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ABSTRACT 

We demonstrate that a modern handbell, in addition to being axially symmetric, has an outer profile that is partly determined by 
aspects of Sacred Geometry. These include accurate golden rectangles, an approximate golden triangle, an accurate golden angle, 
and a circle whose radius and centre are fixed by the golden ratio. Because the triangle involved is only approximately golden, 
unlike other previously reported cases for both church and hand bells, the use of a golden triangle to fix the location of the shoulder 
is not appropriate for the case under investigation. Rather, its location can be determined by the crown circle and the golden angle 
from the centre of the mouth. We further show that the fit of the profile within a regular pentagon is less convincing than is the 
case for the modern church bell. We also summarise, based on group theory, the influence of axial symmetry on the degeneracy 
structure and the analytical forms of the bell’s modal functions. 

INTRODUCTION 

The idea that there is a connection between visual beauty 
and aspects of “sacred” geometry goes back at least to 
Classical Greece. It has attracted the attention of savants 
down the centuries and has been well rehearsed in popular 
mathematical/scientific literature over recent decades [1-
3]. Numerous topics have been considered but, of special 
interest to musical acousticians, has been its use in 
analysing violins of the Cremona school and other 
stringed musical instruments [4]. While it is not suggested 
here that modern Western bells can compete with 
Stradivarius violins in the visual beauty stakes, their forms 
are certainly aesthetically pleasing. Bells having hitherto 
escaped the attention of “golden” geometers. One of the 
present authors (RP), together with colleagues, 
investigated whether they contained any features 
associated with sacred geometry [5]. As only the outer 
surface of a bell is “on view”, the analysis was restricted 
to outer profiles; founders would have no reason to make 
their inner profiles look beautiful.  

The original study concentrated on modern church bells 
but also included some modern handbells. Most did 
indeed display a variety of golden features to 
unexpectedly high degrees of accuracy, with the handbells 
doing rather better. Since the computer-aided design 
(CAD) software available to analyse the profiles is now 
much improved, it has been decided to revisit the topic. 
Because the results for the handbells were slightly better 
in the original study, it was decided to begin with a 
modern handbell which had not been analysed in this way 
previously. A modern American C5 Malmark handbell 
was arbitrarily selected as a reasonable representative bell 
in this study. This bell again showed numerous golden 
features, but in slightly different combinations to those 
previously found in both church bells and handbells. 

Most bells are, to a good degree of approximation, axially 
symmetric. Consequently, it is convenient to describe 
them using cylindrical polar coordinates (r, θ, z) with the 

z-direction lying along the symmetry axis.  If this were not 
the case, then it would be very difficult for them to display 
many golden features. Concentrating on one plane at fixed 
θ, any golden features located will be repeated at all other 
values of θ. It is therefore likely to be sufficient to examine 
the geometry in any one sample plane. 

The presence of axial symmetry in bells has important 
consequences for their normal modes and for the 
degeneracy structures of their vibration spectra. These 
have been studied for church bells [6] whose results 
should apply equally well to other axially symmetric 
systems like handbells and some other percussive musical 
instruments. It is worthy of note that they have been 
applied with success to gamelan gongs [7]. Essentially, 
group theoretical arguments show that, for axially 
symmetric systems, the modal functions must vary like 
either sin(mθ) or cos(mθ) where m = 0, 1, 2, …. Those 
with m = 0 are singlets, either breathing modes or twisting 
modes, while all others are bending modes in degenerate 
pairs. It is the splitting of these pairs, due to small 
violations of axial symmetry, that results in the 
phenomenon of bell “warble”. 

BASIC SACRED GEOMETRY 

“Sacred” geometry is a generic term applied to the golden 
ratio and various geometrical features based upon it. 
Sometimes it is called the “divine proportion” or the 
“extreme and mean ratio” and is usually given the symbol 
ϕ. It can be defined by reference to Figure 1 where the 
straight-line AB is divided internally at a point C chosen 
such that 

𝐴𝐵 𝐴𝐶⁄ = 𝐴𝐶 𝐶𝐵⁄  (1) 

 

Figure 1. The golden ratio. 
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It is a simple matter to show [1, p.80] that this ratio can 
take either of two values ϕ and ϕ′, given by 

ϕ = !"√$
%

= 1.618… (2a) 

and ϕ& = !'√$
%

= −0.618… (2b) 

so that ϕ+ϕ′ = 1 (2c) 

ϕ  is an irrational number and is, in fact, equal to the 
asymptotic limit of the ratio of successive terms in the 
Fibonacci series [1, p.101]. Of the many remarkable 
properties of ϕ , the following two are especially 
“unusual” and can easily be proved by direct substitution: 

ϕ% = ϕ+ 1 and ϕ'! = ϕ− 1 (3) 

The geometrical figures with which the golden ratio is 
particularly associated are: 

● The golden rectangle, which has long to short sides 
in the ratio of ϕ:1. 

