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Abstract  17 

Adaptation to local conditions is known to occur in seagrasses, however, knowledge of the genetic 18 

basis underlying this phenomenon remains scarce. Here, we analyzed Posidonia oceanica from 19 

six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity 20 

and temperature exceed the generally described tolerance thresholds of the species. Sea surface 21 

temperatures (SSTs) were measured and plant samples were collected for the assessment of 22 

morphology, flowering rate and for screening genome-wide polymorphisms using double digest 23 

restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity 24 

levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly 25 

fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and 26 

past flowering events were recorded only for a meadow farthest away from the lagoon. Using an 27 

array of 51,329 SNPs, we revealed a clear genetic structure among the study sites and confirmed 28 

the genetic isolation and high clonality of the innermost site. Fourteen outlier loci were identified 29 

and annotated with several proteins including those relate to plant stress response, protein transport 30 

and regulators of plant-specific developmental events. Especially, five outlier loci showed 31 

maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme 32 

temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the 33 

progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of 34 

seagrass adaptation to local environmental conditions and may support future works on assisted 35 

evolution in seagrasses.  36 

Keywords: seagrasses, ddRAD, SNPs, local adaptation, ocean warming, hypersaline. 37 
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1. Introduction 40 

Populations, if locally adapted, tend to exhibit traits that provide advantages under local 41 

environmental conditions (Kawecki & Ebert, 2004). This has been observed in a wide range of 42 

species across terrestrial (Jackrel & Wootton, 2014; Lascoux, Glémin, & Savolainen, 2016; van 43 

Boheemen, Atwater, & Hodgins, 2019) and marine environments (Barth et al., 2017; Cayuela et 44 

al., 2020; van Oppen et al., 2018), including seagrasses (Blok, Olesen, & Krause-Jensen, 2018; 45 

Hämmerli & Reusch, 2002; King, McKeown, Smale, & Moore, 2018).  46 

Seagrasses are marine angiosperms distributed in thousands of kilometers of the sedimentary 47 

shorelines across the sub-Artic to tropical regions (Short, Carruthers, Dennison, & Waycott, 2007). 48 

Seagrass meadows deliver numerous essential ecosystem services such as oxygen production, 49 

habitat provision, nutrient recycling, and coastal erosion prevention, among many others 50 

(Fourqurean et al., 2012; Lamb et al., 2017; Orth, Luckenbach, Marion, Moore, & Wilcox, 2006) 51 

and represent one of the most important natural carbon sinks on Earth (Fourqurean et al., 2012). 52 

In seagrasses, signs of adaptation to local conditions have been documented for a number of 53 

species under several abiotic factors [e.g. light (Dattolo et al., 2017), water quality (Maxwell et al., 54 

2014), nutrients (Pazzaglia et al., 2020), salinity (Tomasello et al., 2009), warming (Marín-Guirao 55 

et al., 2018), among others] and over a wide range of spatial scales [e.g. between sites of the same 56 

region (Maxwell et al., 2014), between regions (Tuya et al., 2019), along with depth gradients 57 

(Dattolo et al., 2017), latitudinal gradients (Jahnke et al., 2019; Ruocco, Jahnke, Silva, Procaccini, 58 

& Dattolo, 2022), and between seas (Nguyen et al., 2020; Pansini, La Manna, Pinna, Stipcich, & 59 

Ceccherelli, 2021; Stipcich et al., 2022)]. It is important to note that conclusions on local 60 

adaptation on seagrasses have been derived not only from population genetic data but also from 61 

the comparison of phenotypic responses to environmental stressors among populations. In general, 62 
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seagrass populations thriving in fluctuating conditions are more capable to endure stress than those 63 

living in more stable environments (Blok et al., 2018; Hämmerli & Reusch, 2002; King et al., 64 

2018; Pazzaglia, Reusch, Terlizzi, Marin Guirao, & Procaccini, 2021). These locally-adapted 65 

populations can provide potential materials for assisting the evolution of natural populations and 66 

for improving seagrass restoration activities (Bulleri et al., 2018; Nguyen, Ralph, Marín-Guirao, 67 

Pernice, & Procaccini, 2021; Pazzaglia et al., 2021; Tuya et al., 2019).  68 

To date, knowledge of the genetic basis underlying local adaptation to environmental conditions 69 

in seagrasses remains scarce (but see Hughes and Stachowicz, 2004; Ruggiero et al., 2005; Tuya 70 

et al., 2021; Ruocco et al., 2022). Moreover, intraspecific variation among populations is often 71 

ignored or under-estimated when assessing specific responses of populations to their surrounding 72 

environment, as well as, when predicting potential changes in their future distribution (Hu et al., 73 

2021; Pazzaglia et al., 2021).  74 

The seagrass Posidonia oceanica is endemic to the Mediterranean Sea where it forms widespread 75 

monospecific meadows on rocks and sandy seabed and provides numerous vital ecosystem 76 

services (Campagne, Salles, Boissery, & Deter, 2015; Procaccini et al., 2003; Serra & Mazzuca, 77 

2011). It is known that the tolerance limits of P. oceanica range between 33−39‰ for salinity 78 

(Sanchez-Lizaso et al., 2008) and 9−29℃ for temperature (Boudouresque & Meinesz, 1982). 79 

Stagnone di Marsala is a semi-enclosed coastal lagoon along the western coast of Sicily, Italy 80 

(Vizzini, Sarà, Michener, & Mazzola, 2002). This lagoon represents a unique area where P. 81 

oceanica occurs during summer under temperature and salinity conditions that far exceed the 82 

described thresholds of the species’ tolerance [i.e. maximum temperature and maximum salinity 83 

recorded in some parts of the lagoon were 30℃ and 48‰ (Mazzola & Vizzini, 2005)]. By using 84 

13 microsatellite markers together with lepidochronological analysis, Tomasello et al., (2009) 85 
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showed that P. oceanica atolls in the innermost area of the lagoon exhibited lower shoot-growth 86 

and were genetically isolated from the meadows outside the lagoon. This suggests a possible 87 

selection of genotypes that adapted to the persistent stressful conditions inside the lagoon.   88 

In an era of rapid environmental changes, the P. oceanica population of the Stagnone di Marsala 89 

lagoon represents a natural experimental model system for investigating seagrass response to 90 

future environmental conditions. Combining prior knowledge from Tomasello et al. (2009) and 91 

the application of state-of-the-art approaches in genetic research represents a unique opportunity 92 

to better understand the genetic basis of adaptation to extreme conditions in seagrasses. To this 93 

aim, samples of P. oceanica were collected from two sites inside the lagoon and four sites outside 94 

the lagoon [those relatively corresponded with sampling localities in Tomasello et al., (2009)]. 95 

