survival (bottom) in the Kocak cohort colored based on tumor class classifications made in Fig-

ure 5A. The p value was calculated using log rank tests, comparing all transitional subgroups combined with adrenergic and mesenchymal combined.

(C) Boxplots of transitional gene signature expression in patients of the Kocak cohort, split byMYCN status (left, non-amplified versus amplified) or INSS staging

(right, stage 1, 2, 3, and 4S versus stage 4). The p values are reported from two-sided t tests.
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at mesenchymal-enriched super-enhancers progressively

increased through the same spectrum (Figure 6A, right panel;

Figures 6B and S6B, lower panel; Figure S6C). Moreover,

H3K27ac tracks show a similar trend in super-enhancers linked

to core-regulatory circuit transcription that were previously

found to define adrenergic and mesenchymal identities (Boeva

et al., 2017) (Figure 6C). Interestingly, transitional-enriched su-

per-enhancers did exist, albeit only in the minority, with 395

unique super-enhancers significantly enriched in transitional

cells compared with adrenergic and mesenchymal cells (Fig-

ure S6D). There were, however, some examples of super-

enhancer loci significantly upregulated exclusively in transitional

cell lines (Figure S6E). These results suggest that expression of

transitional cell state signatures in neuroblastoma cell lines

was indeed associated with intermediate super-enhancer pro-

files that lie between adrenergic/nor-adrenergic and mesen-
chymal/neural crest cell differentiation states. Notably however,

these results show that, while transitional cells lie between

adrenergic and mesenchymal cell states, they tended to have

an H3K27ac profile toward the adrenergic end of the transdiffer-

entiation spectrum (Figures 6A and 6B), similar to what was seen

in our single-cell trajectory analysis (Figures 3F and 3G).

Validation of core findings in an external single-cell
cohort
To confirm that our findings are generalizable to larger cohorts,

we next undertook an analysis from three recent scRNA-seq da-

tasets for neuroblastoma (Slyper et al., 2020; Kildisiute et al.,

2021; Dong et al., 2020). After quality control and data harmoni-

zation (Korsunsky et al., 2019), in total we analyzed 193,555 cells

from 40 distinct tumors (Figures S7A and S7B). Using CONICS

copy number estimation, we showed that predicted CNVs
Cell Reports 41, 111455, October 4, 2022 9



Figure 6. Neuroblastoma cell lines expressing transitional neuroblast signatures are at the junction between adrenergic and mesenchymal

super-enhancer states

(A) Global normalized H3K27-acetylation (H3K27ac) values averaged for cell lines classified to five subgroups (see Figure S6A for classification). Super-enhancer

loci enriched in adrenergic cell lines (left, red), or mesenchymal cell lines (right, blue). H3K27ac values represent 0.5 Mb centered on the super-enhancer locus in

that region. For individual cell line traces, see Figure S6B. Above each set of traces is the average H3K27ac Z score value for that binned region. Bin size for each

trace is 1 kb.

(B) Z score value of the total area under the H3K27ac curve for adrenergic super-enhancers (red) and mesenchymal super-enhancers (blue) for five subgroups of

cell lines. Error bars represent the standard deviation of individual cell lines in each subgroup.

(C) Representative H3K27ac for each group of classified cell lines for core-regulatory circuit transcription factor (CRC TF) super-enhancer loci. Red are examples

of adrenergic CRC TFs and blue are examples of mesenchymal CRC TFs.

Article
ll

OPEN ACCESS
were enriched in specific clusters enabling separation of malig-

nant and non-malignant cells (Figures S7C and S7D). Exploring

malignant cells, immune cells, and all other cells (using CNV

and gene-expression-based classification), this cohort showed

a similar trend, with enrichment of immune cells in those tumors

with favorable histology and lower risk, and, interestingly, a

marked relative depletion of malignant cells in tumors that had

already been treated with induction chemotherapy (Figure S7E).

Notably, this UMAP projection was consistent across datasets,

particularly in cell types classified as immune or other, support-

ing that there was no dataset bias created during integration

(Figure S7F).

We next explored the non-malignant cells for this 40-sample

cohort (Figures S7G and S7H). Gene signatures for non-malig-

nant cells identified exclusive expression patterns and was

used for cell type classification (Figure S7I). Relative abun-

dance of non-malignant cell types was heterogeneous across

the cohort and demonstrated differences in the tumors with

favorable compared with unfavorable histology using the Shi-

mada grading (Figure S7J). In particular, the trend observed

was a higher abundance of T cells and lower abundance of

macrophages being noted in tumors with favorable histology,

similar to the findings in our cohort, comparing GNB with neu-

roblastoma. However, since only two GNB samples were avail-
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able from the 40 samples of this cohort, this finding could not

be confirmed, and further research is required to establish

non-malignant cell type abundance comparing GNB with

neuroblastoma.

We next undertook a malignant cell analysis in this 40-sample

cohort (Figures S7K and S7L). While the focus of these datasets

and other recent publications was to relate malignant cell types

to the normal cell types of the sympathoadrenal system they

derived from (Bedoya-Reina et al., 2021; Kameneva et al.,

2021; Jansky et al., 2021; Kildisiute et al., 2021; Hanemaaijer

et al., 2021; Dong et al., 2020), we instead explored the concept

we have introduced around potential for cell type transdifferen-

tiation. We first explored expression of the signatures for our

three-state model (adrenergic, transitional, and mesenchymal).

