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Entanglement-assisted capacity regions and protocol designs
for quantum multiple-access channels
Haowei Shi 1, Min-Hsiu Hsieh2, Saikat Guha1, Zheshen Zhang1,3 and Quntao Zhuang 1,4✉

We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels (MACs) with an arbitrary
number of senders. As an example, we consider the bosonic thermal-loss MAC and solve the one-shot capacity region enabled by
an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is
strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source
and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four
practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise
background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and
superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of
the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.
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INTRODUCTION
Communication channels model physical media for information
transmission. In the case of a single-sender single-receiver
channel, the Shannon capacity theorem1,2 concludes that a
channel is essentially characterized by a single quantity—the
channel capacity. As physical media obey quantum physics, the
channel model eventually needs to incorporate quantum effects
during the transmission, which has reshaped our understanding of
communication. To begin with, the Shannon capacity has been
generalized to the Holevo–Schumacher–Westmoreland classical
capacity3–5. Quantum effects such as entanglement have also
enabled nonclassical phenomena in communication, such as
superadditivity6–11 and capacity-boost from entanglement-
assistance (EA)12–21. Moreover, reliable transmission of quantum
information is possible, established by the Lloyd–Shor–Devetak
quantum capacity theorem22–24. Combining different types of
information transmission, refs. 25,26 provide a capacity formula for
the simultaneous trade-off of classical information (bits), quantum
information (qubits), and quantum entanglement (ebits).
Despite their exact evaluation being prevented by the super-

additivity dilemma, capacities of single-sender single-receiver
quantum channels are well-understood. In particular, the benefits
of entanglement in boosting the classical communication rates have
been known since the pioneering theory works12–15,17 and recently
experimentally demonstrated27 in a thermal-loss bosonic commu-
nication channel. The two-mode-squeezed-vacuum (TMSV) state is
utilized as the entanglement source and functional quantum
receivers are demonstrated, thanks to the practical protocol design
in ref. 28. Further development of receiver designs29 and the
application to covert communication30 have also been considered.
However, supported by the Internet, real-life communication

scenarios, such as online lectures and online conferences, often
involve multiple senders and/or receivers. As a common paradigm
being studied in the literature31–35, the multiple-access channel
(MAC) concerns multiple senders and a single receiver.

Communication over a MAC is no longer characterized by a
single rate, but a rate region with a trade-off between multiple
senders. With the development of a quantum network36–40,
quantum effects have also become relevant in such a commu-
nication scenario. In this regard, the classical capacity region of a
quantum MAC was solved by Winter41, while the entanglement-
assisted (EA) classical communication capacity region in the
special case of a two-sender MAC was solved in ref. 17. Although
superadditivity in the capacity region has also been found in a
MAC42,43 and EA advantage in a classical MAC can be shown33, it is
unclear how much advantage entanglement can provide for a
quantum MAC in a direct communication scenario.
In this work, we present a thorough study of EA classical

communication over a quantum MAC with an arbitrary number of
senders. On the fundamental information-theoretic side, we prove
the general EA classical capacity theorem for an s-sender (s ≥ 2)
MAC, which has been conjectured in ref. 17 and yet not proven for
the past decade. Next, we proceed to evaluate the EA rate region of
the bosonic thermal-loss MAC, which models an optical or
microwave communication scenario (see Fig. 1), and find rigorous
advantages from entanglement. Finally, on the application layer, we
propose practical protocols to realize the EA advantage in a bosonic
thermal-loss MAC, and provide a variety of transmitter and receiver
designs. Due to teleportation44 and superdense coding12, our results
for EA classical communication can be directly extended to EA
quantum communication at half of the rates. As bosonic thermal-
loss MACs model various real-world communication networks, our
EA communication scenario is widely applicable to radio frequency,
deep space45, and wireless communication scenarios46.

RESULTS
General setting and main findings
In a MAC, multiple senders individually communicate with a single
receiver. As shown in Fig. 1, besides a transmitter that sends
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encoded messages, each sender has access to entanglement pre-
shared with the receiver, potentially through a ground-satellite
and/or fiber-based quantum network. The receiver decodes all
messages from the senders via a joint measurement on all
received signals and the stored EA. Our first main result is an EA
capacity theorem which quantifies the trade-off between the
ultimate communication rates of different senders. The capacity
formula has a form of conditional quantum mutual information,
analogous to the classical formula2. We then give an explicit
example of a bosonic thermal-loss MAC, which is widely applicable
to practical communication scenarios. For example, it models the
network depicted in Fig. 1, where multiple mobile devices are
sending messages to a single base station. We evaluate its rate-
region with the common TMSV entanglement source. Comparing it
with the case without EA47, we find great advantages enabled by
entanglement; Moreover, when the sources of all senders have
equal and low brightness, we numerically find that the TMSV
source is optimal at a corner rate point. As a benchmark, we derive
bounds on the capacity region and design practical protocols,
based only on off-the-shelf quantum optical elements, which can
achieve quantum advantages from entanglement in the near-term.

