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Abstract
Since its inception in the early 80s, inductively coupled plasma–mass spectrometry has developed to the method of choice for the 
analysis of elements in complex biological systems. High sensitivity paired with isotopic selectivity and a vast dynamic range 
endorsed ICP-MS for the inquiry of metals in the context of biomedical questions. In a stand-alone configuration, it has optimal 
qualities for the biomonitoring of major, trace and toxicologically relevant elements and may further be employed for the charac-
terisation of disrupted metabolic pathways in the context of diverse pathologies. The on-line coupling to laser ablation (LA) and 
chromatography expanded the scope and application range of ICP-MS and set benchmarks for accurate and quantitative speciation 
analysis and element bioimaging. Furthermore, isotopic analysis provided new avenues to reveal an altered metabolism, for the 
application of tracers and for calibration approaches. In the last two decades, the scope of ICP-MS was further expanded and inspired 
by the introduction of new instrumentation and methodologies including novel and improved hardware as well as immunochemical 
methods. These additions caused a paradigm shift for the biomedical application of ICP-MS and its impact in the medical sciences 
and enabled the analysis of individual cells, their microenvironment, nanomaterials considered for medical applications, analysis of 
biomolecules and the design of novel bioassays. These new facets are gradually recognised in the medical communities and several 
clinical trials are underway. Altogether, ICP-MS emerged as an extremely versatile technique with a vast potential to provide 
novel insights and complementary perspectives and to push the limits in the medical disciplines. This review will introduce the 
different facets of ICP-MS and will be divided into two parts. The first part will cover instrumental basics, technological advances, 
and fundamental considerations as well as traditional and current applications of ICP-MS and its hyphenated techniques in the 
context of biomonitoring, bioimaging and elemental speciation. The second part will build on this fundament and describe more 
recent directions with an emphasis on nanomedicine, immunochemistry, mass cytometry and novel bioassays.

Keywords  Inductively coupled plasma–mass spectrometry · Biomonitoring · Elemental bioimaging · Elemental speciation 
analysis · Isotope ratios · LA-ICP-MS · LC-ICP-MS

Introduction

Essential trace elements play a fundamental role in biology 
and are regulated in a narrow homeostasis. This is relevant 
for various medical questions where the levels, speciation 

and spatiotemporal distribution of elements are aberrant and 
associated with specific pathologies. Targeting and calibrat-
ing elements as bio-indicative entities consequently provides 
opportunities for diagnostics and further promotes a better 
general understanding of the underlying biochemistry.

Atomic absorption spectroscopy (AAS) developed 
in the 1950s by Alan Walsh can be seen as the inception 
of trace element analysis and was absorbed by the medical 
sciences providing important new pathological and physi-
ological insights. While AAS, among other techniques, is 
still a prevalent element analytical technique in the clini-
cal landscape, various new techniques have been brought 
forward over the last decades and promise entirely new 
perspectives to study the levels of trace elements and their 
biological impact. Especially, the commercial introduction 
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of inductively coupled plasma–mass spectrometry (ICP-
MS) in the early 1980s was a turning point for trace element 
analysis. ICP-MS does not only outperform most techniques 
regarding sensitivity, selectivity and dynamic calibration 
range but further enables elemental speciation analysis and 
bioimaging when paired with chromatography or laser abla-
tion. The gradual improvement of hard- and software as well 
as tailored methodologies for ICP-MS enhanced capabilities 
and figures of merit substantially and provided intriguing 
avenues to interrogate concentrations of trace elements, their 
localisation in highly compartmentalised biological struc-
tures and their species distributions. Despite the tremendous 
potential of ICP-MS and its associated techniques and pro-
tocols, it is still underutilised in both medical research and 
routine. One reason for this is certainly the requirement for 
extensive expertise and personnel skills; however, another 
reason relates to the fact that new paradigms with impact 
in the medical sciences were stimulated by technological 
advances and new methodologies which were brought for-
ward recently within a relatively short time frame.

The scope of ICP-MS was vastly expanded by emerg-
ing technologies and methodologies, which resulted in 
different facets with distinct utility for research and clini-
cal translation as well as potential for new directions in 
therapy, diagnostics and the development of new pharma-
ceuticals. This review will tackle the spectrum of stud-
ies, applications, opportunities and research directions in 
ICP-MS and will be divided in two parts. The first part 
will introduce basic concepts relevant to follow current 
trends and to recognise the potential of ICP-MS in the 
medical sciences. Important theoretical and practical con-
siderations are highlighted to provide a tutorial perspective 
on the working principles, pitfalls and limits of ICP-MS 
techniques. In its easiest (stand-alone) set-up, ICP-MS is 
an asset for biomonitoring studies and related advantages 
and applications will be compared against other established 
techniques. Hyphenated techniques advanced the scope of 
ICP-MS significantly forming the fundament for specia-
tion analysis and bioimaging. Concepts, considerations and 
applications of hyphenated ICP-MS with an emphasis on 
calibration approaches to gain quantitative insight into bio-
medical processes will be discussed subsequently. Finally, 
isotope ratio analysis will be discussed regarding opportu-
nities to promote tracer studies and to study isotope frac-
tionation effects to better the understanding of physiology 
and pathologies.

The second part of this review will advance on the con-
cepts introduced in the first part and will describe more 
recent facets of ICP-MS. An emphasis will be given to 
immunochemical methods which inspired the field of mass 
cytometry. In this context, current directions and future 
perspectives regarding clinical utility will be discussed 
briefly. Another focus will be on single-event ICP-MS 

which enables the characterisation of nanomaterials and 
promotes the development of novel nano-scaled platforms 
for drug delivery and novel imaging probes. Approaches to 
expand methods to the analysis of endogenous elements and 
therapeutic elements in individual cells will be considered 
as well. Finally, methods interlacing immunochemistry and 
single-event ICP-MS will be evaluated in their ability to tai-
lor new bioassays for the detection of protein- and nucleic 
acid–based biomarkers.

The aim of this review is to showcase the facets of ICP-
MS and their capabilities. Basic concepts and principles 
will be introduced while selecting applications and exam-
ples with biomedical implications or clinical relevance. In 
this framework, technological milestones, new directions 
and pitfalls as well as the potential and future perspective 
will be highlighted. The review targets an interdisciplinary 
audience of (bio)analytical chemists, biologists, nanotech-
nologists and medical researchers as well as researchers of 
various other disciplines operating at the fringe of medicine 
or interested in the capabilities of ICP-MS.

Fundamentals: instrumentation 
and hardware

Following the development of ICP as source to stimulate 
optic emission in the 70s [1, 2], ICP-MS was developed 
and commercially introduced in 1983 [3]. ICP-MS employs 
magnetic fields at 27 or 40 MHz sustaining a hot Ar-based 
plasma which reaches temperatures of up to 10,000 K [4]. At 
these temperatures, any molecular compound is immediately 
atomised, element cations are generated and consequently 
extracted for mass spectrometry. The ionisation degree of 
elements is mainly dependent on the plasma temperature and 
their first ionisation potential and can be calculated using 
the Saha equation. However, most elements of the periodic 
table are efficiently ionised to degrees exceeding 90% [5]. To 
sustain and contain the plasma, a high Ar supply is required 
consuming almost 20 L min−1. Different low-flow torch vari-
ants and alternative gases have been investigated but have 
not been adopted for commercial instrumentation [6–9]. 
Therefore, ICP-MS is associated with relatively high run-
ning costs. The processes occurring in the plasma produce 
relatively high ion yields which translate into high sensitiv-
ity. The underlying atomisation and ionisation mechanisms 
are generally not influenced by the chemical environment of 
elements and provide consistent sensitivity across different 
chemical species. On the one hand, this enables pragmatic 
solutions for absolute quantification of trace elements via 
species-unspecific (ionic) element standards [10]. On the 
other hand, the annihilation of any molecular information 
complicates the tracing of the molecular history and requires 
additional steps to obtain species-specific data. Generated 
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ions are extracted in a coherent ion beam, which is trans-
ferred through a multi-staged interface into a high vacuum 
region [11]. Here, the ion beam is guided by ion optics for 
focusing and elimination of neutral particles (neutral Ar and 
light) before passing through a mass analyser to isolate spe-
cific isotopes according to their mass to charge ratios (m/z) 
and for subsequent detection (Fig. 1) [12, 13].

Different geometries and technologies are available in 
ICP-MS and especially the implementation of different 
mass analysers offers distinct advantages for certain analytic 
scenarios by reducing interferences, enabling rapid scan-
ning and/or simultaneous analysis or providing increased 
ion transmission. The quadrupole mass filter was the first 
analyser introduced for ICP-MS and can still be seen as the 
work horse accounting for most applications and citations 
in routine and research [13]. Two prevalent reasons for this 
are its ease of use as well as its affordability.