Expression of all of these gene signatures was noted in a rela-

tively exclusive manner; however, it was not entirely specific to

particular clusters, suggesting that there is inter-tumoral differ-

ences in control of expression and potentially differences in

applying gene signatures across different sequencing technolo-

gies (Figure S7M). So, we instead used a label transfer classifica-

tion algorithm (Stuart et al., 2019) using the 10-sample cohort in

this study as a reference. This showed that tumors of this cohort

are indeed heterogeneous, and cells of this large dataset can

exist as either adrenergic, transitional, or mesenchymal subtype
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using our classification model (Figure S7N). Interestingly, similar

to our findings, this showed a trend that transitional cells were

more abundant in high-risk tumors andMYCN-amplified tumors

(Figure S7N). Moreover, mesenchymal cells in this 40-sample

cohort had a trend that they mostly arose in tumors that had un-

dergone prior chemotherapy, again suggesting potential for cell

type adaptation and plasticity in response to environmental

exposure (Figure S7N), and consistent with previous reports

that mesenchymal expression is associated with prior chemo-

therapy treatment (van Groningen et al., 2017; Gartlgruber

et al., 2021). Collectively, this analysis supports the concept

that transdifferentiation between adrenergic and mesenchymal

cells creates an intermediate cell profile akin to the transitional

cells we see in our dataset, but, notably, extensive heterogeneity

suggests that differentiation programs are likely tumor context

specific.

DISCUSSION

Patients with PNTs are characterized by extensive inter- and in-

tratumoral heterogeneity (Eleveld et al., 2015; Schulte et al.,

2018; Uemura et al., 2019). Recent studies have reported that

PNTs were composed of different types of transdifferentiating

malignant cells with dissimilative epigenetic landscapes and

gene expression profiles (Boeva et al., 2017; van Groningen

et al., 2017). Moreover, the TME plays an important role in tumor

biology and adds more complexity to intratumoral heterogeneity

(Borriello et al., 2016; Wang et al., 2018). Here we provide

comprehensive analysis of the cellular heterogeneity of PNTs

through single-cell transcriptomic analysis of 5,301 cells ob-

tained from 10 surgically resected tumors (Figures S8A and

S8B).

Among non-malignant cells, we found that most non-neuro-

blastoma samples have a higher proportion of infiltrating immune

cells compared with neuroblastoma samples, especially cyto-

toxic T cells. While our validation cohort did not contain sufficient

GNB samples to confirm this finding, a similar trend was

observed when comparing Shimada favorable histology (FH)

versus unfavorable histology (UH). This is of interest since cyto-

toxic T cells are an important target of immunotherapy and

considered as an important prognostic indicator in many can-

cers, including neuroblastoma (Wei et al., 2018; Jiang et al.,

2018). The opposite trend was observed with regard to relative

macrophage abundance, in which neuroblastoma showed a

higher relative proportion compared with GNB/GN in our cohort,

or Shimada FH versus UH in the validation cohort, particularly

when considering non-inflammatory macrophages expressing

M2-polarization marker CD163. This is potentially important

due to the role of M2 macrophages in the promotion of tumor

cell proliferation and invasion (Komohara and Takeya, 2017;

Wei et al., 2018). Together, these findings highlight potential for

unique TMEs in PNTs and support efforts to exploit this for ther-

apeutic advantage (Liu and Joshi, 2020; Joshi, 2020).

Recent single-cell studies of neuroblastoma have been key in

understanding developmental origins (Bedoya-Reina et al.,

2021; Kameneva et al., 2021; Jansky et al., 2021; Kildisiute

et al., 2021; Hanemaaijer et al., 2021; Dong et al., 2020). These

studies however, have some different interpretations, particu-
larly relating to malignant cell identity being that of chromaffin

or sympathoblast. This disparity possibly arose due to different

reference datasets of adrenal development, using mouse or hu-

man, for instance (Ponzoni et al., 2022). Moreover, a recent

article showed that a postnatal adrenal reference dataset could

lead to varying interpretations around a postnatal cholinergic

progenitor population being a potential cell of origin for high-

risk neuroblastoma (Bedoya-Reina et al., 2021), while some arti-

cles have identified the presence of mesenchymal features in tu-

mors that could be indicative of earlier progenitors as a cell of

origin or evidence of dedifferentiation in cancer cells (Gartlgruber

et al., 2021; Kameneva et al., 2021; Jansky et al., 2021). While we

strongly support these continued efforts to resolve the develop-

mental origins of neuroblastoma using single-cell technology,

this led us to take a somewhat simpler approach and describe

malignant cells according to their inter-relationship without using

a normal adrenal cell reference dataset. Since cancer-specific

alterations could be driving phenotypical plasticity, particularly

drawing upon developmental reprogramming between mesen-

chymal progenitors and downstream derivatives (Kameneva

et al., 2021), this simple model may offer an alternative that ac-

counts for potential cancer-specific cell plasticity, dedifferentia-

tion, and interconverting cell types.

