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Peer-to-Peer Energy Trading for Residential
Prosumers with Photovoltaic and Battery Storage

Systems
Jiatong Wang, Jiangfeng Zhang, Li Li, Member, IEEE and Yunfeng Lin

Abstract—The popularization of solar generation enables res-
idential households to supply their loads and trade the surplus
energy through residential peer-to-peer (P2P) energy trading
market. Facing the increasing complexity of the market structure
and decision-making strategies, this paper proposes a P2P energy
trading model for residential households, and the objective is
to help the centralized market coordinator optimize the benefit
of participants under such a P2P market. To this end, a new
mathematical model, including the rules for buying and selling
energy, is presented. In this model, a supply function bidding
mechanism is formulated to match the power supply imbalance
and calculate the market-clearing price. An optimization problem
is formulated to identify the optimal strategies for energy buying
and selling, which consists of two parts: the first part is to
maximize the social welfare; the second part is to minimize the
unfair benefit distribution that participants can gain through
P2P energy trading. The case study based on the real data for
four different household categories has revealed that households
can achieve 26.38% net cost reduction, and the proposed fair
benefit distribution function also can fairly allocate the benefit
by enforcing households’ benefit variance indexes at a low level.

Index Terms—Peer-to-Peer energy trading, residential, battery
energy storage system, supply function bidding, smart grid.

NOMENCLATURE

Variables
Q̂∗

h Minimum net energy cost when not attend-
ing the proposed P2P market

Ŝ Overall net cost when households are not
trading in the P2P market

x̂G
h (t) Energy exchange between the P2P market

and household h when households are not
trading in the P2P market

Q̃h Cost saving of household h when trading
in the P2P market

Q̃avg Average cost saving of all households when
trading in the P2P market

fN
σ,Hk

Category variance for households in Cate-
gory Hk

fN
σ,h Individual variance for household h

fN
σ Normalized overall population variance
fN
S Normalized social welfare function
fσ Overall population variance
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fS Social welfare function
HB Number of buyers in P2P market
HS Number of sellers in P2P market
pMCP Clearing price in P2P market
Qh Net cost of household h when trading in

the P2P market
xB
h Charging/discharging energy for the house-

hold h’s BESS
xG
h Energy exchange between the retailer and

household h
xP2P
h Energy exchange between the P2P market

and household h
xP2P
total Total energy demand from the P2P market

Parameters
H Household categories
ηchh Charging efficiency
ηdish Discharging efficiency
Ĉh Cost on buying energy when not attending

the proposed P2P market
P̂h Benefit on selling energy when not attend-

ing the proposed P2P market
µ1 Weighting factor on social welfare function
µ2 Weighting factor on population variance

function
Ec

h BESS capacity for household h
fσ,max Maximum value of fσ
fσ,min Minimum value of fσ
fS,max Maximum value of fS
fS,min Minimum value of fS
H Total number of P2P market participants
h Index for household
p Electricity trading price with the utility

company
pFIT Feed-in-Tariff price
pU Electricity retailing price
t Index for time interval
xB,ch
h,max Maximum charging rate

xB,dis
h,max Maximum discharging rate

xL
h Predicted energy consumption

xPV
h Predicted PV generation

I. INTRODUCTION

IN recent years, the feed-in-tariff (FIT) program has been
introduced around the world to promote the ongoing decar-

bonization of electricity systems through the installation of a



HEADER HERE 2

range of small-scale renewable generation units for residential
households [1]. However, the tariff rate has continued to
reduce due to the decreased installation costs and limited
government incentive budget for a large number of new in-
stallations [2] [3]. Consequently, residential photovoltaic (PV)
owners are facing profit reduction on selling electricity in the
traditional manner. Given this context, an efficient solution to
increase the residential gain could be achieved by encouraging
the use of excess energy within neighborhoods. This can be
realized by introducing a peer-to-peer (P2P) energy trading
market. Upon the background mentioned above, this paper
aims to study how residential PV owners decide their P2P
energy trading strategies to reach the optimal social welfare,
where a fair benefit distribution problem is also integrated into
the optimal trading strategy to evaluate whether the benefit
by introducing energy trading is fairly distributed to every
household.