Measurements included sea surface temperature, plant morphology, past growth rate, past 96 

flowering events, and screening of genome-wide polymorphisms using double digest restriction-97 

site associated DNA (ddRAD) for SNPs identification and detection of outlier loci (Peterson, 98 

Weber, Kay, Fisher, & Hoekstra, 2012). SNP markers could provide many advantages over 99 

microsatellites (as applied in Tomasello et al., 2009), as they are denser and have more uniform 100 

distribution within genomes making them more useful for population and mapping studies 101 

(Balloux, Brunner, Lugon-Moulin, Hausser, & Goudet, 2000; Xing et al., 2005) and most 102 

importantly, they allow for the detection of potential adaptive DNA polymorphisms at specific 103 

functional loci that are candidates for genetic adaptation to local environmental conditions (Hung 104 

et al., 2012; Lasky et al., 2015; van Oppen et al., 2018). This kind of approach (i.e. RAD 105 

sequencing) has been widely applied to study evolutionary mechanisms of different marine 106 

organisms (Gaither et al., 2015; Hohenlohe et al., 2010; Jahnke, Moknes, Le Moan, Martens, & 107 

Jonsson, 2022; van Oppen et al., 2018) including some recent studies on seagrasses (Phair, Toonen, 108 
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Knapp, & von der Heyden, 2020, 2019; Ruocco et al., 2022). We hypothesize that (i) the high 109 

levels of salinity and temperature in the interior of the lagoon have selected the most resistant 110 

genotypes favouring the local adaptation of the P. oceanica population to these extreme conditions, 111 

(ii) these genotypes manage to survive under conditions that exceed the thresholds of the species 112 

through genetic mutations in certain functional loci and/or their high phenotypic plasticity. We 113 

expected that (1) P. oceanica plants from sites inside the lagoon would show a lower level of 114 

genetic variation than those from sites outside the lagoon and (2) these plants would differ 115 

morphologically and genetically from those outside the lagoon. Morphological and genetic 116 

differences would also exist between the two inside-lagoon sites. 117 

2. Materials and methods 118 

2.1. Study area  119 

The Stagnone di Marsala lagoon is a shallow area with an average depth of 1.5 m and a surface 120 

area of about 2000 ha (Vizzini et al., 2002). This basin exhibits distinct lagoon features, such as 121 

limited water exchange and slow turnover and has the highest annual variation in temperature and 122 

salinity among sites where the presence of P. oceanica has been reported.  The lagoon can be 123 

subdivided into a northern and a southern basin with different geomorphological and 124 

environmental characteristics. The northern basin has an average depth of 1.1 m and it is connected 125 

with the open sea through a channel 400 m wide and 20−30 cm deep northwards. The annual water 126 

temperature in the northern basin ranges from minima 10.0−11.8 °C in January to maxima 29.1 – 127 

30.0 °C in August, while salinity ranges from 32.8−48.0‰, (Sarà, Leonardi, & Mazzola, 1999; 128 

Mazzola & Vizzini, 2005; Vizzini et al., 2002). A salinity level of 51‰ has recently been recorded 129 

in the northern basin of the lagoon (Spinelli, 2018) indicating an increase in salinity level in this 130 

area.   131 
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Over-sedimentation and lack of maintenance over recent years caused the partial closure of the 132 

northern channel resulting in even more extreme environmental conditions in the inner lagoon 133 

(Calvo S., Tomasello A., personal observation). In this part of the basin, P. oceanica forms atoll-134 

like structures (Calvo & Frada-Orestano, 1984), a rare feature of P. oceanica meadows observed 135 

in few other localities along the Tunisian, Turkish and Corsican coasts [see Tomasello et al., (2020) 136 

for related references]. In addition, the atoll structure of the Stagnone area is in strong regression 137 

with a marked decrease in the plant's primary production recorded about 30 years ago (Calvo, 138 

Ciraolo, & Loggia, 2003; Pergent et al., 2014). The southern basin is slightly deeper (about 2 m of 139 

depth) and it is connected with the surrounding open sea through a 3000 m wide opening, in which 140 

a vast P. oceanica reef platform (Plateau Récifale) is present (Tomasello et al., 2009).. Lastly, the 141 

surrounding open sea is environmentally more stable with a year-round temperature ranging from 142 

a minimum of 14.1℃ during winter to a maximum of 26.4℃ during summertime and a stable 143 

salinity level of 37‰ ( Vizzini et al., 2002. Here, P. oceanica forms a very large meadow (Calvo 144 

et al., 2010) from the surface to about 30 m depth (Bellissimo, Sirchia, & Ruvolo, 2020), 145 

characterized by the most extensive living reef, to our knowledge, along the Mediterranean coasts 146 

(about 40 km long, Calvo S, Tomasello A, personal observation). 147 

 148 

2.2. Sample collection 149 

On the 7th of September 2020, P. oceanica shoots with integer orthotropic rhizome (i.e. they were 150 

harvested until to the insertion point with their plagiotropic rhizomes) were haphazardly collected 151 

at about 1 m of depth from atolls or reefs present in six different sites (i.e. 20−30 shoots from each 152 

site). To maximize the number of genotypes collected, samples were harvested at a minimum 153 

distance of 5 m from each other. Sampling stations included (i) two sites inside the Stagnone di 154 
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Marsala lagoon [North-basin (close to the atolls site in Tomasello et al., 2009), in the northern 155 

basin of the lagoon: samples were collected from 5 different atolls with an average of 4−6 samples 156 

per atoll (atoll 1: 37°52'54''N, 12°28'29''E; atoll 2: 37°52'49''N, 12°28'22''E; atoll 3: 37°52'54''N, 157 

12°28'21''E; atoll 4: 37°52'55''N, 12°28'21''E; and atoll 5: 37°52'56''N, 12°28'19''E) & South-basin 158 

(corresponds with Récif site in Tomasello et al., 2009), in the southern basin of the lagoon 159 

(37°50'35''N, 12°27'29''E)] and (ii) four sites outside the lagoon [OpenSea-A (corresponds with 160 

Plateau site in Tomasello et al., 2009: 37°50'26''N, 12°26'45''E), OpenSea-B (37°48'48''N, 161 

12°25'53''E), OpenSea-C (37°51'27''N, 12°26'35''E), and OpenSea-D (37°53'18''N, 12°25'42''E)] 162 

(Fig. 1). Soon after collection, 96 leaf sub-samples (~10 cm; 16 samples per site) were selected 163 

for DNA extraction. Samples were gently cleaned out of epiphytes before being dried and stored 164 

with silica gel until further analysis. The rest of the collected material was kept in a cooler container 165 

filled with seawater and transported shortly to the laboratory for morphological measurements.   166 

2.3. Sea surface temperature  167 

Sea surface temperature (SST) data were obtained through image analysis based on satellite remote 168 

sensing data from the Sea and Land Surface Temperature Radiometer sensors installed on the 169 