Among malignant populations, we detected the expression of

genes related to mesenchymal/neural crest cell and adrenergic/

noradrenergic neuroblastoma cells, consistent with previous re-

ports (van Groningen et al., 2017; Boeva et al., 2017; Wang et al.,

2019; Lecca et al., 2018; Kameneva et al., 2021; Jansky et al.,

2021). Notably, however, we found that some tumors display

an additional transitional state with gene expression characteris-

tics associated with aggressive disease, rapid proliferation, and

metastasis. Consistent with these findings, transitional signa-

tures were also associated with more aggressive clinical

behavior in bulk transcriptome cohorts, such as enrichment in

INSS 4/MYCN-amplified patients and a strong association with

poor prognosis. Enrichment with MYCN amplification was

particularly intriguing since the tumors containing transitional

cells in our cohort, while having MYCN overexpression, were

MYCN non-amplified. This ismore evidence that high-risk neuro-

blastoma is often an MYC-driven disease regardless of whether

the tumor is MYCN amplified or MYCN non-amplified (Zimmer-

man et al., 2018; Westermann et al., 2008; Carter et al., 2015).

Since our cohort lacked sufficient samples to assess a direct

relationship between MYCN amplification and transitional cells,

we assessed relative cell type proportions in a 40-sample valida-

tion cohort, and, interestingly, MYCN-amplified samples had a

higher proportion of transitional cells. However, while an associ-

ation can be observed between MYCN amplification and the

transitional subgroup, this does not seem to be a prerequisite

for cell identity, since transitional cells are enriched in some

MYCN non-amplified samples across both cohorts.

Another interesting finding from our malignant cell analysis

was that a minority of tumors were strongly mesenchymal, while

all other mesenchymal cells and perhaps some transitional cells

showed subtle expression patterns more similar to the descrip-

tion proposed by Jansky et al. (2021) as having ‘‘mesenchymal

features.’’ Since mesenchymal dominance is relatively rare in

neuroblastoma tumors, certainly compared with cell lines
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(Gautier et al., 2021), our data at least suggest that, in rarer

cases, mesenchymal neuroblastoma tumors can exist and may

depend on unique genetic alterations that drive phenotype.

Indeed, our predicted chromosome 5 gain validated by FISH in

mesenchymal tumor NB1, while not common in neuroblastoma,

could lead to this apparent variation in cell phenotype and

explain this less common observation. Interestingly, though,

while most tumors usually demonstrate a dominant population,

there is cell state variability through all three cell states using

our trajectory modeling approach, suggesting that many neuro-

blastomas demonstrate a degree of plasticity regardless of

dominant cell type.

Prior studies have speculated that adrenergic/noradrenergic

cells transdifferentiate to mesenchymal/neural crest cells and

vice versa (van Groningen et al., 2017, 2019; Boeva et al.,

2017; Wang et al., 2019; Lecca et al., 2018). This theory was pri-

marily based on spontaneous state polarization of isogenic pairs

of cells and forced overexpression experiments using strong

lineage-associated transcription factors to reprogram cell

phenotype such as PHOX2B, PRRX1, ASCL1, and NOTCH3

(van Groningen et al., 2017, 2019; Boeva et al., 2017; Wang

et al., 2019). Our trajectory modeling using scRNA-seq data,

and our reclassification approach for H3K27ac landscapes in

neuroblastoma cell lines, is in support of this theory, albeit by a

slightly more complex mechanism involving transitional cells as

a transdifferentiation intermediate cell state. This model is akin

to the long-held observation that neuroblastoma cell lines

demonstrate three morphological variants with capacity for

interconversion: neuroblastic (N), substrate-adherent (S), or in-

termediate (I) phenotypes (Ross et al., 1995; Ciccarone et al.,

1989; Veschi et al., 2019). N-type cells are said to resemble em-

bryonic sympathoblasts (similar to the adrenergic phenotype);

S-type cells resemble Schwannian, glial, or melanocytic progen-

itors (similar to the mesenchymal phenotype); and I-type cells

have an intermediate phenotype with the potential to differen-

tiate toward either cell type (similar to our proposed transitional

phenotype) (Veschi et al., 2019; Ciccarone et al., 1989; Ross

et al., 1995). Moreover, examination of scRNA-seq data derived

from the embryonic murine sympathoadrenal system shows

expression patterns that suggest that differentiation through a

transitional statemay be developmentally co-opted. This pheno-

type has distinct gene expression markers of significant note,

such asMYCN and EZH2, as well as upregulation of neurodevel-

opment and neurogenesis-related pathways and activation of

some distinct super-enhancer loci. We suggest that the transi-

tional state is likely transient in the respect that the cells have

greater cell plasticity and aremore likely to adapt to changing en-

vironments. We hypothesize that this state could act as a ‘‘pit-

stop’’ during transdifferentiation depending on subtle environ-

mental exposures, whichmay also give them a fitness advantage

to survive anti-cancer barriers (i.e., anti-cancer therapies, and/or

homeostatic anti-cancer mechanisms). Extending gene sets for

our three-state model to a larger external cohort revealed a

similar trend, but patterns of expression were not entirely spe-

cific, suggesting that each tumor likely has unique differentiation

trajectories depending on cancer-specific genetic alterations,

environmental exposures, and cell of origin context. Future

research will benefit from functional genomics studies on key
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transitional genes and lineage tracing studies that can follow

phenotypical adaptation in response to environmental stimuli.

This will be required to elucidate the precise interconnections

between all cell states and how these states relate to other es-

tablished models of neuroblastoma cell phenotype, such as

morphological and epigenetic classification methods.