In conjunction with a collision/reaction cell (CRC), 
ICP-QMS may target elements which are often interfered 
including transition metals (e.g. Mn, Fe), metalloids (As) 
and non-metals (e.g. S, P, Se) [14, 15]. CRCs offer differ-
ent acquisition modes which enable attenuation of spectral 
interferences by exploitation of physical and chemical dif-
ferences between the targeted isotope and the interference. 
Relevant strategies include here kinetic energy discrimina-
tion (KED) [16] to eliminate polyatomics and the exploita-
tion of specific chemical reactions. For the latter, different 
chemical affinities can be harnessed by employing distinct 
gases in oxidations, reductions, charge transfer processes as 
well as adduct formations [14, 17]. Further information on 

the development and applications of the CRC can be found 
elsewhere [16, 18].

The quadrupole mass analyser consists of four parallel 
rods which are supplied with a combination of direct cur-
rent (DC) and radio frequency (RF) voltages. The exact 
combination of both stipulates the bandpass and the mass 
resolution [19]. Analysing different m/z requires conse-
quently a modulation of the DC and RF voltages, which 
makes the quadrupole a sequentially operating mass ana-
lyser. Figures of merit of many elements in ICP-QMS were 
significantly improved by the introduction of tandem mass 
spectrometry (ICP-MS/MS), which made the analysis of 
biologically important elements such as P or S viable. 
ICP-MS/MS was introduced in 2012 and incorporates an 
additional scanning quadrupole before the CRC enhancing 
abundance sensitivity and consequently the trace analysis 
of interfered elements by restricting CRC access to only 
one selected m/z. Controlling chemical reactions occurring 
in the CRC mitigates unwanted isobaric product ions, non-
spectral interferences and matrix effects and improves CRC 
efficiency. These factors promote product ion scans, precur-
sor ion scans and neutral mass gain/loss scans and overall 
contribute to improved limits of detection. The modes of 
operations and applications of ICP-MS/MS for trace ele-
mental analysis in stand-alone configuration as well as in 
hyphenated techniques were reviewed by Bolea-Fernandez 
et al. [20] and Balcaen et al. [21].

The capabilities of quadrupoles are limited when it 
comes to mass resolution, fast multi-elemental acquisition, 
precision and ion transmission, which can potentially be 

Fig. 1   Schematic set-up of an ICP-MS system operating a collision/
reaction cell (CRC) and a quadrupole mass analyser. A sample aero-
sol is introduced via liquid nebulisation or laser ablation, dried and 
atomised in the hot RF-powered ICP. Following ionisation, singly 
charged element cations are extracted from the plasma through a two-

staged vacuum interface, focussed and guided around an attenuator 
(photon stop) to eliminate neutral particles and light. The operation of 
the CRC is optional and enables attenuation of spectral interferences, 
before targeted ions are separated according to their m/z and detected 
with a secondary electron multiplier (SEM)
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a pitfall for specific biomedical applications. Sector field 
(SF)– [22–25] and time of flight (ToF)–based mass analys-
ers [26–28] are increasingly integrated within the biomedi-
cal and life sciences. Especially, the latter analyser offers 
several advantages over quadrupoles which translate into 
unique opportunities regarding elemental bioimaging and 
single-event analysis, which will be discussed with more 
detail in the second part of this review. SF-based mass 
spectrometers were first developed for the high-resolution 
analysis of molecular compounds and were commercial-
ised for ICP-MS in the 90s [29]. Most commonly, double-
focussing SF instruments operating an electrostatic analyser 
(ESA) and a magnetic sector are employed to offer tuneable 
mass resolution (typically 300 in low resolution, 4000 in 
medium resolution and 10,000 in high resolution (m/Δm 
at 10% signal height)) and/or higher ion transmission to 
bypass relevant (polyatomic) spectral interferences and to 
improve limits of analysis. The ESA and magnetic sector 
are set-up in distinct orders (e.g. Nier Johnson and reverse 
Nier Johnson) and geometries (e.g. Mattauch-Herzog con-
figuration). Especially, the Mattauch-Herzog configuration 
in which the magnetic sector is set up in a specific angle 
after the ESA and operated at a fixed magnetic field strength 
is relevant for the analysis of isotope ratios. In this set-up, 
different m/z follow laterally separated ion trajectories with 
different focal points. This offers the opportunity to employ 
multiple detectors (multi-collector (MC)) to acquire isotopes 
simultaneously and became relevant to determine precise 
isotope and element ratios for studies on fractionation effects 
caused for example by altered metabolisms and pathologies 
as addressed in a later section of this review. A drawback of 
a magnetic sector is a limited mass band pass. To acquire 
isotopes across a larger mass range, magnetic field strengths 
must be modulated which is much more time consuming 
compared against the scanning of quadrupoles or ESAs due 
to hysteresis effects. However, this may be bypassed by oper-
ation of a spatially resolving semiconductor detector which 
allows to acquire the entire mass range simultaneously (m/z 
6–238) [30].

ToF technology for ICP-MS is becoming increasingly 
popular for the simultaneous analysis of isotopes across the 
entire mass range. Here, ions are collected from the ICP in 
packages and accelerated in an electrostatic field, separated 
in a field-free flight region and consecutively detected. Dur-
ing acceleration, all ions receive the same kinetic energy, 
and as such, high m/z travel slower than low m/z. The result-
ing flight time can subsequently be calibrated into a m/z. 
ToF technology for ICP-MS was first investigated in 1994 
[31]; however, advantages could not be fully exploited due 
to various challenges which required further instrumen-
tal advances. Challenges were mainly related to the broad 
energy distributions of ions extracted from the ICP as noisy 
source, limited duty cycles, non-optimal flight paths and 

high abundant interferences saturating the detector (e.g. 
Ar+). Current instrumentation features notch filters and/or a 
CRC to eliminate highly abundant interferences and, com-
pared to initial instruments, offers significantly improved 
sensitivity. However, compared against ICP-QMS, sensitivi-
ties are still considerably lower. A significant advantage of 
ICP-ToF–MS is the quasi-simultaneous acquisition of iso-
topes. Although the very mechanism of ToF is based on 
the time-resolved detection of ions travelling through the 
flight tube at different speeds, all ions are extracted from the 
plasma at the same point of time which increases precisions 
compared to ICP-QMS. Furthermore, ICP-ToF–MS offers 
increased mass resolution and acquires full mass spectra 
significantly faster than conventional ICP-QMS systems 
(acquisition speed is between 33 and 76.8 kHz) [26, 27, 32]. 
The fast multi-elemental acquisition results in large data sets 
which require dedicated software solutions, larger storage 
capabilities and high computational processing power.

Stand‑alone ICP‑MS

Biomonitoring

The capability to rapidly scan for several elements and 
isotopes across a vast linear dynamic range spanning over 
ten orders of magnitude made ICP-MS the most adequate 
approach to detect and quantify toxicologically relevant ele-
ments, to inquire occupational or environmental exposures 
and heavy metal poisoning [33]. However, many patholo-
gies are caused or accompanied by a change in the concen-
tration of endogenous elements, which opens interesting 
opportunities to interrogate elements as biomarkers [34, 
35]. The capability of ICP-MS to determine the total levels 
of trace and major elements is becoming increasingly rel-
evant in the medical realm for the determination of elements 
in biofluids and tissues to improve biomonitoring as well as 
to characterise pathologies based on element profiles and 
distributions.

However, it was the achievement of early atomic spec-
troscopy featuring flame photometry and AAS to elucidate 
the relevance of several elements in biochemical pathways 
[36, 37]. Along with other techniques including ion-selective 
electrodes (e.g. for Na, K), atomic fluorescence spectroscopy 
(e.g. for hydride forming elements As, Se) [38, 39] and flame 
photometry, AAS is still routinely applied for elemental 
analysis in the clinical environment (e.g. Li, Na, K, Ca, Mg) 
[37, 40, 41]. Essential elements are regulated within a nar-
row homeostasis and both deficiency as well as excess may 
lead to adverse physiological effects. However, non-essential 
elements may disrupt metabolic and signalling pathways as 
well if present at significant concentrations. The critical 
levels at which adverse effects are recognisable depend on 
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a range of factors which include bioavailability, speciation 
and spatiotemporal distribution. For clinical applications, 
however, in-depth differentiation between metal species or 
element biodistributions is not performed and routine tech-
niques therefore aim to determine the total element levels 
as a proxy for their toxicological impact. Knowledge of 
abundances of both essential and non-essential elements is 
extremely useful to recognise pathologies as well as to inves-
tigate natural and occupational exposures to potentially toxic 
elements. Exposures are often elucidated by analysing blood 
[42, 43], serum [44], plasma or urine [44–46]; however, also, 
other biomaterial such as saliva [47], hair and nails [48, 49] 
may be targeted. For the latter specimens, results are more 
prone to bias due to various factors such as age or habits and 
must be evaluated with great care [50].

