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ABSTRACT
Understanding human emotions is a crucial ability for intelligent
robots to provide better human-robot interactions. The existing
works are limited to trimmed video-level emotion classification, fail-
ing to locate the temporal window corresponding to the emotion.
In this paper, we introduce a new task, named Temporal Emo-
tion Localization in videos (TEL), which aims to detect human
emotions and localize their corresponding temporal boundaries
in untrimmed videos with aligned subtitles. TEL presents three
unique challenges compared to temporal action localization: 1) The
emotions have extremely varied temporal dynamics; 2) The emo-
tion cues are embedded in both appearances and complex plots; 3)
The fine-grained temporal annotations are complicated and labor-
intensive. To address the first two challenges, we propose a novel
dilated context integrated network with a coarse-fine two-stream
architecture. The coarse stream captures varied temporal dynamics
by modeling multi-granularity temporal contexts. The fine stream
achieves complex plots understanding by reasoning the depen-
dency between the multi-granularity temporal contexts from the
coarse stream and adaptively integrates them into fine-grained
video segment features. To address the third challenge, we intro-
duce a cross-modal consensus learning paradigm, which leverages
the inherent semantic consensus between the aligned video and sub-
title to achieve weakly-supervised learning. We contribute a new
testing set with 3,000 manually-annotated temporal boundaries so
that future research on the TEL problem can be quantitatively evalu-
ated. Extensive experiments show the effectiveness of our approach
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Come back here, you! Come back here, you!

Time Line

Figure 1:We show some key segments and their aligned sub-
titles. The segments in the red box are the target segments
that temporally occur Anger emotion.

on temporal emotion localization. The repository of this work is
at https://github.com/YYJMJC/Temporal-Emotion-Localization-in-
Videos.
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1 INTRODUCTION
Humans are social creatures and thrive on empathy. We can eas-
ily put ourselves in other’s situations and make decisions based
on the inferences of other’s internal states (i.e. emotional states).
Recent studies [3, 23] on neuroscience confirm that emotional in-
telligence and cognitive intelligence share many neural systems
for integrating cognitive, social, and affective processes. Therefore,
understanding emotions is crucial for achieving high-level intelli-
gence. In practice, this ability helps social chatbots and personal
assistants to better understand the mood and motivations of people,
so they can better interact with people.

Emotion understanding has long been studied in computer vi-
sion. Previous studies [2, 14, 55, 62] mainly focus on recognizing
emotion through facial expression in static images. As movies pro-
vide diverse social situations that are closer to our daily life, some
recent studies [21, 51, 52] have been proposed to classify emotions
from movies. However, they are limited to video-level classifica-
tion, failing to identify the corresponding temporal boundaries of
the emotions, which is essential in practical application. To break
through the above limitation, we propose a novel task of Tempo-
ral Emotion Localization in videos (TEL), which aims to predict
emotions and their corresponding start and end timestamps in
untrimmed videos with aligned subtitles.

Compared with conventional temporal action localization (TAL)
[6], TEL presents some unique challenges. First, the emotions have
extremely varied temporal dynamics. Such fine-grained emotions
could appear in arbitrary frames and last for varied durations, caus-
ing a great challenge for temporal localizing. For example, the peace
emotion may exist for a long time but the surprise emotion may
happen quickly. Even the same emotion may have extremely varied
durations in different situations. Secondly, unlike existing action
localization, where the actions have more consistent visual patterns
and only rely on a single modality (video) as the context, in TEL,
the emotion cues are embedded in both appearances and complex
plots with multi-modality context. In TEL, the videos paired with
subtitles come from movies, which contain diverse event dynamics
and character interactions, and the emotions are more ambigu-
ous and have higher inter-class similarity than action classes. To
discriminate very similar emotions, the model needs to achieve
in-depth comprehension of complex plots by jointly reasoning over
multi-modal and multi-granularity temporal context. As shown
in Figure 1, when we look only at the target segments in the red
box, we can guess that these boys are playing and feeling Happi-
ness and Engagement, but it is hard to identify more specific cues
for their emotions. When we further see the corresponding sub-
titles, we may infer that they are chasing and feeling Excitement.
However, only when we consider the whole context that they are
bullying a boy and chasing him, can we say they are probably feel-
ing anger. Thirdly, annotating fine-grained temporal boundaries
of emotions in videos is complicated and labor-intensive. Thus, a
weakly-supervised algorithm for TEL is more widely available.