Another key finding from recent studies is that tumor cells

convert to a mesenchymal/neural crest cell phenotype in

relapsed neuroblastoma tumors and upon drug exposure

in vitro, suggesting that mesenchymal differentiation is a drug-

resistance mechanism in neuroblastoma (van Groningen et al.,

2017; Boeva et al., 2017; Naiditch et al., 2015). Interestingly,

though, our analysis of bulk gene expression from diagnostic tu-

mors paradoxically shows that the mesenchymal-only class is

not a predictor of poor outcome, and indeed is generally predic-

tive of favorable outcome. It is possible that this is a conse-

quence of bulk profiling in which mesenchymal expression

may stem from normal Schwannian stromal cells in FH tumors

(Ponzoni et al., 2022). However, since our data showed that tran-

sitional signatures are more predictive of poor outcome, we sug-

gest that a mesenchymal phenotype is not a high-risk phenotype

per se, but rather that transitional cells may have the capacity to

escape cytotoxic therapy by transdifferentiation to mesen-

chymal phenotype under drug selection pressure.

In conclusion, our analysis has uncovered extensive intra- and

inter-individual, functional, and transcriptomic heterogeneity in

neuroblastic tumor cells and associated microenvironmental

cells. We identify interconnected mechanisms of phenotypical

heterogeneity, highlighting the importance of considering cell

plasticity and transdifferentiation potential in new therapeutic

strategies for PNTs.

Limitations of the study
One limitation of our study is that, in some instances, primary tu-

mors were obtained from patients who had received prior

chemotherapy. Thismay be important with respect to comparing

neuroblastoma and GNB, since induction chemotherapy is more

common in themore aggressive forms of PNT. Therefore, it is un-

known to what extent these treatments may have influenced in-

tratumoral heterogeneity. This is intriguing, since our validation

cohort showed an enrichment of mesenchymal cells in samples

treated with prior chemotherapy, consistent with models of

mesenchymal selection or adaptation as a survival mechanism

(van Groningen et al., 2017; Boeva et al., 2017; Naiditch et al.,

2015). Future studies that pair pre-treatment biopsy specimens

with post-chemotherapy surgical resections and relapsed tu-

mors will be valuable to unveil tumor phenotype adaptation in

the context of drug-induced tumor evolution. Another limitation

within our study is the small number of samples profiled,

although we aimed to address this by extending to a larger vali-

dation cohort. The addition of more samples with a diverse mo-

lecular background will be invaluable to the single-cell field, such

as ALKmut, ATRXmut, PHOX2Bmut, TERT rearrangements,

RASmut, p53mut, and other segmental chromosomal alterations

recurrent to neuroblastoma (Ackermann et al., 2018; Pugh et al.,

2013). This will facilitate the generation of molecular-associated

single-cell gene expression profiles that will be important to

distinguish genetic and non-genetic facets of cell phenotype.
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Moreover, validation of our findings related to differences in im-

mune cell proportions between different histotypes will be

necessary to draw conclusions. Finally, while we have aimed

to assess tumor cellular compositions in a quantitative manner,

it will be important to validate these findings with potential that

there was a bias in cell collection that arises when enriching

viable cells. In particular, the changes in proportion of certain

cell types when comparing neuroblastoma versus GNB were

only trends and not statistically validated, suggesting larger co-

horts and better methods other than scRNA-seq are required to

confirm this quantitative difference.Moreover, a notable cell type

that was not identified was the Schwann cells when there was

histological evidence of Schwannian stroma.
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Schramm, A., Köster, J., Assenov, Y., Althoff, K., Peifer, M., Mahlow, E., Oder-

sky, A., Beisser, D., Ernst, C., Henssen, A.G., et al. (2015). Mutational dy-

namics between primary and relapse neuroblastomas. Nat. Genet. 47,

872–877.
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Antibodies

Anti -CD3 Rabbit mAb Servicebio Cat# GB13014; RRID: AB_2920578

HRP conjugated Goat Anti-Rabbit IgG (H + L) Servicebio Cat# GB23303; RRID: AB_2811189

Biological samples

Fresh peripheral neuroblastic tumor tissues Xinhua Hospital affiliated

to Shanghai Jiao Tong

University School of Medicine

N/A

Chemicals, peptides, and recombinant proteins

Sodium citrate antigen retrieval solution (pH 6.0) Servicebio Cat# G1202

Dako REALTM EnVisionTM Detection System,

Peroxidase/DAB+, Rabbit/Mouse

Dako Cat# K5007

Water Soluble Hematoxylin Stain Solution Servicebio Cat# G1004

Proteinase K stock solution LBP Medicine Cat# F01239

EGR1/TERT Fish Probe LBP Medicine Cat# F.01171-01

TP53/17q22 Dual Color Probe LBP Medicine Cat# F.01030-01

CCND1/CSP 11 Dual Color Probe LBP Medicine Cat# F.01023-01

20q11 Fish Probe LBP Medicine Cat# F.01344

CEP20 Fish Probe VividFISH Cat# FP097

MYCN/2q11 Dual Color Probe LBP Medicine Cat# F.01013-01

CBFB/MYH11 t(16; 16); inv (16) Fusion Probe LBP Medicine Cat# F.01094-01

DAPI LBP Medicine Cat# F01238

LiberaseTM TM Research Grade Roche Cat# 5401127001

CellTraceTM Calcein Blue, AM - Special

Packaging

Invitrogen Cat# C34853

DRAQ5 Cell Signaling Technology Cat# 4084L

Recombinant RNase Inhibitor Takara Bio Cat# 2313B

Triton X-100 Sigma- Aldrich Cat# X100-100ML

dNTP mix Takara Bio Cat# 4019

KAPA HiFi HotStart PCR Kit Roche Cat# KK2502

AMPure XP bead Beckman Cat# A63882

Qubit dsDNA HS Assay Kit Invitrogen Cat# Q32854

Critical commercial assays

Nextera XT DNA Sample Preparation Kit Illumina Cat # FC-131-1024

HiSeq X Ten Reagent Kit v2.5 Illumina Cat# FC-501-2501

Deposited data

Data files for single-cell RNA sequencing This paper GSE192906

Human neuroblastoma scRNA-seq data

(Dong et al., 2020)