Elements that are frequently analysed in the context of 
biomonitoring include Pb, Hg, Cd and As. The gradual 
improvement of AAS methodology including new atomi-
sation techniques (delves cup, ET-AAS, CV-AAS), back-
ground compensation (e.g. Zeeman compensation) and new 
sources (e.g. continuum source AAS) [51, 52] enhanced 
capabilities and made the monitoring of multiple elements 
at trace levels viable. While AAS techniques offer fit-for-
purpose analysis of elements in the clinical realm, ICP-MS 
is increasingly used to complement and substitute methods. 
The rather slow absorption of ICP-MS in the clinical land-
scape may be explained by its relatively high (running) costs, 
the requirement for more extensive expertise and the fact 
that previous techniques and infrastructure were sufficient 
to monitor elements within relevant levels. Nonetheless, the 
possibility to target variable and large panels of bio-indic-
ative elements,improved detection limits and robustness, 
access to isotope data, high matrix compatibility and the 
versatility of ICP-MS to be applied for biomedical questions 
beyond monitoring are alluring and resulted in increasing 
interest and further implementation [37].

Elements as pathological indicators

Most metabolic processes are reliant upon multiple trace 
and/or major elements and determining the endogenous ele-
ment profiles may indicate pathological changes, which is 
insightful to characterise diseases caused or accompanied 
by a dysfunctional homeostasis [53]. The multi-elemental 
capability of ICP-MS is predestined to target larger isotope 
panels in the context of various pathologies and statistical 
analysis helped to identify significant up- and downregula-
tions and to pinpoint elements with bio-indicative potential. 
For example, neurodegenerative pathologies including Alz-
heimer’s (AD), Parkinson’s (PD), Menkes, Wilson’s (WD) 
and Huntington’s disease as well as prion diseases, multi-
ple sclerosis and amyotrophic lateral sclerosis (ALS) are 
known or suspected to be associated or accompanied with 

disrupted metabolisms of transition metals. This suggests 
the analysis of neurological tissue digests as well as body 
fluids for diagnostic or preventive purposes. Especially, the 
regulation and metabolism of the transition trace elements 
Mn, Fe, Cu and Zn were found to be relevant and were cor-
related with an increased occurrence, risk or progression of 
neurodegeneration [34, 54, 55]. Quantitative element data is 
not only valuable to identify pathologies, but also to inquire 
treatment options. For example, the role of Mn attracted 
increasing interest and was investigated in the pathogenesis 
of prion-based diseases and PD [56–58]. ICP-MS was used 
to calibrate the levels of Mn following chelation therapy 
and results suggested that this method may have a signifi-
cant effect on the prolongation of survival in prion-based 
diseases [59]. However, besides Mn, many other essential 
and non-essential elements are relevant in the context of 
neurodegeneration to study pathogenesis, progression and 
treatment [34, 60–63].

As affected tissues are often only accessible post-mor-
tem or following invasive biopsies, other more accessible 
specimens are often preferred to monitor for pathological 
indicators. In case of neurodegeneration, cerebrospinal fluid 
(CSF) is a suited material to study diseases of the central 
nervous system [64–68]. However, also urine [66], serum 
[67] and whole blood [68] are useful to pinpoint a disrupted 
homeostasis due to neurological pathologies. For example, 
González-Domínguez et al. [69] studied the metal profiles 
in serum during the progression of AD and mild cognitive 
impairment. The authors analysed a high molecular protein 
fraction and a low molecular metal species fraction from 
serum via ICP-MS and found that Fe, Cu, Zn and Al sys-
tematically change during continuing neurodegeneration. 
The low molecular species of Fe, Cu, Al and Co appeared 
to be involved in the pathogenesis of AD. Furthermore, 
hair was recently suggested as a proxy to evaluate the link 
between heavy metals (e.g. Hg and Pb) and cognitive impair-
ment [70]. Hair is an interesting specimen which simplifies 
sourcing and may be adequate for population screening. For 
example, Tamburo et al. [71] studied the role of selected 
elements in relapsing–remitting multiple sclerosis. Levels 
of trace elements in the hair of patients were significantly 
different when compared to control samples which provided 
evidence for metabolic imbalance during pathogenesis. Fur-
ther information on the application of ICP-MS in the context 
of neuropathology can be found in a review by Ha et al. [34].

It has been demonstrated that the altered metabolism in 
cancer cells induces noticeable changes in the levels of var-
ious elements which makes quantitative elemental analysis 
also interesting in the context of oncology. Lavilla et al. 
[72] studied the levels of elements in tumorous and adja-
cent non-tumorous tissues in paired biopsies from patients 
with colorectal cancer. Applying principal component anal-
ysis, distinct elemental profiles were found to play a role 
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and linear discriminant analysis was subsequently capable 
to identify 90% of samples correctly by considering the 
elemental fingerprint of essential and non-essential ele-
ments. Wach et al. [73] investigated the diagnostic potential 
of major and trace elements in serum for bladder cancer 
patients. The elements Ca, Li, Ni and Sr were promising 
candidates for the early diagnosis [73]. Wozniak et al. [74] 
proposed to identify disrupted metal homeostasis caused 
by head and neck cancer by profiling elements in hair. ICP-
MS was further found adequate to monitor the elemen-
tal regulations during cancer treatment. On the one hand, 
many chemotherapeutics rely on heavy metal complexes 
(e.g. Pt, Ru) and the uptake and accumulation in tumour 
cells can be determined directly, which was for example 
shown by Ghezzi et al. [75] in a breast cancer cell line. On 
the other hand, endogenous element profiles may also be 
interrogated to monitor treatment effects. Jiang et al. [76] 
determined elements during chemoradiotherapy of cervical 
cancer with the aim to identify biomarkers reflecting thera-
peutic effects. Following the administration of cisplatin and 
the application of radiotherapy, serum levels of Na, Mg, P, 
K, Ca, Se, Cu, Zn, Se, Sr and Ba dropped significantly, and 
ionic Al and Cu were correlated with treatment. Therapy-
induced disrupted homeostasis may impact severity of side 
effects and elemental monitoring provides opportunities 
for counteraction.

Among other diseases, diabetes was investigated 
regarding elemental profiles. To investigate the role of 
19 elements in type 2 diabetes, saliva and plasma was 
analysed by Marín-Martínez et al. [77]. Statistical data 
analysis revealed a correlation of distinct elements with 
chronic complications and metabolic control. Another 
study determined the abundance of 23 metals in newly 
diagnosed and untreated diabetic cases and controls. The 
results suggested that analysing element profiles may have 
potential to predict diabetes risk [78]. Further research on 
elements in diabetes involved research on the correlation 
of maternal, placental and cordonal metallomic finger-
prints in gestational diabetes mellitus [79].

It is worth emphasising that besides the mentioned bio-
fluids and tissues, virtually any biospecimen can be inter-
rogated in ICP-MS regarding elemental profiles and a dis-
rupted homeostasis. In the recent years, a range of studies 
started exploring rather untraditional specimens including 
faeces [80], tears [81], milk [82], breath [83], skin [84], bone 
marrow fluid [85], nasal exudate [86], follicular fluid [87] 
or seminal plasma [88] to just name a few examples. Espe-
cially microsampling of biological fluids seems to become 
more relevant to ensure minimal invasive procedures and to 
target scarce fluids. A recent review by Aranaz et al. [89] 
provides an overview of relevant techniques, specimens and 
their potential diagnostic values.