In this paper, we propose a novel dilated context integrated
network with cross-modal consensus learning to address the afore-
mentioned challenges. For the first two challenges, we introduce a
Dilated Context Integrated Network (DCIN) that adaptively models

multi-granularity temporal dynamics to achieve in-depth under-
standing of complex plots. Specifically, DCIN models temporal
context in a coarse-fine two-stream architecture. The coarse stream
models multiple abstract-level of context in a hierarchical struc-
ture to capture varied temporal dynamics. The fine stream reasons
the temporal dependency between the multi-granularity tempo-
ral context and adaptively integrates them into fine-grained video
segment features by joint reasoning over video and subtitle, which
achieves in-depth plots understanding. Furthermore, we present a
context-sensitive constraint to encourage the DCIN to learn more
discriminative context that can help to determine the emotion.

For weakly-supervised learning, we propose a Cross-Modal Con-
sensus Learning (CCL) paradigm by leveraging the inherent seman-
tic consensus between the aligned video and subtitle. The intuition
behind this is that when we see the subtitle “thanks for your del-
icate gift" we can easily infer the visual situation that somebody
is happy and vice versa. If we see a video segment of somebody
happy to accept a gift, we may infer some subtitles expressing
his happiness. Concretely, given the ground-truth emotion label
without temporal annotation, the model first identifies the most
relevant video segment and then uses its temporally co-occurring
subtitle to predict the most possible emotion. We train our model
such that the predicted emotion based on subtitle is consistent with
the original emotion for retrieving the most relevant video seg-
ment. Further, our empirical experiments indicate that sometimes
the alignment between video and subtitle is noisy as the subtitle
might refer to previous or forthcoming visual events. Therefore, to
alleviate the misalignment noise, we present a temporal alignment
relaxation strategy, which enables the model to dynamically learn
the alignment from CCL paradigm.

To facilitate research of the TEL task, we contribute a testing set
by manually annotating the temporal boundaries of 3000 samples
on the MovieGraph dataset [60].

2 RELATEDWORK
Emotion Understanding. Emotion understanding has long been
studied in computer vision. Existing researchers mainly focus on
recognizing emotion through facial expressions. Quiroz et al. [14]
propose a large dataset of one million images of facial expressions
of emotion in the wild. Wei et al. [62] perform emotion recognition
by learning a feature extraction network on StockEmotion, which
has more than a million images. Instead of recognizing emotions
only based on facial expressions, there has been a growing inter-
est in dynamically modeling emotions over time. Movies serve as
an appropriate testbed of emotion understanding, as they contain
multimodal context and diverse human emotions in a variety of situ-
ations. Several works [21, 51, 52, 56] have been proposed to classify
emotions from movie clips. Although they have achieved promis-
ing performance, they still remain in the emotion classification
on the whole video, lacking transparency to tell which segments
of the video the emotion appears in. In contrast, we further ex-
plore localizing the start and end points of emotions in untrimmed
videos, which is more challenging and crucial for understanding
human emotions in real-world situations (e.g., personal assistants,
e-commerce [67]).
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Action Localization. Action localization [6] aims to predict ac-
tions and corresponding start and end timestamps in videos. In
general, existing supervised methods can be categorized into top-
down and bottom-up frameworks. The top-down methods [5, 8, 13,
22, 63] first extract a set of candidate proposals and refine them
to achieve the final temporal boundaries. The bottom-up meth-
ods [4, 45, 46, 48, 49] directly predict frame-level or snippet-level
scores and then combine the individual scores to generate the final
temporal boundaries. Since supervised action localization requires
labor-intensive frame-level annotations, weakly-supervised action
localization [50, 53, 54, 61] has received increasing attention.
Video-and-Language Understanding. The advent of deep learn-
ing [18, 19, 28, 32, 42] promotes the prosperity of computer vi-
sion [26, 41, 75] and vision-and-language [35–37, 39, 65, 69–71, 73].
With the flourishing development of large-scale video datasets [1,
27, 30], several video-and-language understanding tasks [26, 38,
68] have received increasing attention, such as temporal sentence
grounding [16, 40, 43, 44], video question answering [33, 57, 72],
and video captioning [74]. These tasks mainly focus on identifying
explicit visual cues (e.g., objects, actions, characters), which are
mainly embedded in obvious visual appearances. TEL differs as it
requires more sophisticated reasoning skills, such as understand-
ing complex plots, reasoning character relationships, and inferring
human’s internal states. These abilities can facilitate more sensi-
ble human-robot interactions based on a better comprehension of
human emotions.

3 METHOD
Problem Formulation. Given an untrimmed videoV paired with
subtitle S , we aim to detect emotions in the video and locate their
corresponding segments. As an untrimmed video might involve
multiple emotions, we formulate the problem as a multi-label detec-
tion problem. For weakly-supervised setting, only the video-level
emotion labels are available, without any temporal boundary an-
notations. The video is represented as V = {vi }

T
i=1 segment-by-

segment, and the subtitle is represented as S = {si }
T
i=1 sentence-

by-sentence, where si represents the subtitle sentence that is tem-
porally co-occurring with vi . We obtain vi ∈ R1×d by max-pooling
over the I3D [7] features of frames within the segment. si ∈ R1×d

is the sentence embedding.