Sentinel-3 mission satellites with a spatial resolution of 250 m (https://apps.sentinel-hub.com/). 170 

Data were collected from May to September for the years 2017 to 2020. Then, the data from the 171 

year 2017 was chosen because it contained the highest number of images. Selected images were 172 

analyzed using QGIS software (http://qgis.osgeo.org/) to obtain average and maximum 173 

temperatures during the May-September period for each study site.  174 

2.4. Morphological and growth performance measurements 175 

about:blank
about:blank
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Two sets of biometric measures were taken including leaf biometry and dating (Pergent-Martini 176 

et al., 2005). Leaf biometry and morphological measurements were carried out on the leaf bundle 177 

as described in previous studies (Girard, 1977; Giraud, 1979). Measurements included leaf number 178 

per shoot, leaf length (cm) and shoot surface (cm2). Dating was carried out on rhizomes by 179 

lepidochronology (Pergent, 1990), which provides a reliable estimation of their growth 180 

performance. This method is based on the analysis of the cyclic variations of the sheaths thickness 181 

along the rhizomes. In particular, starting from the basal portion towards the apex of the rhizome, 182 

the sheaths were detached from the nodes with the aid of a scalpel and arranged on a laboratory 183 

table in the sequence corresponding to their order of insertion. At the same time, their thickness 184 

was preliminarily assessed by touch by means of a slight bending in order to identify the sheath 185 

where the inversion of the thickness trend (from decreasing to increasing) occurred, corresponding 186 

to the possible finding of the relative minimum. Subsequently, a thin section was made on both 187 

the suspected sheath minimum and previous and following ones at about 10−12 mm from the base 188 

for confirmation or rectification by using micrometric binoculars. At this point, the rhizome was 189 

dissected transversally at the nodes corresponding to the finding of sheaths with the minimum 190 

relative thickness. In this way for each rhizome, the cyclic variation of the sheath thickness was 191 

detected to isolate rhizome segments corresponding to a one-year period, determined between each 192 

pair of sheaths of minimum relative thickness ('lepidochronological year' according to Pergent, 193 

1990). Consequently, it was also possible to date rhizome segments corresponding to a 194 

lepidochronological year. Each lepidochronological year was dated starting from the rhizome apex 195 

(sampling year) downward and backdating the sequence of cycles with their corresponding 196 

rhizome segment. This reiterative procedure was performed until the rhizome segment connected 197 

to the horizontal axis is reached, representing the year of shoot birth. For each annual segment the 198 
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elongation and the number of sheaths were determined to estimate the speed of growth and number 199 

of leaves produced. Moreover for each shoot the total rhizome length, corresponding to cumulative 200 

speed of growth and shoot age by counting the distance in year from the year of birth were 201 

calculated as previously done elsewhere (Calvo et al., 2021; Pergent & Pergent-Martini, 1990; 202 

Tomasello et al., 2016). This method also made it possible to detect past flowering occurrences by 203 

finding floral stalk remains between the sheaths (Pergent, Boudouresque, Crouzet, & Meinesz, 204 

1989).  205 

2.5. Statistical analysis 206 

Prior to analysis, homogeneity of variance of the response variables was tested by Levene’s test 207 

and Shapiro–Wilk test was used to validate data normality. As a result, data from shoot 208 

morphological measurements were normally distributed, however, with prevalent unequal 209 

variances. Therefore, Tamhane’s T2 test [that is an all-pairs pairwise-t-test suitable for unequal 210 

variances (Tamhane, 1979)] was used to check for significant differences among sampling sites 211 

for shoot morphological measurements. Average speed of growth of rhizomes was plotted across 212 

the lepidochronological years for visualization of the entire time series obtained in each site (Calvo 213 

et al., 2006). While rhizome length was processed by using reference growth charts classification 214 

step-by-step procedure reported in Tomasello et al., 2016, to bypass the known confounding effect 215 

of age on rhizome growth (Tomasello et al., 2007; Vizzini et al., 2010; Tomasello et al., 2016). In 216 

this case, most recent annual rhizome segments corresponding to the last 3 lepidochronological 217 

years were excluded from the statistical analysis, because their growth was incomplete at the time 218 

of sampling (see Tomasello et al., 2016 for further details). Data were analysed using the statistical 219 

package IBM SPSS Statistics (v. 15). 220 
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The influence of geographic distance (Euclidean distance in kilometres) on genetic distance 221 

(measured as pairwise FST) was investigated using Mantel test based on Pearson's product-moment 222 

correlation with 1000 permutations. The Mantel test was done in R-studio v.1.2.5033 (R Core 223 

Team, 2018) using the package vegan (Oksanen et al., 2013). 224 

2.6. DNA extraction, ddRAD-seq library preparation and sequencing 225 

Total genomic DNA (gDNA) was isolated from about 30 mg of dried tissue using NucleoSpin® 226 

Plant II kit (Macherey-Nagel) by following the manufacturer’s instructions. Total gDNA integrity 227 

was checked through 1% agarose gel electrophoresis and total gDNA purity was determined 228 

spectrophotometrically by examining 260/230 and 260/280 nm absorbance ratios using a 229 

NanoDrop® ND-1000 Spectrophotometer (Thermo Fisher Scientific). Finally, DNA concentration 230 

was accurately measured by the Qubit dsDNA BR assay kit with the Qubit 2.0 Fluorometer 231 

(Thermo Fisher Scientific).  232 

Ninety-five ddRAD-seq library construction and sequencing were conducted at IGATech (Udine, 233 

Italy) using an IGATech custom protocol, with minor modifications with respect to Peterson’s 234 

double digest restriction-site associated DNA preparation (Peterson et al., 2012). To ensure the 235 

quality of sequencing outcomes, for each site, one sample was randomly selected and sequenced 236 

twice. The final number of biological replicates for each site was n = 14 for OpenSea-C and n = 237 

15 for the other sites (i.e. North-basin, South-basin, OpenSea-A, OpenSea-B, and OpenSea-D), 238 

respectively (i.e. 89 unique samples + 6 technical replicates). In short, gDNA was double digested 239 

with both SphI and MboI endonucleases (New England BioLabs). Fragmented DNA was purified 240 

with AMPureXP beads (Agencourt) and subsequently ligated with T4 DNA ligase (New England 241 