EA classical capacity theorem for MAC
Multiple-access channels. As depicted in Fig. 2, consider a MAC
with s senders, each sending a message mk (1 ≤ k ≤ s) sampled
from a message space Mk, therefore the overall message m=m1

⋯ms is sampled from the message space M ¼ �s
k¼1Mk . To send

each message mk, the kth sender performs a quantum operation
Emk to produce a signal quantum system Ak. Following ref. 17, we
introduce EA in the above communication scenario—namely the
receiver has a reference system A0

k (idler) pre-shared as the EA
with the kth sender.
We consider the entanglement to be pairwise between each

sender and the receiver such that the overall quantum state

ϕ̂AA0 ¼ �s
k¼1

ϕ̂AkA0k (1)

is in a product form, where we have denoted A= A1⋯ As and
A0 ¼ A0

1 � � �A0
s as the overall systems.

After the encoding, the composite system A containing all of
the quantum systems fAkgsk¼1 is input to the MAC N A!B, which

outputs the quantum system B for the receiver to decode the
messages jointly with the EA A0. For convenience, we define a
quantum state after the channel but without the encoding, ρ̂BA0 ¼
½N A!B � I�ðϕ̂AA0 Þ; where I is the identity channel modeling the
ideal storage of the idler system. The formal analyses of the
quantum-state evolution can be found in the Methods.
The performance metric of the above communication scenario

is described by a vector of rates (R1,⋯ , Rs), where Rk is the reliable
communication rate between the kth sender and the receiver (see
Methods, Section II of ref. 41, and Subsection III.A of ref. 17 for the
formal definitions). These rates in general have non-trivial trade-
offs with each other. In the case without EA, the capacity region is
well-established by the pioneering work of Winter41 (see
Supplementary Note 2).
To describe the rate region of the s-sender MAC, we will

frequently divide the senders into two blocks, the block of interest
indexed by a sequence J and the complementary block Jc. For
example, when s= 2, we have four possible block divisions: {J= 1,
Jc= 2}, {J= 2, Jc= 1}, and and two trivial cases fJ ¼ 12; Jc ¼ +g,
fJ ¼ +; Jc ¼ 12g. Any s-fold quantity can be written as a
composition of the two blocks, e.g., message space M=M[J]M
[Jc], with M[J]=⊗ i∈JMi, M½Jc� ¼ �i2JcMi ; similarly the message as
m=m[J]m[Jc].

Capacity theorem. To present our EA-MAC capacity theorem for
the scenario in Fig. 2, we introduce some entropic quantities. For a
quantum system XYZ in a state α̂, we define the quantum mutual
information between X and Y as

IðX : YÞα̂ ¼ SðXÞα̂ þ SðYÞα̂ � SðXYÞα̂;
where SðXÞα̂ ¼ Sðα̂XÞ ¼ �trðα̂X log2α̂XÞ is the von Neumann
entropy. Similarly, the quantum conditional mutual information
between X and Z conditioned on Y

IðX; ZjYÞα̂ ¼ SðXYÞα̂ þ SðYZÞα̂ � SðXYZÞα̂ � SðYÞα̂:

With the entropic quantities in hand, we can present our main
theorem below (see Supplementary Note 3 for a proof).

Fig. 1 Conceptual schematic of EA classical communication over a
MAC. The entanglement source distributes entangled pairs to each
sender and the receiver, potentially via a quantum network. Each
sender encodes its own message on its share and sends the signal
to the receiver. The receiver decodes the messages of all senders by
jointly measuring the received signals and the entanglement-
assistance locally stored.