3.1 Dilated Context Integrated Network
As aforementioned, the key factor for fine-grained emotion local-
ization is the multi-modality and multi-granularity context mod-
eling. Existing action localization methods mainly use RNN [24],
3D CNN [7, 58], or Transformer [59] to recognize specific visual
patterns of actions. However, they are unsuitable for the complex
multi-modality and multi-granularity context modeling. For RNN-
based methods, they do not capture non-sequential temporal depen-
dencies effectively. For 3D CNN-based methods, they suffer from
limited temporal receptive field. For Transformer-based methods,
such fully-connected structures may cause the fine-grained local
context to be overwhelmed by unimportant information.

Differently, we present the Dilated Context Integrated Network
(DCIN) that adaptively integrates multiple abstract-level of con-
text into fine segment representations in a hierarchy. As shown

Dilated Context Integrated Network
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Figure 2: Overview of Dilated Context Integrated Network.

in Figure 2, DCIN processes the information in a two-stream ar-
chitecture. The coarse stream models multi-granularity temporal
context in a hierarchy. The fine stream reasons the temporal de-
pendency among the temporal context and gradually fuses the
multi-granularity context from the coarse stream with the fine seg-
ment representations. To avoid unnecessary and redundant context,
we propose a gated temporal context integration module to dy-
namically integrate informative context by joint reasoning over
videos and subtitles. Further, we introduce the context-sensitive
constraint to encourage the model to learn more discriminative con-
text that can help to determine the emotion. Concretely, each DCIN
layer consists of: 1) Temporal Context Convolution, 2) Temporal
Context Dependency Reasoning, and 3) Gated Temporal Context
Integration.
Temporal Context Convolution. For the fine-grained emotion
localization, the model must discriminate very similar emotions
through video context, which may have various durations and
scales. Thus, we use temporal context convolution to generate
multi-granularity temporal context. Specifically, we use 1D tempo-
ral convolution operation with stride = 2 to halve the temporal
dimension of the context at each layer. We define the context pro-
duced by the Coarse stream at layer l asC(l ), whereC(0) = V . Given
C(l−1) ∈ RTl−1×d from the previous layer, we computeC(l ) ∈ RTl×d

(Tl = Tl−1/2) as:

C(l ) = f (W1 ∗C
(l−1) + b1) (1)

where f (·) is the activation function, ∗ is the convolution operator,
andW1 is the 1D convolution filters. As a consequence, we get C(l )

that contains increasing levels of semantic meaning and higher
temporal resolution context.
Temporal Context Dependency Reasoning. The video clips are
collected from movies, which contain complex event dynamics and
diverse character interactions across multiple segments. Therefore,
we develop the temporal context dependency reasoning to capture
the non-local temporal structure of context. Concretely, we adopt
graph convolution on the context features C(l ) = {cli }

Tl
i=1 as:

c̃li =c
l
i +

Tl∑
j
α tcdri j · (W2c

l
j ), α tcdri j =

exp(cli
T
· clj )∑Tl

j exp(cli
T
· clj )

(2)
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whereW2 ∈ Rd×d is the learnable projection matrix, α tcdri j is the
semantic coefficient between context node cli and c

l
j .

Gated Temporal Context Integration. After obtaining the non-
local enhanced context features C̃(l ), we propose a gated temporal
context integration module to adaptively integrate context C̃(l ) into
segment featuresV (l−1) at layer l − 1 (V (0) = V ) to getV (l ). Consid-
ering the complementary nature of video and subtitle, we design a
cross-modal context filtering mechanism that utilizes the aligned
subtitle feature si of vi to select relevant context. The aggregated
context information for segment vl−1i is computed as:

mi =

Tl∑
j
α
дtci
i j · c̃lj , α

дtci
i j =

exp(vl−1i
T
· c̃lj+si

T · c̃lj )∑Tl
j exp(vl−1i

T
· c̃lj+si

T · c̃lj )
(3)

where the cross-modal feature si helps to reassign the semantic
coefficient αдtcii j . Subsequently, we build the context gate дi that
controls the flow of aggregated contextmi to vl−1i , and update the
fine segment representations:

дi = σ (W3[v
l−1
i ,mi ] + b3), vli = (1 − дi ) ⊙ vl−1i + дi ⊙mi (4)

Consequently, we obtain V (l ) that integrate context features C̃(l ).
By performing L DCIN layers, we gradually integrate increasing
levels of temporal context into fine segment features and learn final
context-aware segment features V (L) = {vLi }

T
i=1.

