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Abstract

Recent progress in language models as knowl-001
edge bases have shown that language models002
can act as structured knowledge bases for stor-003
ing relational facts. However, most existing004
work only considered LM-as-KB paradigm in a005
static setting, which ignores analysis of tempo-006
ral dynamics of word knowledge. In this paper,007
we introduce a new dataset LAMA-TK, aimed008
at probing language models for temporally-009
scoped knowledge. We construct cloze state-010
ments to query entities and timestamps con-011
tained in temporally-scoped facts. To explore012
the capability of language models as temporal013
knowledge bases, we propose a temporal scope-014
aware RoBERTa model and formulate two prac-015
tical requirements for treating language models016
as temporal knowledge bases: (i) the ability to017
store temporal knowledge which contained 1-N018
relations. (ii) the ability to query stored tem-019
poral facts, including implicit temporal facts.020
Experiments show that conflicting information021
poses a great challenge to the storage capacity022
of language models, although language mod-023
els can memorize millions of temporal knowl-024
edge with a relatively high accuracy. More-025
over, we show that pre-trained language mod-026
els can understand implicit temporal knowl-027
edge contained in temporal facts and transfer028
stored knowledge to new queries with similar029
semantics, even if the query templates are not030
observed during training.031

1 Introduction032

Recently, Language models (LMs) such as BERT033

(Devlin et al., 2019) and T5 (Raffel et al., 2020)034

have been suggested as an alternative to world035

knowledge bases (Petroni et al., 2019). The pa-036

rameters of these models appear to store exten-037

sive real-world knowledge during training and the038

stored knowledge can be recalled by filling cloze039

statements (e.g. "Dani Alves plays with [MASK].040

–> Barcelona"). As a result, recent work consid-041

ered language model for tasks such as closed-book042

RoBERTa

Michael Jordan played for [MASK] from 1995 to 1998.

[MASK] held the position of president of the 

United States from 2009 to 2017.

Michael Houghton received Nobel Prize in Physics in  [MASK]. 1956 or 1972

Barack Obama

Chicago Bulls

RoBERTa

Michael Jordan joined Washington Wizards in [MASK]

Michael Jordan played for [MASK] in 2002.

2001

Washington Wizards

Michael Jordan played for

Washington Wizards

from 2001 to 2003 

How much Temporal Knowledge can be stored in a LM?

Can LM use stored Temporal Knowledge for close-book QA?

Figure 1: Expansion of LM-as-KB paradigm in tem-
poral domain. We introduce two tasks to further ex-
plore the capability of language model. Firstly, we train
RoBERTa to memorize millions of temporally-scoped
facts and evaluate how much temporal knowledge can
be stored into a language model. Secondly, we test the
ability of language model to understand implicit tem-
poral knowledge and transfer stored knowledge to new
query templates without finetuning.

question answers (Roberts et al., 2020) , automated 043

fact-checking (Guo et al., 2021) and knowledge- 044

grounded dialogue systems (Liu et al., 2022) 045

However, relational facts in world knowledge 046

often change with time. For example, the fact "Gi- 047

annis Antetokounmpo played for Filathlitikos." is 048

true only from 2011 to 2013. These temporally- 049

scoped facts raise several potential challenges for 050

language model to store temporal knowledge: 051

Conflicting Information: During training on 052

large textual corpus, the model will inevitably see 1- 053

N relations, e.g., "Giannis Antetokounmpo played 054

for Filathlitikos / Milwaukee Bucks". By limiting 055

the temporal scopes of facts, the model may see 056

less conflicting information (Dhingra et al., 2022). 057

However, conflicting information still exists, from 058

the players who played for a team in a certain year 059

to the politician who held multiple positions at 060

once. These conflicting facts will hinder the mem- 061

orizing process and cause the model having low 062

confidences in every correct answers. 063
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Correlation between temporal scopes Tempo-064

