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ABSTRACT: Mass transfer is critical in catalytic processes, more so when the reactions are 

facilitated by nanostructured catalysts. Strong efforts have been devoted to improving the efficacy 

and quantity of active sites, but often mass transfer has not been well studied. Herein, we 

demonstrate the importance of mass transfer in electrocatalytic oxygen reduction reaction (ORR) 

by tailoring the pore sizes. Using a confined-etching strategy, we fabricate boron- and nitrogen-

doped carbon (B,N@C) electrocatalysts featuring abundant active sites but different porous 

structures. The ORR performance of these catalysts is found to correlate with the diffusion of the 

reactant. The optimized B,N@C with trimodal-porous structures feature enhanced O2 diffusion 

and better activity per heteroatomic site toward the ORR process. This work demonstrates the 

significance of the nanoarchitecture-engineering of catalysts and also sheds light on how to 

optimize structure featuring abundant active sites and enhanced mass transfer.  

 

 

INTRODUCTION 

Carbon-based metal-free catalysts with stable structures, rich defects, and tunable electronic 

structures, have attracted much attention for various chemical reactions, including 
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thermocatalytic, electrocatalytic, and photocatalytic reactions. (1-2) In the past decades, 

numerous efforts have been devoted to optimizing the electronic structure of active centers at the 

nanoscale by heteroatom doping, especially with multiple heteroatoms. (3) Among these, boron 

and nitrogen co-doped carbon (B,N@C) has displayed interesting catalytic performance. (4-6)  

Most of the studies reported so far have focused on tuning chemical compositions and 

nanostructures to improve the efficacy and quantity of active sites.  

An often less studied but significant factor affecting the catalytic process is mass transfer, 

which determines the efficiency of supply of reactants and removal of products to and from the 

active sites, and consequently the catalytic performance. For various gas-involving 

electrocatalysis, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), 

oxygen reduction reaction (ORR), electrochemical reduction of carbon dioxide (CO2RR), and 

electrochemical reduction of nitrogen (N2RR), the diffusion behavior of reactants and products 

plays a practical role in these heterogeneous catalysis process. So far, electrode fabrication and 

device configuration design have been the common approach to enhance mass transfer, (7-10) 

rather than tailoring the pore sizes and volumes of the nanocatalyst itself. (11-12) 

Nanoreactors are effective platform materials with a wide range of structures where confined 

environments can modulate chemical reactions. (13-14) Trimodal porous nanoreactors with 

micropores (< 2 nm), mesopores (2−50 nm), and macropores (> 50 nm) are desirable to 

simultaneously achieve large numbers of active sites and improve mass diffusion. (15-18) Metal-

organic frameworks (MOFs) are ideal precursors to obtain nanoreactors due to their 

customizable modular assembly and controllable morphologic and structural evolution. (1, 19-

22) Key pore parameters including pore shapes, sizes, and volumes, can be regulated by 

controlling etching conditions. By varying the etching time, etching temperature, and etchant 
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concentration, mesopore sizes were confined within a range of 2-38 nm. (23-25) However, the 

range of pore sizes is not wide enough. Furthermore, pyrolyzing zinc-based MOFs (Zn-MOFs) 

has been used to obtain porous metal-free carbon materials with heteroatomic active sites. (26) 

However, most of these active sites are deeply hidden in the micropores of MOFs-derived 

nanocarbon and are unreachable for the catalytic reaction. (27) Selective etching of MOFs 

followed by pyrolysis proves effective in obtaining tunable nanostructures where active sites are 

exposed to reactants. (28-29) However, synthesizing a series of platform materials with different 

porous structures but similar active sites in efficacy and quantity is far less developed. Therefore, 

the relationship between mass transfer and catalytic activity is not well understood. B,N@C 

nanostructures have been derived by directly pyrolyzing B,N-containing MOF (e.g., boron 

imidazolate framework (BIF)-82 (30) and BIF-1S (31)) or MOFs mixed with B-containing 

substances (6, 32-40). Most of these MOF-derived B,N@C nanomaterials exhibit collapsed 

structures and narrow pore size distributions. (34-40) To obtain a great variety of pores with 

good controllability, this area is needed to study deeply including selecting the right precursors 

and the pyrolysis conditions. 