Context-Sensitive Constraint. Fine-grained emotion localiza-
tion requires the model to discriminate similar emotions such as
embarrassment and disquietment. For human beings, they will
turn to the rich context that implicates multi-granularity event
semantics to disambiguate the emotions. Motivated by this insight,
we propose a novel context-sensitive constraint to encourage the
model to learn more emotion-discriminative context. Intuitively, we
can use the original segment representations V (0) and the context-
aware segment representations V (L) to predict the emotion class
probability distributions, respectively. If the model is sensitive to
the context, the predicted probability will change greatly after inte-
grating the multi-granularity context. Thus, the distance between
the two predicted probability distributions should be far. Specifi-
cally, given the original segment representations V (0) = {v0i }

T
i=1

and the context-aware segment representations V (L) = {vLi }
T
i=1,

we compute the probability of each emotion class for v0i and vLi as:

P(E |v0i )= f (W4v
0
i + b4), P(E |v

L
i )= f (W4v

L
i + b4) (5)

where P(E |·) ∈ RN×1 and N is the number of emotion classes. Next,
we adopt Euclidean distance to measure the context sensitivity for
a pair of v0i and v

L
i as:

d(v0i ,v
L
i ) = | |P(E |vLi ) − P(E |v0i )| | (6)

Then the context-sensitive constraint loss is formulated as:

Lcs =

T∑
i
max(0,∆ − d(v0i ,v

L
i )) (7)
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Video Segments
𝑽(𝑳)

…

…

𝑺

𝒔𝒗 𝒔𝟐 𝒔𝟑

𝒗𝟏𝑳 𝒗𝟑𝑳 𝒗𝒊𝑳 𝒗𝒊,𝟐𝑳

𝒔𝒆 𝒔𝒊,𝟏 𝒔𝒊,𝟐

Best
Matched

Temporal
Alignment 
Relaxation

…

…

Emotion
𝒆

Most
Relevant 
Segment 
Identify

Cross-modal 
Consistency 

Loss
𝓛𝒄𝒎𝒄

Cross-modal 
Consistency 

Loss
𝓛𝒄𝒎𝒄

Subtitle 
Consistency 

Loss 𝓛𝒔𝒄

Video 
Consistency 

Loss 𝓛𝒗𝒄

Temporal
Alignment 
Relaxation

Best
Matched

𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

S𝐮𝐛titles
𝑺

𝒗𝒆𝑳 𝒗𝒔𝑳

Figure 3: The Cross-Modal Consensus Learning framework.

where ∆ is the margin hyper-parameter. By minimizing Lcs , we
enlarge the distance between the two distributions, encouraging
the model to be more sensitive to the context.

3.2 Cross-Modal Consensus Learning
Imagining seeing the subtitle “thanks for your delicate gift", we will
infer the visual situation that somebody is happy and vice versa.
Inspired by this observation, we propose a cross-modal consensus
learning (CCL) paradigm by leveraging the semantic consensus
between the aligned video and subtitle. As shown in Figure 3, given
the ground-truth emotion label e without temporal annotation, the
model first identifies the most relevant video segment. The model
then uses its temporally aligned subtitle sentence to predict the
most possible emotion. The visual and linguistic modalities are
semantically consistent only if the predicted emotion label is the
same as the ground-truth.

Specifically, given the ground-truth emotion label e , we first
identify the most relevant segment vLe as:

vLe = arдmax
vLi

P(e |vLi ) (8)

Then, we retrieve the subtitle sentence sv that is temporally aligned
with ve (following, we omit the superscript L for simplicity). Next,
we compute the emotion class probability distribution based on sv
as P(E |sv ), and maintain the consensus of the score distributions
based on ve and sv as:

Lcmc = −

N∑
k

P(ek |ve )loдP(ek |sv ) (9)

Where N is the number of emotion classes, and Lcmc is the cross-
modal consensus loss. Here we use P(E |ve ) as the pseudo labels,
and minimize the cross-entropy loss between them to encourage
the semantic consensus. Besides from emotion to video to subtitle,
we can also start from emotion to subtitle to video. Let se denote the
most relevant subtitle sentence andvs is the aligned video segment.
The overall cross-modal consensus loss is:

Lcmc = −

N∑
k

[P(ek |ve )loдP(ek |sv ) + P(ek |se )loдP(ek |vs )] (10)

Ideally, the most relevant segment ve should be the same as the
segment vs retrieved from the subtitle side. Thus, we penalize devi-
ation betweenve andvs , which encourages the semantic consensus
on video. The video consensus loss is defined as:
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Figure 4: The distribution of 18 emotion classes.