Elemental speciation analysis in the medical sciences

Speciation analysis—fundamentals

The function and biochemical impact of any element is 
depending on its species distribution. Due to the hard ioni-
sation in ICP-MS, any molecular information is destroyed, 
and therefore, stand-alone ICP-MS is not capable to target 
individual species. However, the on-line hyphenation of 
separation techniques to ICP-MS enables the conservation 
of species information in the form of the retention or migra-
tion time. The coupling of liquid chromatography (LC) with 
ICP-MS was first described by Thompson and Houk [90] in 
1986 and methods were soon diversified to target elemental 
species in the context of various scenarios. Today, a large 
variety of different separation techniques is available. Differ-
ent LC methods provide complementary selectivity and have 
been applied in conjunction with ICP-MS to tackle biomedi-
cal questions. Relevant methods and mechanisms include 
normal phase and reversed-phase LC to enable separation of 
polar and non-polar species via adsorption and distribution 
mechanisms, respectively [91, 92]. Ion chromatography (IC) 
and hydrophilic interaction liquid chromatography (HILIC) 
provide separation of ionic and polar analytes using ion 
exchange, distribution and/or partitioning mechanisms [93, 
94]. Size exclusion chromatography (SEC) is used to sepa-
rate large biomolecules based on their molecular weight/size 
[95]. Furthermore, affinity chromatography can be employed 
to harness specific chemical interactions for the separation 
of biomolecules [96] (e.g. enzymes/ligands or antibody/anti-
gen). However, stationary phases can also comprise of mixed 
modes, where specific separation mechanisms are applied 
simultaneously [97]. Separation of complex mixtures can 
further be achieved using two-dimensional LC, where elut-
ing fractions are collected and injected onto a second col-
umn with complementary separation mechanism [98]. Gas 
chromatography (GC) provides separation of smaller, non-
polar and volatile compounds [99]. Electromigration tech-
niques enable separation based on electrophoretic mobility 
which can depend on size, charge and isoelectric point and 
mainly comprises of capillary electrophoresis (CE) and gel 
electrophoresis (e.g. SDS-PAGE) [100, 101]. While CE can 
be coupled on-line with ICP-MS, gels are usually analysed 
offline via ICP-MS or LA-ICP-MS. Also, techniques such 
as field flow fractionation for colloid analysis [102] as well 
as supercritical fluid chromatography (SFC) are becoming 
increasingly relevant for biomedical questions.

However, the hyphenation of separation techniques with 
ICP-MS often requires additional prerequisites and is not 
considered “plug and play”. For example, the coupling 
of GC with ICP-MS requires a heated transfer line and 
injector to avoid the condensation of compounds prior 
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to their introduction into the plasma [99]; SFC-ICP-MS 
requires a backpressure regulator and splitter [103]; CE-
ICP-MS requires a total consumption nebuliser, electrical 
grounding and a make-up flow; LC-ICP-MS methods using 
organic solvents require strategies to avoid the deposi-
tion of carbon as well as the deterioration of the interface 
and commonly oxygen is added and an inert Pt-interface 
installed. Basic considerations have been part of a series 
of fundamental and tutorial reviews, where readers new 
to this field will find further information [92, 104–106].

The most applied hyphenated technique for elemental specia-
tion analysis is LC-ICP-MS, which offers a range of advantages 
and/or complementary information when compared to other spe-
ciation techniques such as LC–ESI–MS, MALDI-MS or spec-
troscopic techniques (e.g. IR, Raman). The broad range of sta-
tionary phases and consequently different retention mechanisms 
allow tailoring of methods to the species and matrix of interest. 
Furthermore, the species-independent sensitivity in ICP-MS 
allows the application of species-unspecific standards for abso-
lute quantification. This is a major advantage when compared 
against molecule-selective techniques, for which ionisation 
efficiencies are depending on species and matrix. Both parallel 
analysis of element standards for external calibration and simul-
taneously acquired internal standards are applicable for abso-
lute quantification. Especially isotope dilution analysis (IDA) 
is a technique with high utility for accurate and precise quan-
tification of polyisotopic elements. While initially developed 
for stand-alone ICP-MS, it can be modified in a post-column 
approach to enable on-line calibration of transient signals [10]. 
More information on IDA is given in the context of isotope 
ratios in a subsequent section. Species-unspecific quantifica-
tion in LC-ICP-MS has a high utility to quantify unknown or 
unstable species for which standards are not available. Addi-
tionally, the element-selective analysis in LC-ICP-MS reduces 
the complexity of samples by attenuating compounds which do 

not carry the targeted isotope. This is relevant for the analysis of 
biological matrices with extreme variations of chemical entities.

Speciation analysis and elemental exposure

Elemental speciation analysis is relevant to study abundance and 
fate of natural and anthropogenic/toxic compounds in environmen-
tal and biological systems. While both systems may seem to have 
only little overlap on first sight, methodologies, targeted species 
and fundamental considerations are quite similar given that in both 
cases, matrices are complex and targeted species are usually pre-
sent at trace levels. Furthermore, environmentally relevant species 
are often defined as such because they may have an adverse effect 
on physiology. Hence, the same elements and species are often 
targeted in both medical and environmental sciences and methods 
are often interchangeable [107]. One prominent example is the 
analysis of Gd-based contrast agents: contrasts in MRI imaging 
can be enhanced by the administration of polarising (high spin) Gd 
complexes. The retention of Gd species due to insufficient elimina-
tion may trigger pathologies and it was shown that Gd can be 
retained in several organs [93, 108] (Fig. 2). HILIC-ICP-MS was 
capable to find intact contrast agents in tissue extracts of patients 
who underwent Gd-enhanced MRI years before, as illustrated 
in Fig. 2 [93]. However, relatively high Gd dosages cause also a 
significant environmental discharge and LC-ICP-MS method-
ologies were applicable to find intact contrast agents in waste-
water, seawater, riverine and drinking water [107, 110–112].

There is a large range of compounds and elements which 
were targeted since the inception of chromatography-
hyphenated ICP-MS to study species-specific parameters 
including toxicity, bioavailability, translocation, bioaccu-
mulation, biomagnification, degradation/transformation, 
fate and physiological impact [113–115]. In this framework, 
potential exposure routes are relevant and speciation analy-
sis in diverse environments (e.g. air, wastewater, drinking 

Fig. 2   A skin sample of a nephrogenic systemic fibrosis patient, who 
underwent MRI examination years earlier, was extracted for HILIC-
ICP-MS analysis. Complementary elemental imaging was used to 
locate the Gd in the tissue. Reprinted with permission from M. Birka, 
K.S. Wentker, E. Lusmöller, B. Arheilger, C.A. Wehe, M. Sperling, 

R. Stadler, U. Karst, Diagnosis of nephrogenic systemic fibrosis by 
means of elemental bioimaging and speciation analysis,  Analytical 
Chemistry 2015, 87, 6, 3321-3328 [93]. Copyright (2015), American 
Chemical Society.
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water) and food stuff (e.g. plants, fish) as well as pharma-
ceuticals (e.g. therapeutics) have important medical implica-
tions. Several methods were developed to interrogate various 
species of elements including species of Fe, Cd, Cr, Te, As, 
Sn, Pb, I, Hg, Gd and Se in environmental and biological 
systems [107, 116–122]. Especially, As, Se and Hg have 
been studied extensively regarding metabolic pathways [115, 
123–126], therapeutic contexts [126–129], pathologies or 
health impact [130–132]. Further information on clinical 
applications of LC-ICP-MS for element speciation can be 
found in a review by Delafiori et al. [133].

While the utility of chromatography and migration tech-
niques coupled to ICP-MS is obvious for the analysis of low 
levels of metal and metalloid species in complex matrices, 
technological advances suggested a whole new panel of ele-
ments to speciate. Especially, the introduction of ICP-MS/
MS opened new avenues to target biologically/environmen-
tally relevant non-metal entities containing for example 
halogens, S or P atoms [109, 134–137]. The analysis of 
halogenated compounds is interesting regarding biomedical 
applications due to their frequent and increasing incorpora-
tion in diagnostic or therapeutic pharmaceuticals [138]. As 
such, LC-ICP-MS/MS and -HRMS may study metabolites, 
distribution and fate of new non-metal-based drugs as well 
as exposures to a large panel of environmentally relevant 
entities including organic pollutants (e.g. pesticides, herbi-
cides, polyfluorinated and -brominated substances) via their 
respective heteroatoms (P, S, Br, Cl, F) [99, 134, 139, 140]. 
Among the halogens, F is the most challenging element to 
analyse. Its high first ionisation potential prevents the forma-
tion of sufficient F+ for ICP-MS analysis and therefore com-
plicates trace analysis [141]. Strategies to form metal-F ions 
(e.g. with Ba as metal) have been suggested and improve 
detection limits [109, 142]. Figure 3 showcases the possibil-
ity to employ LC-ICP-MS complementary to LC–ESI–MS 
to detect and quantify known and unknown (marked in red) 
F-based compounds [109].

