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Abstract

This paper presents a robust navigation so-
lution using low-cost visual-inertial sensors
in a 6-Degree of Freedom (DoF) environ-
ment. That is an incremental/online naviga-
tion solution using the nonlinear least-squares
optimisation with classification expectation-
maximisation (EM). In this problem, weights
are assigned to each measurement observation
using the Cauchy function that are iteratively
computed from the errors between predicted
robot poses and the observed robot measure-
ment. However, the computational cost is quite
high in solving the full-batch estimation via
Gauss-Newton. By implementing the sliding
window filter (SWF), we introduce an incre-
mental EM based robust navigation where the
computational cost is shown a significant reduc-
tion compared to the full robust batch estima-
tion. The impact of window size on the naviga-
tion performance is studied given the dataset is
unknown to predict the optimum window gat-
ing. This allows a robust constant-time esti-
mation of the robot pose. Such a capability
is desirable in underwater navigation applica-
tions such as intervention missions. We verify
this work using the experimental dataset col-
lected by the UTS submersible pile inspection
robot (SPIR).

1 Introduction

The focus of many robust solutions for the navigation
tracking problem have been on improving the robust-
ness of the Kalman filter or extended Kalman filter
(EKF) [Agamennoni et al., 2011][Kautz and Eskofier,
2015] [Sjanic et al., 2011]. Often the proposed solutions
are fairly involved with computational burden and re-
quire tuning the process and measurement noise covari-
ance matrices. Many do not consider optimisation tech-

niques such as the full least-squares for the navigation
problem.

In the 1960’s, the nonlinear least-squares was in ac-
tive use at NASA JPL. Optimisation has several advan-
tages to filtering methods such as EKF. The EKF is
suboptimal compared to full batch estimation [Sibley et
al., 2008]. [Sjanic et al., 2011] present a detailed opti-
misation based solution to the simultaneous localisation
and mapping (SLAM) problem using the nonlinear least-
squares. One main benefit of this optimisation technique
to filtering is the smoothing. However, outlier measure-
ments influence the smoothing estimates and degrades
the navigation accuracy.

Previously in [Hassan et al., 2021], we introduced an
iterative smoothing and outlier detection approach us-
ing EKF. The Biswas-Mahalanobis fixed lag smoother
(BMFLS) was applied to detect outliers and smooth out
the navigation trajectory at constant-time. But, this ap-
proach only works well for moderate set of outliers.

A work by [Lee et al., 2013] has illustrated a promis-
ing result by proposing a robust pose-graph SLAM prob-
lem based on the classification EM algorithm that can
detect wrong loop closure constraint. From the naviga-
tion’s perspective this is a full-batch estimation prob-
lem. However, solving full-batch estimation via Gauss-
Newton runs offline and is not a constant time algorithm
[Barfoot, 2017]. [Sibley et al., 2008] introduces sliding-
window filter by iterating over a window of timesteps and
sliding this window forward for online/constant-time im-
plementation. We apply the concept in [Lee et al., 2013]

to the navigation problem and extend it to introduce an
incremental robust estimation with EM. In this work, for
each measurement observation a weight is assigned us-
ing the Cauchy function, which are iteratively computed
from the errors between the predicted robot poses and
observed measurements. As a result, outlier observation
measurements are assigned low weights and removed.

Similarly [Cheng et al., 2015] extended the concept
from [Lee et al., 2013] and proposed a robust efficient
solution to the Linear SLAM problem by introducing a



delayed optimisation approach. Both approaches in [Sib-
ley et al., 2008] and [Cheng et al., 2015] apply marginal-
isation using Schur complement to maintain the prior
information. Other approaches such as variable state di-
mension filter (VSDF) ignores conditional dependencies
when marginalising out old parameters. Neglecting the
conditional dependencies my lead to divergence [Sibley
et al., 2010]

In summary, low-cost IMU/vision based navigation in
a difficult environment is a challenging task. The main
contributions of this paper are as follows:

• By combining various techniques, an incremental ro-
bust navigation strategy is introduced to provide
constant-time estimation after outlier rejection.