Lvc = | |idx(ve ) − idx(vs )| |
2 (11)

where idx(·) is the segment index. In a similar manner, we can
define the subtitle consensus loss as:

Lsc = | |idx(se ) − idx(sv )| |
2 (12)

Temporal Alignment Relaxation. We observe that sometimes
people might refer to previous or forthcoming visual events, so the
temporal alignment between segment and subtitle may be noisy.
In this regard, to alleviate the misalignment noise, we relax the
hard temporal alignment constraint and encourage the model to
dynamically learn the alignment from our cross-modal consensus
learning paradigm. Concretely, for segment ve , we first retrieve its
temporal aligned subtitle sentence sv . We then take theQ sentences
closest to sv in time as the candidate set Q(sv ). Next, we compute
the semantic alignment score between ve and sq ∈ Q(sv ):

score(ve , sq ) = cos(ve , sq ) − β | |idx(ve ) − idx(sq )| | (13)

where cos(·) is the cosine similarity and the second term is the index
distance. Finally, we select the best match subtitle sentence as s∗v :

s∗v = arдmax
sq ∈Q (sv )

score(ve , sq ) (14)

And we can obtain the v∗s in a similar manner. Finally, We use the
s∗v and v∗s to compute the losses in Equation 10 - 12.

To differentiate through the cycle, previous methods are usually
implemented as soft retrievals (also viewed as attentionmechanism).
Differently, we implement the arдmax operation as a “mask” matrix
that keeps track of where the maximum of the matrix is. And we
empirically observe better performance on the “mask" version.

3.3 Training and Inference
Training. The final training loss for the overall model is:

L = λ1Lcs + λ2Lcmc + λ3Lvc + λ4Lsc (15)

Inference. Given the aboveV (L) and S , the final emotion-segment
matching scoreme

i is defined as:

me
i =

1
2
(P(e |vLi ) + P(e |si )) (16)

whereme
i ∈ R is the final matching score between segment i and

emotion label e , andMi = {me
i }

N
e=1 ∈ RN×1 is the matching score

of segment i . We first compute {Mi }
T
i=1 for segment sequence. Then,

the emotions where the matching score is above thresholdme
i > γ1

are considered selected. Next, for each selected emotion e∗, we
choose the video segment v∗ that has the highest matching score
with e∗. Finally, we consider the segments adjacent to v∗. If their
matching scores are above threshold me∗

· > γ2, we group them
iteratively to form the final predicted temporal boundaries for e∗.

(a) Training (b) Testing

Figure 5: The number of emotions per clip.

4 DATASET
4.1 Fine-Grained Emotion Category

Generation.
Existing datasets for emotion recognition are mainly based on still
images and classify emotions according to 6 categories. In this work,
we introduce a novel task that aims to localize fine-grained emo-
tion in videos. Although several video-based emotion recognition
datasets have been proposed, they mainly focus on single-person
narratives recorded in controlled lab settings. In contrast, the re-
cently released MovieGraphs dataset [60] contains rich real-world
situations, diverse character interactions, and fine-grained emotion
annotations. Thus, we evaluate our approach on it. MovieGraphs
dataset provides detailed graph-based annotations of social situ-
ations for 7637 clips in 51 movies. The dataset was collected and
manually annotated using crowd-sourcing methods. The emotion
labels are represented as attribute nodes of actors. We extract 239
available emotion labels from all clips and group them into 18 dis-
crete emotion classes. Specifically, we first use word connections
(synonyms, relevance, affiliations) and the inter-dependence of a
group of words (psychological research and affective computing)
[15, 29] to form word-groupings. Then, we perform multiple it-
erations and cross-referencing with dictionaries and research in
affective computing. Finally, we obtain the 18 emotion categories.
The details on the definition of each emotion category and the
grouped emotions in each category are provided in supplementary
materials.

4.2 Dataset Annotation.
We first split and clean the emotion localization samples. As only
a few emotion labels in the MovieGraphs dataset have temporal
annotations, we develop an annotation tool and ask human annota-
tors to provide the temporal boundaries of emotions in video clips.
Before officially annotating, we ask workers to annotate the same
set of clips according to provided instructions and examples. For
each annotation, we compute its average overlap with the anno-
tations from other workers. If the average overlap is lower than a
threshold, we will disregard the annotation. We choose the tempo-
ral intersection of consistent annotations as ground-truth. We also
manually check the annotations that do not meet the consistency.
Overall, 61% of emotions are annotated by at least three workers,
and 83% of emotions are annotated by at least two workers. Finally,
we take the annotated samples as the testing data.
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Method R@0.5 R@0.7 mAP mIoU
Random 0.17 0.07 0.19 0.15
Subtitle-Only 5.84 3.10 7.49 5.71
UNets w/o subtitle 1.86 0.50 2.36 1.85
UNets [61] 7.06 2.83 8.38 6.63
3C-Net w/o subtitle 3.69 1.30 6.59 5.09
3C-Net [53] 7.63 2.40 11.42 8.95
ASL w/o subtitle 4.80 1.73 9.25 7.29
ASL [50] 9.56 3.13 14.85 11.35
XML w/o subtitle 7.26 3.07 9.20 7.81
XML [34] 14.30 5.58 19.42 17.27
WSSL w/o subtitle 2.07 0.46 2.52 1.99
WSSL [11] 6.80 2.91 8.82 7.01
DCIN w/o subtitle 13.08 4.51 19.96 16.63
DCIN-CCL 19.21 7.16 28.59 22.73