ral facts usually contain temporal scopes (e.g., the065

start and the end time), and there is a strong cor-066

relation between these timestamps. For example,067

"Shinzō Abe served as the prime minister of Japan068

from 2006 to 2007." and "Shinzō Abe served as069

the prime minister of Japan from 2012 to 2014."070

are two temporally-scoped facts. These facts have071

the same subject, object and predicate but different072

temporal scopes. As temporal knowledge bases,073

LMs need to memorize not only the timestamps074

associated with the facts, but also the matching075

relationships between timestamps.076

Implicit Temporal Knowledge: Temporally-077

scoped facts usually contain implicit facts. For078

example, the fact "Donald Trump served as the079

president of the United States from 2017 to 2021."080

contains implicit facts "Donald Trump served as081

the president of the United States in 2019." and082

"Donald Trump resigned from president of United083

States in 2021." These implicit facts are not di-084

rectly mentioned in temporally-scoped facts, but085

are implied in them.086

Temporal facts are common in real-world knowl-087

edge bases like Wikidata. However, existing QA088

datasets such as LAMA (Petroni et al., 2019),089

SQuARD (Rajpurkar et al., 2016), Natural Ques-090

tions (Kwiatkowski et al., 2019) focus on a specific091

time period, ignoring the temporal dynamics of092

world knowledge. Some Knowledge Graph Ques-093

tion Answering (KGQA) datasets such as Tem-094

pQuestions (Jia et al., 2018), CronQuestions (Sax-095

ena et al., 2021) contain thousands of temporal096

questions. But these datasets focus on temporal097

reasoning and seem too hard for pre-trained LMs098

without Knowledge Graph Embeddings augmented099

(Saxena et al., 2021). Moreover, Masked LM100

evaluation dataset TEMPLAMA (Dhingra et al.,101

2022) focuses on querying factual object in a single102

timestamp, ignoring the temporal information con-103

tained in real-world facts such as the start time and104

the end time. Therefore, we propose LAMA-TK105

(short for LAnguage Model Analysis for Temporal106

Knowledge), a new dataset for probing LMs for107

temporal knowledge. LAMA-TK queries tempo-108

ral knowledge including entity names and specific109

timestamps (e.g. the start time and the end time),110

and reserves all correct answers for each factual111

statement. Examples from LAMA, TEMPLAMA112

and LAMA-TK have been shown in Table 1113

Input Target(s)
LAMA

Dante was born in [MASK]. Florence
Bailey Peninsula is located in [MASK]. Antarctica

TEMPLAMA
year: 2012 text: Cristiano Ronaldo plays for _X_. Real Madrid
year: 2019 text: Cristiano Ronaldo plays for _X_. Juventus FC

LAMA-TK
Michael Jordan played for [MASK] from 1995 to 1998. Chicago Bulls
Michael Jordan played for [MASK] in 2002. Washington Wizard
Michael Jordan received NBA Most Valuable Player Award
in [MASK].

1988, 1991, 1992,
1996, 1998

Table 1: Examples from LAMA, TEMPLAMA and
our proposed LAMA-TK. LAMA-TK is a novel dataset
of temporal knowledge statements, which takes into
account entities, temporal scopes and multiple answers.