BioLabs). Samples were pooled on multiplexing batches and bead purified as before and then they 242 

were size-selected and underwent several purification steps. ddRAD-seq libraries were sequenced 243 
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with 150 cycles in paired-end mode on NovaSeq 6000 instrument following the manufacturer’s 244 

instructions (Illumina, San Diego, CA).  245 

2.7. Single nucleotide polymorphisms (SNPs) calling 246 

Single nucleotide polymorphisms (SNPs) calling was performed de novo using Stacks software 247 

package v2.53 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). First, raw Illumina 248 

reads were demultiplexed using the process_radtags utility (Catchen et al., 2013). The short reads 249 

of each sample were assembled into exactly matching stacks using the ustacks utility (Catchen et 250 

al., 2013). The creation of the loci catalog (i.e. a set of consensus loci from all the analyzed 251 

samples) was done using cstacks and matching each sample against the catalog using sstacks and 252 

tsv2bam utilities (Catchen et al., 2013). gstacks ultility (Catchen et al., 2013) was used to pull in 253 

paired-end reads, assemble the paired-end contigs and merge them with the single-end locus, align 254 

reads to the locus and ultimately call SNPs. Finally, detected loci were filtered using the 255 

populations program included in Stacks v2.53 (Catchen et al., 2013), with option –R=0.75 to retain 256 

only loci that were represented in at least the 75% of the whole metapopulation and with cutoff --257 

max-obs-het=0.8, to process a nucleotide site at a locus with observed heterozygosity at a 258 

maximum of 80%. 259 

2.8. Genetic variation analysis and clonality assessment 260 

Individual genetic variation and population differentiation was assessed by a Principal Component 261 

Analysis (PCA) using the R package SNPRelate (Zheng et al., 2012) and by an ADMIXTURE 262 

analysis using the software ADMIXTURE 1.3.0 (Alexander & Lange, 2011). To choose the best 263 

estimate of the number of clusters (K), the ADMIXTURE cross-validation procedure was used 264 
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with default settings. The hypothetical number of K was set from 1 to 15 then the K value with the 265 

lowest cross-validation error was chosen to use for ADMIXTURE analysis.  266 

Clonality assessment, including genetic distance among all samples and number of distinct 267 

multilocus lineages (MLLs) for each site, was done using the R package poppr (Kamvar, Brooks, 268 

& Grünwald, 2015). The genetic distance limit for setting delimitation of clones was determined 269 

based on the maximum genetic distance detected between technical replicates as done in a recent 270 

study (Ruocco et al., 2022). Based on results from the clonality assessment, clones as well as 271 

technical replicates (i.e. samples sequenced twice) were removed from the dataset before all 272 

subsequent analyses including outlier detection (section 2.9). Pair-wise Weir and Cockerham FST 273 

estimates between sampling sites were calculated with vcftools (Danecek et al., 2011). Observed 274 

(Ho) and expected (He) heterozygosity, as well as FIS  values across all loci for each sampling site 275 

were calculated by using the R package hierfstat (Goudet, 2005).  276 

2.9. Outlier SNPs identification and functional annotation 277 

Three genome scan methods were used to identify outlier SNPs across the whole dataset. The first 278 

method was based on FST values and implemented in the program BAYESCAN v.2.1 (Foll, 2012; 279 

Foll & Gaggiotti, 2008). It was used with prior odds set to 100 and using a threshold of q≤0.3 and 280 

posterior probability P>0.5. The second method was also based on FST values and implemented in 281 

the R package OutFLANK (Whitlock & Lotterhos, 2015). OutFLANK analysis was performed 282 

using default settings and SNPs with a p-value less than 0.01 were considered as ‘suggestive’ 283 

outliers [as done in a previous study (Andrew, Jensen, Hagen, Lundregan, & Griffith, 2018)]. The 284 

last method based on multivariate analysis and implemented in the R package pcadapt (Luu, Bazin, 285 

& Blum, 2017) was used with default settings [that computed a test statistic based on Mahalanobis 286 

distance which is a multi-dimensional approach that measures how distant a point from the mean 287 
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(Luu et al., 2017)]. To define the correct number of principle components (PCs) to use in pcadapt 288 

analysis, we started with K = 20 PCs then K = 3 was selected as the most appropriate value for the 289 

analysis based on an inspection of a scree plot (Luu et al., 2017). In the last step, any SNP with a 290 

p-value less than 0.01 with Bonferroni correction for multiple comparisons was considered as an 291 

outlier SNP.   292 

To reduce the likelihood of detecting false positives, a Venn diagram 293 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to identify shared and unique 294 

outliers detected from the different methods. Only SNPs that were identified as outliers by at least 295 

two methods were considered ‘true’ outliers. Other SNPs (either detected as outliers by only one 296 

of the three methods or not detected as outliers by neither of the methods) were classified as 297 

neutral. Subsequently, allele frequencies of the ‘true’ outliers among sites were computed using 298 

the R package genepop (Rousset, 2008).  299 

To determine whether an outlier SNP may be included in potential coding sequences, chromosome 300 

regions of the ‘true’ outlier SNPs were mapped against a previously published P. oceanica 301 

transcriptome (Ruocco et al., 2020) by using the BLASTn algorithm (Camacho et al., 2009). 302 

Positive hits were identified if a homologous sequence was present around the SNP position with 303 

a high scoring stretches of sequence similarity of at least 70 bp with a percentage of identity greater 304 

than 85% (only the best hit was selected for each alignment). Subsequently, a sequence similarity 305 

search was carried out between P. oceanica contigs (i.e. corresponding to the positive hits) against 306 

UniProt protein database (downloaded in February 2022) using the BLASTx software (Camacho 307 

et al., 2009) to identify potential protein functions corresponding to outlier SNPs (only the best 308 

hits was selected for each alignment).  309 

 310 
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3. Results 311 

3.1. Environmental data  312 

Seawater temperature inside the lagoon was higher in comparison with the outside lagoon area 313 

(Fig. 1). In particular, average SST of North-basin and South-basin were 8.1℃ and 3.7℃ higher, 314 

respectively, than the average SST of open-sea sites (Fig. 1). Maximum SST of North-basin was 315 

31.1℃ and South-basin was 28.7℃, while the maximum SST of the outside lagoon sites varied 316 

from 23.9 to 26.1℃. In addition, while temperature variation among the four outside lagoon sites 317 

was less than 2℃ (e.g., the average SSTs varied from 20.7 to 22.3℃ and the maximum SSTs varied 318 

from 23.9 to 26.1℃; Fig. 1), both average SST and maximum SST of North-basin were 4.5℃ 319 

higher than those of South-basin (Fig. 1).  320 

3.2. Morphological and growth performance   321 

There were significant differences among the study sites for all morphological measurements 322 