Table 1: Results on the MovieGraph dataset.

4.3 Dataset Statistics
The average duration of video clips is 44.28s and the average num-
ber of emotion labels is 3.6 per clip. We re-split the dataset into
training (39 movies) and testing (12 movies). The training set con-
sists of 11193 emotions, and the testing set consists of 3003 emotions
with temporal annotations. Because some emotion classes are rel-
atively rare in daily life, the distribution of emotion classes is not
completely balanced. To comprehensively evaluate the model per-
formance on all classes, we attempt to make the distribution of
testing data relatively balanced. The distribution of 18 emotion
types is illustrated in Figure 4. We also propose the number of
emotions per clip over all training and testing movies in Figure 5.

5 EXPERIMENTS
5.1 Experimental Setup
Implementation Details. For video, we use the ResNeXt-101
model [20] pre-trained on the kinetics-400 dataset as [31]. For sub-
title, we employ a pre-trained BERT [10] and perform max pooling
over each sentence to get the sentence representations. We set the
dimension of segment and subtitle representations to 384. For the
visual frames that are not aligned with any subtitles, we assign them
to the neighboring segment-subtitle pair. For the hyper-parameters,
we set ∆ to 0.5, β to 0.1, and set λ1, λ2, λ3, λ4 to 0.001, 1.0, 1.0, and
0.7, respectively. During training, we set the batch size to 32 and
use Adam as optimizer [12], where the learning rate is set to 1e−4.
Evaluation Metrics. We employ R@IoU, mIoU, and mAP as
evaluation metrics. The R@IoU is recall at various thresholds of
the temporal Intersection over Union (IoU). The R@IoU measures
the percentage of predictions that have IoU with ground-truth
larger than the thresholds. Here we set recall to 1, and temporal
IoU threshold values to {0.5, 0.7}. mAP is the average precision
over various IoU thresholds. mIoU is the average IoU between the
predicted segments and ground-truth. For mAP and mIoU, we set
temporal IoU threshold values to {0.1, 0.3, 0.5, 0.7}.
Baselines. We compare the proposed approach with a number
of strong baselines from relevant video-and-language tasks. Only
publicly available models are used to calculate these metrics. Since
the most related task with ours is action localization, we extend the

Method R@0.5 mAP mIoU
1 Backbone 8.79 12.36 9.66
2 + Coarse-Fine 10.89 16.39 12.89
3 + TCDR 11.19 17.64 13.79
4 + GTCI (w/o CCF) 12.99 20.85 16.62
5 + CCF = DCIN 13.99 22.02 17.36

Table 2: Performance comparison by varying the individual
components of the DCIN.

existing weakly-supervised action localization (WSAL) approaches
UntrimmedNets [61], 3C-Net [53], and ASL [50] as the base-
lines. Considering these baselines do not take subtitles as input,
we implement two versions: 1) ignore subtitles directly; 2) fuse the
subtitle features with aligned segment features. UntrimmedNets
first learns a video-level classification and then selects frames with
high classification activation as action locations. 3C-Net adopts a
classification loss to ensure the separability, a center loss to reduce
inter-class variations, and a counting loss to delineate adjacent
action sequences. ASL learns with a class-agnostic task to predict
which frames will be selected by the classifier.

We also extend video-subtitle moment retrieval modelXML [34]
and weakly-supervised temporal grounding modelWSSL [11] as
baselines. XML is a recently proposed transformer-based method
for TV show retrieval, which first encodes video and subtitle rep-
resentation separately via two self-encoders, and then builds the
cross-modality context representation via two cross-encoders. Here,
we use the emotion label to attend to the above fused context fea-
tures of videos and subtitles. To facilitate weakly-supervised learn-
ing, we adopt a multi-instance learning method [9, 76] to train the
XML model. WSSL is a cycle system with a pair of dual problems:
event captioning and sentence localization. Here, we train WSSL
to reconstruct the emotion label as weakly-supervised objective. To
show the importance of using both videos and subtitles, we compare
baselines with their corresponding video-only variants and extend
a standard span-based QA model [25] as subtitle-only baseline.
For DCIN w/o subtitle, we replace the cross-modal consensus
learning with the weakly-supervised learning loss from 3C-Net.