In order to comprehensively explore the ability 114

of LMs as temporal knowledge bases, we introduce 115

two fundamental but practical questions for LMs 116

as temporal knowledge bases. 117

First question: What is the storage capacity 118

of LMs for storing temporal knowledge? What 119

factors will affect the model’s storage capacity? 120

For the first question, we use the LAMA-TK and 121

ask the model to store all temporal entities and tem- 122

poral scopes contained in temporal facts. Varying 123

from model scale and recording the storage per- 124

formance of language models. Results show that 125

the storage capacity of language model is directly 126

proportional to the model size, and little affected 127

by pre-training. We also find that storing tempo- 128

ral facts with conflicting information is more chal- 129

lenging than storing static facts or temporal facts 130

without conflicting information. 131

Second question: Can language model use 132

stored temporal knowledge for closed-book QA? 133

To what extent can LMs understand and use im- 134

plicit temporal knowledge? 135

For the second question, we use the LAMA-TK 136

to measure how well can LMs transfer stored tem- 137

poral knowledge to temporal knowledge queries in 138

zero-shot setting, where the target query templates 139

are not observed during training. These elaborate 140

queries test how well can language model under- 141

stand and use the stored temporal knowledge, in- 142

cluding the ordering and the continuity of temporal 143

scopes. Results show that pre-trained LMs have a 144

fairly good capability to understand implicit tem- 145

poral knowledge, and can transfer stored temporal 146

knowledge to target queries even if the target query 147

template has never been seen. Moreover, we found 148

that adding an appropriate amount of disturbing 149

to temporal scopes during training can reduce the 150

over dependence on temporal scopes and improve 151

the performance on temporal boundary query. 152

2



2 Methods153

In this section, we detail the construction of154

LAMA-TK including the data sources and a set155

of natural language queries for probing language156

models as temporal knowledge bases, as well as157

the models and evaluation metric we use.158

2.1 Dataset159

LAMA-TK, our new temporally-scoped knowledge160

probes dataset consists of two parts: a Knolwedge161

Graph (KG) with temporal annotations and a set of162

temporal knowledge queries.163

2.1.1 Knowledge Sources164

CronQuestions CronQuestions (Saxena et al.,165

2021) is a dataset for Question Answering over166

Knowledge Graph, including a KG with temporal167

annotations and a set of temporal questions. There168

are 323k facts, 125k entities and 203 relations in169

its KG. We selected top 5 most frequent temporally170

rich relations and resulted in a KG with 226K facts,171

96k entities and 1322 timestamps.172

Wikidata Wikidata1 is a public knowledge base173

that stored massive structured data. We use the174

dump of the January 3rd, 2022 version and retrieve175

facts which have both a start and an end date using176

SPARQL queries. Following the previous work177

(Dhingra et al., 2022), we identify the subject and178

realtion pairs which have multiple objects at differ-179

ent times and select 6 relations with the most such180

objects. This result in a KG with 497K facts, 260k181

entities, 1132 timestamps.182

2.1.2 Temporal Knowledge Queries183

According to the above knowledge sources, we184

finally construct a KG with 639k facts, 316k en-185

tities, 1601 timestamps and 7 relations. Follow-186

ing previous works (Jiang et al., 2020) (Dhingra187

et al., 2022), we write template for these rela-188

tions and convert temporal knowledge to natural189

language statements. For example, the temporal190

knowledge <Barack_Obama, position_held, presi-191

dent_of_the_United_States, 2009, 2017> was con-192

verted into natural language statement "Barack193

Obama held the position of president of the United194

States from 2009 to 2017.". Based on these tex-195

tual statements, we designe targeted cloze-style196

queries and collect all correct answers for each197

query. Statistics and example queries for different198

relations have been shown in Appendix A199

1www.wikidata.org

Real-world knowledge contains extensive con- 200

flicting information, from the players who played 201

for a sport team to the politicians who held multi- 202

ple positions. Most of previous works do not take 203

into account the negative impact of conflicting in- 204

formation on LMs as knowledge bases. They tend 205

to explore the LM-as-KB paradigm within one-to- 206

one relationships (Heinzerling and Inui, 2021) or 207

only use whether LMs can recall one of the correct 208

answers ( e.g. Top-K accuracy) to evaluate LMs 209

, without taking into account whether LMs have 210

similar confidences in other correct answers. There- 211

fore, in our proposed LAMA-TK, we additionally 212

mask the subject of each fact to introduce more 213

conflicting information. Among the 2.48M masked 214

factual statements, there are 379K statements with 215

multiple answers. 216

2.2 Temporal Scope-Aware Language Model 217

Based on the contextual language model RoBERTa 218

(Liu et al., 2019), we propose a Temporal Scope- 219

aware RoBERTa to explore the capability of lan- 220

guage models as temporal knowledge bases. 221

Prompt-based Temporal Scope Modeling To 222

jointly modeling temporal scopes and text, we 223

manually write prompt templates for temporal 224

facts and directly encode temporal scopes in train- 225

ing process. Given a factual sequence of tokens 226

X = [x1, x2, .., xn] and its corresponding tempo- 227

ral scope <ST, ET> (ST i.e. Start Time, ET i.e. 228

End Time). We use prompt template "from ST to 229

ET" to convert temporal scope to natural language 230

text and incorporate this text into the factual se- 231

quence. In this case, the final factual sequence 232

X ′ = [x1, x2..., xn, ”from”, ST, ”to”, ET ]. See 233

Appendix B for further analysis. 234

Symbolic Representation However, pre-trained 235

Masked LM can only handle entities whose names 236

are in its vocabulary. This result in its inability to 237

predict entities with multiple words. In this work, 238

we follow (Heinzerling and Inui, 2021) to store en- 239

tities by symbolic representation, i.e., augmenting 240

the vocabulary of LM and represent all the entities 241

as entries in the vocabulary. The LM will project 242

the final hidden state of the [MASK] token onto the 243

vocabulary and take a softmax over the vocabulary 244

(Heinzerling and Inui, 2021). Although symbolic 245

representation is computationally expensive, it can 246

memorize entities with high accuracy and won’t be 247

affected by the length of the entity name. 248
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Memorizing Facts via MLM In this work, we249