● The golden triangle, being (an isosceles triangle 
whose equal sides are in a ratio of ϕ:1 with the base).  

● The regular pentagon, the pentagram and the two 
highest order Platonic solids (dodecahedron and 
icosahedron), all of which contain geometrical 
features associated with ϕ. 

The earlier work with modern church bells was concerned 
only with the first two in this list plus the so-called 
“golden angle”. However, we can now report that, due to 
its connection with the golden triangle, a regular pentagon 
is also associated with important features of church bells. 
We now show that this association does not extend to the 
C5 Malmark handbell but is replaced by another involving 
a circle whose radius and centre are determined by the 
golden ratio. 

MODERN C5 MALMARK HANDBELL 

Definitions and geometry 

In Figure 2 we have taken a small modern C5 Malmark 
handbell, stood it on a horizontal surface, taken a vertical 
cross-section containing its symmetry axis and then 
discarded the left half. Included is some terminology for 
readers unfamiliar with campanological jargon. The 
geometry of this bell had been measured previously with 
considerable accuracy for use in a finite-element model 
[8]. It should be noted that the inner and outer profiles are 
different although, in this paper, we are mainly concerned 
with the outer one. 

The thickness of the wall has a minimum at the shoulder 
and increases slowly and monotonically as one moves 
down to the rim. This differs from church bells, which 
have a more complicated thickness variation. Likewise, 
the crown is much simpler here, consisting of circular 
arcs. Parameters of importance in describing the outer 
profiles are the mouth radius R, the shoulder radius r and 
the vertical heights above the mouth of the crown H and 
 

 

Figure 2. Half cross-section of C5 Malmark handbell. 

of the shoulder h. The radius of the crown circle proves to 
have the same value as that for the mouth, as we explain 
in the following section. 

Some golden rectangles 

 

Figure 3. Outer profile of C5 Malmark handbell showing 
golden rectangles. 

Figure 3 shows the complete outer profile of the C5 
Malmark handbell. It has R = 59.3 mm and H = 96.0 mm 
so that H/R = 1.619 which is almost identical to the golden 
ratio of 1.618. Thus, the rectangle OBCY is almost 
perfectly golden. As a convenient alternative measure of 
its “goldenness” we join the rim at B to the centre of the 
crown at Y and measure the angle 𝜉  which this makes 
with the mouth.  

Clearly 𝜉 = tan'!(𝐻/𝑅)  which gives 𝜉 = 58.3°  in this 
case. This is to be compared with the golden value of 𝜉( =
tan'!(𝜙) = 58.28° . The larger rectangle ABCD, 
containing the bell’s entire outer profile, is built up of two 
identical golden rectangles lain side by side. 
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A well-known property of the golden rectangle [1, p.85] 
is that, if one constructs an internal square based on a 
shorter side, then the remaining portion is itself a (smaller) 
golden rectangle. In Fig. 3, the square FJCY based on the 
radius R of the mouth of the bell leaves a second golden 
rectangle OBJF. The point F, which divides the line OY 
by the golden ratio, is the centre of the circle defining the 
arc which forms the crown. The radius of this circle is 
equal to the radius of the mouth. Generating further, 
smaller, golden rectangles can be continued in this way ad 
infinitum but does not appear to yield any further 
significant results for this bell. 

A golden triangle 

Unlike the church bell, the shoulder and the rim of the 
handbell are very well defined. In Figure. 4 we again show 
the C5 Malmark bell but now with the common tangent on 
the right extrapolated to cut the symmetry axis at E and 
the plane of the mouth at B. The tangent BE plus its mirror 
image AE in the symmetry axis AE and the baseline AOB 
form an isosceles triangle ABE. We are interested in the 
angle OBE ≡ 𝜓 given by 

tan𝜓 = ℎ/(𝑅 − 𝑟) (4) 

 

Figure 4. Outer profile of C5 Malmark handbell showing 
fitting isosceles triangle and golden angle. 