GEO GSE137804

Human neuroblastoma scRNA-seq data

(Kildisiute et al., 2021)

https://www.neuroblastomacellatlas.org/ N/A

Human neuroblastoma scRNA-seq data

(Slyper et al., 2020)

GEO GSE140819

H3k27ac ChIP-seq and RNA-seq data

for 33 neuroblastoma samples

(Boeva et al., 2017)

GEO GSE90683

Human neuroblastoma microarray

data (Kocak et al., 2013)

GEO GSE45480
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human neuroblastoma microarray data

(Molenaar et al., 2012)

GEO GSE16476

Software and algorithms

Dr.Seq2 (Zhao et al., 2017) V1

STAR (Dobin et al., 2013) V3

Seurat (Butler et al., 2018) V3.2.3

Clustree (Zappia and Oshlack, 2018) V0.4.3

Monocle2 (Trapnell et al., 2014) V2.16

CONICSmat (Muller et al., 2018) V0.0.0.1

Bedtools (Quinlan and Hall, 2010) V2.30.0

Bedops (Neph et al., 2012) V2.4.40

EnrichedHeatmap (Gu et al., 2018) V1.18.2

Gviz (Hahne and Ivanek, 2016) V1.32.2

FlowJo BD V10

HiSeq Control Software Illumina V1.6
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Daniel

Carter (Daniel.Carter@uts.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single cell RNA-seq data have been deposited at the Gene expression omnibus: GSE192906 and are publicly available as of

the date of publication. Accession numbers are listed in the Key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fresh peripheral neuroblastic tumor (PNT) tissue samples were obtained from 10 patients enrolled at the Xinhua Hospital affiliated to

Shanghai Jiao Tong University School of Medicine (Shanghai, China). This study was approved by the ethics committee of Xinhua

Hospital and was conducted in accordance with the Declaration of Helsinki. Patients were enrolled for this study based on patho-

logical diagnosis. All patients were enrolled under informed consent. Staging and risk assessment were performed according to

the International Neuroblastoma Staging System Committee (INSS) system and the International Neuroblastoma Risk Group

(INRG) respectively, based on tumor histology and MYCN-fluorescent in situ hybridization (FISH) analysis. Tumors were resected

from the primary site either prior to the patient undergoing chemotherapy or post-induction chemotherapy. Treatment regimen

included ‘‘treatment protocol CCCG-NB-2014’’. Detailed clinical information on individual patients in this study are outlined in

Table S1.

METHOD DETAILS

Immunohistochemical staining
All PNTs specimens were fixed, paraffin-embedded, sectioned, and stained with hematoxylin and eosin (H&E) following routine

method of Xinhua Hospital’s Pathology. Immunohistochemical (IHC) studies employed 5 mm paraffin-embedded slides. Sections

were incubated in 3 changes of xylene for each 15 min, 2 changes of pure ethanol for each 5 min, 85% ethanol for 5 min and

75% ethanol for 5 min. Then sections were washed in distilled water. Antigen was retrieved by sodium citrate antigen retrieval so-

lution (pH 6.0) (Servicebio, Cat# G1202) in the microwave oven. After natural cooling, the sections were washed thrice with PBS

(pH 7.4) for 5 min each. Endogenous peroxidase was inactivated by incubation in 3% H2O2 for 25 min. After using 3% BSA to block
Cell Reports 41, 111455, October 4, 2022 e2
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nonspecific sites for 30 min, slides were incubated with Anti -CD3 Rabbit mAb (1:100, Servicebio, Cat# GB13014, RRID:

AB_2920578) and HRP conjugated Goat Anti-Rabbit IgG (H + L) (1:200, Servicebio, Cat# GB23303, RRID: AB_2811189) to assess

the presence of infiltrating T lymphocytes. Slides were washed three times with PBS (pH 7.4) for 5 min each. Dako REALTM EnVi-

sionTM Detection System, Peroxidase/DAB+, Rabbit/Mouse (Dako, Cat# K5007) was used for immunohistochemistry visualization.

Nuclei are stained by Water Soluble Hematoxylin Stain Solution (Servicebio, Cat# G1004). After dehydration and sealing, images

were captured by XSP-C204 Student Binocular Microscope (COIC, China).