train the model to memorize factual knowledge250

via Masked Language Modeling (MLM) (Devlin251

et al., 2019). We use an Entity-level MLM to allow252

LMs to memorize entities mentioned in factual253

statements. Formally, Given an input sequence of254

tokens X = [x1, x2, ..., xi, xi + 1, ..., xn] and an255

two-word entity e = [xi, xi + 1]. We convert the256

whole tokens of the entity to one mask token. In257

this case, the masked sequence of tokens X ′ =258

[x1, x2, ..., xi−1, [MASK], xi+2, ..., xn]. Since259

we use symbolic representation, the masked entity260

is in the vocabulary of the LM.261

2.3 Models262

RoBERTa(12L) In this work, we propose a263

Temporal Scope-aware RoBERTa as the temporal264

knowledge base. The temporal scope-aware model265

is initialized from RoBERTa-base (Liu et al., 2019).266

RoBERTa(6L) We prepare a 6-layer temporal267

scope-aware RoBERTa model, initialized from Dis-268

tilRoBERTa (Sanh et al., 2019), to investigate how269

knowledge base capability scales with model size.270

RoBERTa-randinit(12L) (Heinzerling and Inui,271

2021) shows that language models without pre-272

training can memorize more factual statements than273

pre-trained models. However, it only focuses on274

memorizing static and one-to-one relationships. In275

this work, we also prepare a 12-layer temporal276

scope-aware RoBERTa without pre-training to fur-277

ther explore the effect of pre-training in a more278

practical condition.279

2.4 Evaluation Metric280

As there are many queries with multiple answers,281

we use the top-K accuracy (Acc@K) to measure282

how well the model perform on these queries. Top-283

K accuracy is 1 if any of the top k answers are284

included in the answer list, and is 0 otherwise. In285

this work, we use both Acc@1 and Acc@5.286

But top-k accuracy is still limited. Acc@K can287

only measure whether the model can answer the288

queries correctly, but it cannot indicate how many289

correct answers the model has memorized (See290

Appendix C for more details). Therefore, we use291

Hit at top k (Hit@K) to measure whether the model292

has memorized all correct answers. For each query,293

if the masked entity is in the top k answers, Hit@K294

is 1, otherwise is 0. In this work, we use Hit@5295

and Hit@10.296

3 Experiments 297

In this section, we design several experiments to 298

test whether LMs can serve as temporal knowledge 299

bases, including the storage capacity of LMs, as 300

well as the capability of LMs to understand im- 301

plicit temporal knowledge and use stored temporal 302

knowledge for closed-book QA. 303

3.1 Storage Capacity 304

To understand how much temporal knowledge can 305

be stored in a LM, We train prepared models to 306

memorize temporal facts in LAMA-TK. For each 307

fact in LAMA-TK, we mask the subject, object, 308

start time and end time repectively, and generate 309

four masked statements. These masked statements 310

then served as the training data for the LMs to 311

memorize via entity-level MLM, i.e., given the 312

masked statements "[MASK] held the position of 313

president of United States from 2009 to 2017.", the 314

model should predict the masked entity "Barack 315

Obama". 316

We evaluate the storage capacity of a LM by mea- 317

suring how much temporal knowledge in training 318

data can be memorized. For example, if the LM’s 319

training data contains the temporal fact "Barack 320

Obama held the position of president of the United 321

States from 2009 to 2017.", the model should mem- 322

orize the fact and recall the correct answer "pres- 323

ident of United States." with the query "Barack 324

Obama held the position of [MASK] from 2009 to 325

2017.". 326

Note that previous works focus on memorizing 327

static and one-to-one relationships, which makes 328

the task more lightweight, but less practical. In 329

this work, we ask the models to memorize all enti- 330

ties contained in the factual statements. Addition- 331

ally, masking the subject introduces a large amount 332

of conflicting information, which makes this task 333

more challenging. However, this task is more prac- 334

tical because as a temporal knowledge base, the LM 335

will inevitable see conflicting information, from the 336

players in a sport team to the politician who held 337

multiple positions. Storing conflicting information 338

is a basic function that a knowledge base should 339

have (e.g. storing N-M relations). 340

Result Red lines in Fig 2 shows the accuracies of 341