Fig. 2 Schematic of a general EA-MAC communication protocol.
The EA sources ϕ̂ of the s senders are in a product state of Eq. (1).
The s senders apply independent encoding modeled by quantum
operations, i.e., sender k applies Emk on the signal state given the
message mk. Denoting the entire message as m=m1⋯ms, the
encoded signal-idler is then in a state σ̂m. The senders’ encoded
quantum systems A= A1⋯ As are sent through the MAC N , leading
to the output system B. The receiver applies the quantum operation
D to decode the information from the joint state β̂

m
of the output

system B and the pre-shared reference systems A0 ¼ A01 � � �A0s. We
define Mk as the codeword space of each message mk, M as the
overall codeword space of message m, and M0 as the decoded
codeword space. To facilitate the analysis, we denote the overall
state Ξ̂ (Eq. (14)) over systems MAA0 right before the channel and the
overall state ω̂ (Eq. (15)) over systems MBA0 right before the
decoding.
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Theorem 1. (EA-MAC capacity) The EA classical communication
capacity region over an s-sender MAC N is given by the
regularized union

CEðN Þ ¼
[1

‘¼1

1
‘
Cð1ÞE ðN�‘Þ (2)

where the “one-shot” capacity region Cð1ÞE ðN Þ is the convex hull of
the union of “one-shot, one-encoding” regions

Cð1ÞE ðN Þ ¼ Conv
[
ϕ̂

~CEðN ; ϕ̂Þ
2
4

3
5: (3)

The “one-shot, one-encoding” rate region ~CEðN ; ϕ̂Þ for the 2s-
partite pure product state ϕ̂AA0 ¼ �s

k¼1ϕ̂AkA0k
over AA0, is the set of

rates (R1,⋯ , Rs) satisfying the following 2s inequalitiesX
k2J

Rk � IðA0½J�; BjA0½Jc�Þρ̂; 8J; (4)

where the conditional quantum mutual information is evaluated
over the output state ρ̂BA0 ¼ N A!B � Iðϕ̂AA0 Þ.
Here we make some remarks about Theorem 1: First, if we only

focus on the regularized capacity region CEðN Þ, then the convex
hull in Eq. (3) is not necessary, as one can simply include the time-
sharing over different inputs among the infinite number of
channel uses; However, if one wants to formulate the “one-shot”
capacity region Cð1ÞE ðN Þ, then the convex hull is necessary to
include potential time-sharing between any codes. Second, the
capacity formula in ref. 17 can be considered as a special case of
our theorem, as the regularized case does not need the convex
hull in Eq. (3); indeed, at the end of ref. 17 our theorem is stated as
a conjecture.

EA capacity region for a bosonic MAC
Bosonic thermal-loss MACs. In an optical or microwave commu-
nication scenario, the relevant MAC is a bosonic thermal-loss MAC
depicted in Fig. 3. Upon the input modes âA1 � � � âAs from the s
senders, the MAC N first combines the modes through a beam
splitter array to produce a mixture mode

âAmix ¼
Xs

k¼1

ffiffiffiffiffi
ηk

p
âAk ; (5)

while all other ports of the beam splitter array are discarded, here
the weights {ηk} are non-negative and normalized. Then the
mixture mode goes through a bosonic thermal-loss channel Lτ;NB

described by the operator transform

âB ¼
ffiffiffi
τ

p
âAmix þ

ffiffiffiffiffiffiffiffiffiffiffi
1� τ

p
âE ; (6)

where âE denotes the environment mode in a thermal state with a
mean photon number hâyEâEi ¼ NB=ð1� τÞ. This convention of
fixing the mean photon number NB of the thermal noise mixed
into the output mode âB is widely used, e.g., in quantum

illumination48,49.
In a bosonic MAC, the Hilbert space of the quantum systems is

infinite-dimensional—an arbitrary number of photons can occupy
a single mode due to the bosonic nature of light. To model a
realistic communication scenario, we will consider an energy
constraint on the mean photon number (brightness) of the signals
modes

âyAk âAk
D E

¼ NS;k ; 1 � k � s; (7)

which is commonly adopted in bosonic communication28,47,50.
Note that in general the energy of different senders can be
different.
Without EA, the capacity region of the above bosonic MAC has

been considered in ref. 47 for the two-user case. However, the
generalization of the coherent state rate region therein to the s-
sender case is straightforward, leading to a rate region specified
by the following 2s inequalities,

X
i2J

Ri � CJ
coh � g

X
i2J

τηiNS;i þ NB

 !
� g NBð Þ; (8)

where g(x)= (x+ 1) log2(x+ 1)− x log2(x) and J can be chosen
arbitrarily. Moreover, a squeezing-based encoding scheme is
shown to be advantageous over the coherent-state encoding;
however, regardless of the encoding, the rate region is always
bounded by the following set of outer bounds

Rk � g τNS;k þ NB
� �� g NBð Þ; 1 � k � s; (9)

which are derived by assuming a super receiver that can reverse
the beam splitter array in the bosonic thermal-loss MAC. A second
outer bound can be obtained from energetic considerations,
which leads to the same form of Ineq. (8) with J being all users. As
these outer bounds represent the upper limit of all encodings
without EA, an EA rate region outside the rate region specified by
the above outer bounds will demonstrate a strict advantage
enabled by entanglement.