In the traditional retail market structure, residential PV
owners are only able to individually buy and sell energy
with electricity retailers [4]. In this way, PV owners cannot
maximize the full potentials of the solar system since the extra
generated energy is only tradable with electricity retailers, who
are profit seeker and offers low FIT price [5]. To improve
the financial benefit of residential prosumers, the P2P trading
platform is introduced as a new market paradigm, where
this novel market allows the direct energy exchange among
residential households and thus to provides more resilience to
power systems [6]. Through the P2P energy trading market,
residential households are able to reduce energy costs by
sharing distributed energy resources (DERs) with each other.
On the other hand, due to the price advantage, the energy
generated from local DERs is more attractive than the energy
supplied from electricity retailers [7]. The combination of
renewable energy and P2P trading market not only helps
to relieve the pressure of energy supply for energy retailers
during the peak period but also improves the efficiency of the
renewable usage, making energy supply more eco-friendly [8].

In the current research community, the existing P2P trading
approaches can be generally adopted to two scenarios: de-
centralized P2P market and centralized P2P market. In the
decentralized P2P market, the energy trading is processed
directly by market participants, where a centralized market
coordinator is not required since the energy trading price and
quantity are determined based on bilateral negotiations [9].
The advantages of adopting the decentralized P2P market have
been explored by many studies. A prominent feature of the
decentralized P2P market is the privacy protection, which has
been tested in micro power systems [10] and zonal power
systems [11]. Moreover, a study in [12] validates that with the
limited shared information, an optimization of the energy uti-
lization efficiency and the operational cost reduction for each
integrated energy system can still be effectively solved using
an decentralized alternating direction multiplier method. Re-
garding the decentralized P2P market design, a decentralized
energy trading mechanism is proposed for industrial users to
reduce operational costs and CO2 emission in [13], where the
underlying problem is solved using a novel multi-agent twin
delayed deep deterministic policy gradient approach. However,

since most of the information in the decentralized market is
not transparent, it is hard to evaluate the community social
welfare. Due to the same limitation, service providers also find
it is challenging to maintain and upgrade the decentralized
power system [14]. On the other hand, the centralized P2P
market, such as pool-based market and whole-sale electricity
market, manages the market coordination and information
exchange through a centralized market coordinator, who is
able to propose the trading strategies for market participants
to realize the optimal social welfare by solving a global
optimization problem [15]. As a cutting-edge trading concept,
the centralized P2P trading method can be adopted to either
residential scenario [16] or industrial scenario [17]. Although
such centralized market architecture requires the complete
disclosure of the private information to the market coordinator,
which may raise privacy concerns, a novel transaction model
proposed in [18] can effectively cover this issue by integrating
blockchain technology and Ciphertext-Policy Attribute-Based
Encryption algorithm.

For centralized P2P market, an appropriate trading model is
essential as it determines energy trading prices and regulates
the bidding and offering rules, which will finally impact the
optimal energy trading strategies of the market participants
[19]. A two-level P2P energy trading model is presented for a
prosumer-based community in [20] to optimize social welfare,
where the price competition among sellers is modeled as a
non-cooperative game, and the sellers’ decision making is
modeled as an evolutionary game. A supply function equilib-
rium is formulated to clear the pool-based P2P energy trading
in [21], where the critical improvement in power balance is
discussed in the case study by using the proposed clearing
mechanism. Moreover, a supply function bidding method is
proposed in [22], which is able to dynamically calculate the
market-clearing price (MCP), where the effectiveness of the
supply function bidding method is further validated in [23].