• Investigating the effect of various window sizes on
the navigation performance for constant-time appli-
cations.

The remainder of this paper is organised as follows:
Section 2 covers the problem formulation, dynamics and
measurement models; Section 3 manifests the proposed
solution methodology; Section 4 outlines the SWF ap-
proach; Section 5 are the experimental data collected
from the UTS water tank facility and the solution re-
sults; and Section 6 will conclude with future direction.

2 Problem Formulation

We assume that the nonlinear motion and observations
model are in the following form:

xk = f(xk−1, uk) + g(xk−1, wk) (1a)

zk = h(xk) + vk, (1b)

where xk and uk are the vehicle state and control input
at time k respectively, wk is the process noise, and zk
is the observation vector with vk being the observation
noise.

The Jacobian matrices (note k-subscript denotes step
k) for the nonlinear model f(·) and g(·) are as follows:

Fk−1 ≈ ∂f(x, u)

∂x

∣∣∣∣
(x,u)=(x̂k−1,uk)

(2a)

Gk−1 ≈ ∂g(x,w)

∂x

∣∣∣∣
x=x̂k−1

(2b)

The motion model can be written in the form:

xk = f(xk−1, uk) +Gk−1wk︸ ︷︷ ︸
w̃k

, wk ∼ N(0, Qk) (3)

where

E⟨w̃kw̃Tk ⟩ = Gk−1QkG
T
k−1︸ ︷︷ ︸

Q̃k

(4)

2.1 Coordinate Frames

The definition of coordinates frames used to derive the
dynamic model are:

• Body frame (b), moving with sensor where its origin
is fixed in the IMU’s centre of mass.

• Camera frame (c), moving with its origin fixed in
the camera’s optical centre.

• Navigation frame (n), fixed point in space with ori-
gin arbitrarily located.

2.2 Dynamics

The vehicle state prediction model in (1a), x =[
pn vn Ψn

]T
contains 9 states expressed in the nav-

igation frame, where

• vehicle position pn =
[
px py pz

]T
,

• vehicle velocity vn =
[
vx vy vz

]T
,

• vehicle attitude Ψn =
[
ϕ θ ψ

]T
(Euler angles in

roll, pitch and yaw).

The IMU data are treated as the control inputs u =[
f b ωb

]T
which include the vehicle body acceleration

f b =
[
fx fy fz

]T
in m/s2 and angular velocity ωb =[

ωx ωy ωz
]T

in rad/s.
Then, the state prediction model are as follows:pnkvnk
Ψnk


︸ ︷︷ ︸
xk

=

 pnk−1 + vnk−1∆t
vnk−1 + (Cnb f

b
k + g)∆t

Ψnk−1 + (Enb ω
b
k)∆t


︸ ︷︷ ︸

f(xk−1, uk)

+

03,3 03,3
Cnb 03,3
03,3 Enb

∆t

︸ ︷︷ ︸
Gk−1

[
wba,k
wbω,k

]
︸ ︷︷ ︸
wk

(5)

where

wba,k ∼ N(0, Qa), Qa = σaI3 (6a)

wbω,k ∼ N(0, Qω), Qω = σωI3 (6b)

Cnb =

 cθcψ cϕsψ + sϕsθcψ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sϕsθsψ sϕcψ + cϕsθsψ
sθ −sϕcθ cϕcθ

 (6c)

Enb =

1 sϕtθ cψtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (6d)

where s(·), c(·) and t(·) are shorthand notations for
sin(·), cos(·) and tan(·) respectively, Enb is the body
rotation rate to Euler rate transformation matrix, Cnb
is the body to navigation frame rotation matrix and

g =
[
0 0 −9.81

]T
accounts for the earth’s gravita-

tional field.