statements memorization with different RoBERTa 342

models. Randomly initialized RoBERTa(12L) has 343

the highest recall accuracy for storing temporal 344

knowledge, correctly answer 83 percent of 2.5 mil- 345

lion masked statements, while the RoBERTa(6L) 346
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Figure 2: Results of statement memorization. We report Acc@1, Acc@5, Hit@5 and Hit@10 of each model. Green
lines show the performances of models trained on LAMA-TK without conflicting information, while red lines show
the performances of models trained on LAMA-TK with conflicting information.

has the lowest recall accuracy, with 0.73 Acc@1.347

As the amount of training data increases, the stor-348

age accuracy of all the models gradually decreases.349

Compared to the RoBERTa(12L), RoBERTa(6L)350

is more difficult to store 2.5 million masked state-351

ments. The result shows that the more parameters352

the model has, the slower the accuracy of state-353

ments memorization decreases. Moreover, by com-354

pare with the pre-trained RoBERTa and the ran-355

domly initialized RoBERTa, it can be found that356

randomly initialized LM shows better storage ca-357

pacity. This is similar to the result of (Heinzerling358

and Inui, 2021).359

Although with the increase of training data, the360

statements memorization accuracy of all models361

gradually decrease, the Hit@k of all models remain362

in a high level. This result shows that LMs can363

memorize all correct answers despite being affected364

by the conflicting information.365

Influence of Conflicting Information To ex-366

plore the influence of conflicting information on367

the storage capacity of language models, we com-368

pare models trained on LAMA-TK with and with-369

out conflicting information. In LAMA-TK with-370

out conflicting information (non-conflict), we re-371

move all masked statements with multiple answers.372

Then we train RoBERTa(6L) and RoBERTa(12L)373

on LAMA-TK without conflicting information and374

record the performance of models.375

Green lines in Fig 2 shows the performances of376

statements memorization without conflicting infor-377

mation. All models can memorize 2 million state-378

ments with over 0.95 Acc@1, which is much better379

than memorizing statements with conflicting infor-380

mation. The drop between memorizing statements381

with and without conflicting information indicates382

that the storage capacity of LMs is greatly affected383

by conflicting information. The accuracy drop of384

RoBERTa(6L) is more than that of RoBERTa(12L)385

Training data 1-1
Acc@1 Acc@5 Hit@5 Hit@10

non-conflict 0.9700 0.9910 0.9910 0.9930
conflict 0.8062 0.9366 0.9366 0.9147

Table 2: One-to-one relationship memorization perfor-
mances of for RoBERTa(12L) trained on 2.48 million
masked statements with and without conflicting infor-
mation.

shows that models with fewer parameters are more 386

susceptible to conflicting information. 387

Moreover, Table 2 shows the influence of con- 388

flicting information on memorizing other one-to- 389

one relationships. The performance drops indicate 390

that conflicting information will hinder the memo- 391

rizing process of other temporal knowledge, even 392

if it is one-to-one relationship. 393

3.2 Temporal Boundary Query 394

From the first experiment, we saw that it is pos- 395

sible for LM to memorize millions of temporal 396

knowledge. We now turn to evaluate the capability 397

of LMs to understand and use temporally-scoped 398

knowledge. First of all we test whether LMs can 399

differentiate between stored timestamps. For ex- 400

ample, if the LM has memorized the fact "Barack 401

Obama held the position of president of the United 402

States from 2009 to 2017", the model should re- 403

call the start time "2009" with the query "Barack 404

Obama was elected president of the United States 405

in [MASK]" or recall the end time "2017" with the 406

query "Barack Obama resigned from president of 407

the United States in [MASK]". 408

In order to ensure that the LMs can memorize 409

all required knowledge, we first sample 100k fact 410

statements with the predicate "position held" from 411

LAMA-TK and mask the start time and the end 412

time respectively. This result in 200k masked fac- 413

tual statements. We train RoBERTa models to 414
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Model Acc@1 Acc@5 Hit@5 Hit@10
RoBERTa(6L) 0.1890∗ 0.4510∗ 0.3849∗ 0.4944∗