Previous works have adopted different centralized P2P trad-
ing mechanisms to optimize the social welfare. However, the
social welfare optimization results have no guarantee on fair
benefit allocation for market participants. Within a scenario
of multiple community microgrids, energy users with BESSs
are able to take more advantages of electricity cost reduction
than those people who do not have such equipment, which
may lead to the P2P market being less attractive [24]. To
motivate more energy users to participate into the P2P market,
a benefit distribution problem should also be considered when
optimizing social welfare. Prior research on fair benefit dis-
tribution for P2P market participants is limited but emerging.
For instance, a cost distribution problem is proposed in [25],
where the Pareto optimality is adopted and solved by an
ECO-Trade algorithm. Although enforcing Pareto optimality
to the proposed model can ensure that no residential prosumers
will be worse off to improve the cost of others, the analysis
regarding the fair benefit distribution is not further discussed in
the case study. A sharing contribution rate is implemented in
[26] to quantify the contribution to the energy sharing and peak
shaving for energy users, where the fair benefit distribution
problem is further formulated with a Nash bargaining model.
However, the flexibility of the proposed P2P energy trading
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market is impacted by the assumption that P2P trading prices
are assured to be constants.

Based on the literature review above, further study on a
fair trading price mechanism and the evaluation of benefit
allocation are necessary. To this end, this paper studies how
a centralized market coordinator determines the strategies of
the market participants to solve the designed social welfare
optimization problem. In addition, a fair benefit distribution
function is applied in the proposed P2P market model to
evaluate if the benefit is fairly allocated to every residential
client. Based on the designed objective, the case study shows
that through the proposed P2P energy trading model and
optimization problem, the centralized market coordinator can
achieve different goals with respect to cost reduction and fair
benefit distribution based on the practical requirement of the
market.

The main contributions of this paper can be summarised as
follows:
• A centralized residential P2P energy trading market is pro-

posed using the supply function method, where the MCP is
co-decided by all market participants, ensuring the fairness
and transparency of the residential P2P market.

• Based on the proposed P2P trading model, the residential en-
ergy trading and BESS management problem is formulated
considering social welfare and fair benefit distribution.

• The case study based on the real household data reveals
that on the premise of ensuring fair benefit distribution, a
26.38% net cost reduction is still observed when households
are trading in the proposed P2P market. Moreover, the
market flexibility is further explored to help the centralized
market coordinator realize different targets on social welfare
and fair benefit distribution by adjusting different weighting
factors.
The remaining part of this paper is organized as follows.
The proposed P2P trading model for residential households,

including objective functions and related constraints, is ex-
plained in Section II. Detailed simulation results are discussed
in Section III. Finally, Section IV concludes this paper.

II. DESIGN OF THE RESIDENTIAL P2P TRADING SYSTEM

With the transit position from energy price takers to price
makers, households within the smart grid are allowed to fairly
trade energy through a platform provided by P2P market.
In this paper, a PV and BESS featured smart grid is used
as an example to explain the proposed bidding strategy. The
schematic of the proposed system is illustrated in Fig. 1. Since
the data of PV generation and energy consumption in the case
study are recorded hourly, the sampling time interval in this
paper is set as 1 hour. Therefore, there are 24 time intervals
a day (T = 24) for the P2P energy trading. Forward sampling
is taken here in this paper, e.g., the first time period within
the 24-hour is from 0:00 am to 1:00, the second time period
is from 1:00 to 2:00, etc. Notation t (t=1,2,3. . . ,T) is used to
represent these time periods.

A. System Description
In the proposed market, residential households perform

the roles of market participants. During each trading period,

Fig. 1: Basic structure of the considered P2P market

TABLE I: Categories of Households

Category Facility
DER BESS

H1 Yes Yes
H2 Yes No
H3 No Yes
H4 No No

transactions are performed either between households and
the utility company, or between households. It is assumed
that the considered community is geographically small and
thus power transmission losses are ignored. In addition, they
are assumed to own various combinations of BESS and
DERs. In our proposed system, four categories of households
(H ∈ H1, H2, H3, H4) with different types of facilities are
considered, where the details are illustrated in Table I.

In the proposed scenario, a smart meter is installed in
every residential house to record the energy generation and
consumption. Residential households are also able to make
P2P trading decisions and send to the centralized market
coordinator through the communication between the smart
meter and the centralized market coordinator. The centralized
market coordinator is liable to calculate the MCP by collect-
ing the bidding strategies of the market participants. Then
the centralized market coordinator announces the successful
bids/offers and sends the information back to the participants.
During the transaction, the centralized market coordinator
acts as an information exchanger and does not intervene in
the transactions within the market. Thus, the fairness of this
market can be realized at all times.