Figure 1: Bayesian network representing the navigation
problem. Wk is the weight for the measurement zk in
the optimisation

2.3 Environment Observation Setup

The robot operates in a 6-DoF environment. Visual
ARtag fiducial markers are installed on floor of the water
tank to provide the position and orientation measure-
ments. As a result, the environment observation setup
provides the direct pose measurements. Hence, the ob-
servation model in (1b) is linear, that is:

zk = Hxk + vk (7)

where

vk ∼ N(0, Rk), Rk = σmeasI6 (8)

H =

[
I3 03 03
03 03 I3

]
(9)

3 Solution

The proposed robust navigation method is illustrated
by the Bayesian network shown in Figure 1. As shown,
X = [x1, x2, x3, ..., xn] are the predicted robot poses us-
ing IMU input and Z = [z1, z2, z3, ..., zn] are the ob-
servations. The variables W = [W1,W2,W3, ...,Wn]
W ∈ [0, 1] are the weights assigned to each observation.
From the expectation maximisation formulation in [Lee
et al., 2013], the weight Wk is found to be the Cauchy
function:

Wk =
C2

C2 + ||zk − f(xk)||2Rk

(10)

where C is a constant and ||zk − f(xk)||2Rk
is the Maha-

lanobis distance. It can be observed the Cauchy weight
function varies between 1 and 0 with increasing error
(Mahalanobis distance dominates).

3.1 Initialisation

The nonlinear least-squares approach requires an initial
estimates of the states which are obtained using the EKF
algorithm. Every time a measurement is available, the
position and orientation states are corrected.

3.2 Nonlinear Least-Squares Smoothing

The nonlinear least-squares problem is linearised during
each iteration and then solved using the Gauss-Newton
approach. The nonlinear full least-squares smoothing re-
quires minimising the prediction and measurement error.
This can be represented as:

[δx∗k] = argmin
δxk

K∑
k=0

(Lv,k(x) + Lz,k(x)) (11)

where Lv,k(x) and Lz,k(x) are the weighted squared er-
rors based on the process and observation models.

Lv,k(x) =
1

2
ev,k(x)

T Q̃−1
v,kev,k(x) (12a)

Lz,k(x) =
1

2
Wkez,k(x)

TR−1
z,kez,k(x) (12b)

The motion model prediction error is:

ev,k =

{
x̂0 − x0, k = 0

f(xk−1, uk)− xk, k = 1, ...K
(13a)

and the observation model measurement error is:

ez,k = zk − h(xk). (13b)

The linearised motion model and prediction model error
are:

ev,k(xop + δx) ≈
{

ev,0(xop) + δx0, k = 0
ev,k(xop) + Fk−1δxk−1 − δxk, k = 1, ...K

(14a)

ez,k(xop + δx) ≈ ez,k(xop)−Hkδxk, (14b)

where xop denotes the operating point. We solve for δx
at each iteration until the algorithm converges.

δx =


δx0
δx1
δx2
...

δxK

 (15)



The combined prediction and observation error is
e(xop).

e(xop) =



δv,0(xop)
δv,1(xop)

...
ev,K(xop)
ez,0(xop)
ez,1(xop)

...
ey,K(xop)


(16)

The stacked version of the problem can be written and
solved iteratively. The structure of the combined mo-
tion and observation model Jacobians J matrix can be
represented as:

J =



I
−F0 I

−F1
. . .

. . .

I
−FK−1 I

H0

H1

H2

. . .

HK



=

[
Jv
Jz

]

(17)

Λ = diag(P−1
0 , Q̃−1

1 , · · · Q̃−1
K ,W0R

−1
0 , · · ·WKR

−1
K ) (18)

(JTΛJ)δx∗ = JTΛe(xop) (19)

Notice the covariance matrix of the process noise Q̃ =
Gk−1QkG

T
k−1, is singular and not invertible. We can

add a small diagonal matrix ∆I, to allow the covariance
matrix become invertible.