Using the above value for R, together with ℎ = 85.3mm 
and 𝑟 = 33.8mm gives 𝜓 = 73.6°. 

As set out in section 1, a golden triangle is an isosceles 
triangle in which the length of the equal sides is ϕ times 
that of the base. This gives a golden value for 𝜓 of 

𝜓( = cos'![1/(2𝜙)] = 72° (5) 

The triangle defined by the common tangents and base, 
having an angle of about 73.4°, is not very far from being 
golden. Clearly if we add further lines parallel to AB these 
will each form the base of a further approximately golden 
triangles with E as the apex. None of these seem to be of 
any particular significance. For the Taylor church bell, by 
contrast, the angle 𝜓  came out to be 71.9° so the 
corresponding triangle was almost perfectly golden. A 
feature worthy of note here is that the point S divides EB 
in the golden ratio, with the length of ES being equal to 
the diameter of the bell’s mouth. The reason for this is not 
immediately obvious. 

A golden angle 

It is usual to define “the “golden angle” as half a complete 
rotation divided by 𝜙 . This is 111.25°. However, it is 
more convenient for our purpose to work with the 
complementary angle of 68.75° which we designate as θG. 
Returning to Figure 4, we now draw an extra straight line 
from the centre of the mouth O to the shoulder S. The 
angle θ that OS makes with the mouth line OB helps to 
define the location of the shoulder. Clearly 

tan 𝜃 = ℎ/𝑟 (6) 

Substituting the dimensions of the C5 Malmark bell gives 
θ = 68.4° which agrees remarkably well with the value of 
θG. 

So, a sufficient method to specify the location of the 
shoulders in this bell is to use the intersection of the crown 
circle, with radius R and centre F (determined by the 
golden ratio), with a line from the centre of the mouth 
making a golden angle with the base line. It does not 
require the triangle ABE to be exactly golden. This does 
not work for church bells because their crowns are not 
simple circular arcs. In their case, the ABE triangles are 
much closer to being golden, as quoted above for the 
Taylor bell. 

A regular pentagon 

A text-book property of the regular pentagon is that, if one 
joins any corner to each of the ends of the opposite side, 
this produces an isosceles triangle with side-angles of 
exactly 72° (a golden triangle). If a bell’s outer profile is 
partly defined by a golden triangle, then there must be a 
regular pentagon underlying the situation. Starting with 
the mouth of the bell as one side of the pentagon and using 
the known 72° angle, it is a straightforward matter to 
construct the complete pentagon. The result is shown in 
Figure 5 for the Taylor church bell and in Figure 6 for the 
C5 Malmark handbell. In each of these figures we include 
the lines joining the centre of the pentagon to its vertices. 
For the church bell, where 𝜓 is almost exactly 72°, the 
centre of the pentagon precisely defines the location of the 
bell’s shoulders. However, in the case of the handbell, 
there is a noticeable deviation, possibly due to the 
difference of a modest 1.4° in 𝜓. 
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Figure 5. Outer profile of Taylor church bell showing 
accurate fit to both golden triangle and regular pentagon. 

 

Figure 6. Outer profile of C5 Malmark handbell showing less 
accurate fit to golden triangle and regular pentagon. 

CONCLUSIONS 

The use of modern software, more flexible than that used 
in earlier work, to analyse the outer profile of a C5 
Malmark handbell confirms that its design contains 
numerous features accurately described in terms of sacred 
geometry. The aspect ratio of crown height to mouth 
radius is exactly equal to the golden ratio. The crown is 
described by means of a circle whose radius and centre are 
fixed by the golden ratio. The shoulder is connected to the 
centre of the mouth by a line making a golden angle with 
the mouth line. These two factors together are sufficient 
to specify the shoulder location. A triangle enclosing the 
bell outer profile is approximately golden. However, 
possibly because of the small deviation from golden, its 
use to determine the shoulder location is problematic. This 
point is at odds with some previous results for handbells 
and suggests that further investigation of these other 
handbell results using the more recent software used 
herein may also be worthwhile. The same may also be true 
of church bells. Further work might also investigate the 
significance of both manufacturing tolerance differences 
in like bells and in the ability to measure the profiles. 
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