EA outer bounds. As the exact evaluation of the EA capacity
region for the bosonic MAC is challenging, we first focus on outer
bounds to obtain some insights. Similar to the case without EA, via
reducing to the single-sender EA classical capacity, one can obtain
outer bounds for the EA-MAC classical capacity region (See
Methods for a proof). Explicitly, we have

Rk � CEðNS;k ;Lτ;NBÞ; 1 � k � s; (10)

Xs

k¼1

Rk � CE

Xs

k¼1

ηkNS;k ;Lτ;NB

 !
; (11)

where the explicit formula of the EA capacity CE NS;Lτ;NB
� �

over a
bosonic thermal-loss channel Lτ;NB , with the energy constraint NS,
can be found in Eq. (18) of Methods. These outer bounds provide
the upper limit of EA classical communication rates, and apply to
arbitrary forms of entanglement source ϕ̂ and encoding fEmg.

Two-mode squeezed vacuum rate region. To obtain an explicit
example of bosonic EA-MAC capacity region, we consider the
entanglement source in Eq. (1) as a product of TMSV pairs, each
with the wave-function

ϕ̂
TMSV
AkA0k

¼
X1
nk¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nnk
S;k

ðNS;k þ 1Þnkþ1

s
nkj iAk nkj iA0k ; (12)

for 1 ≤ k ≤ s, where nj i is the number state defined by
âyâ nj i ¼ n nj i. In ref. 28, it has been shown that the TMSV state
is optimal for single-sender single-receiver EA classical commu-
nication, therefore we expect the TMSV source to be good in the
MAC case. Although, due to the complexity from the plurality of

Fig. 3 Schematic of the bosonic thermal-loss MAC. The beam
splitter array models a linear scattering medium. The thermal-loss
channel models the noisy transmission.
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the senders, the exact union over the states in Eq. (3) for the EA-
MAC classical capacity region is challenging to solve.
We evaluate the “one-shot, one-encoding” rate region

~CEðN ; ϕ̂
TMSVÞ in Ineqs. (4) for the product of TMSV source in Eq.

(12). Although the evaluation of each Ineq. (4) is efficient thanks to
the Gaussian nature of the state, the number of such inequalities
2s is exponential and therefore resource-consuming in practice. To
showcase the capacity region, we choose s= 2, 3, which enable
direct visualization as the rate region is two or three dimensional.
In comparison, we also compute the classical coherent-state rate
region in Ineq. (8) and the classical outer bound, specified jointly
by Ineq. (9) and Ineq. (8) with J being all senders. Moreover, we

can also compare ~CEðN ; ϕ̂
TMSVÞ with the EA outer bound in Ineqs.

(11) and (10).
Three representative setups of parameters are chosen as

examples. To begin with, we consider an intermediate channel
noise NB= 20, identical to the case of microwave quantum
illumination48,51; Furthermore, a noisy channel with sufficiently
large noise NB= 104 is noteworthy as it provides a saturated EA
advantage28; Finally, the long wavelength infrared domain with
low noise NB= 0.1 is a relatively uncharted territory for EA
communication, nevertheless also relevant for practical applica-
tions.
We begin with a two-sender case (s= 2). As shown in Fig. 4, in

all the parameter settings being considered, we can see strict
advantages of the EA capacity region (cyan solid) over the classical

outer bound (black dashed), which is higher than the coherent-
state rate region (black solid). We find that the advantage is larger
when the noise NB is larger, comparing subplots (c) and (d). In
particular, this advantage also holds when NS≪ NB≪ 1, which can
happen in the long wavelength infrared domain, as shown in
subplot (d).
Comparing with the EA outer bound (magenta dashed), we see

that in Fig. 4a the TMSV rate region (cyan solid) touches the EA
outer bound (magenta dashed) at a corner point when R2=C2

coh ¼
R1=C1

coh to the leading order. The gap is of the order of 10−5

relatively; therefore, at this point, the TMSV source is in fact
optimal for the thermal-loss MAC being considered, for this
symmetric case where the parameters NS,k≪ 1 are identical
among the senders. Note this holds although the transmissivities
of the senders ηk are not equal. In other cases, when NS,1 ≠ NS,2,
regardless of the values of ηk being equal, a strict gap between the
TMSV rate region and the EA outer bound exists. This does not
conclude that the TMSV encoding is inferior, though, as the outer
bound is likely to be loose.
Furthermore, we consider a three-sender asymmetric case (s=