4 Sliding Window Filter

For the non-linear full least-squares optimisation to op-
erate efficiently, the size of parameter vector cannot grow
without bound. One simple approach to reduce the com-
putational complexity is by removing old poses from the
state vector. However by removing parameters directly
from the system equation could result in information loss
of how parameters interact. The correct way to remove
parameters from a multidimensional distribution is to
marginalise them out [Sibley et al., 2008]. This section
highlights the marginalisation using Schur complement
and the steps taken in the SWF algorithm.

4.1 Marginalisation

Marginalising out parameters is equivalent to applying
the Schur complement to the linear equation. For exam-
ple, given the system:

[
A11 A12

AT12 A22

]
︸ ︷︷ ︸

A

[
δx∗1
δx∗2

]
︸ ︷︷ ︸
δx∗

=

[
b1
b2

]
︸︷︷︸
b

(20)

Reducing the parameter x1 (marginalised state) into
x2 gives:

[
A11 A12

0 A22 −AT12A
−1
11 A12

][
δx∗1
δx∗2

]
=

[
b1

b2 −AT12A
−1
11 b1

]
(21)

where the matrix A represents the (JTΛJ) and b repre-
sents (JTΛe(xop)) from equation (19).

4.2 SWF Algorithm

Here, we provide a summary of the SWF algorithm.

• Add the new pose parameters: after completing k−
1 steps, we apply the process model using xk =
f(xk−1, uk) and also update the information matrix.

• Remove parameters: if there are more than k poses,
we marginalise out old poses using the Schur com-
plement.

• Update parameters: we now solve using Gauss New-
ton and apply the outlier detection method.

Algorithm 1 outlines the pseudo code for the incremental
robust navigation. Lines 12-34 repeats the EM process
for the current window where lines 18-24 is the expec-
tation step where Wk is calculated based on the current
pose xk. Lines 26-33 is maximisation step where the pose
update xk is computed from the maximisation step. The
EM process is repeated until the weights converges in line
7. Lines 36-41 goes through entire measurement in the
current window and recalculates the weightWk based on
the current smoothed trajectory. The removal of mea-
surement with low weight and the repeated EM process
help in preventing local minima. Further, the current
window is then slided forward (line 6) with oldest pose
discarded.

5 Experiment

The robot collects the measurement data using a monoc-
ular camera. The ArUco ROS library is used to compute
the pose measurements from the markers. The robot was
manually controlled to maintain a hovering position un-
der a current disturbance source. Due to the lower visi-
bility and low illumination, the markers were frequently



Algorithm 1 Incremental Robust Navigation Pseudo
Code

1: Window size ws
2: Input xk(−) : states from previous state, observation
z, all measurements I

3: Output xs : smoothed trajectory
4: N = # IMU measurement
5: W’ = 0; W = I ; I’ = I ;
6: for i = 0 : N do

//Weighting convergence
7: while |W−W’ | > ν do
8: W’ = W
9: // Classification EM iterations

10: k = 0; Xk = X
11: while |δ| > η do

//SWF
12: for k = i : i+ ws do
13: predict state: xk(−) = f(xk−1)
14: calculate Jv and
15: ΛQ = blkdiag(ΛQ, Q

−1)
16: calculate ev,k(xop) = f(xk−1) - x̂k
17: set ev(xop) = [ev(xop), ev,k(xop)]

//Expectation step
18: if measurement k in ∈ I’ then
19: compute Wk with equation (10)
20: calculate Jz and
21: ΛR = blkdiag(ΛR,WkR

−1)
22: calculate ez,k(xop) = zk - Hx̂k
23: set ez(xop) = [ez(xop), ez,k(xop)]
24: end if
25: end for

//Maximisation step
26: Assemble
27: J = [Jv; Jz]
28: Λ = [ΛQ; ΛR]
29: e(xop) = [ev(xop); ez(xop)]
30: Set up Schur complement (Equation 21)
31: and solve for δx∗

32: JTΛJ δx∗ = JTΛe(xop)
33: calculate [xs]