B. Basic Trading Processes

In the market structure, households can be either a buyer or
a seller. As an energy buyer, this household can buy the needed
energy from the utility company and through the P2P market
from the sellers who have intention to sell the energy. For
those buyers who own BESS, they are also allowed to consider
discharging BESS for full or partial power supply to the energy
demand. Therefore, the demand for an energy buyer can be
from the local DERs, the P2P market, the utility company and
the discharge from the BESS. Due to the economic issue, we
assume that buyers are not allowed to sell any energy to the
proposed P2P market and the grid. On the other hand, as an
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Fig. 2: Flowchart of the P2P energy trading strategy

energy seller, this household can sell the energy to either the
P2P market or the utility company to earn the benefit. If this
seller owns a BESS, he can also choose to store the extra
energy in the BESS. In the proposed model, it is assumed
that energy sellers who own the BESS are allowed to sell the
energy by discharging their BESSs. To protect the benefit of
buyers and keep the market electricity price stable, sellers are
also forbidden to buy electricity from the P2P market and the
grid.

C. Modeling of the Residential P2P Trading Market

In this section, we present the structure and the model with
objective functions and related constraints of the proposed
residential P2P trading system. An example of the energy
flow diagram for a household with PV systems and BESS
is illustrated in Fig. 3. The parameter definition regarding
xP2P
h (t), xG

h (t), x
B
h (t) and p(t) is presented as follows.{

xP2P
h (t) ≥ 0, Buying energy from the P2P market

xP2P
h (t) < 0, Selling energy to the P2P market{

xB
h (t) ≥ 0, Battery is charging

xB
h (t) < 0, Battery is discharging

{
xG
h (t)) ≥ 0, Buying energy from the retailer

xG
h (t)) < 0, Selling energy to the retailer

p(t) =

{
pU (t), if xG

h (t) ≥ 0

pFIT (t), if xG
h (t) < 0

Utility Company P2P Trading Market

xG
h (t) xP2P

h (t)

PV Load BESS

xPV
h (t)

xL
h (t) xB

h (t)

Household h

Fig. 3: Household h (h ∈ H1) with energy trading conditions

1) Objective Function: An objective function fo in (1) is
proposed to evaluate the households’ energy trading strategies
in terms of social welfare fS and market fairness index on
benefit distribution fσ .

fo = µ1fS + µ2fσ (1)

where weighting factors µ1 and µ2 are non-negative, and
satisfy

µ1 + µ2 = 1 (2)

Since there is a significant difference in the range of numer-
ical values between social welfare and population variance, we
normalize them to the range [0, 1] to improve the objective
sensitivity, where the normalized objective is expressed as

fN
o = µ1f

N
S + µ2f

N
σ (3)

with 
fN
S =

fS−fS,min

fS,max−fS,min

fN
σ =

fσ−fσ,min

fσ,max−fσ,min

(4)

It is also important to ensure that the net energy cost of
a random participant through the trading in the proposed
P2P market is always lower than the optimal cost when this
participant is not trading in the proposed P2P market, and the
corresponding mathematical constraint can be found in (5)

T∑
t=1

(Q̂∗
h(t)−Qh(t)) ≥ 0 (5)

where
Q̂∗

h(t) = arg min Ŝ (6)

Ŝ =

H∑
h=1

T∑
t=1

Q̂h(t) (7)

Q̂h(t) = p(t)x̂G
h (t) (8)

Qh(t) = pMCP (t)xP2P
h (t) + p(t)xG

h (t) (9)
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In (9), the first term represents the cost/benefit when
buying/selling energy in the P2P market; the second term
represents the cost/benefit when buying/selling energy with
the utility company. In the proposed model, the value of
MCP must be between the FIT price and grid price to attract
customer participation, that is

pFIT (t)< pMCP (t) < pU (t) (10)