  Herein, we developed an effective method to fabricate porous three-dimensional (3D) B,N@C 

catalysts by sequentially etching and pyrolyzing a series of ZIF-8 precursors. It is known that 

most of the reported etching processes are too fast to precisely regulate the porosity of the MOF 

precursors. (28, 41) For example, tannic acid can transfer solid ZIF-8 and NH2-MIL-125(Ti) into 

hollow MOFs in a very short period (< 30 min). (41) To adress this issue, ammonia borane (AB) 

which features mild hydrolysis was used to make the etching process controllable. Consequently, 

the structure of the B,N@C nanocages was effectively tailored. These 3D B,N@Cs feature 

similar catalytic active sites for ORR, in terms of chemical composition and quantity. But their 
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performance correlates with the porous structure, especially at the meso- and macroscale, which 

affects the mass transfer during the heterogeneous process. The performance of optimized 

B,N@C-24 catalyst is on par with commercial Pt/C, and the excellent catalysis is associated with 

the trimodal-porosity enabling the best combination of active site exposure and mass transfer. 

RESULTS AND DISCUSSION  

Synthesis of hierarchical porous B,N@C nanoreactors from modified ZIF-8 nanoparticles  

The synthesis of B,N@C nanoreactors is illustrated in Figure 1. A double-solvent method was 

first used to immobilize ammonia borane (AB) as guest molecules in the ZIF-8 hosts on account 

of the immiscibility between water and cyclohexane. AB provides B and N as dopants and also 

acts as a mild etching agent by releasing protons during its slow hydrolysis, i.e., NH3BH3 + 

4H2O → NH4
+ +B(OH)4

− + 3H2. (29, 42) Therefore, compositional and structural modifications 

of ZIF-8 hosts were achieved at the same time, producing AB@ZIF-xh particles, where x 

represents the etching time. In the subsequent pyrolysis step, AB@ZIF-xh were transformed to 

corresponding B,N@C-xh nanocages with hierarchical porosities. (43)  
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Figure 1. Schematics of the preparation of the B,N@C nanoreactors. 

  The X-ray diffraction (XRD) patterns of the resulting AB@ZIF-8 match the simulated powder 

XRD patterns based upon ZIF-8 single crystal (Figure S1). The scanning electron microscope 

(SEM) images show negligible changes in morphologies and sizes after etching (Figure S2). 

Transmission electron microscopy (TEM) images reveal the structural evolution of the 

AB@ZIF-8 nanoparticles through etching (Figure 2a-c, S3). AB@ZIF-2/6/12h nanoparticles 

retain the solid rhombic dodecahedron structure without obvious pores as the parent ZIF-8 

(Figure 2a and S3). Extended etching gradually led to the formation of larger pores inside the 

host (Figure 2b and c). EDS mapping of AB@ZIF-24h in Figure 2d revealed that N and C were 

uniformly dispersed in the whole nanoparticle, while B and O were concentrated to the center of 

the particles, indicating that AB molecules were diffused inward through capillary action and 

hydrolyzed inside the host. These results prove that confined etching is effective in structurally 

modifying the MOF hosts. 
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Figure 2. Controllable etching of ZIF-8 precursors and the derived hierarchical porous B,N@Cs. 

TEM images of (a) AB@ZIF-12h, (b) AB@ZIF-24h, (c) AB@ZIF-48h, (e) B,N@C-12h, (f) 

B,N@C-24h, and (g) B,N@C-48h. EDS mapping of (d) AB@ZIF-24h and (h) B,N@C-24h. 

Black and white scale bars are 100 and 50 nm, respectively. 