Analysis of proteins

As the analysis of non-metals was improved substantially, 
proteins with S-containing amino acids (cysteine and 
methionine) [95], nucleic acids [143], phospholipids [144], 
phosphorylated proteins [145, 146] and other biomolecules 
became detectable in ICP-MS. However, a significant por-
tion of all proteins is also either associated with a metal co-
factor or rely entirely on a metal-based catalytic active centre 
for functioning [147]. The possibility to reduce information 
density by targeting proteins containing only one specific 
isotope facilitates the investigation of the metal metabolism 
and promotes LC-ICP-MS for the investigation of metal-
loproteins. The biochemical regulation of respective met-
als is controlled in a narrow concentration range known as 

homeostasis, which can be seen as fine line between essen-
tial and adverse effects. Consequently, deficiency and excess 
of metals may trigger certain pathologies and hyphenated 
ICP-MS may target specific metals and proteins as bioindi-
cators. However, accurate analysis requires considerations 
about the affinity between metals and proteins. The stabil-
ity of metal-protein complexes is described in the Irving-
Williams series and loosely bound metals (e.g. Mg2+, Mn2+) 
may detach from the protein framework during sample prep-
aration and separation [92]. Furthermore, the isolation of 
protein fractions is often difficult and requires homogenisa-
tion and extraction steps which may compromise protein 
integrity. Therefore, it is noteworthy that elemental specia-
tion analysis is often incompatible with classic biochemical 
and proteomic methods and its complementary application 
is with limitations. For example, the application of chemi-
cals with high background levels of metals including gels 
and dyes but also harsh experimental conditions (e.g. high 
and low pH values, applications of high temperatures or 
electrical potentials) as well as certain extractants (organic 
solvents) and surfactants (SDS) may lead to contamination, 
denaturation or elimination of the metal factor. Therefore, 
techniques employing softer experimental conditions such 
as size exclusion chromatography or CE are often preferable 
[92, 95, 148, 149].

Element speciation in pathologies

Elemental speciation has been employed to better under-
stand metabolic pathways and to interrogate the levels of 
species and their correlation to various pathologies including 
diabetes [96] or stroke [150, 151], as well as in the context 
of cancer. A characteristic of cancer cells is their aberrant 

Fig. 3   Overlay of LC–ESI–MS and LC-ICP-MS chromatograms 
of F-containing species. The LC-ICP-MS speciation methods ena-
bled non-target F speciation analysis. Besides species identified via 
LC–ESI–MS, LC-ICP-MS detected additional species which would 
have been missed otherwise. Reprinted from Analytica Chimica 
Acta, 1053, N.L.A. Jamari, J.F. Dohmann, A. Raab, E.M. Krupp. J. 
Feldmann, Novel non-targeted analysis of perfluorinated compounds 
using fluorine-specific detection regardless of their ionisability 
(HPLC-ICPMS/MS-ESI-MS),  22-31 [109]. Copyright (2018), with 
permission from Elsevier.
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metabolism, which results in the accumulation of certain 
element species [152, 153], which can be targeted by LC-
ICP-MS. However, the fact that many anticancer drugs are 
based on heavy metals/metalloids suggests the application of 
hyphenated ICP-MS to follow the metabolic routes of cancer 
drugs and to study their interaction with healthy and cancer 
cells. For example, LC-ICP-MS was employed to study Pt- 
[154], Ru- [100, 155], Os- [156], As- [129] and Ga-based 
anticancer agents [157] and provided a unique view on the 
generation of metabolites which are directly detectable and 
implicated with certain side effects and pharmacological 
parameters [155, 158, 159].

Substantial research has been conducted to identify and 
understand the impact of element species in neurodegenera-
tion. Targeted and non-target approaches provided invalu-
able insights by correlating specific forms of degeneration 
with distinct element species containing Fe, Cu, Zn, Mn, 
Se, As, Hg and Al as detailed in a review by Michalke et al. 
[160] in 2018. In their review, authors concluded that the 
potential of speciation analysis is still not fully recognised 
in the field of neuroscience and suggested closer cooperation 
between neurologists/neuroscientists and analytical chem-
ists for complementary research endeavours. Especially, in 
cases were biologists and physicians employ outdated tech-
niques, LC-ICP-MS may provide entirely new perspectives. 
Previous studies demonstrated the potential of LC-ICP-MS 
in the context of for example AD, PD and WD and provided 
new insights regarding cognitive impairment and neurotox-
icity [148, 161–168]. Studies have for example identified 
certain Se species as crucial for preserving brain function 
and preventing age-related degenerative disorders. How-
ever, an insufficient supply of Se may have a detrimental 
effect on brain cells by exacerbating neuronal dysfunction 
[169]. While some organic Se species are known to act as 
neuroprotectors, neurodegeneration is likely triggered from 
elevated inorganic Se species, stressing the need for specia-
tion studies when assessing Se neurotoxicity. Vinceti et al. 
[166] evaluated the concentration of Se species in CSF 
samples from patients with mild cognitive impairment of 
non-vascular origin and whether conversion to Alzheimer’s 
dementia was triggered by them. Their results indicated that 
selenate levels in the central nervous system compartment 
may predict possible AD risks. Besides Se, other elements 
may be targeted to increase the understanding in neuropa-
thology. One relevant element is Fe, which usually occurs at 
two different redox states (Fe(II)/Fe(III)), which show dis-
tinct redox chemistries that are closely related to the genera-
tion of oxidative stress and lipid peroxidation in the brain. 
In a study by Michalke et al. [170], a CE-ICP-MS method 
was developed to separate the two redox species and may 
be employed for the analysis of diluted cell lysates or CSF. 
In a study on SEC–ICP–MS, the authors further analysed 
Fe, Zn, Cu and Mn to gain a more profound understanding 

of relative abundances in size-resolved fractions from 24 
paired human serum and CSF samples [171]. The study 
concluded that transition metals are strictly controlled at 
neural barriers of neurologic healthy patients. Altogether, 
it can be anticipated, that hyphenated ICP-MS will further 
expand the knowledge on neurodegeneration and improve 
our knowledge in prevalent diseases like PD and AD but 
also in age-related cognitive decline as well as to understand 
neurotoxicity as the result to the exposure to heavy elements.

Elemental bioimaging

LA‑ICP‑MS fundamentals

Understanding the role of individual elements in the bio-
logical environment requires not only knowledge on the ele-
ment’s speciation but also its spatiotemporal distribution. 
Biological tissues comprise of highly compartmentalised 
micro- and nanometre-scaled structures containing count-
less anatomical features with diverse biochemical entities. 
Obtaining information on discrete locations of both essential 
and toxicologically relevant elements is therefore critical 
to estimate the biological role and impact. Visualising the 
up- and downregulation of elements is useful to recognise 
and locate the pathogenesis of various diseases, to develop 
strategies for intervention and to improve the understand-
ing of biochemical pathways as well as metabolic disrup-
tions. These motives have driven elemental bioimaging and 
inspired the technological framework of LA-ICP-MS, which 
was expanded by the application of labelled antibodies for 
mass cytometric applications as reviewed in the second part 
of the review. LA-ICP-MS pairs the high spatial resolution 
of LA with the high sensitivity of ICP-MS and is capable to 
map trace and major elements with concentrations ranging 
typically within the pg g−1 to the mg g−1 range at spatial 
resolutions between 1 and 100 µm (the higher the resolu-
tion, the lower sensitivity). Early applications employed 
LA-ICP-MS in the realm of geosciences; however, its 
potential to spatially resolve elements in complex biologi-
cal structures was quickly recognised and developed. Since 
the first hyphenation of LA and ICP-MS in 1985 [172], the 
first bioimage [173], various technological milestones (e.g. 
ToF MS for ICP, fast wash-out cells) and dedicated methods 
(e.g. single-shot analysis and 3D imaging), today’s imag-
ing systems are a platform technology which support highly 
sensitive, spatially resolved and rapid analysis of various 
elements while providing options for quantification, stand-
ardisation and multiplexed analyses [174]. Standardisation 
and calibration approaches require careful consideration of 
matrix-dependent ablation. The mass and size of the gener-
ated aerosol is strongly depending on the type of biological 
tissue and comparison of raw data as well as quantification 
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approaches need to address these differences as explained in 
a subsequent section.