Meanwhile, it should be noted, household h could never buy
and sell electricity at the same time interval. The following
constraint is presented that ensures the buying behavior and
selling behavior cannot be processed at the same time.

xP2P
h (t)× xG

h (t) ≥ 0 (11)

The optimization problem is to find the best trading strate-
gies for households to minimize the proposed normalized
function fN

o , which is defined in (12)

min fN
o (12)

2) Social Welfare Modelling: In the modelling, the social
welfare is evaluated by the summation of all participants’ net
electricity cost, where the mathematical expression is

fS =

H∑
h=1

T∑
t=1

Qh(t) (13)

3) Benefit Distribution Modelling: In the P2P energy trad-
ing market, it is essential that the earning for participants
through the P2P energy trading ought to be fairly distributed.
To quantify the extent of the fairness of the market, the benefit
distribution function is designed to measure the variance
between the overall saved cost and the individual saved cost,
and the definition is

fσ =

H∑
h=1

fσ,h
H

(14)

where
fσ,h = (Q̃h − Q̃avg)

2 (15)

Q̃h =

T∑
t=1

(Qh(t)− Q̂∗
h(t)) (16)

Q̃avg =
1

H

H∑
h=1

Q̃h (17)

Based on individual variance defined in (15), we further
propose the category variance that is used to evaluate the
variance index for each household category, which is expressed
as

fσ,Hk
=

Hk∑
h=1

fσ,h
Hk

(k ∈ [1, 2, 3, 4]) (18)

4) Distributed Energy Resources: In the proposed model,
solar energy is considered as the DERs where the surplus
energy can be either sold to other households through the P2P
market or to the energy retailer. According to the conservation
law of energy flow (in our model, the line losses are ignored,
since the residential households considered in our model are

geographically close), the following energy constraint would
be satisfied.

xPV
h (t) + xG

h (t) + xP2P
h (t) = xL

h (t) + xB
h (t) (19)

where {
xB
h (t) = 0, if h ∈ H2, H4

xPV
h (t) = 0, if h ∈ H3, H4

(20)

In (19), xPV
h (t) and xL

h (t) are predicted values based on
the historical data, which are non-negative.

5) State-of-Charge Constraints: In the proposed model, the
state-of-charge (SOC) of BESS in household h (h ∈ H1, H3)
can be modeled as

SOCh (t) =
SOCh (t− 1)× EC

h +XB
h (t)

EC
h

(21)

where

XB
h =

{
xB
h × ηchh if xB

h ≥ 0
xB
h

ηdis
h

if xB
h < 0

(22)

xB,dis
h,max ≤ xB

h (t) ≤ xB,ch
h,max (23)

SOCmin
h ≤ SOCh (t) ≤ SOCmax

h (24)

In (21), SOCh(0) represents the initial SOC for household
h’s BESS. For the designed BESS model, charging/discharging
at the same time is prohibited since this behavior would cause
unnecessary energy loss.

6) Market Clearing Price Computation: To make the P2P
market fair and efficient, MCP is used as the final electricity
trading price. In this model, we use supply function method
to derive the MCP: for a seller h at time t, the electricity
could be sold to the grid and P2P market. In this article, it
is assumed that each seller defines the selling strategy by the
supply function xP2P

h (t) (xP2P
h (t) < 0), then we would apply

supply function mechanism to compute the market-clearing
price. It is assumed that xP2P

h (t) is decided by the P2P market
electricity price p(t), a variable parameter bh(t) and a constant
c as follows [27]:

xP2P
h (t) = −bh (t) p (t) + c (25)

If the maintenance cost and operation cost of PV systems are
ignored, the above supply function can be further simplified
as follows,

xP2P
h (t) = −bh (t) p (t) (26)

At each time interval, buyers would submit their energy
demand from the P2P market to the centralized market co-
ordinator and sellers would submit their supply functions
(proposed in (26)) as a bid to the centralized market coor-
dinator. Centralized market coordinator then clears the market
according to the decisions of participants. For all household
buyers at time t, the total amount of electricity bought from
the P2P market is expressed as

xP2P
total (t) = −

HB(t)∑
i=1

xP2P
i (t) (27)
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In the bidding market, MCP is determined when the supply
equals the demand. Hence, Eq. (27) is re-written as:

pMCP (t) =
xP2P
total(t)∑HS(t)

j=1 bj(t)
(28)