Subsequently, B,N@C nanoreactors with different architectures were prepared by pyrolyzing 

the AB@ZIF-8 precursors at 1000 °C under N2. As illustrated by SEM images in Figure S4a, 

B,N@C-12h retains polyhedral morphology similar to the AB@ZIF-12h precursor after 

pyrolysis. With the extension in etching, B,N@C became hollow and porous with rough surfaces 
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collapsed inward (Figure S4b, c). TEM images further verify the correlation between the 

nanoarchitecture of B,N@C (Figure 2e-g), and AB@ZIF-8 precursors (Figure 2a-c). 

Specifically, the greater degree the precursor was etched to, the larger cavities of the derived 

materials have. As a result, B,N@C-12h possesses small voids inside; B,N@C-24h transforms 

into nanocages with multiple compartments; B,N@C-48h becomes hollow cages. Elemental 

mapping images reveal that B and N heteroatoms are homogenously distributed together with C 

in all these structures. (Figure 2h), indicating the formation of uniform co-doping of C by B and 

N. 

Structural relevance between AB@ZIF-8 precursors and the derived B,N@C  

To further explore the structural dependency of B,N@C on AB@ZIF-8, their structures were 

evaluated using N2 adsorption−desorption analysis (Figure 3a,b). The sorption isotherms of 

AB@ZIF-8 precursors (Figure 3a) display representative type I isotherms, indicating the 

dominance of micropores in these materials. The specific surface area decreased with longer 

etching, meaning that etching transformed some micropores into mesopores or macropores. (44) 

The pore size distribution profiles calculated based on non-local density functional theory 

(NLDFT) in Figure S5 confirmed the decrease in micropore (< 2 nm) proportions and the 

increase in mesopore (2−50 nm) and macropore (> 50 nm) proportions during etching. N2 

adsorption−desorption isotherms were also collected to characterize the porosities of B,N@C 

nanocages (Figure 3b). Different from AB@ZIF-8, B,N@C exhibited a combination of type I 

and IV isotherms with clear hysteresis loops, indicating the existence of micro-, meso- and 

macropores. (18, 45) There are several possible mechanisms for the formation of porous B,N@C 

nanocages, which include the generation of gases, (46) the evaporation of Zn atoms, (47) and the 

generation of graphitic structure. (28) All the samples have undergone the same pyrolytic 



 9 

conditions, so the differences in porous structures of B,N@C nanocages are mainly derived from 

the difference among the AB@ZIF-8 precursors. 

 

 

 

 

 

Figure 3. Structural characterization of AB@ZIF-8 nanoparticles and B,N@C nanocages. N2 

adsorption-desorption isotherms of a) AB@ZIF-8 and b) B,N@C, c) average pore size and d) 

pore volume ratios of meso/macro to micropore in AB@ZIF-8 and B,N@C, and e) pore size 

distributions of B,N@C. 

To study the correlation of the porosity between AB@ZIF-8 nanoparticles and B,N@C 

nanocages, the relationship between their pore sizes and etching time was studied based on their 
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N2 adsorption−desorption curves (Figure 3a,b, and S6). Figure 3c presents plots of average 

pore size versus etching time for AB@ZIF-8 and B,N@C, and the relationship between these 

two based upon curve fitting. For both AB@ZIF-8 and B,N@C, there is a linear correlation 

between the average pore size and etching time. The ratios of meso/macroporous to microporous 

volumes of AB@ZIF-8 precursors with etching time were also analyzed (Figure 3d). The 

difference in the first 6 hours is minimal, while the ratio increases faster after 12 hours, 

approximating to a power function relationship. This agrees well with the TEM images and 

confirms the essential role of AB in the host-guest chemistry-assisted etching to structurally 

modify the host so that B,N@C with tunable structures can be obtained. The ratio of 

meso/macroporous to microporous volumes of B,N@C nanocages shows a similar trend to that 

of AB@ZIF-8 and can be fitted to the power function with a similar power. These results bring 

out the feature of MOF-derived carbon, i.e., its architectures depending on the MOF precursors. 