3), with unequal source brightness NS,1= NS,2 ≠ NS,3. In Fig. 5, a gap
emerges between the TMSV rate region (the region below the
cyan surface) and the outer bound (the magenta surface), as we
expected. An appreciable EA advantage remains as the EA
capacity region is several times larger than the coherent state
rate region (dark gray surface) and the classical outer bound (light

Fig. 4 The two-sender rate region. Rates are normalized by the coherent-state bounds C1
coh, C

2
coh defined in Ineq. (8), evaluated in the

scenario of: a microwave domain, τ= 0.01, NB= 20, NS,1= NS,2= 0.01, η1= 1/3, η2= 2/3. b microwave domain, τ= 0.01, NB= 20, η1= η2= 1/2,
NS,1= 0.001, NS,2= 0.01. c a noisy channel, τ= 10−3, NB= 104, η1= η2= 1/2, NS,1= 0.001, NS,2= 0.01. d long wavelength infrared domain η1=
η2= 1/2, τ= 0.001, NB= 0.1, NS,1= 0.001, NS,2= 0.01. The EA rate region in Ineq. (4) (cyan solid), evaluated on TMSV states, is bounded by the
EA outer bound (magenta dashed) in Ineqs. (11) and (10); while the coherent-state rate region (black solid) given by Ineq. (8) is bounded by
the classical outer bound (black dashed).
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gray surface).
Now we further consider the scaling of the EA advantage

observed above. As shown in Fig. 6, the advantage of the EA
capacity (magenta) relative to the case without EA also diverges
with log(NS), when the signal brightness NS is small and the noise
NB is much larger than the signal brightness NS. Note that this
advantage also holds for the case when NS≪ NB < 1, as shown in
Fig. 6b. This logarithmic diverging EA advantage in MACs is similar
to the single-sender single-receiver case studied in ref. 28. Indeed,
at the limit τ≪ 1, NS≪ 1, the relative ratio of the outer bound over

the coherent-state rate

CE NS;k ;Lτ;NB
� �

Ck
coh

’ logð1=NS;kÞ
ηkð1þ NBÞ logð1þ 1=NBÞ ; (13)

is also logarithmic in 1/NS,k when NB is small.

Protocol designs for the bosonic EA-MAC
In this section, we design a practical protocol to realize EA classical
communication over the bosonic thermal-loss MAC. The protocol
consists of phase-modulation encoding on the TMSV entangle-
ment source and structured receiver designs.

Encoding and receiver designs. Similar to the single-sender single-
receiver case, to encode a bit of information mk= 0, 1, the kth
sender performs a phase modulation on the signal part of the

TMSV pairs via a unitary Emk ¼ eimkπâ
y
Ak
âAk to produce the quantum

system Ak input to the MAC, while the idler part of the TMSV pair
A0
k is pre-shared to the receiver side for EA. Here we have

considered the binary phase-shift keying: the kth sender sends the
bit message mk= 0, 1 by the same probability p0= p1= 1/2. To
enable efficient decoding, we consider NR repetitions of such
encoding—each message is repeatedly encoded on NR signal
modes of a single sender.
The decoding process takes the output of the MAC âB and the

EA idlers fâA0k ; 1 � k � sg to decode the information {mk, 1 ≤ k ≤ s}
of all the senders. Below we propose four receiver designs for the
decoding. The basic element in the receiver design is the optical
parametric amplifier (OPA), which upon input modes âR and âI ,
produces two modes â0R ¼

ffiffiffi
G

p
âR þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G� 1

p
âyI ; â

0
I ¼

ffiffiffi
G

p
âI þffiffiffiffiffiffiffiffiffiffiffiffi

G� 1
p

âyR; where G is the gain of the OPA. An OPA transforms
the phase-sensitive correlation between the input mode-pair into
the photon number difference Δhâ0y

I â
0
Ii /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðG� 1Þp

2RehâIâRi,
which is widely utilized to design receivers in EA applications, such
as quantum illumination51 and the bipartite EA classical commu-
nication28. Moreover, one can use an OPA as a phase-conjugator
to design a phase-conjugate receiver (PCR), as explained in ref. 28.
To decode all s messages, one can apply two different

strategies, either decode them in a serial manner or in parallel.
One can also base the receiver design on the direct OPA or on the
phase-conjugation mechanism. These choices lead to four receiver
designs—serial OPA receiver (OPAR), serial PCR, parallel OPAR and