Eq. (28) shows that the MCP is proportional to the total
demand in the P2P trading market. Moreover, according to
(26) and (28), the supply function for household h can be
updated as

xP2P
h (t) = − bh(t)x

P2P
total∑HS(t)

j=1 bj(t)
(29)

Eq. (29) shows that the energy supply of household h to
P2P market is not only proportional to xP2P

total and inversely
proportional to the overall bidding strategies

∑HS(t)
j=1 bi(t), but

also relevant to this prosumer’s biding option bh (t). Thus,
both buyers and sellers are positively to be engaged in the
MCP decision.

III. CASE STUDY

In this part, a community microgrid with 40 prosumers is
investigated as a case study to validate the proposed model.
The community microgrid is connected to a single utility grid,
which sells energy at the market prices and buys the energy at
the FIT prices. The specific number of participants are given
in Table II.

TABLE II: Number of Participants in Each Category
Categories Number Categories Number

H1 10 H2 10
H3 10 H4 10

A. Simulation Setup

In the case study, the predicted hourly PV energy demand
profiles and the PV generation are based on the Ausgrid data-
set [28]. The capacity of BESS is set to be 4.8 kWh, and
the battery SOC is restricted to lie between 10% and 90%.
The charging and discharging efficiency are considered to be

both 90% [29]. The maximum charging/discharging rate of the
battery is 1 kW. The initial SOC for every SOC owner is set
to be 0.1. The real grid price and FIT price from an Australian
electricity retailer, Red Energy, are applied; see Table III. Since
we only consider a one-day scenario, the battery degradation
cost is not included in this case study. Matlab built-in function
FMINCON is used in solving the optimization model, and
YALMIP, a MATLAB toolbox, is also used to translate the
model constraints to MATLAB language [30].

TABLE III: Energy Unit Price (AU$/kWh)
Grid Price FIT Price

0:00-7:00 0.1430 0.0840
7:00-14:00 0.2420 0.0840
14:00-20:00 0.5225 0.0840
20:00-22:00 0.2420 0.0840
22:00-24:00 0.1430 0.0840

B. Evaluation of the Net Cost and Variance (µ1 = µ2 = 0.5)

Fig. 4 reveals market participants’ net cost and variance
level defined in (15). Compared with the case without any
P2P energy trading market, the overall net cost can be saved
by 26.38% when households trade in the proposed P2P market.
On the other hand, such a significant cost reduction is based
on the low level of individual variance values, which indicates
that the saved cost is fairly allocated to each household.
Regarding the performance of the households in each category,
the households in Category H3 and H4 generally have higher
net energy costs than other category households who own PV
systems, where the result demonstrates the significant role
of DERs in reducing electricity costs. On the other hand,
BESS also plays an essential role in reducing energy costs.
It is observed that households in Category H2 and H4 have
lower variance values than households in Category H1 and
H3, which means that under the scenario of µ1 = µ2 = 0.5,
the centralized market coordinator allows more cost reduction
for households with BESS to balance the social welfare and
variance.

Fig. 4: Net Cost and Variance Level for every household in each category (µ1 = µ2 = 0.5)
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Fig. 5: SOC for Each Household in Category H1 and H3

The role of BESSs can be further explored in Fig. 5, which
reveals the SOC level and the average SOC for households
in Category H1 and H3. At the first 9 time intervals, the
households in Category H1 and H3 charge the BESSs, where
households in Category H1 emerge a faster charging speed
than households in Category H3 in the morning time due to
the extra generated power from PV systems of households
in Category H1. After 10 am, while the average SOC of
Category H1 decreases and then keeps around constant from
2pm to 6pm before decreasing till midnight, the average SOC
of Category H3 keeps increasing before the night peak time.
On the other hand, by comparing the SOC level in the last
few time intervals for Category H1 and H3, households in
Category H3 maintain higher average SOC. Although the
centralized market coordinator suggests such optimal energy
management strategy of SOC to mitigate the excessive gap of
the benefit distribution variance, the households with higher
SOC levels are able to reduce net energy costs further when
the market tends to emphasize more on social welfare (e.g.,
µ1 increases and µ2 decreases), where such impact will be
analyzed at the end of the case study.