However, most of the reported etching processes are too fast to precisely regulate the porosity of 

the parent MOFs. For example, tannic acid changed solid ZIF-8 and NH2-MIL-125(Ti) into 

hollow MOFs in a very short time (< 30 min). (28, 41) In contrast, AB features mild hydrolysis 

which makes the etching process moderate and controllable. Consequently, the structure of the 

B,N@C nanocages can be effectively tailored.  

The NLDFT pore size distribution analysis (Figure 3e) shows that B,N@C-2/6/12h samples 

mainly possess mainly micropores with sizes around 0.7 and 1.3 nm. B,N@C-24/36h samples 

present mesopores at about 25.3 and 37.1 nm, macropores at 93.1 and 117.2 nm, together with 

micropores at 0.7 and 1.3 nm, confirming them to be trimodal-porous. B,N@C-24h has a more 

balanced micro-, meso-, and macropores than that of B,N@C-36h. Macropores with the size of 

54.4, 93.1, and 117.2 nm dominated in B,N@C-48h. These results indicate that B,N@C-
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12/24/48h possess different nanoarchitectures, rendering them ideal material platforms to test the 

impact of porosity on mass transfer, and consequent ORR performance. 

Characterization of B,N@C nanoreactors  

B,N@C-12/24/48h were further investigated using XRD, Raman spectroscopy, and X-ray 

photoelectron spectroscopy (XPS) techniques. XRD patterns in Figure 4a show broad diffraction 

peaks at 25°, which could be indexed as the (002) crystal plane of amorphous carbon. (48) 

Raman spectra (Figure 4b) can be deconvoluted into four types of carbon configurations at 

1,348 (D1), 1,196 (D2), 1,471 (D3), and 1,577 (G) cm−1. D1, D2, and D3 bands are corresponding 

to the disordered carbon structure, amorphous carbon, and carbon atoms outside of a perfectly 

planar graphene network, respectively, while G band is attributed to the ordered graphite carbon. 

(49-50) The ID1/IG values for all the B,N@C nanoreactors are similar, within the range of 1.44 to 

1.54, indicating their similar degree of graphitization and defects. Note that D2 and D3 bands 

contribute less to the ORR performance. (49) Chemical compositions and chemical states were 

analyzed with XPS.  Survey scans show that all these catalysts contain B, C, N, and O (Figure 

S7 and Table S1). High-resolution XPS spectra of B 1s can be deconvolved into three peaks, 

which are assigned to B−C (190.6 eV), B−N (191.9 eV), and B−O (192.5 eV) (Figure 4c and 

Table S2). It is notable that, by prolonging the etching time, the proportion of B−O increased 

significantly from 0% in B,N@C-12h to 23% in B,N@C-48h, indicating the gradual 

accumulation of B−O during etching. This result matches well with our proposed etching 

mechanism that the mild hydrolysis of AB gradually releases protons, which then attack 2-MIM 

ligands in ZIF-8. For ORR, B−O bonds are reported to have a rather limited contribution to the 

performance, (51) where B−C and B−N benefit the ORR. (52-53) The N 1s XPS spectra are well 

fitted by five peaks, corresponding to N−B (397.9 eV), pyridinic N6 (398.5 eV), pyrrolic N5 
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(399.5 eV), graphitic N (400.8 eV), and N−O (402.4 eV). Pyridinic N6, pyrrolic N5 and graphitic 

N are also known to contribute to ORR. (54-55) The ratios of B (in B–N) to N species (in N–B) 

are similar in these catalysts (2.4 for B,N@C-12h, 2.5 for B,N@C-24h, and 2.5 for B,N@C-

48h), but the total amounts of B and N in B,N@C-24h are slightly lower compared with the other 

two samples (Table S2).  As shown in Figure 4d and Table S2, all these catalysts have similar 

chemical features of N and all these known active sites involving B and N are similar in ratio. 

Therefore, these three catalysts with similar heteroatomic B2.5–N1 motifs can serve as an ideal 

material platform to investigate the structure–performance relation of nanoreactors toward 

catalytic reactions.  
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Figure 4. Characterization of the B,N@C nanoreactors. (a) PXRD patterns, (b) Raman spectra, 

(c) XPS spectra of B 1s, and (d) XPS spectra of N 1s. 