5.2 Results
We compare our approach to the state-of-the-art WSAL methods,
video-subtitle moment retrieval, and weakly-supervised temporal
sentence grounding. We summarize the results in Table 1. From the
results, we can see that our method significantly outperforms the
baselines, and the superiority is consistently observed on all metrics.
We notice that our DCIN w/o subtitle also surpasses baselines on
mAP, indicating the effectiveness of our DCIN on multi-granularity
temporal context modeling. When using only subtitles to localize
emotions, the span-based QA model only achieves 7.49% on mAP.
Also, we observe consistent improvement from subtitles on all
baselines. These indicate the importance of multi-modal context.

Furthermore, all adapted baselines from three relevant tasks
perform poorly on fine-grained emotion localization. We specu-
late the main reasons are three folds: 1) As the actions and events
have more consistent visual patterns, the methods in WSAL and
temporal sentence grounding make predictions for each segment
separately, ignoring the multi-granularity context. In contrast, we
adaptively integrate different granularities of context into segment
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TAR Loss Terms R@0.5 mAP mIoUHard Relaxed Lcs Lvc Lsc

1 ! 13.99 22.02 17.36
2 ! 14.99 24.20 19.14
3 ! ! 16.55 25.71 20.29
4 ! ! 17.38 26.48 21.04
5 ! ! 16.25 25.13 19.84
6 ! ! ! 18.32 27.40 21.72
7 ! ! ! 16.75 26.86 21.20
8 ! ! ! 18.38 27.62 21.75
9 ! ! ! ! 19.21 28.59 22.73

Table 3: Ablation studies of the temporal alignment relax-
ation and the proposed loss terms.

Figure 6: Ablation studies with respect to the number of
DCIN layers and the temporal relaxation range.

representations in a hierarchy. 2) The methods in WSAL and tem-
poral sentence grounding are designed for localizing actions or
events in pure videos without subtitles. They fail to effectively
leverage the rich complementary information in subtitles. Differ-
ently, our approach utilizes the cross-modality consensus between
video and subtitle to form an effective weakly-supervised learning
paradigm. 3) Emotion classes have much higher inter-class similar-
ity than action classes. The methods from all three tasks fail to learn
discriminative context, which is crucial for inferring fine-grained
information. Instead, we propose a context-sensitive constraint to
encourage the model to learn emotion-discriminative context.

5.3 In-Depth Analysis
Effectiveness of Individual Component. We first investigate
the contribution of the Dilated Context Integrated Network (DCIN)
in Table 2. We start with the backbone model and gradually add
the Coarse-Fine architecture, Temporal Context Dependency Rea-
soning (TCDR), Gated Temporal Context Integration (GTCI), and
cross-modal context filtering mechanism (CCF) to form complete
DCIN. To clearly distinguish the improvement, we only use the
basic cross-modal consensus loss (Lcmc ) to train these ablation
models without temporal relaxation and other proposed losses.
As the transformer-based [59] model is a powerful model that ef-
fectively captures no-local context, we use it as the backbone for
context modeling. It takes video segment sequences {vi }Ti=1 and
subtitle sentence sequences {si }Ti=1 as input, performs self-attention
and cross-modal attention on them, and finally outputs the context-
aware segment and subtitle representations.

As shown in Table 2, the performance increases consistently,
indicating the effectiveness of each component. Overall, our DCIN
takes up 9.66% of the gain on mAP. Particularly, the results from

Method THUMOS-14 ActivityNet Captions
R@0.3 R@0.5 R@0.7 R@0.3 R@0.5 mIoU

3C-Net [53] 40.9 24.6 7.7 - - -
TSCN [64] 47.8 28.7 10.2 - - -
ASL [50] 51.8 31.1 11.4 - - -
WSSL [11] - - - 41.98 23.34 28.23
SCN [47] - - - 47.23 29.22 -
VGN [76] - - - 50.12 31.07 -
DCIN 50.3 29.8 11.9 46.72 28.19 33.74

Table 4: Transferability of our DCIN.

Row 2 to Row 4 suggest that our DCIN can better model the com-
plex temporal context by adaptively integrating multi-granularity
temporal context in a coarse-fine architecture. The results of Row 5
validate the superiority of the cross-modal context filtering mecha-
nism, which utilizes the multi-modality context to better guide the
context integration process.