C. Evaluation of P2P Energy Trading (µ1 = µ2 = 0.5)

Fig. 6 investigates the trading prices and quantities in
different time intervals over the proposed P2P market. As
shown in this figure, there are some transactions recorded from
the morning to the afternoon, and the trading quantity has the
rising trend until t = 14. This is because households start
to generate lots of energy through PV panels, which exceeds
their energy demand. Despite the option to charge the extra
energy into the BESS for households equipped with BESS,
the households also choose to sell some energy through the
proposed P2P energy trading market, expecting more benefits
than selling them to the grid at a low FIT price. For those
households who buy energy in the proposed P2P market, this
transaction is also helpful to decrease their energy cost as
the P2P electricity price is lower than the traditional utility
price. Moreover, the P2P trading quantity starts the declining
trend from t = 14 due to the tense of DERs. There is no
P2P energy transaction between t = 1 and t = 7 since
there is no PV generation. However, P2P transactions are still

recorded in low amounts after t = 20, which is contributed by
BESS discharging. To realize the cost reduction of households
in Category H2 and H4, the centralized market coordinator
proposes households with BESSs to sell the stored energy to
avoid high utility prices. However, by comparing the average
cost reduction rate of each household category presented in
Table IV, it is observed that households with BESSs are still
able to reduce more energy costs than others, demonstrating
the key effect of BESSs on achieving more energy cost
reduction with a wise charging/discharging strategy.

Fig. 6: Hourly MCP and Total Trading Quantity over the
Proposed P2P Market

TABLE IV: Average Cost Reduction in Each Household
Category

Category H1 H2 H3 H4

Average Cost
Reduction (AU$) 2.54 1.32 2.42 1.04

Regarding the MCPs in a day, it can be observed that MCPs
are heavily impacted by the utility selling price. From the
morning to t = 14, MCPs have a decline trend caused by the
abundant PV generation. MCP sharply rises at t = 15 when
the utility price increases from AU$ 0.2420 /kWh to AU$
0.5225/kWh, and it keeps increasing during the peak time due
to the high energy demand and low manageable DERs.

D. Evaluation of the Energy Trading with the Utility Company
(µ1 = µ2 = 0.5)

Fig. 7 shows the energy trading quantity with the local
utility company for each household category. Households in
Category H1 take the least energy from the local utility
company. This is because the PV generation can support the
energy demand, and BESSs provide sufficient flexibility on
demand side management and arbitrage opportunity. The high-
est total power needed from the utility company is recorded
at t = 19 during the peak time. Apart from this, another
peak of the total power needed from the utility company is
also recorded in t = 7, where households in Category H1

and H3 take the lead due to the BESS charging purpose.
By contrast, compared with the morning and evening time,
households need less energy from the local utility company
in the afternoon, where the total energy trading quantity in
the proposed P2P market is the highest in a day. Through
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the proposed P2P energy trading market, market participants
have a win-win solution, where energy sellers can sell the
energy with MCPs that are significantly higher than the flat
FIT price, and energy buyers can obtain energy with a price
lower than the utility price. On the other hand, according to
Fig. 6 and Fig. 7, the local utility company covers the majority
of the total energy demand in a day, demonstrating that the
local utility company is still the main contributor to the local
energy demand since the generation of the PV system is not
stable and significantly impacted by external factors, such as
weather, time, and location.

Fig. 7: Total Trading Quantity with the Utility Company for
Each Household Category

E. Evaluation of Weighting Factors

Prior case studies have revealed the performance of the
social welfare and variance index for the residential market
participants. In this section, further investigation will be con-
ducted to analyze how the optimal social welfare and variance
index will change when adopting different weighting factors.