Electrocatalytic ORR performance of B,N@C nanoreactors in relation to mass transfer 

Electrochemical ORR was used as a model reaction to test the effect of porous structural 

engineering on the catalytic performance and to understand the importance of mass transfer 

during the reaction. The performance was assessed using a rotation ring disk electrode (RRDE) 

in a typical three-electrode system. The LSV disk curves collected at 1600 rpm in an O2-

saturated 0.01 M (pH = 12) and 0.1 M (pH = 13) KOH solution are shown in Figure 5a and 

Figure 5b, respectively. Generally, dilute electrolytes exhibit low viscosity, therefore having 

negligible effects on mass diffusion. As a result, the active site determines the electrocatalytic 

performance. As can be seen from Figure 5a, the difference in diffusion-limited current density 

(DLCD) among the three samples is negligible in the 0.01 M KOH solution. As expected, 

B,N@C-12h with the largest surface area shows the most positive half-wave potential (E1/2) of 

0.557 V vs. RHE (Figure S8), while B,N@C-48h with the lowest surface area shows the most 

negative E1/2 of 0.524 V vs. RHE. These results confirm that the electrocatalytic performance is 

determined by the exposure of active sites in dilute electrolytes, which is typically related to 

surface areas. In contrast, the ORR performance of the three samples in 0.1 M KOH varies 

greatly (Figure 5b and c). It is known that when the electrolyte concentration increases, the 

viscosity of the electrolyte increases correspondingly (56) and the effect of mass transfer on 

catalytic performance becomes more significant. Therefore, the catalytic activity was determined 

by both the exposure of the active sites and the mass transfer efficiency. As shown in Figure 5c, 

B,N@C-24h with the most balanced trimodal-porous structure among the three catalysts (Figure 

5d), achieved the largest diffusion-limited current density (DLCD) of −5.9 mA cm−2 at 0.2 V vs. 
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RHE. In addition, B,N@C-24h catalyst featured the most positive onset potential (Eon) of 0.979 

V and E1/2 of 0.861 V vs. RHE, as summarized in Figure 5c. The better ORR performance of 

B,N@C-24h than B,N@C-12h in 0.1 M KOH is mainly due to the enhancement of mass transfer 

in meso/macropores compared with micropores, demonstrating that mass transfer is vital for 

ORR in concentrated electrolyte solutions. Meanwhile, B,N@C-48h shows the low activity 

among these three catalysts, which indicates that mass transfer is not the only important factor in 

determining performance. 

 

Figure 5. Electrocatalytic ORR performance of the B,N@C nanoreactors. (a) LSV curves in 0.01 

M KOH; (b) LSV curves and (c) corresponding onset and half-wave potentials in 0.1 M KOH; 

(d) relative pore portions; velocity fields of nanoarchitecture models: e) B,N@C-12h, f) B,N@C-
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24h, and g) B,N@C-48h; h) the simulated flow rate and flux density for B,N@C-12/24/48h, and 

i) mass-specific activities and kinetic current densities. 

Finite element analysis (FEA) simulations were carried out to further understand the influence 

of mass transfer on electrocatalytic performance. According to the structural characterizations 

(Figure 2 and 5d), the main difference between the three samples is the pore sizes and volumes 

in the nanoreactor.  Models were constructed to reflect the cavity size and porous channels. As 

shown in Figure 5e-g, the models exhibit micropore-dominated, balanced trimodal-porous, and 

macropore-dominated structures, corresponding to the experimentally synthesized B,N@C-12h, 

B,N@C-24h, and B,N@C-48h, respectively. The different color in Figure 5e-g is associated 

with the velocity of simulated flow fields. The flow velocity, which is significantly influenced by 

the geometric architectures of the materials, is an important index to evaluate mass diffusion. As 

expected, the flow rate in the macropore-dominated hollow cage is overall larger than that in the 

micropore-dominated and balanced trimodal-porous structures (Figure 5h), with only a few 

positions having rates similar to those of the trimodal-porous structures (Figure 5f,g). The 

electrochemical ORR process is mainly determined by the accessibility of active sites, which is 

affected not only by the mass transfer efficiency but also by the exposure of active sites. 