Fluorescence in situ hybridization
Slides were baked in the oven at 65�C for more than 2 h. The slides were dewaxed twice in preheated xylene for 10 min each. Slides

were immersed sequentially in 100% ethanol for 5 min, 100% ethanol for 3 min, 85% ethanol for 3 min, 70% ethanol for 3 min and

deionized water (pH = 7.0-7.2) for 5 min. Next, slides were placed in deionized water at 97�C for 25 min 0.2 mL of Proteinase K stock

solution (LBP Medicine, Cat# F01239) is dissolved in 40 mL of 23SSC (pH 7.0-7.2) to obtain proteinase K working solution (100 mg/

mL). The slides are digested by Proteinase K working solution at 37�C for 10 min. After digestion, the slides were rinsed in 23 SSC

solution for 10 min. Tissues were incubated in 70% ethanol and 100% ethanol three times in sequence and then dried naturally. The

tissuewas coveredwith 10 mL probe, placed a coverslip, and sealed the edge. The probes include EGR1/TERT Fish Probe (LBPMed-

icine, Cat# F.01171-01), TP53/17q22 Dual Color Probe (LBP Medicine, Cat# F.01030-01), CCND1/CSP 11 Dual Color Probe (LBP

Medicine, Cat# F.01023-01), 20q11 Fish Probe (LBP Medicine, Cat# F.01344), CEP20 Fish Probe (VividFISH, Cat# FP097),

MYCN/2q11 Dual Color Probe (LBP Medicine, Cat# F.01013-01) and CBFB/MYH11 t(16;16);inv (16) Fusion Probe (LBP Medicine,

Cat# F.01094-01). The slides are placed on the hybridizer, denatured at 82�C for 8 min, and held at 42�C overnight. 23 SSC was

preheated at 46�C for 10 min, rinse slides in 23 SSC for 3 min, remove the coverslip gently and rinse again in 23 SSC for 3 min.

The slides are placed in new 23 SSC for 3 min, 70% ethanol for 3 min and 100% ethanol for 3 min in turn. After natural drying,

10 mL DAPI (LBP Medicine, Cat# F01238) was added to the tissue and place a coverslip. After 5 min, the slides were observed by

the BX53 microscope (Olympus, Japan). All FISH images were validated by a pathologist to determine whether a CNV was present.

Single cell preparation and flow cytometry
Following surgical resection, fresh tissue samples were immediately transferred to DMEM/F12 medium (MULTICELL, Cat# 319-075-

CL), supplemented with 2% Fetal Bovine Serum (Gemini Bio-Products, Cat# 900-108) and were delivered on ice within 60 min to the

laboratory to be processed. Tissue processing was completed within 90 min of collection. Samples were first rinsed in ice-cold PBS

(BBI life science, Cat# E607008-0500) with 2% penicillin-streptomycin (BBI life science, Cat# E607011-0100) and then minced into

1mm3 pieces using curved scissors under sterile conditions. The fragments were further enzymatically dissociated into single cells

using Liberase TM Research Grade (Roche, Cat# 5,401,127,001) with a final concentration of 0.26 U/mL and a final volume of 25mL

Liberase solution/0.5g tissue on a shaker with a speed of 85 rpm for 45 min at 37�C. The Liberase was diluted in Hyclone L-15 Lei-

bovitz media. DMEM/F12 media supplemented with 10% FBS was used to stop dissociation. The resulting single-cell suspension

was filtered through a 70mmnylon cell strainer (BD Falcon, Cat# 352,350) and then centrifuged for 5min at 300g at room temperature.

The cell pellet was resuspended in 500mL of PBS supplemented with 0.1% BSA (BBI life science, Cat# A600332-0100) and passed

through a 40mm nylon cell strainer (BIOFIL, Cat# CSS013040). This cell suspension was stained with Calcein-Blue (Invitrogen, Cat#

C34853) and DRAQ5 (Cell Signaling Technology, Cat# 4084L) prior to fluorescence-activated cell sorting (FACS) in order to isolate

live and nucleated cells (Calcein-Blue + DRAQ+). Single cells were sorted using a BD Becton Dickinson FACSAriaII into 96-well PCR

plates. Each well of the 96-well plate contained 3mL lysis buffer (10U Recombinant RNase Inhibitor (Takara Bio, Cat# 2313B), 0.2%

Triton X-100 (Sigma- Aldrich, Cat# X100-100ML), 3mM dNTP mix (Takara Bio, Cat# 4019)), and reverse transcription reagents (see

below). Immediately following FACS, plates were briefly centrifuged and stored at �80�C.

Single cell library preparation and RNA sequencing
scRNA-seq was conducted using the Smart-seq2 protocol (Picelli et al., 2014) with some modifications being made to incorporate

unique molecular identifiers (UMIs) into the 30 end of transcripts (Li et al., 2017). Reverse transcription was performed directly in the

96-well plates by incubation at 72�C for 5min, after which the plate was replaced on ice to allow the oligo-dT primer to hybridize to the

poly(A) tail of the mRNA molecules. The oligo(dT) primer used in reverse transcription included an additional 8bp cell barcode, 9bp

unique molecular identifiers (UMIs) and template-switching oligo sequence. PCR amplification was performed by adding 15mL PCR

mix containing 0.5U KAPAHiFi HotStart (Roche, Cat# KK2502), 1x KAPA Buffer (Roche, Cat# KK2502), 12.5mMMgCl2 (Roche, Cat#

KK2502), 5mM ISPCR Primer and 7.5mM dNTP mix (Takara Bio, Cat# 4019). PCR amplification was performed in a thermal cycler

(BIORAD C1000 Touch Thermal Cycler) at 98�C for 3 min, 24 cycles of 98�C for 20s, 67�C for 15s, and 72�C for 6 min, and a final

incubation at 72�C for 5 min. PCR products were purified using 1X AMPure XP bead (Beckman, Cat# A63882) and Qubit dsDNA

HS Assay Kit (Invitrogen, Cat# Q32854). TN5 tagmentation and library amplification realized 30end fragments by Nextera XT DNA