(Tamhane's T2 test, p < 0.05; Fig. 2, Supplementary Table S1−3), being plants from North-basin 323 

different from plants from the rest of the study sites. In detail, plants from North-basin had on 324 

average three leaves per shoot, being significantly lower than the average number of leaves of 325 

plants from the other sites (i.e. ~ 5 leaves per shoot; Fig. 2). Similarly, plants from North-basin 326 

had shorter leaves when compared with plants from the other sampling sites (Tamhane's T2 test, 327 

p < 0.05; Fig. 2, Supplementary Table S2). Consequently, shoot surface area at North-basin was 328 

also significantly lower than the surface area of plants from all other sites (Fig. 2). In particular, 329 

the shoot surface of plants from North-basin was 51% lower than the surface of plants from South-330 

basin and 58−67% than plants from the outside-lagoon sites (Fig. 2). Dating measures allowed to 331 

reconstruct production of leaf number and growth performance within temporal ranges from 2006 332 
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to 2019 (Supplementary Table S4, Fig. S1). Shoot age varied between 1 and 12 years, with an 333 

overall average 3.5 ± 0.2 years (Supplementary Table S4, Fig. S2). The mean values per site of 334 

the reconstructed trends of speed of growth of the rhizomes and number of leaves produced ranged 335 

from 6.7 ± 0.4 to 11.5 ± 0.9 mm/shoot/year and 7.1 ± 0.1 to 7.5 ± 0.1 mm/shoot/year, respectively 336 

Supplementary Fig. S1, Supplementary Table S4,). Rhizome length displayed average values 337 

from 21.7 ± 3.0 and 39.5 ± 10.3 mm (Supplementary Table S4). Past flowering was detected 338 

only in stations 5 and 6, outside the lagoon. According to reference growth charts applied to 339 

rhizome length, different classes of growth were observed, with the value of station 1 (North-340 

basin) falling in the lowest percentile range (Fig. 3).  341 

In addition, it is worth noting that even no significant differences were detected (only except for 342 

two cases including (i) leaf number per shoot between South-basin vs. OpenSea-D and (ii) shoot 343 

surface between South-basin vs. OpenSea-C, Fig. 2A,C, Supplementary Table S1,3), it is clear 344 

that the plants from South-basin exhibited a reduction in their morphology in comparison with the 345 

plants from the outside lagoon with lower number of leaves per shoot, shorter leaf length and 346 

smaller shoot surface (Fig. 2).  347 

3.3. Accuracy of genotyping, genetic diversity and differentiation  348 

The sequencing of ddRAD libraries produced a total of 442,837,278 reads (i.e. ~4.7 million reads 349 

per sample, Supplementary Table S5). Subsequently, a total of 51,329 SNPs were identified 350 

across 95 P. oceanica samples. Genotyping correspondence between technical replicates was 351 

96.6% on average and they clustered close to each other in the genetic distance tree obtained with 352 

poppr (Supplementary Fig. S6).  353 
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PCA results showed a strong genetic differentiation of P. oceanica between (i) the two inside-354 

lagoon sites (North-basin & South-basin; Fig. 4A) versus the four outside-lagoon sites (OpenSea-355 

A−D; Fig. 4A) and (ii) between those from inside lagoon (North-basin versus South-basin). In 356 

detail, samples from North-basin separated from all samples of the other sites along the PC1 357 

explaining 11.1% of the total variance of the data set (Fig. 4A). Interestingly, samples of South-358 

basin were divided into two distinct groups, one group differentiated from all other samples along 359 

the PC2 (that accounts for 9% of the total variance) while the other group clustered with samples 360 

from OpenSea-B – D (Fig. 4A).  361 

Genetic partitioning among sites was further confirmed by results from ADMIXTURE analysis 362 

(Fig. 4B). First, K=9 was identified as an ‘optimal K’ (i.e. number of genetic clusters) as it had the 363 

lowest cross-validation error of 0.177 among other K values (Supplementary Table S6). Then, 364 

with the assumption of nine genetic clusters, the clustering analysis implemented in ADMIXTURE 365 

showed clear divergences in genetic structures among sites (Fig. 4B). No substructure was detected 366 

at North-basin as this site was dominated by a single homogeneous genetic component (Fig. 4B). 367 

This structural component was also present, however in a small proportion, in all other sites (Fig. 368 

4B). On the other hand, all the other sites were characterized by diversified substructures (e.g. 8−9 369 

components). It is important to note that the dominant substructure differed among all sites (Fig. 370 

4B).  371 

The North-basin atolls were characterized by extremely low clonal richness (R = 0.143), as the 15 372 

investigated individuals represented only 3 MLLs, while the number in other sites ranged from 373 

8−10 MLLs, with an average R value of 0.6 (Table 1 and Supplementary Fig. S7). In the South-374 

basin, also located inside the lagoon, the number of MLLs (i.e., 10) was equal to or even higher 375 

than that of the outside-lagoon sites (Table 1). Among the 6 sites, all MLLs found in North-basin, 376 
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South-basin and OpenSea-A were unique for each site, while among OpenSea-B−D we found 377 

some shared MLLs (Supplementary Fig. S7). Observed (Ho) and expected (He) heterozygosity 378 

ranged from 0.20 to 0.22, and from 0.11 to 0.21, respectively (Table 1). Expected heterozygosity 379 

(He) was lower than observed heterozygosity (Ho) (excess of heterozygotes) at all study sites, 380 

particularly in North-basin atolls (Table 1). The inbreeding coefficient (FIS) was negative at all 381 

sites and North-basin exhibited the lowest value (-0.889) among all (Table 1). 382 

Global pairwise FST distances (i.e., genetic differentiation based on all SNPs after clone removals) 383 

between North-basin versus other sites were roughly double of any other distances (Table 2), 384 

suggesting a limited gene flow not only between North-basin and the outside-lagoon sites but also 385 

between North-basin and South-basin (FST = 0.227). Among the four outside-lagoon sites, 386 

OpenSea-B presents the highest FST values in all pairwise comparison between populations (Table 387 

2) suggesting a limited gene flow toward the southernmost side of the whole sampling area. The 388 

highest pairwise FST value was detected between OpenSea-B and North-Basin (0.34). High levels 389 

of gene flow were generally observed between northern OpenSea sites (A, C and D).   390 

Moreover, a Mantel test showed no significant correlation between genetic distance (measured as 391 

pairwise FST) and geographic distance (measured as pairwise Euclidean distance in kilometres) 392 

where r = 0.515 and p = 0.103.  393 

3.4. Identification and annotation of outlier SNPs 394 

For the identification of outlier SNPs, only the ones shared by at least two of the three genome-395 

scanning algorithms (Bayescan, OutFLANK and pcadapt) were considered. As a result, a total of 396 

fourteen ‘true’ outlier SNPs were identified (Fig. 4C, Supplementary Table S7). Flanking regions 397 

of all fourteen outlier SNPs showed a reliable match with P. oceanica transcript sequences 398 
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(Supplementary Table S8) and could be annotated with eleven different proteins by considering 399 

the best hit of each SNP (Table 3). Among those annotated proteins, six of them are potentially 400 

related to plant stress responses whilst the others are associated with several functions such as 401 

purine nucleobase transmembrane transporter activity, protein transport, among others (Table 3).  402 

Interestingly, fixed (max. allele frequency) alternative alleles were found only in North-basin and 403 

OpenSea-B (Fig. 4D6). Especially, four SNPs with fixed alternative alleles were found exclusively 404 

in North-basin including three SNPs with functions related to plant stress response (i.e. SNP>4564 405 