Fig. 5 The three-sender EA rate region. The rates are normalized
by the coherent state bounds C1

coh, C
2
coh, and C3

coh defined in Ineq. (8),
evaluated in the scenario of microwave domain NS,1= NS,2= 0.1,
NS,3= 0.01, τ= 0.01, NB= 20, η1= η2= η3= 1/3. The EA rate region
in Ineq. (4) (cyan), evaluated on TMSV states, is bounded by the EA
outer bound (magenta) in Ineqs. (11) and (10); while the coherent-
state rate region (black) given by Ineq. (8) is bounded by the classical
outer bound (light gray).

Fig. 6 Rates versus signal brightness. The dependence on source brightness NS,1= NS,2= NS of the EA advantage of the EA rate regions for
two-sender MAC communication under the scenario of: a microwave domain η= 1/2, τ= 0.01, NB= 20; b long wavelength infrared domain
η1= η2= 1/2, τ= 0.001, NB= 0.1. We plot R1 for sender 1 under conditions R1/R2=∞ (solid) and R1/R2= 1 (dot-dashed). For TMSV, the two
curves overlap. Note that R1/R2= 0, ∞ are equivalent up to a swap due to the symmetry between the two senders; and for given R1/R2,
R2=C2

coh ¼ R1=C1
coh. We also compare the EA rate region of TMSV (cyan) with the EA outer bound (magenta).
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parallel PCR—as we summarize below (see details in Supplemen-
tary Note 1).
In the serially connected scheme, on the kth round, the signal

output â0Bk�1
from the (k− 1)th round and the idler âA0k are input to

an OPA. The idler mode output from the OPA is detected, by direct
detection in serial OPAR or an interferometric detection in serial
PCR, to decode the message from the kth sender. Meanwhile, the
signal mode output from the OPA is further utilized in the next
round. Note that after the kth round, the cross correlation
between the signal mode with the other idler modes are almost
intact; therefore, performing an OPA on the signal and another
idler âA0

k0
, one can decode the message from the k0th sender.

Iterating this procedure on the remaining mode consecutively,
one obtains a serial architecture for the receiver, as shown in
Fig. 7a, b for the serial OPAR and serial PCR.
We can also adopt a parallel design for the receivers. As the

thermal-loss channel in the MAC adds excess noise into the
output, we expect that in the noisy case, splitting the received
signal into s copies, each for the decoding of the message of a
single sender, will still provide similar signal-to-noise ratios (SNR),
when compared to the case without the splitting. In this way, each
portion of the received signal can be utilized in parallel, in each
individual OPA component in the parallel OPAR or in each phase-
conjugation detection in the parallel PCR, to decode each
message. As shown in Fig. 7c, d, we can design parallel-OPAR
and parallel-PCR schemes.
Finally, we specify the choices of the gain in the OPA. Optimized

with respect to the SNR, for OPAR the gains of the s OPAs are
chosen to be Gk ¼

ffiffiffiffiffiffiffiffi
NS;k

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBð1þ NBÞ

p
, 1 ≤ k ≤ s. For PCR the

optimal gain turns out to be infinity; however, we find that the
performance is saturated when (Gk− 1)NB≫ NS,k for the kth
sender, thus we choose a feasible value accordingly.

Receiver rate region evaluations. As the encoding and receivers
are chosen, now the (soft-decoding) rate region is entirely
obtained from the classical formula of conditional mutual

information2 computed over the measurement outcome distribu-
tion (see Supplementary Note 1). As shown in Fig. 8, we compare
the receiver rate regions with the classical coherent-state rate
region in Ineq. (8) (black solid) and the classical outer bound in
Ineq. (9) jointly and Ineq. (8) (black dashed) with J being all
senders. We see that the performance of both OPAR and PCR can
beat the classical coherent state rate region and the classical outer
bound.
In Fig. 8, the performance of the OPAR (blue solid and red solid)