Pulsed excimer and solid-state lasers are most frequently 
applied in the field of elemental bioimaging and rastered in 
lines across tissues to gradually ablate and transport material 
for transient ICP-MS. Different software tools and dedicated 
standards can be applied subsequently to reconstruct and cali-
brate elemental distributions [175, 176]. The sensitivity and 
speed of analysis are depending on the laser spot size as well 
as the laser scan speed. The optimisation of these two param-
eters requires careful consideration about instrumental capa-
bilities and a rough idea about the sample’s properties. The 
laser spot size stipulates the lateral resolution as well as the 
sensitivity. For example, decreasing the laser spot size by fac-
tor 3 reduces the ablated areas and consequently the absolute 
aerosol mass flow introduced into the plasma by factor 9 (32) 
and therefore impacts sensitivity significantly. The maximum 
laser scan speed however depends on the pulse frequency and 
the aerosol wash-out time of the ablation cell as well as the 
scanning speed of the mass analyser. To obtain optimal fig-
ures of merit with scanning mass analysers, pulse frequency 
must be matched with the wash-out time and acquisition speed 
of the mass analyser to avoid aliasing and imaging artefacts 
[177, 178]. Highest speeds can be reached by employing cells 
with fast aerosol wash-out and novel designs achieve wash-out 
times in the low millisecond or even in the microsecond range 
[179]. The narrow signal width however limits the applica-
tion of scanning mass analysers, which have dwell/scanning/
settling times on a comparable time scale. Consequently, 
for scanning mass analysers, there is a maximum number of 
observable isotopes per laser pulse and pixel. The advance in 
ToF technology for ICP-MS improved LA-ICP-MS drasti-
cally and promoted biomedically important technologies such 
as mass cytometry imaging [180]. The possibility to detect 
all m/z (quasi) simultaneously enabled single-shot analyses, 
in which the aerosol of each laser shot and therefore each 
pixel is analysed for all m/z. Current improvements in abla-
tion cell wash-out time promise to drive scan speeds as fast 
as hundreds to a thousand times of the dimension of the spot 
size. This immense scan speed results in the possibilities for 
rapid imaging, which is relevant for high sample throughput 
required in the clinical environment and further makes niche 
applications such as three-dimensional imaging more attrac-
tive. Fundamentals and applications of LA-ICP-MS for bio-
logical samples were recently reviewed by Doble et al. [174].

Analysis of toxicologically relevant elements

LA-ICP-MS was employed to investigate the exposure to 
natural and anthropogenic compounds and was capable 
to follow the accumulation and translocation of diverse 
chemicals from various processes and environments. In 
cases where spatial resolution of elements is not required, 

LA-ICP-MS can be used as a solid microsampling technique 
to investigate for example dried body fluids like blood or 
urine [181]. Elegant options to reveal past exposure events 
also include the lateral analysis of hard tissues including 
bones, nails, teeth and hair. In some cases (e.g. nails and 
hairs), the time of exposure may be estimated via one-
dimensional resolution of elements, which is for instance 
practical in forensic approaches [182]. However, in most 
cases, two-dimensional resolution of element distributions in 
biological samples is required to provide more detailed bio-
chemical insights. As pointed out in the previous section, the 
behaviour, impact and distribution are not depending on the 
element itself, but its speciation. For example, hydrophobic 
species may accumulate in fatty tissues, overcome lipophilic 
barriers (e.g. the blood–brain-barrier, or cell membranes) via 
passive transport and follow different metabolic pathways. 
Polar species however may follow entirely different trans-
port routes via active transport through ion transporters, for 
instance. To investigate the behaviour and distribution of 
distinct element species, LA-ICP-MS has been employed to 
study model organisms such as specific cell lines [28], Dros-
ophilia Melanogaster [183], C. elegans [184] and Daphnia 
magna [185] in exposure experiments. However, for routine 
medical questions, exposure events are often vague, and lit-
tle is known about the expected species. To establish a more 
holistic interpretation on the impact and meaning of elemen-
tal distributions, complementary molecule-selective imaging 
techniques are applicable and were reported in combination 
with LA-ICP-MS. Relevant techniques include here MALDI 
imaging, SIMS, DESI, LIBS or XRF/XANES [174].

Bioimaging in pathologies

LA-ICP-MS has been employed to advance the physiologi-
cal and biochemical understanding by targeting endogenous 
elements, therapeutics or diagnostic agents as well as natu-
ral and anthropogenic environmental contaminants. Several 
studies were published in the field of neurosciences where 
LA-ICP-MS proved to be invaluable to determine elements 
in microscaled, complex brain structures. Pathologies which 
were known for disrupted metal metabolisms were the logi-
cal choice for initial investigations of endogenous elements. 
The limited access to human biomaterial led to the develop-
ment and frequent interrogation of different animal models 
as a proxy for human physiology and to improve the under-
standing of associations between pathologies and elemental 
distributions [174].

The distribution of Fe was explored in brain matter in the 
context of PD and AD, and complementary techniques aided 
to provide more holistic interpretation between the relation 
of metals and biomolecules. While the initial causes of PD 
are not clearly defined, iron deposition has long been impli-
cated with pathogenesis. Since the early work by Lhermitte 

Clases D. , Gonzalez de Vega R. 7346



1 3

et al. [187] in 1924, numerous studies have identified abnor-
malities in iron distribution in specific brain regions. LA-
ICP-MS was employed to co-localise Fe and dopamine 
within the substantia nigra of mice to establish a risk index 
for parkinsonian neurodegeneration in the aging brain [188, 
189]. Individual dopaminergic cells were determined by LA-
ICP-MS and a relationship between dopamine and Fe was 
investigated in the midbrain. Matusch et al. [186] analysed 
6-OHDA-lesioned rat brain sections using a combination 
of elemental and molecular mass spectrometry. Spatial dis-
tributions of Mn, Fe, Cu and Zn were obtained by LA-ICP-
MS and correlated with the lipid distributions measured 
by MALDI-IM-MS imaging. Authors observed increased 
concentrations of Fe, Mn and Cu in the lesioned substantia 
nigra while monounsaturated lipid levels were decreased 
(Fig. 4). The same group demonstrated in a previous study 
that brain sections of mice subchronically intoxicated with 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin present altera-
tions in midbrain levels of Fe and Cu [190].

Similarly, impaired homeostasis of transition metals is 
believed to play a role in the pathogenesis of AD. Hutchin-
son et al. [193] conducted a study combining elemental and 
molecular imaging to investigate neurodegeneration. They 
successfully imaged the distribution of β-amyloid protein 
and trace metal ions in Alzheimer’s plaques. Cruz-Alonso 
et al. [194] performed simultaneous quantitative imaging 
of iron and ferroportin in the hippocampus of human brain 
tissues with AD and observed the trend that iron content 
increased in AD patients. Hare et al. [191] quantitatively 
assessed the iron content of white and gray matter in par-
affin-embedded sections from the frontal cortex of AD and 
control subjects as shown in Fig. 5. Using the phospho-
rus image as a proxy for the white/gray matter boundary, 
they found that increased intrusion of iron into gray mat-
ter occurs in the diseased brain compared to controls. In 
a study by Rao et al. [148], the authors characterised the 
spatial and temporal brain metallomic profile in a mouse 
model of tauopathy, to provide insights into the potential 
interaction between tau pathology and iron. Using LA-ICP-
MS in combination with SEC–ICP–MS, the study revealed 
an age-dependent changes in brain Fe and Cu levels in both 
WT and rTg(tauP301L)4510 mice.

WD is a rare, inherited autosomal recessive Cu overload 
disease, in which excess Cu accumulates in the liver, brain 
and other tissues. Therefore, imaging the spatial distribu-
tions of metals in tissue samples allows direct correlation 
of target regions and metal-associated processes. A study 
by Boaru et al. [192] reported an age-dependent accumula-
tion of Cu, Fe and Zn in Atp7b-deficient mice as well as 
an elevation of these metals in human WD liver (Fig. 6). 
Hachmöller et al. [195] applied qualitative LA-ICP-MS for 
the investigation of human paraffin-embedded liver needle 
biopsy specimens. The analysed WD samples presented 

Fig. 4   Multi-modal imaging approach integrating light microscopy 
underlain as background of each image facilitating morphological 
orientation, elemental concentration maps obtained by LA-ICPMS 
(left and middle column) and lipid maps obtained by MALDI-IM-MS 
imaging. Reprinted with permission from A. Matusch, L.S. Fenn, C. 
Depboylu, M. Klietz, S. Strohmer, J.A. McLean, J.S. Becker, Com-
bined elemental and biomolecular mass spectrometry imaging for 
probing the inventory of tissue at a micrometer scale, Analytical 
Chemistry, 2012, 84, 7, 3170-3178 [186]. Copyright (2012), Ameri-
can Chemical Society.

Fig. 5   A Quantitative LA-ICP-MS imaging of iron levels in AD and 
a healthy frontal cortex and corresponding Perls images from selected 
regions of interest in all samples analysed B The combined white and 
gray matter iron levels in frontal cortex were significantly increased. 
Reprinted from NeuroImage, 137, D.J. Hare, E.P. Raven, B.R. Rob-
erts, M. Bogeski, S.D. Portbury, C.A. McLean, C.L. Masters, J.R. 
Connor, A.I. Bush, P.J. Crouch, P.A. Doble,  Laser ablation-induc-
tively coupled plasma-mass spectrometry imaging of white and gray 
matter iron distribution in Alzheimer's disease frontal cortex, 128-131 
[191].  Copyright (2016), with permission from Elsevier.
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inhomogeneous Cu distribution and high Cu concentrations 
of up to 1200 µg g−1. Uerlings et al. [196] tested whether a 
AAV8-based therapy alleviates the cerebral Cu overload in 
the Atp7b null mice. Their results revealed that the delivery 
of AAV8-AAT-co-miATP7B can reduce the overall cerebral 
Cu content without affecting other metals.