NS=81_pos98, SNP>145013 NS=85_pos198 and SNP>107233 NS=81_pos235) and one SNP 406 

related to Purine nucleobase transmembrane transporter activity (i.e. >34231 NS=78_pos44) (Fig. 407 

4D, Table 3). In case of OpenSea-B, among the five fixed alleles detected, there was one SNP (i.e. 408 

>126268 NS=74_pos268) with annotated function related to plant stress response (i.e. cell wall 409 

modification) (Fig. 4D, Table 3).  410 

4. Discussion 411 

The Stagnone di Marsala is a semi-enclosed coastal lagoon, strongly isolated from the surrounding 412 

open sea with a clear cline in environmental conditions especially in summer months, between the 413 

northern (i.e. more confined side of the lagoon) and the southern part (i.e. more open to exchanges 414 

with the open sea) (Tomasello et al., 2009; Vizzini et al., 2002). This is due to the limited water 415 

exchange within the lagoon and across the major mouth (open southward to the open sea) together 416 

with the existence of very shallow waters throughout the whole water body (La Loggia et al., 417 

2004). In this study, we observed a maximum summer SST of 33.1℃ that far exceeded the value 418 

reported in a previous study (i.e. 30℃) (Tomasello et al., 2009). The occurrence of such extreme 419 

high values observed in the northern basin may be the result of three possible, non-exclusive, 420 

factors including (i) the gradual warming of the Mediterranean Sea(Pastor, Valiente, & Khodayar, 421 
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2020; Vargas-Yáñez et al., 2008), (ii) the increased frequency and intensity of marine heatwaves 422 

in the Mediterranean Sea (Darmaraki et al., 2019) and (iii) the gradual closure of the 400-m wide 423 

channel in the north side of the lagoon, which further contributes to limit water exchange (Calvo 424 

A., Tomasello A., personal observation). Likewise, a salinity level of 51‰ has been recently 425 

documented in the northern basin of the lagoon (Spinelli, 2018), where a maximum value of 48‰ 426 

was previously recorded (Mazzola & Vizzini, 2005; Tomasello et al., 2009). This pushes up the 427 

acknowledged salinity and temperature tolerance limits for P. oceanica (Nguyen, Bulleri, Marín-428 

Guirao, Pernice, & Procaccini, 2021; Sandoval-Gil, Ruiz, & Marín-Guirao, 2023).  429 

Observations carried out over two decades (from November 2000 to September 2020) reported 430 

undersized P. oceanica shoots growing in the northern basin of the Stagnone of Marsala lagoon 431 

(Loggia et al., 2004; Tomasello et al., 2009; Spinelli, 2018; the present study). This can be 432 

considered a sign of long-term exposure of P. oceanica to the extreme conditions in the area [both 433 

extreme temperature and extreme salinity (Fernández-Torquemada & Sánchez-Lizaso, 2005; 434 

Marín-Guirao, Sandoval-Gil, Bernardeau-Esteller, Ruíz, & Sánchez-Lizaso, 2013; Ruíz, Marín-435 

Guirao, & Sandoval-Gil, 2009)]. A similar shoot size reduction has been described in another P. 436 

oceanica population living under salinity levels above the normal tolerance threshold of the species 437 

(Marín-Guirao, Sandoval-Gil, García-Muñoz, & Ruiz, 2017). Marín-Guirao et al., (2017) 438 

proposed that this morphological modification may serve as a stress-coping mechanism, as 439 

previously described in terrestrial plants (Lichtenthaler, 1996). Similarly, reduced sized P. 440 

oceanica shoots have also been documented in natural vents under strong seawater acidification 441 

(Gambi, Esposito, & Marín-Guirao, 2023). In addition, lepidochronological results also 442 

demonstrated that plants from the northern basin exhibited the slowest growth performance in 443 

comparison with other sites. This further confirms the constraints imposed by extreme 444 
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environmental conditions to which P. oceanica plants are undergoing in this section of the basin. 445 

Furthermore, our study continues to report a lack of flowering events inside the lagoon in the last 446 

few decades (1984-2004, Tomasello et al., 2009; 2007-2019, present study). Flowering in 447 

seagrasses has been considered an adaptive mechanism (i.e. escape through sexual reproduction) 448 

to cope with unfavourable conditions (Nguyen, Ralph, et al., 2021). Previous studies have found a 449 

positive relationship between flowering events and extreme thermal stress (Blok et al., 2018; Diaz-450 

Almela, Marbà, & Duarte, 2007; Marín‐Guirao, Entrambasaguas, Ruiz, & Procaccini, 2019; Ruiz 451 

et al., 2018). Hence, we hypothesize two possible scenarios: the extreme condition in the Stagnone 452 

di Marsala lagoon (i) could exceed the threshold limit for flowering induction in P. oceanica or 453 

(ii) could have selected ‘less-flowering’ genotypes.   454 

Our study demonstrates a clear genetic isolation of P. oceanica from inside versus outside the 455 

lagoon, especially for the individuals of the northern basin. This is in line with several previous 456 

studies showing that seagrass populations from confined environments (such as coastal lagoons) 457 

tend to exhibit some levels of genetic isolation [e.g. Zostera marina populations in San Quintin 458 

Bay, Mexico (Muñiz-Salazar, Talbot, Sage, Ward, & Cabello-Pasini, 2006); P. oceanica in the 459 

Marmara Sea (Meinesz et al., 2009) and the Stagnone di Marsala (Tomasello et al., 2009); 460 

Halophila beccarii populations in Cau Hai lagoon, Vietnam (Phan, De Raeymaeker, Luong, & 461 

Triest, 2017) or recently Halophila ovalis populations in Dongsha Island, Taiwan (Liu & Hsu, 462 

2021)]. Additionally, we observed a reduction in the number of distinct genotypes detected 463 

(especially for the northern basin) when compared with Tomasello et al., (2009). While the 464 

dissimilarity in the power of discriminating clones between the two used approaches 465 

(microsatellites versus ddRADseq) could have certainly contributed to this difference (Balloux et 466 

al., 2000; Xing et al., 2005), we cannot exclude that the continuous deterioration of the 467 
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environmental conditions (increased water temperature and salinity) inside that lagoon had 468 

caused the disappearance of some genotypes that were previously identified (Tomasello et al., 469 

2009). It is interesting to note that while the majority of seagrass studies have shown a positive 470 

relationship between genetic diversity and the ability to endure environmental stressors of 471 

seagrass populations (Ehlers, Worm, & Reusch, 2008; Jahnke, Olsen, & Procaccini, 2015; 472 

Massa, Paulino, Serrão, Duarte, & Arnaud-Haond, 2013; Randall Hughes & Stachowicz, 2011), 473 

there are also several studies providing evidences to support the opposite (Arnaud-Haond, 474 