Firstly, Fig. 8 illustrates the optimal result of the normal-
ized social welfare, the objective function and the benefit
distribution function based on different weighting factors.
As illustrated in this figure, when µ1 is close to one, the
community can achieve its minimum overall net cost; when
µ1 is close to zero, the community can achieve its minimum
fair benefit distribution index. On the other hand, when µ1

increases from µ1 = 0.1, the trend of fN
σ is increasing but

the trend of fN
S is decreasing. However, the value of fN

σ

is always lower than fN
S before µ1 = 0.55, indicating the

fair benefit allocation is more important than the participants’
cost savings in this power system. Moreover, a turning point
exists at µ1 = 0.55, or equivalently, µ2 = 0.45. When
µ1 keeps increasing, fN

σ becomes bigger than fN
S . Under

this scenario, the centralized market coordinator will propose
the optimal energy trading and management strategies that
emphasize more on a proper management of cost reduction
for market participants.

More details with respect to net cost and variance for house-
holds in different categories when weighting factors are chang-
ing can be found in Fig. 9. In terms of the net cost, households
in H1 and H3 show a stronger ability to reduce more cost than
other households when µ1 increases. By contrast, although

Fig. 8: Optimization result for population variance function,
social welfare and objective function

households without BESSs have a significant cost reduction,
these households find it harder to further reduce the energy
cost when µ1 increases. This is because households in H2 and
H4 are more likely to buy energy from the utility company
with high electricity prices due to the limitation of the energy
sources during the night peak time. Regarding the category
variance index which is defined in (18), each household
category shares the similar variance when µ1 is lower than
0.5. However, with the increasing of µ1, the optimal results
reveal higher category variance for households in H3 and H4.
When µ1 = 0.9, the category variances for H3 and H4 are at
the same level, which are 6.49 and 6.09, respectively. However,
similar variance levels result in different performances of cost-
saving. When µ1 = 0.9, households in H3 can save AU$ 4.01
in average, while this number for households in H4 is AU$
2.21 (obtained by

∑Hk

h=1 Q̃h/Hk). Such discrepancy illustrates
the importance of BESSs in achieving more energy cost
reduction for residential households through an appropriate
BESS management strategy.

Fig. 9: Optimization results for Net Cost and Variance for Each
Category

The reasons causing the cost reduction when µ1 increases
vary, but one of the important factors is induced by more
trading activity in the proposed P2P energy trading market.
Table V presents the overall energy trading quantity under the
scenarios of different weighting factors. It is observed that
when µ1 goes bigger, households are suggested to trade more
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energy in the proposed P2P energy market to achieve lower
overall net cost.

TABLE V: Total Trading Quantity over the P2P Market with
different weighting factors

µ1 0.1 0.3 0.5 0.7 0.9
Trading Quantity

(kWh) 79.3 116.2 156.3 205.9 254.3

IV. CONCLUSION

In this paper, a residential P2P energy trading system and
relevant rules are proposed for residential households. In
the P2P trading market, the proposed model considers four
categories of participants: households with RESs and BESS,
households with RESs only, households with BESS only and
households with none of the RES or BESS. In the proposed
market, participants decide the energy procurement to enable
them from traditional passive energy receivers to active market
participants, and the energy sellers decide the amount of
energy sold through P2P market by a supply function mecha-
nism. The market clearing prices are codetermined by buyers
and sellers to ensure the fairness and transparency of the
proposed P2P market. Based on the proposed model, this paper
formulates the objective function that considers both social
welfare and fair benefit distribution. Simulation results show
that the proposed trading mechanism can efficiently reduce
the electricity bills for households and ensure the fairness
of the revenue distribution. For example, when µ1 = 0.5,
26.38% of the total cost saving can be achieved during keeping
the fair benefit distribution at a low level. Essentially, the
centralized market coordinator can realize different targets
on social welfare and fair benefit distribution by adjusting
different weighting factors, reflecting the strong flexibility of
the proposed model.

In future work, the proposed market will be investigated by
considering communication delays. Besides, the uncertainty
of the energy demand and PV outputs would be considered to
enhance the accuracy of the results.
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