LA-ICP-MS was further  applied to resolve exo- and 
endogenous elements in cancer as bio-indicative markers 
to study tumorous tissues and treatment options. Several 
studies have exploited the capabilities of LA-ICP-MS as a 
sensitive imaging modality to visualise a variety of drugs 
(based on e.g. Pt [197, 198], Ru [199], Os [200]) in various 
organs affected by the cancer or associated with side effects 
including cochlea, liver, kidney, testis [201], bone [202], 
colon [203, 204] and ovary [203, 205] with the aim to inves-
tigate anticancer agent mechanisms. For example, elemental 
bioimaging has been applied to monitor drug penetration 
in tumour spheroids after incubation with chemotherapeutic 
agents (e.g. Pt-based drugs) [206, 207]. However, also, infor-
mation on the up- and downregulation of endogenous ele-
ments may provide information about the cancer cells. The 
identification and analysis of essential elements may have a 
utility as bioindicator and may provide further insights into 
metabolic pathways. For example, the endogenous levels of 
Mn in tissues were investigated in the context of different 

cancers and their resistance towards radiotherapy [208]. It 
was concluded that Mn is a marker to predict the cancer’s 
response to radiation.

The role of Zn has been investigated in several cancers 
(e.g. prostate [209, 210] and breast cancer [211]) and there 
is growing evidence that Zn-homeostasis is a keystone in 
health and implicated in various other diseases [212, 213]. 
Imbalance may contribute to cancer initiation and progres-
sion and LA-ICP-MS is well suited to reveal imbalances 
on the microscale. For example, Fig. 7 shows the Zn dis-
tribution in a human prostate cancer sample and the exag-
gerated Zn accumulation in the tumorous area is evident. 
Riesop et al. [214] suggested Zn as a potential biomarker of 
breast cancer as the histopathological malignancy grade can 
be directly correlated with Zn concentrations in invasive 
ductal carcinoma. Gonzalez de Vega et al. [215] examined 
matrix metalloproteinase 11 (MMP-11) by targeting its Zn 
co-factor as a proxy for its expression in breast cancer tis-
sues and applied complementary MALDI-MSI to correlate 
Zn distributions with protein fragments following on-tissue 
digestion. The authors showed later that the protein MMP-
11 may as well be targeted directly by incorporation of 
metal-coded antibodies, which will be considered with more 
details in the second part of the review [216, 217]. Other 
cancer types that were characterised by LA-ICP-MS included 
small-size induced tumours [218–220], glioblastoma [108, 
221], neuroblastoma [222], melanoma [223], prostate can-
cer [209, 210, 224] and mesothelioma [225, 226], among 
others.

The application of laser spot sizes with dimensions on or 
below a cellular scale further suggests the application of LA-
ICP-MS for the resolution of individual cells and small cellu-
lar structures. Although small spot sizes decrease sensitivity 
substantially, high-resolution LA-ICP-MS was previously 
demonstrated to be sufficiently sensitive to detect endogenous 
and therapeutic elements in single cells and cellular aggre-
gates [227, 228] and suggested the interrogation of micro-
scaled tumour models. This concerns for example tumour 
spheroids which can be analysed as small three-dimensional 
model to study parameters such as drug penetration in pre-
clinical tests [206, 227]. However, single-cell analysis via 
LA-ICP-MS is becoming increasingly relevant in combina-
tion with labelled antibodies to probe the microenvironment 
of tumours and malignant cells as well as to identify and 
characterise rare cell subsets. This emerging facet of ICP-MS 
will be discussed in the second part of the review.

Standardisation and quantification in elemental 
bioimaging

One important and unique feature of LA-ICP-MS is its 
capability to quantify elemental distributions. While on-
line quantification approaches have been presented and 

Fig. 6   Different regions of the murine brain in which Cu content was 
measured by LA-ICP-MS and quantified. Reprinted from Springer 
Nature, BMC  Neuroscience,  15, 98,  2014, Simultaneous monitor-
ing of cerebral metal accumulation in an experimental model of 
Wilson's disease by laser ablation inductively coupled plasma mass 
spectrometry, S.G. Borau, U. Merle, R. Uerlings, A. Zimmermann, S. 
Weiskirchen, A. Matusch, W. Stremmel, R. Weiskirchen [192]. Copy-
right (2014), Boaru et al.; licensee BioMed Central Ltd.
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enable immediate calibration of each pixel as well as com-
pensation of signal drifts during long run times [229–231], 
external calibration strategies are most commonly applied 
and involve the fabrication of matrix-matched tissue stand-
ards. Matrix matching of standards is required under the 
premise that the ablation process, the formation (e.g. par-
ticle size) and transport of the aerosol is depending on the 
biological matrix. Accordingly, analysing the same element 
at consistent levels in two different tissues may lead to sig-
nificant differences. For accurate calibration, the tissue 
standards ideally comprise of the same matrix with defined 
elemental content. Homogenised animal tissues have fre-
quently been used to model the complex biochemical and 
physical properties of human tissues [232, 233]. However, 
the vast diversity between different tissues/organs, species 
and even individuals makes the construction of ideal stand-
ards extremely challenging if not impossible. For example, 
the homogenisation step of standards intrinsically changes 
the tissue integrity which may have consequences for LA-
ICP-MS. While the idea of matrix-matched standards for 
LA-ICP-MS is important for quantitative estimations and 

benchmarking, it is also relevant to recognise their limita-
tions and pitfalls. On the one hand, standards are supposed 
to be reproducible, homogenous and precisely defined to 
enable laboratory- and instrument-independent quantifica-
tion. On the other hand, matched matrixes should aim to 
simulate real biological tissues with extreme complexity 
regarding varying tissue domains, anatomical features and 
integrity. Any effort to model a perfect standard would end 
in circumstantial protocols which are hardly reproducible 
nor accurate. Consequently, it may be beneficial to find 
a compromise by identifying a standard material which 
matches biological tissues reasonably well, but is still easy 
to prepare, reproduce and trace [232]. While such mate-
rial may not achieve the highest accuracy, it would allow 
comparable standards suitable for intra- and inter-labora-
tory comparisons and provide a high utility as a common 
benchmark. Especially in the biomedical sciences, the com-
parison to a control sample renders high accuracies less 
relevant and high reproducibility and traceability become 
more important to compare results across different cohorts, 
times-scales and laboratories [174]. A range of different 
materials has been presented in the past for matrix match-
ing and consist of CRMs, modified CRMs, homogenised 
tissues [233], polymers [201] and gelatine [234]. The lat-
ter offers a range of advantages which translate into the 
possibility for more traceable and reproducible standards. 
Gelatine can be purchased at consistent and documented 
quality. It may be liquified to improve the handling and 
homogeneity during preparation steps and the actual LA 
experiment (Fig. 8). Furthermore, elemental background 
levels can be reduced using ion exchange resins which 
expands the calibration range and supports quantification of 
trace levels [232]. Finally, the physical dimensions (rough-
ness and height) of standards can be controlled precisely 
by using for example specific moulds [232]. Consequently, 
gelatine-based standards may have the highest potential for 
spatially resolved (relative) quantification in biomedical 
approaches. Further information on calibration approaches, 
standardisation and basic considerations can be found in a 
range of reviews [174, 235, 236]. 

Isotope ratio analysis

Calibration via isotope ratios

Another facet of ICP-MS is its capability to determine pre-
cise isotope ratios. Highest precisions can be achieved with 
sector field–based ICP-MS, which is commercially available 
in different geometries. Especially, the Mattauch-Herzog 
geometry (multi-collector (MC)-ICP-MS) offers improved 
precisions reaching 0.001% by detecting isotopes laterally 
separated for simultaneous acquisition [237]. MC-ICP-MS 

Fig. 7   The quantitative Zn distribution was mapped in prostate 
cancer. The altered metal metabolism resulted into a Zn accumu-
lation in the tumours area. Reproduced from Bishop et  al. [210] 
with permission from the Royal Society of Chemistry.
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is dominant in the environmental and geosciences to study 
fractionation effects, for provenance analysis or dating pur-
poses, and its employment in the medical sciences is still a 
niche application.