Marbà, Diaz-Almela, Serrão, & Duarte, 2010; Connolly et al., 2018; Diaz-Almela, Arnaud-475 

Haond, et al., 2007). Our results showed no significant correlation between genetic distance and 476 

geographic distance (as verified by Mantel test) thus eliminating the potential effect of isolation 477 

by distance for the genetic isolation of P. oceanica populations inside the lagoon. Instead, the 478 

isolation is likely related to the existence of geographic barriers and/or the strong environmental 479 

filter exerted by the extreme conditions of the lagoon on possible propagules coming from the 480 

frequently blooming open sea populations (Tomasello et al., 2009 and this study). Moreover, the 481 

history of P. oceanica distribution in the area (the present distribution is most likely the remnant 482 

of a wider distribution present when hydrodynamic conditions inside the lagoon favored greater 483 

water exchange with the open sea) can exclude the possibility of bottleneck (and/or founder 484 

effect) happening in this area. As a result, genetic drift is also unlikely to be the cause of the 485 

genetic differentiation in the inside-lagoon populations. This is further supported by the fact that 486 

the genetic diversity of the North-basin population, in the face of observed heterozygosity (Ho), 487 

was actually comparable to most of other sites or even higher than some other sites (e.g., 488 

OpenSea-B) and this was already observed by Tomasello et al., (2009) with microsatellite 489 

markers. Together, the genetic isolation of the inner-lagoon individuals is, more likely, the result 490 
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of (1) the progressive extremization of the conditions inside the lagoon and a subsequent 491 

selection (“environmental filtering”) of the more resistant genotypes, as well as (2) the 492 

progressive restriction of gene flow between patches inside and outside the lagoon. 493 

Our study identified several outlier SNPs that may be related to P. oceanica survival at extreme 494 

environmental conditions, such as in the Stagnone di Marsala lagoon, but potentially also in 495 

other localities [e.g. Mar Menor lagoon, Marmara Sea (Meinesz et al., 2009)]. Below we report 496 

the main functions associated with outlier SNPs selected in our analysis. 497 

Glutaredoxins (also known as Thioltransferases) are small ubiquitous redox enzymes that are 498 

involved in the response to oxidative stress through the regeneration of enzymes participating in 499 

peroxide and methionine sulfoxide reduction (Rouhier, Lemaire, & Jacquot, 2008). Plants produce 500 

ROS-scavengers (also known as antioxidants) to minimize the negative impacts of oxidative stress 501 

(Hasanuzzaman, Nahar, & Fujita, 2013; Nguyen et al., 2020; Paridah et al., 2016). In seagrasses, 502 

ROS-scavengers are an important mechanism to cope with different stressors including warming 503 

(Gu et al., 2012; Liu, Tang, Wang, Zang, & Zhou, 2016; Nguyen et al., 2020; Purnama, Hariyanto, 504 

Sri, Manuhara, & Purnobasuki, 2019; Reusch et al., 2008; Tutar, Marín-Guirao, Ruiz, & 505 

Procaccini, 2017; Winters, Nelle, Fricke, Rauch, & Reusch, 2011) and hyper-salinity (Capó et al., 506 

2020; Marin-Guirao et al., 2011; Sandoval-Gil et al., 2023). Hence, the genetic mechanisms 507 

underlying the mediation of ROS may play a critical role in promoting the local adaptation of P. 508 

oceanica to extreme environmental conditions. This is consistent with previous studies 509 

highlighting the role of ROS-managing mechanisms on the local adaption of organisms to different 510 

environmental conditions [e.g. the reef-building coral Pocillopora damicornis with temperature 511 

and light (van Oppen et al., 2018); the brown alga Ectocarpus siliculosus with copper stress (Ritter 512 

et al., 2010), among others].  513 
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Protein serine/threonine kinase has a wide range of functions in plants including response to 514 

stressful environmental conditions and defense responses (Hardie, 1999). Leucine-rich repeat 515 

extensin-like protein 3 are both related to cell wall modification (Draeger et al., 2015). Their 516 

involvement in plant stress response has been highlighted in terrestrial plants (Yang et al., 2006; 517 

Zwiazek, 1991) and in seagrasses (Franssen et al., 2011, 2014; Gu et al., 2012; Houston, Tucker, 518 

Chowdhury, Shirley, & Little, 2016; Jueterbock et al., 2016; Marín-Guirao et al., 2017). Indeed, 519 

cell wall modification may directly relate the substantial downsizing of P. oceanica plants, as 520 

observed at the northern basin of the Stagnone di Marsala ( La loggia et al., 2004; Tomasello et 521 

al., 2009, this study) and potentially at the channel mouth of the Mar Menor lagoon (Marín-Guirao 522 

et al., 2017). The α-amylase inhibitor (AAI protein) is a plant lipid transfer protein (LTP). In 523 

Arabidopsis, LTPs are involved in the response to different environmental stressors (e.g. drought 524 

and freezing) (Guo, Yang, Zhang, & Yang, 2013). It is noteworthy that among the five outlier 525 

SNPs with maximum allele frequency in individuals from the northern basin, three of them with 526 

functions related to plant response to environmental stressors, were exclusively found in this site.   527 

WD repeat-containing protein WRAP73 is a member of the WD-repeat (WDR) protein 528 

superfamily, which comprises an extremely diverse number of regulatory proteins strongly 529 

conserved across eukaryotes, playing key roles in several mechanisms such as signal transduction, 530 

cytoskeletal dynamics, protein trafficking, nuclear export, and RNA processing, and are especially 531 

prevalent in chromatin modification and transcriptional mechanisms (van Nocker & Ludwig, 532 

2003). WDR proteins are intimately involved in a variety of cellular and organismal processes, 533 

including cell division, apoptosis, flowering, and meristem organization (van Nocker & Ludwig, 534 

2003). In Arabidopsis, WD-repeat proteins have been increasingly recognized as a key regulator 535 

of plant-specific developmental events (van Nocker & Ludwig, 2003). Purine permeases are first 536 
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known to be involved in the transport of purine nucleobase substrates, and their derivatives 537 

including phytohormones like cytokinins (Gillissen et al., 2000). Derivatives of nucleic acid bases 538 

and nucleotides play potentially important roles in cell division, senescence, and defense reactions 539 

(Gillissen et al., 2000). Moreover, recent studies have demonstrated additional roles of this protein 540 

family in the plant secondary metabolism and root cell growth (Gani, Vishwakarma, & Misra, 541 