is inferior to the PCR (purple solid and orange solid), with a gap
that is more significant in Fig. 8a. This is because the PCR has a
better SNR to the next order in NS compared with OPA, as found in
the single-sender case in ref. 28 and confirmed in Fig. 9 here. As
the brightness NS decreases in Fig. 8b, the gap between the PCR
and OPAR almost diminishes. In Fig. 9, we see the rates of OPAR
(blue and red) are lower than PCR (purple and orange), with a gap
expanding as the brightness NS grows. We also find that the rate
advantage of both the OPAR and PCR saturates to 3dB as the
brightness NS decreases, consistent with the SNR advantage in
quantum illumination48,49. This is because when the noise is large,
the information rate is proportional to the SNR. Note that when
the channel noise NB decreases, the theoretical EA advantage
evaluated by TMSV remains substantial. However, the practical
advantage allowed by our receivers diminishes as NB falls below 1.
For NB= 0.1 (and smaller), there is no advantage for the proposed
receivers, as shown in Fig. 9b. This leaves an open question that a
feasible receiver that provides EA advantage in the low-noise
scenario is hitherto elusive.

DISCUSSION
In this paper, we have solved the capacity region of EA classical
communication over a quantum MAC with an arbitrary number of
senders. We also provide explicit encoding and decoding
strategies that offer a practical route towards achieving quantum
advantages in such network communication scenarios. Due to

Fig. 7 Schematics of four receiver designs. a serial optical-parametric-amplifier receiver (sOPAR), b serial phase-conjugate receiver (sPCR), c
parallel optical-parametric-amplifier receiver (pOPAR), d parallel phase-conjugate receiver (pPCR).
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teleportation44 and super-dense coding12, the rate region of EA
quantum communication is precisely half of the EA classical
communication region; therefore, all of our results can be
straightforwardly extended to the case of quantum communica-
tion. The explicit protocols can also be used for EA quantum
communication via further combining with a teleportation
protocol.
Many future directions can be explored. For example, multi-

partite entanglement may be considered instead of the product
form of Eq. (1) to assist the communication scenario, when the
senders can collaborate in the entanglement distribution process.
Another open question is whether one can have superadditivity
phenomena in our EA capacity region of MACs.
Before closing, we discuss potential experimental realizations

for the proposed EA-MAC communication systems. The basic
setup will be similar to that in ref. 27, with entanglement

generated by spontaneous parametric down-conversion in a
nonlinear crystal. The receiver can be implemented with another
nonlinear crystal to perform phase conjugation or parametric
amplification. However, the challenge to demonstrate an entan-
glement advantage under the multiple-senders scenario is that
the pump beams for different entanglement sources need to be
frequency and phase locked. Moreover, each stored idler needs to
be phase locked to its corresponding signal received from the
MAC. Differential-phase encoding can potentially avoid the need
for phase locking, which is subject to future studies.

METHODS
Formal analysis of the EA-MAC
In the MAC communication scenario of Fig. 2, each encoded signal-idler is
in a state σ̂mk

AkA0k
¼ Emk � Iðϕ̂AkA0k

Þ, where I is the identity channel modeling

Fig. 9 Receiver rates versus signal brightness. The dependence on source brightness NS,1= NS,2= NS of the EA advantage of the four
receivers for two-sender MAC communication under the scenario of: a microwave domain η= 1/2, τ= 0.01, NB= 20; b long wavelength
infrared domain η1= η2= 1/2, τ= 0.001, NB= 0.1. In the legend s, p refer to “serial” and “parallel”, respectively. The number of modes NR is
fixed such that the SNR NRτNS/NB= 0.1 for sender i= 1, 2. We plot R1 for sender 1 under conditions R1/R2=∞ (solid) and R1/R2= 1 (dot-
dashed). Note that R1/R2= 0, ∞ are equivalent up to a swap due to the symmetry between the two senders; and for given R1/R2,
R2=C2

coh ¼ R1=C1
coh.

Fig. 8 The two-sender rate region of our four receivers. The rates are normalized by the coherent state bounds C1
coh, C

2
coh defined in Ineq. (8):

a microwave domain NS,1= NS,2= 0.01, τ= 0.01, NB= 20, η1= η2= 1/2, NR= 2 × 104; b a noisy channel with NS,1= NS,2= 10−3, τ= 10−3, NB=
104, η= 1/2, NR= 107. To distinguish between the overlapping lines, we plot the serial receivers in thicker lines by contrast with the parallel
receivers plotted narrowed. The gains of OPAR are given in the main text, and the gains of PCR are G= 2 for NB= 20 and G= 1+ 10−3 for NB=
104. We also compare the receiver rate region with the coherent-state rate (black solid) region and the classical outer bound (black dashed).