Isotope ratios can be used for absolute quantification of 
polyisotopic elements in a technique named isotope dilution 
analysis (IDA). In view of complex matrices and sample 
preparation strategies, IDA provides advantages by offering 
precise internal quantification via a one-point calibration, 
which is independent from matrix effects and less prone to 
systematic errors during sample preparation. IDA is based 
on the addition of an isotopically enriched element standard. 
After homogenisation, any loss of analyte as well as any 
drift or fluctuation is mirrored for the enriched isotope and 
therefore compensated [10, 238]. IDA can be adopted for 
on-line quantification of transient signals produced in LC- 
and LA-ICP-MS [95, 229]. This offers robust analysis inde-
pendent from instrumental drift or plasma fluctuations and 
allows instant calibration of unknown or unstable species. 
For on-line IDA, the enriched spike is added continuously 
to the sample flow and the spike’s isotope ratio is disturbed 
as soon as elemental species elute from the column or are 
delivered by the LA system [92, 229]. The transient change 
of ratios can be translated into concentrations and the inter-
ested reader will find more information in a tutorial review 
by Rodriguez-Gonzalez et al. [10].

Tracer analysis

Isotope pattern deconvolution (IPD) is a technique that 
derived from IDA and features the application of ele-
ment species with distinguishable isotopic abundances. It 
can be used to account for analyte gain/loss or inter-con-
version, which is interesting in a biomedical context to 
elucidate the incorporation, translocation, species trans-
formation and accumulation of elements due to physi-
ological and pathological processes. IPD determines 

isotope ratios in a sample following the administration 
of enriched element species and deconvolutes the overall 
isotopic pattern to calculate the contribution from endog-
enous and the different external (experimental) sources. 
The technique was initially developed in 1997 by Hintel-
mann et al. [239] to study the artefactual formation of Hg 
species from inorganic Hg and was subsequently applied 
to understand the uptake and biotransformation during sup-
plementation and fortification [240, 241], the impact of dif-
ferent chemical species [242], mineral metabolism [243], 
mechanisms in oxidative stress [244], in vivo implant deg-
radation [245] and the impact of specific element species.

Analysing stable isotope tracers via isotope ratios 
opens possibilities to study and understand trace metal 
metabolism without the need for radioactive tracers or 
labelling approaches. The high precision achievable 
via (MC)-ICP-MS is sufficient to analyse various iso-
topic tracers administered at biological concentrations. 
Especially, the spatially resolved determination of iso-
tope ratios is interesting to observe the translocation and 
accumulation of tracers and suggests isotope ratio imag-
ing via LA-ICP-MS. While biological applications were 
reported for plants and animals, medical applications are 
scarce [246]. Urgast et al. [247] demonstrated LA-ICP-
MS as a microsampling device to follow two isotopically 
enriched Zn tracers at biological concentrations in rat tis-
sues. Employment of MC instrumentation improved pre-
cision to spatially resolve isotope ratios [248]. In a recent 
study, Rodriguez-Menendez et al. [249] applied LA-ICP-
MS to investigate Zn-based tracers and their uptake by 
HRPEsv cells. The authors used IPD to differentiate and 
map endogenous Zn and tracer isotopes, independently 
(Fig. 9). As noted by Urgast and Feldmann [246], iso-
tope ratio analysis by LA-ICP-MS opens a wide range of 
possibilities for stable isotope tracer studies to investigate 
kinetics of trace elements or to understand physiology and 
pathologies.

Fig. 8   Mould-prepared gelatine standards are compared against 
matrix-matched brain tissue samples. Gelatine standards enhanced 
homogeneity, background levels, calibration range and control during 
ablation. A Homogenised brain tissue and B spiked gelatine standards 
are compared visually following LA-ICP-MS analysis. C compares 

the ablation depths and surface roughness of both standards. D com-
pares repeated ablation of gelatine showcasing the enhanced control 
of material ablation. Reproduced from Westerhausen et al. [232] with 
permission from the Royal Society of Chemistry
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Isotope fractionation

Isotope fractionation occurs in various natural processes due 
to the more inert physical and chemical properties of heavier 
isotopes and results in small but measurable alterations in 
the isotope ratios. Especially, isotopes with large relative 
mass differences are affected in slow and low-energetic 
(bio)chemical reactions. This offers diagnostic opportuni-
ties, where altered isotope ratios may indicate an aberrant 
metabolism as a marker for exaggerated (e.g. cancer) or 
ceasing cell activity. Costas-Rodriguez et al. [222] studied 
the Cu metabolism and fractionation on a cellular level in the 
context of neurosciences using neuron-like cells and cells in 
a proliferating/tumour phase. The authors further evaluated 
the potential to employ the Cu isotope fractionation as a 
biomarker to diagnose liver cirrhosis [250]. In another study, 
Telouk et al. [251] investigated the potential of Cu isotope 
fractionation in serum as a diagnostic parameter for breast 
and colorectal cancer. Aranaz et al. [252] analysed various 

elements and the Cu isotope ratio in serum in a pilot study 
for age-related macular degeneration. Aramendia et al. [253] 
analysed Cu isotope ratios in serum for the diagnosis of WD 
and noted that the comparison of isotope ratios was more 
significant than comparing absolute concentrations. MC-
ICP-MS was further applied to determine Mg isotopes ratios 
in serum of diabetes type 1 patients [254] and to analyse 
the Fe isotopic composition in patients with anaemia and 
chronic kidney disease [255]. Resano et al. [256] employed 
LA as a micro sampling device in conjunction with MC-
ICP-MS to analyse Cu isotope ratios as a potential diagnos-
tic marker for WD patients in dried urine and García-Poyo 
et al. [257] used a similar approach for the analysis of dried 
blood spots. LA-MC-ICP-MS may be applicable to visu-
alise isotope fractionation, which was previously demon-
strated to study provenance and migration of animals [258]. 
However, also diagnostic applications appear possible to 
pinpoint small tissue areas in the context of metabolism-
induced isotope fractionation. Especially, on a cellular level 
or for small-scaled tumours, spatially resolved analysis may 
reveal local fractionation effects, which are decreasingly 
pronounced after homogenisation approaches.

Conclusions and future perspectives

ICP-MS has distinct facets which offer strategies to ana-
lyse the role of elements regarding absolute concentrations, 
spatiotemporal and species distributions. The high sensi-
tivity, isotope selectivity and vast dynamic range as well 
as technologies including the CRC and tandem mass spec-
trometry enabled detection of most elements of the periodic 
table making ICP-MS a viable technique for biomonitoring 
programs. This facet has a high clinical utility to reveal past 
environmental or occupational exposure events but further 
endorses the application of ICP-MS as a diagnostic tool to 
study element profiles in pathologies like neurodegeneration 
and cancer. It is predictable that ICP-MS will increasingly 
be employed in clinical research and routine to interrogate 
elements in various biomedical questions.

The scope of ICP-MS was significantly expanded by its 
on-line coupling to chromatography/electrophoresis and 
laser ablation. The possibilities to access species information 
and inquire distributions of elements enabled entirely new 
approaches to study the metal metabolism. Especially, in the 
context of pathologies like AD, PD and cancer, hyphenated 
ICP-MS promoted a better understanding of the disrupted-
metal homeostasis and inspired novel directions and discov-
eries. Furthermore, for the investigation of side effects and 
metabolic pathways of metallodrugs, ICP-MS techniques are 
becoming a logical choice. While some facets of ICP-MS are 
still niche applications like the analysis of isotope ratios, other 

Fig. 9   2D images of natZn, t68Zn (tracer) and t70Zn (tracer) in HRPEsv 
cells, which were previously treated with Zn tracers. a Microscope 
image of the selected area in cultured HRPEsv cells, b qualitative 
images (in cps) of 64Zn, 68Zn and 70Zn, and c molar fraction images 
of natZn, t68Zn and t70Zn. Reprinted  with permission from S. Rodri-
guez-Menendez, B. Fernandez, H. Gonzalez-Iglesias, M. Garcia, L. 
Alvarez, J.I. Garcia Alonso, R. Pereiro, Isotopically enriched tracers 
and inductively coupled plasma mass spectrometry methodologies to 
study zinc supplementation in single-cell of retinal pigment epithe-
lium in  vitro,  Analytical Chemistry 2019, 91, 7, 4488-4495 [249]. 
Copyright (2019), American Chemical Society.
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facets and their potential have been recognised in the medical 
realm and are readily adopted. Especially, recent advances in 
elemental bioimaging and single-event analysis are currently 
implemented in the medical sciences and a clinical translation 
seems realistic as discussed in the second part of this review. 
These advances profit from the much-improved ToF analyser 
as well as immunochemistry methods and are applied in the 
context of mass cytometry, for example.

It is readily observable how hyphenated ICP-MS, associated 
techniques and novel methodologies/protocols are integrated 
into bioanalytical and biomedical workflows, tested in clinical 
trials and used to study novel therapeutics from complementary 
points of view. ICP-MS has a high utility in the medical sci-
ences and its further integration into the clinical and research 
landscape likely depends on a transdisciplinary approach 
and cooperation between researchers of diverse disciplines.
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