T = [xk]
T + δx∗

34: end while
35: //Remove outliers
36: for all measurements in I do
37: compute Wk with equation 10
38: if Wk < ω then
39: Remove measurement k from I’
40: end if
41: end for
42: X = Xk, W = Wk

43: end while
44: Store states and remove oldest pose
45: end for
46: return X,W ;

Figure 2: An example of outliers from the raw vision and
markers measurements. It can be seen that the noises do
not follow the standard Gaussian statistics but an offset-
like outlier pattern, which stems from the confusion in
recognising the markers.

confused with other markers, causing frequent outliers in
the measurements as shown in Figure 2. The sampling
rate of the IMU and the camera are 252Hz and 26Hz
respectively.

5.1 Results

The resulting trajectory obtained from the experimental
data after outlier rejection are presented in Figures 3
and 4. It can be observed that the proposed solution is
capable of detecting wrong measurements in the interval
(0-6s) where there are high number of outliers. Figure
5 illustrates the 3D raw vision position measurements of
the underwater robot. The 3D classification of outliers
and inliers for the position are shown in Figure 6. We can
observe the influence of outliers on smoothed trajectory
are minimised.

5.2 Window Size

The effect of different window sizes on the navigation
performance are presented in Figure 7. The root mean-
square error (RMSE) is calculated using the inlier mea-
surement to compare the navigation accuracy.

RMSE =

√√√√ 1

n

n∑
k=1

(zkinlier
− x̂k)2 (22)

A summary of the different window sizes performance are
shown in Tables 1 and 2. We implemented and tested
the algorithm in MATLAB using Intel Core i7 (4 Core)
3 GHz processor. It can be observed that the accuracy



Figure 3: The smoothed orientation trajectory shown
in black after classification of inliers(green) and out-
liers(red)

Figure 4: The smoothed position trajectory shown
in black after classification of inliers(green) and out-
liers(red)

reduces as window size decreases while the full batch es-
timation yields the lowest RMSE after outlier rejection.
On the other hand, as shown in Table 3, the full batch
estimation has the highest performance run-time and the
computational cost improves with reducing window size.

5.3 Discussion

The incremental batch estimation over a window of n
time steps presented in this work is equivalent to the
fixed-lag smoother (BMFLS) in [Hassan et al., 2021].
The results shown in Figures 3 and 4 for the 10-35 sec-
onds periods are quite similar to results achieved in [Has-
san et al., 2021].
Although the proposed approach or SWF reduces the

Table 1: Average transational RMSE comparison for dif-
ferent window sizes after outlier rejection

Method Window size Average RMSE(m)
Full Batch Est N/A 3.5108e-04

SWF 60 1.6e-03
80 1.5e-03
100 1.3e-03

Table 2: Average rotational RMSE comparison for dif-
ferent window sizes after outlier rejection

Method Window size Average RMSE(rad)
Full Batch Est N/A 5.1916e-04

SWF 60 9.5622e-04
80 7.0716e-04
100 7.2035e-04

Table 3: Performance run-time for different window sizes
after outlier rejection

Method Window size Run-time(s)
Full Batch Est N/A 1180.6

SWF 60 487.1
80 917.9

Figure 5: A proportion of the 3D raw vision position
measurements

computational run-time, but it is still not very efficient.
As a result SWF are still an active area of research [Bar-
foot, 2017]. However, the outlier detection loop in the al-
gorithm also contributes in increasing the computational
cost.



Figure 6: The smoothed trajectory shown in black line
after classification of inliers (green) and outliers (red)

6 Conclusions

In this work, we have presented an incremental robust
navigation solution with EM using an experimental un-
derwater dataset. The proposed solution has improved
the computational efficiency compared to full bach esti-
mation method while being capable of eliminating wrong
measurements even when there are high intensity of out-
liers. However, other ideas such as smart marginalisation
mentioned in [Sibley et al., 2010] could be explored to
increase the computational efficiency.

Modifying current work to an adaptive solution such
that when there are less outliers, small window size is
selected is one possible idea to further improve the com-
putational performance.
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