H. Shi et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2021)    74 



the ideal storage of the idler system. Denote the overall encoding
operation as Em ¼ �s

k¼1Emk , and the probability of sending each message
as pm ¼Qs

k¼1 pmk
, the overall encoding can be described by the

composite quantum state

Ξ̂MAA0 ¼
X
m

pm mj i mh jM � σ̂mAA0 ; (14)

where σ̂mAA0 ¼ �s
k¼1σ̂

mk

AkA0k
� Em � I½ � ϕ̂AA0

� �
is the overall encoded state

conditioned on message m and mj i mh jM is the classical register for
message m.
After the encoding, all of the quantum systems from the s senders A are

input to the MAC N A!B, which outputs the quantum system B for the
receiver to decode the messages jointly with the EA A0 . The overall state
after the channel is

ω̂MBA0 ¼
X
m

pm mj i mh jM � β̂
m
BA0 ; (15)

where β̂
m

BA0 ¼ N A!B � I½ � σ̂mAA0
� �

.
The performance metric of a communication scenario over a MAC is

described by a vector of rates (R1,⋯ , Rs), where Rk is the reliable
communication rate between the kth sender and the receiver. These rates
in general have non-trivial trade-offs with each other. Formally, we define
an (n, R1,⋯ , Rs, ϵ) EA code by: the prior set fpmn

k
g, the encoded quantum

states fσ̂mn
k g, 1 ≤ k ≤ s on the input An for n parallel channel uses, with each

message mn
k 2 ½2nRk �, and the decoding positive operator-valued measure

(POVM) fΛ̂m1 ���msg on BnA
0n such that

Tr Λ̂m1 ���ms N�n � �s
k¼1Emk

� �� IA
0n

� �
ϕ̂AnA

0n
� � 	 1� ϵ: (16)

We say that (R1,⋯ , Rs) is an achievable rate vector if for all ϵ > 0, δ > 0
and sufficiently large n, there exists an (n, R1− δ,⋯ , Rs− δ, ϵ) EA code. The
EA classical capacity region CEðN Þ is defined to be the closure of the set of
all achievable rate vectors. The regularized capacity CEðN Þ is the union of

all ℓ-letter one-shot capacity regions Cð1ÞE ðN�‘Þ=‘, with integers ℓ ≥ 1. The

one-shot capacity region Cð1ÞE ðN Þ is the convex closure of the subset of
achievable rate vectors by (n, R1− δ,⋯ , Rs− δ, ϵ) codes that are generated
from separable inputs among the n channel uses. Here “one-shot” is in the
sense that the entanglement is constrained in a single channel use. For

‘-letter rates, the capacity region Cð1ÞE ðN�‘Þ considers N�‘ as a single
channel and allows codes with entanglement between ℓ uses of N . In the
case without EA, the capacity region is well-established by the pioneering
work of Winter41 (see Supplementary Note 2).

Outer bounds for bosonic thermal-loss MAC
Now we provide the outer bound in Ineqs. (11) and (10) for the EA classical
capacity region of the bosonic thermal-loss MAC. As we see in Fig. 3, the
overall channel can be written as a concatenation of two parts,
N ¼ Lτ;NB � EMAC, where EMAC represents the beam splitter modeling the
signal interference. From the bottleneck inequality, the overall commu-
nication rate is upper bounded by

Xs

k¼1

Rk � CE

Xs

k¼1

ηkNS;k ;Lτ;NB

 !
; (17)

the single-sender single-receiver EA classical capacity of the thermal-
loss channel Lτ;NB with brightness

Ps
k¼1 ηkNS;k . This is because for the

channel Lτ;NB , only a single mode signal âAmix in Eq. (5) with brightness

âyAmix
âAmix

D E
¼Ps

k¼1 ηkNS;k goes through. Explicitly, the capacity

CE NS;Lτ;NB
� � ¼ gðNSÞ þ gðN0

SÞ � gðAþÞ � gðA�Þ; (18)

with A± ¼ ðD� 1 ± ðN0
S � NSÞÞ=2, N0

S ¼ τNS þ NB and

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNS þ N0

S þ 1Þ2 � 4τNSðNS þ 1Þ
q

. This proves Ineq. (11).
As for the individual upper bounds for the senders in Ineq. (10), we

consider a theoretical super-receiver with access to all of the output ports
of the beam splitter part. The super-receiver performs the reverse of the
beam splitter transform, after which the communication reduces to the
single-sender scenario of which the information rate is bounded by each
single-sender single-receiver EA classical capacity. Explicitly, we have

Rk � CE NS;k ;Lτ;NB
� �

; 1 � k � s; (19)

which proves Ineq. (10).
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