Sample Preparation Kit (Illumina, Cat# FC-131-1024) according to the manufacturer’s instructions while P5_TSO and

Nextera_N7xx took the place of the custom primers. Pooled single cell libraries were sequenced at an average depth of 0.5 million

reads per cell on an Illumina HiSeq X Ten instrument (Illumina, San Diego, CA, USA) using a 23 150bp paired end HiSeq X Ten Re-

agent Kit v2.5 (Illumina, Cat# FC-501-2501). Image analysis and base calling were conducted by the HiSeq Control Software (HCS) +

OLB + GAPipeline-1.6 (Illumina) on the HiSeq instrument.
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Single cell RNA-seq data analysis
Raw sequencing data was processed using the Dr.Seq2 pipeline (Zhao et al., 2017). Readswere aligned to the human genome (hg38)

using STAR (Dobin et al., 2013). In each read, cell barcodes were between 9:16bp and UMIs were between 17:26bp. Following the

Dr.Seq2 pipeline we converted the resultant aligned sam file to a bed file using a custom script. We then generated a gene annotation

file and annotated the aligned bed file. We then reproduced the aligned sam file to contain gene annotations, cell barcode and UMI

information for each read. UMI counts were calculated by removing duplicate reads which had an identical genomic location, cell

barcode and UMI sequence, resulting in the final UMI count matrices used for downstream analyses. Cells with fewer than 500 genes

ormore than 9500 genes were removed (genes were only considered if they were expressed (UMI >1) in at least 3 cells). Furthermore,

cells withmore than 30% ribosomal gene content andmore than 15%mitochondrial gene content were filtered. Downstream normal-

ization and scaling was performed using the R package Seurat with the SCTransform function using 4000 variable genes (Seurat

version 3) (Butler et al., 2018) Datasets with all cells (n = 5301) were normalized using SCTransform without regressing any variables.

Datasets with malignant cells (n = 2307) and non-malignant cells (2994) were normalized using SCTransform regressing G2M-scores

and S-scores created using the CellCycleScoring function in Seurat using published cell cycle gene sets (Tirosh et al., 2016). The

SCTransform data output was used to perform a principal component analysis (PCA), and the variance in each principal component

(standard deviation) was visualized on an elbow plot which further used to determine the PC-cutoff for downstream clustering and

dimensionality reduction analysis. Additionally, clustering trees were generated using the R Clustree Package (Zappia and Oshlack,

2018) to identify a stable clustering resolution parameter. After identifying the number of PCs and resolution to use for downstream

analysis, Uniform Manifold Approximation and Projection (UMAP)-based dimensional reduction was performed using Seurat (Butler

et al., 2018). All single-cell expression signatures were created using AddModuleScore function in Seurat and visualization of data

was undertaken using ggplot2, Seurat, Monocle2, and CONICSmat plotting functions (Butler et al., 2018; Muller et al., 2018; Trapnell

et al., 2014; Wickham, 2016).

Copy number variations were inferred from single cell RNA-seq data using the CONICSmat R-package (Muller et al., 2018) with

some minor modifications. Rather than using chromosomal arms for regions of mixture model assessment, a custom script was

used to define a regions of interest. This script defined regions based on the difference between the 100 gene rolling average of in-

ferredmalignant and non-malignant cells (for this, ‘‘sympathetic’’ and ‘‘mesenchymal’’ clusters were assumed to bemalignant in pre-

liminary supervision of mixture models, while the non-malignant clusters were assumed to be all other clusters). Statistically signif-

icant mixture-models were then assessed using these new differentially defined regions. All reported mixture models were chosen

based on: a 2-component model being more likely than a 1 component model using Bayesian Information Criterion (BIC) ratio of

>1.01 (see Table S2, BIC ratio = BIC.1component/BIC.2.component). After regions for CNVswere chosen, FISHwas used to validate

candidate CNVs (see above for STAR methods). If a CNV region was validated by FISH, a posterior probability was calculated

whether an individual cell in each tumor possesses the candidate CNV or not (threshold >0.75 to considered to be CNV positive).

All CNV heatmaps were generated using the identified malignant and non-malignant clusters from the above analyses and were

plotted using an expression threshold to keep only genes with average expression greater than the 10% quantile of all genes. For

visualization, CNVs were color mapped using a lower bound of 1 standard deviation and upper bound of 2.5 standard deviations

from the mean of the global rolling average. Projection of CNVs to UMAP plots was done using the Seurat (Butler et al., 2018).

Trajectory analyses of single cells was performed using the Monocle2 R package (version 2.16) (Trapnell et al., 2014) with the

CellDataSet created using UMI count values. Pseudotime and trajectory calculation was undertaken using expressed genes from

the Adrenergic and Mesenchymal signatures previously published (van Groningen et al., 2017), where genes part of cell cycle

were removed to account the influence of cell cycle genes on the trajectory (Tirosh et al., 2016). Gene expression pseudotime plots

were plotted using plot_genes_in_pseudotime function and gene expression pseudotime heatmaps were plotted using plot_genes_-

branched_heatmap function in theMonocle package. Cell state signatures were created using the top 150 genes ranked by adjusted

p value using FindAllMarkers for overexpressed genes (average log fold change>0.25) that are expressed in at least 25% of cells for

that state designation (Table S3).