RoBERTa-rand(12L) 0.1280 0.3260 0.2614 0.3590
RoBERTa(12L) 0.1226 0.3240 0.2689 0.3596
RoBERTa(12L) dynamic mask 10% 0.3774(+0.2658) 0.7042(+0.3802) 0.6628(+0.3939) 0.7740(+0.4144)
RoBERTa(12L) dynamic mask 100% 0.4879(+0.3653) 0.8367(+0.5127) 0.7611(+0.4922) 0.8838(+0.5242)

Table 3: Performances of RoBERTa models with and without dynamic time masking on 200k time queries in
zero-shot settings. Models above the midrule use orignial masking, while the ones below use dynamic time masking.
Green numbers in the brackets show the improvement dynamic time masking brings compared to RoBERTa(12L)
with original mask. Highest and second-highest scores among all models are boldfaced and underlined. Scores
with asterisk are the highest among models with original masking.

memorized all these statements with 0.99 Acc@1.415

Next, we write cloze-style templates to query416

the start time and the end time mentioned in stored417

facts, such as "S was elected O in [MASK]" and418

"S resigned from O in [MASK]". We use these419

queries to test the capability of the model to under-420

stand the different between temporal scopes. We421

conduct this experiment in zero-shot setting , i.e.,422

the target query templates are not observed during423

training. Zero-shot setting can better show whether424

the model has knowledge transfer capability and425

commonsense reasoning ability.426

Result The results are shown in the first three427

rows of Table 3. In the case where the model has428

fully memorized all required temporal knowledge,429

the model with fewer parameters performs better.430

The performance of RoBERTa(12L) is similar to431

that of RoBERTa-randinit(12L), but both are lower432

than that of RoBERTa(6L).433

Dynamic Time Masking Through the above ex-434

periment, we found that the model’s capability to435

query temporal boundary is not satisfactory (low436

Acc@1). We speculate that this result may be due437

to the strong correlation between temporal scopes.438

Original masking makes the model relies too much439

on the remained timestamp and makes the model440

difficult to query the masked timestamp without441

remained timestamp. For example, we use the442

masked statement "Barack Obama held the position443

of president of the United State from [MASK] to444

2017" to train the model, which make the model’s445

prediction for masked timestamp "2009" exces-446

sively relies on the remained timestamp "2017".447

This makes it hard for LMs to transfer stored tem-448

poral knowledge to new queries and result in the449

model answering these queries with low accuracy.450

To verify this conjecture, we inspired by the451

dynamic masking of RoBERTa (Liu et al., 2019)452

and design a dynamic time masking. As shown453

RoBERTa

Barack Obama held the position of 

president of United States from 2009 to 2017.

Original Mask Dynamic Time mask

90%

10%

train

query

Barack Obama was elected

president of United States in [MASK].

Barack Obama resigned from

president of United States in [MASK].

Barack Obama held the position of 

president of United States from [MASK] to 2017.

Barack Obama held the position of 

president of United States from 2009 to [MASK].

Barack Obama held the position of 

president of United States from [MASK] to 2017.

Barack Obama held the position of 

president of United States from 2009 to [MASK].

2009 2017

Figure 3: Examples of two types of masking and process
of LMs for closed-book QA. The remained timestamps
are underlined. The predicates written in red are new
query templates, which are not observed during training.