Therefore, the flux passing the entire internal surface was introduced (denoted as flux density 

hereafter), which takes into account both the active site exposure affected by the specific surface 

areas and the mass transfer determined by the porous structure. The flux density helps to 

investigate the process intensification by porous structural engineering of nanoreactors. The 

micro/meso/macropore-balanced model has a clear advantage over the other two models (Figure 

5h). The flux density decreases significantly in the macropore-dominated hollow cage because of 

the limited surface area. Meanwhile, the flux density of the micropore-dominated sample is also 
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smaller than that of the trimodal-porous structure because of the limited mass transfer. On all 

these counts, trimodal-porous architecture is considered to be the desired nanoreactor to boost 

the process intensification.  

As discussed above, B,N@C-24h with trimodal-porous structure delivered the largest Eon, E1/2, 

and DLCD among these three catalysts, and its performance is comparable to commercial Pt/C 

(Figure S9), which shows an Eon of 1.01 V, an E1/2 of 0.867 V, and a DLCD of −5.6 mA cm−2 at 

0.2 mV vs. RHE. Besides, the performance of B,N@C-24 nanoreactors is on par or even better 

than the reported metal-free carbon-based catalysts (Table S3). In contrast, micropore-dominated 

B,N@C-12h demonstrated lower Eon, E1/2, and DLCD than B,N@C-24h though it has the highest 

heteroatom content (Table S1). This suggests that certain active sites in the micropores have no 

contact with the reactants so the ORR rate is limited. (57) In addition, B,N@C-48h with a larger 

portion of macropores also shows decreased ORR activities compared with B,N@C-24h (Figure 

5b,c), which is mainly due to reduced surface active sites. To further test the effect of porous 

structural engineering on process intensification toward ORR, heteroatomic mass activity and 

kinetic current density (JK) were calculated. B,N@C-24h with trimodal-porous distributions 

delivers the highest mass-specific activity and Jk among the three catalysts (Figure 5i). In 

addition, B,N@C-24h possesses the lowest Tafel slope (Figure S10), further manifesting that the 

trimodal-porous nanoreactor exhibits the fastest kinetics toward ORR. All these results prove 

that a trimodal-porous nanoreactor is desired for improving both mass transfer and exposure of 

active sites. Based on RRDE measurement (Figure S11a and Figure 5b), the average electron 

transfer number (n) of B,N@C-24h was calculated to be about 3.83 (Figure S11b), indicating an 

efficient 4e− pathway toward ORR, which is desirable for Zinc-air batteries. Similarly, electron 

transfer numbers were found for B,N@C-12h and B,N@C-48h.  



 17 

CONCLUSION 

We designed a series of hierarchical porous carbon nanoreactors doped with B and N via the 

efficient confined-etching and pyrolysis of ZIFs. The B,N@C nanocages have similar catalytic 

active sites in terms of intrinsic activity and quantity but have different pores in terms of size and 

volume. When tested for ORR, the B,N@C nanoreactor with abundant micro-, meso-, and 

macropores shows the highest catalytic activity. Experimental results and FEA calculations 

confirm that such trimodal-porous architecture enhances process intensification toward ORR 

because of enhanced mass transfer and effective active site exposure, in comparison with 

microporous and macroporous architectures. This work demonstrates the importance of mass 

transfer during heterogenous catalysis, which should be considered when designing novel 

catalysts. It also proves the efficacy of host-guest chemistry-assisted etching strategy, especially 

with mild etchants, for the synthesis of heteroatom-doped carbon nanoreactor systems. 
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BRIEFS 

Trimodal-porous B,N co-doped C nanoreactor is effective in enhancing process intensification 

during ORR by balancing mass transfer and exposure to active sites. 
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