Gene ontology analysis was performed using the topGO package. Significantly enriched gene ontology termswere identified using

the ‘‘classic’’ algorithm and the ‘‘fisher’’ test. Representative GO Terms were chosen that had a p value < 0.001.

Analysis of the 40 sample external dataset was from three external sources Dong et al., GEO: GSE137804 (Dong et al., 2020),

Kildisiute et al. from https://www.neuroblastomacellatlas.org/ (Kildisiute et al., 2021) and Slyper et al., GEO: GSE140819 (Slyper

et al., 2020). Analysis was similar as described above. One exception was that data integration was required using R package

Harmony, using the study each sample derived from to account for batch effects. Labels for adrenergic, transitional and mesen-

chymal classification were achieved using FindTransferAnchors in Seurat (Stuart et al., 2019) using our original 10 sample data-

set as the reference.

Bulk tumor analyses
Bulk tumor analyses were conducted on previously described tumor microarray cohorts: Kocak (Kocak et al., 2013) and Versteeg

(Molenaar et al., 2012). Average gene expression signatures (i.e. Adrenergic, Transitional and Mesenchymal) were created from

the average of all z-scores for genes in each signature. Kaplan-Meier analyses were conducted based on amedian expression cutoff

to stratify high and low expression groups. p-values for survival analysis were calculated using log rank tests. To classify tumors into 5
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‘‘Tumor Class’’ subgroups, average z-scores for each of the Adrenergic, Transitional and Mesenchymal signatures were again Z

score scaled and subgroups were created based on the following criteria:
Adrenergic signature

expression

Transitional signature

expression

Mesenchymal signature

expression Assignment

>0 <0 <0 Adrenergic

>0 >0 <0 Adrenergic-transitional

<0 >0 <0 Transitional

<0 >0 >0 Transitional-Mesenchymal

<0 <0 >0 Mesenchymal

<0 <0 <0 Either Adrenergic, Transitional

or Mesenchymal groups, based

on which signature had the highest value

>0 <0 >0 Either Adrenergic or Mesenchymal

groups, based on which signature

had the highest value

>0 >0 >0 Either Adrenergic, Transitional or

Mesenchymal groups, based on which

signature had the highest value
H3k27ac ChIP-seq analysis
bigWig files containing H3k27ac ChIP-seq read densities for 33 neuroblastoma samples were retrieved directly from the Gene

Expression Omnibus: GSE90683 (Boeva et al., 2017). bigWig files were converted to the bedGraph format using the UCSC bigWig-

ToBedGraph tool, and then combined into one bedGraph using bedtools (unionbed) (Quinlan and Hall, 2010). Each sample was then

normalized for total read density and multiplied by a 10̂ 6 scaling factor. The bedops tool was then used to find overlapping read bins

with the 5975 previously annotated superenhancer regions (Boeva et al., 2017; Neph et al., 2012). Matched RNA-seq profiles for

these 33 samples were directly retrieved from GEO: GSE90683 (Boeva et al., 2017). Average gene expression signatures (i.e. Adren-

ergic, Transitional and Mesenchymal) were created from the average of all z-scores for genes in each signature. To classify samples

into the same 5 subgroups as described above for bulk tumor analyses, average z-scores for each of the Adrenergic, Transitional and

Mesenchymal signatureswere again Z score scaled and subgroupswere created based on the criteria described previously. Normal-

ized ChIP-seq read densities in the bedGraph file were then averaged across matching genomic bins for samples belonging to each

of the five subgroups determined by RNA-seq. Five bigWigs representing averaged H3k27ac ChIP-seq profiles across the five sub-

groups were generated from the bedGraph file using bedtools (bdg2bw) (Quinlan and Hall, 2010). Differentially enriched super-en-

hancers were then identified using 2-sided t-tests for the normalized ChIP-seq read densities for previously annotated super-

enhancer regions (Boeva et al., 2017) between cells belonging to each Tumor Class. All p values were then adjusted using Benjamini

& Hochberg correction and enriched super-enhancers were identified if p < 0.05. Enriched super-enhancers for the adrenergic cell

lines were identified by comparing to the mesenchymal and vice versa. Transitional enriched super-enhancers were identified by

comparing cell lines of any combination of Adrenergic-Transitional, Transitional or Transitional-mesenchymal cell lines compared

with Adrenergic & Mesenchymal cell lines (see Tables S4A and S4B for comparisons and statistics). Downstream visualization

was undertaken using the EnrichedHeatmap package on all unique enriched super-enhancers identified by differential testing based

on 1kb bins through the 0.5Mb region around the center of each annotated super-enhancer locus (Gu et al., 2018). All H3K27ac Z

score plots were created by taking the mean of all z-scores of all enriched superenhancers designated as either Adrenergic, Tran-

sitional or Mesenchymal for each binned region for each cell line and plotted using ggplot2 (Wickham, 2016). H3K27ac Z score plots

for Adrenergic and Mesenchymal enriched super-enhancers were then quantified for each tumor class by calculating the total area

under curve using the auc function in R package MESS using default parameters considering each cell line belonging to the 5 Tumor

Classes (error bars among cell lines from each class are represented as standard deviation). H3K27ac traces on core-regulatory tran-

scription factors and markers of transitional state were plotted using the Gviz package (Hahne and Ivanek, 2016) using regions cor-

responding previously annotated super-enhancers (Boeva et al., 2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were undertake using R software. If not detailed above, specific statistical analyses undertaken in this manu-

script are detailed in the respective figure legends.
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