2021; Hildreth et al., 2011; Jelesko, 2012). Retrotrans_gag domain-containing protein is related 542 

to Retrotransposon gag protein (a class of transposable elements) that are commonly activated by 543 

stresses and external change in all eukaryotes, including plants (Grandbastien, 1998). AP-5 544 

complex subunit beta-1 is associated with AP-5 Adaptor protein complexes that facilitate the 545 

trafficking of cargo from one membrane compartment of the cell to another by recruiting other 546 

proteins to particular types of vesicles. This is important for plant growth and enable cells to 547 

communicate with the environment (Park et al., 2013). Finally, C2 domain-containing protein 548 

plays a role in signal transduction and membrane trafficking (Zhang & Aravind, 2010).  549 

In summary, our study suggests that local adaptation to extreme conditions in seagrasses might be 550 

promoted by the selection of genotypes equipped to survive such adverse conditions together with 551 

a limited gene flow. The selected genotypes may be dominated by several “tolerant” genotypes 552 

with mutations (outlier SNPs) on genes with a role in different biological processes including plant 553 

stress responses (e.g. ROS-scavenging activities and cell wall modification), essential functions 554 

such as cellular transport and plant developmental events, among others. These findings provide a 555 

better understanding of the genetic basis of local adaptation in seagrasses and offer new clues in 556 

our attempt to assist the adaptation of those foundation species in the future (Bulleri et al., 2018; 557 

Nguyen, Ralph, et al., 2021). We acknowledge the difficulties of clearly distinguish the relative 558 

contribution of phenotypic plasticity versus local adaptation in our study. However, it is possible 559 



 
 

26 
 

that the simultaneous presence of phenotypic plasticity and local genetic selection in the inner-560 

lagoon P. oceanica populations had contributed to the observed phenomenon as demonstrated in 561 

previous studies on marine and freshwater organisms (Bedulina, Zimmer, & Timofeyev, 2010; 562 

Jensen et al., 2008; Pulgar, Bozinovic, & Ojeda, 2005; Yampolsky, Schaer, & Ebert, 2014). 563 
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Tables and Figures  1032 

Table 1 Genetic and genotypic diversity indices of P. oceanica across sites. N: number of 1033 

individual samples; MLLs: number of distinct Multi Locus Lineages; R [(G-1)/(N-1)]: clonal 1034 
diversity; Ho: observed heterozygosity; He: expected heterozygosity; FIS: inbreeding coefficient.  1035 

Site N MLLs R Ho He FIS 

North-basin 15 3 0.143 0.211 0.109 -0.889 

South-basin 15 10 0.642 0.215 0.189 -0.108 

OpenSea-A 15 9 0.571 0.220 0.212 -0.041 

OpenSea-B 15 10 0.642 0.195 0.159 -0.130 

OpenSea-C 14 8 0.538 0.208 0.191 -0.083 

OpenSea-D 15 10 0.642 0.215 0.207 -0.036 

 1036 

 1037 

 1038 

 1039 

 1040 
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Table 2 Global Weir and Cockerham weighted pairwise FST estimated among study sites based on 1041 
all 51,329 SNPs.  1042 

 
North-basin South-basin OpenSea-A OpenSea-B OpenSea-C 

North-basin 
 

    

South-basin 0.227 
 

   

OpenSea-A 0.180 0.119 
 

  

OpenSea-B 0.341 0.213 0.132 
 

 

OpenSea-C 0.203 0.145 0.082 0.199 
 

OpenSea-D 0.198 0.120 0.029 0.167 0.098 

 1043 
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Table 3 List of known annotated functions for the 14 true outliers from the UniProt database (Details about BLASTn and BLASTx 

results can be found in Supplementary Table S6). Annotations potentially associated with plant stress response are in grey background.  
− means no proteins annotated.  

SNP_Outlier_ID Top BLASTx hit (UniProt)  
Accession 

number 
Related function 

>102786 NS=76_ pos191 Glutaredoxin domain-containing protein A0A1E5W751 Glutathione oxidoreductase activity 

>4564 NS=81_ pos98 Receptor-like serine/threonine-protein kinase A0A2P6Q381 Protein serine/threonine kinase activity 

>99732 NS=83_ pos211 Protein kinase domain-containing protein A0A251RZQ7 Protein serine/threonine kinase activity 

>126268 NS=74_ pos268 Leucine-rich repeat extensin-like protein 3 A0A6P6UM88 Cell wall and growth modification 

>145013 NS=85_ pos198 LRRNT_2 domain-containing protein A0A5N6MZW6 Cell wall and growth modification 

>37103 NS=76_ pos253 C2 domain-containing protein A0A444DYZ0 Signal transduction and membrane trafficking 

>91253 NS=75_ pos17 AP-5 complex subunit beta-1 A0A067JTT7 Protein transport 

>34231 NS=78_ pos44 Probable purine permease A0A540NHL2 Purine nucleobase transmembrane transporter activity 

>21853 NS=76_ pos40 WD repeat-containing protein WRAP73 A0A3S3N7C1 Regulators of plant-specific developmental events 

>108769 NS=74_ pos254 Retrotrans_gag domain-containing protein A0A7J7G4T9 Retrotransposon 

>107233 NS=81_ pos235 AAI domain-containing protein A0A0D9WSI5 Plant lipid transfer protein 

>21310 NS=83_ pos84 − − − 

>65929 NS=79_ pos159 − − − 

>65929 NS=79_ pos122 − − − 
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Figure 1 Sample collection sites in this study: (1) North-basin, (2) South-basin, (3) OpenSea-A, 

(4) OpenSea-B, (5) OpenSea-C, and (6) OpenSea-D. The Stagnone di Marsala lagoon is in light 

blue. The red and blue numbers indicate maximum and average sea surface temperatures (℃), 

respectively, at each collection site in the period May−September 2017. 
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Figure 2 Leaf morphological results. Data are mean ±SE. Letters over the bars indicate results of 

Tamhane's T2 test (Details can be found in Supplementary Table S1−3). 
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Figure 3 Growth performance measurements plotted on reference growth charts (Tomasello et al., 

2016). (1) North-basin, (2) South-basin, (3) OpenSea-A, (4) OpenSea-B, (5) OpenSea-C, and (6) 

OpenSea-D. The distribution of rhizome length and shoot age averaged in each station reported in 

table1 are compared with the expected percentile curves at different ages. The position of the 

stations within percentile ranges can best be seen in the enlarged graph. 
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Figure 4 Results of genetic analyses for 95 P. oceanica samples based on all 51,329 SNPs. (A) 

PCA results; (B) ADMIXTURE results for K=9 with P. oceanica individuals on the x-axis (sorted 

by site) and assignment probability on the y-axis; (C) Venn diagram presents shared and unique 

outlier SNPs detected by the three algorithms; and (D) Graphical depiction of allele frequencies of 

the 14 outlier SNPs identified by at least two methods (Allele 1: Reference allele; Allele 2: 

Alternative allele). Details can be found in Supplementary Table S9. 

 

 

 


	Wiley
	Signs of local adaptation by genetic selection and isolation promoted by extreme temperature and salinity in the Mediterranean seagrass Posidonia oceanica