We then verify the strength of our temporal alignment relax-
ation (TAR) and the proposed losses in Table 3. We start with the
complete DCIN (Row 1). The results of Row 2 show that TAR im-
proves the DCIN by dynamically learning the cross-modal align-
ment, which alleviates the misalignment noise during CCL. Fur-
thermore, the results from Row 3 to Row 5 validate that each loss
is helpful for emotion localization. Specifically, context-sensitive
constraint (Lcs ) takes up 6% of the relative gain on mAP and mIoU,
the video consistency loss Lvc contributes 1.69% and 1.43% to
the improvement on mAP and mIoU, respectively, and the subtitle
consistency loss Lsc takes up 1.15% and 0.91% of gain on mAP
and mIoU, respectively. In the end, the results from Row 6 to Row
9 suggest that the proposed losses can promote the cross-modal
consensus and context sensitivity in a mutually rewarding way.
Impact of DCIN Layer Numbers. Figure 6 presents the results
across the number of DCIN layers, where performance increases
until 3 layers and decreases afterward. This indicates that 3 DCIN
layers can capture enough granularities of temporal context for
fine-grained emotion understanding.
Analysis on Temporal Alignment Relaxation. We explore the
impact of temporal relaxation range, where we consider the R
nearest subtitle (segment) to the central subtitles (segments) in
each side as candidates. R = 0 corresponds to the hard temporal
alignment version. As shown in Figure 6, the performance keeps
increasing when the R is increased from 0 to 2. When we continue
to increase the R, too many candidates introduce larger noise.

5.4 Transferability to Different Tasks
We further evaluate DCIN on temporal action localization and
temporal sentence grounding tasks to illustrate its superiority on
multi-granularity temporal context modeling. For temporal action
localization, we add fully-connected layers to predict the confidence
score of each segment feature encoded by DCIN, and directly adopt
the weakly-supervised learning paradigm from 3C-Net to train
DCIN. For temporal sentence grounding, we first adopt our DCIN
to obtain context-aware segment representations, then generate
multiple proposals as 2D-TAN [66], and finally use a multi-instance
learning objective to train DCIN.
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Figure 7: Qualitative examples of our proposed model.

Run, Forrest!
Alignment Score: 0.74 0.43 0.16

Screaming at the top of my lungs
Alignment Score: 0.41 0.87 0.35

(a)

(b)

Disquietment

Sadness

Mark it zero!

Alignment Score: 0.32

Anger

0.23 0.77

(c)

Time Line

Figure 8: Qualitative examples of CCL.

Table 4 summarizes the temporal action localization performance
on THUMOS-14 [17] dataset and the temporal sentence ground-
ing performance on ActivityNet Captions [30] dataset. We notice
that the coarse-fine two stream architecture for adaptively multi-
granularity temporal dynamics reasoning can also benefit the accu-
rate temporal action localization, improving R@0.7 from 11.4% to
11.9%. Meanwhile, our DCIN can achieve comparable performance
on temporal sentence grounding task.

5.5 Qualitative Analysis
Case Study and Visualization of DCIN. Figure 7 visualizes two
qualitative examples. Evidently, our model can produce accurate
temporal boundaries for the TEL task. For a more intuitive view
of how DCIN adaptively integrates multi-granularity context, we
also visualize the context gate values of the target segments at
different DCIN layers, which reflect the context that the target
segments focus on. The context at different time scales is produced
by the Coarse stream at different DCIN layers. For instance, for
the segment corresponding to emotion Excitement (Figure 7.a), its

context gates are well activated for the context at all layers that
contains the information of the boy happily receiving a letter.
Visualization of CCL. In Figure 8, we show three examples of
how the CCL computes the semantic alignment between subtitle
and video. For instance, in (a), the subtitle at the second column
is the most relevant subtitle for emotion disquietment based on
P(e |si ), and the segment at the second column is the temporally
aligned segment. The left column and right column correspond to
the previous and forthcoming segments, respectively. Below the
segments are the semantic alignment scores between them and
the subtitle. We can see that the subtitle is said by the girl in the
previous segment. If we only follow the hard temporal alignment
relationship, we will optimize the segment at the middle column to
predict high a score for emotion disquietment, which might confuse
the model. By considering the temporal alignment relaxation on a
neighboringwindow of it, our CCL adaptivelymatches the semantic
aligned segment (the left column) based on the learned semantic
alignment scores.

6 CONCLUSIONS
In this paper, we define a novel task of temporal emotion localiza-
tion, which fosters deeper investigations in emotion understanding
and video-and-language reasoning. To solve the challenges in the
task, we propose a novel dilated context integrated network to
adaptively integrate multi-granularity temporal context in a hier-
archy, as well as a cross-modal consensus learning paradigm for
weakly-supervised learning. The experimental results show the
effectiveness and transferability of the proposed framework.
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