in Figure 3, during constructing masked factual 454

statements, we only mask the specific timestamp 455

1-k% of time, and for k% of time we mask the 456

specific timestamp and delete the other time in- 457

formation. To avoid using the same time mask 458

in every epoch, we duplicate the training data 10 459

times so that each statement is masked in 10 dif- 460

ferent ways over 50 epochs of training. Therefore, 461

each statements was seen with the same mask five 462

times during training. 463

Dynamic time masking reduces the strong cor- 464

relation between temporal scopes by adding per- 465

turbation to the other temporal information dur- 466

ing training. In this experiment, We evaluate 467

RoBERTa(12L) with 10% and 100% dynamic time 468

masking. Table 3. show the performace of these 469

models. By adding 10% perturbation, the ac- 470

curacy of RoBERTa(12L) significantly increase 471

to 0.3774 Acc@1, 0.7042 Acc@5. Hit@K of 472

RoBERTa(12L) also increase to a high level. We 473

also evaluate RoBERTa with 100% dynamic time 474

masking, which completely ignore the correlation 475

between start time and end time. RoBERTa with 476

100% dynamic time masking achieved best results 477

both in Acc@k and Hit@k, but 100% dynamic 478
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Model Parameters
Acc@1 / Acc@5 Hit@5 / Hit@10
Template Type Template Type

Original New Original New
RoBERTa(6L) 82M 0.4114 / 0.6521 0.2242 / 0.4115 0.6192 / 0.6993 0.3798 / 0.4540
RoBERTa-rand(12L) 125M 0.4147 / 0.6868 0.0131 / 0.0562 0.6457 / 0.7215 0.0757 / 0.0518
RoBERTa(12L) 125M 0.3440 / 0.5666 0.3113 / 0.5020 0.5281 / 0.6028 0.4698 / 0.5480

Table 4: Results on 20k queries with original query templates and new query templates (original query templates:
"S held the position of O in T.", new query templates: "S served as O in T."). We report Acc@1/Acc@5 and
Hit@5/Hit@10 of each model on two template types.

time masking causes the model unable to associate479

the start time and end time and unable to handle480

the facts such as politicians who held one position481

several times. These results show that dynamic482

time masking can efficiently help the model reduce483

the strong correlation between temporal scopes and484

recall the stored temporal knowledge.485

3.3 Implicit Temporal Knowledge Query486

In this section, we conduct experiments to test487

whether LMs can understand the continuity of488

temporal scopes and use stored implicit temporal489

knowledge for temporal knowledge queries. For ex-490

ample, if the LM has memorized the fact "Barack491

Obama held the position of president of United492

States from 2009 to 2017.", can LM understand493

that for each year between start time and end time,494

Barack Obama was the president of United States.495

Moreover, can LM use this stored implicit tempo-496

ral knowledge to answer the query "Barack Obama497

served as [MASK] in 2012." even if the template498

"S served as O in T" is not seen during training.499

A controlled experiment is designed for this task.500

We choose one predicate "position held" and sam-501

ple all statements generating by template "S held502

the position of O from ST to ET". To distinguish503

whether LM answers these queries by using stored504

knowledge or just by generic association, we in-505

spired by previous work (Heinzerling and Inui,506

2021) and add control facts. Given a fact <S, P,507

O ST, ET>, we add its control <S, P, O’, ST’, ET’>508

involves the same subject S and predicate P, but a509

distinct Object O’. Moreover, we add its control <S,510

P’, O’, ST’, ET’> involves the same subject S but511

distinct predicate P’ and object O’. For example,512

control facts for the fact <Barack Obama, Position513

Held, President of United States, 2009, 2017> are514

the fact <Barack Obama, Position Held, United515

States senator, 2007, 2008> and the fact <Barack516

Obama, award received, Nobel Peace Prize, 2009,517

2009>. To correctly answer the query "Barack518

Obama held the position of [MASK] in 2012.", the519

model needs to consider both the predicate and 520

the temporal scopes, since there are three distinct 521

objects are associated to "Barack Obama". Every 522

temporal fact has at least one control fact. This 523

process result in 20k factual statements. 524

Next, We train RoBERTa models to memorize 525

all these fact statements and construct elaborate 526

queries. For each fact, we randomly select one 527

year between the start year and the end year as the 528

timestamp of the query. We do not consider the 529

start year and the end year because these boundary 530

timestamps can bring prompts to the query. Then 531

we use two types of templates to generate queries. 532

Firstly, we use the Original Template "S held the 533

position of O in T." to generate queries. This tem- 534

plate is also used to generate fact statements for 535

training. Then, we use a New Template "S served as 536

O in T" to generate queries. This template has sim- 537

ilar semantic information to the original template, 538

but it is not seen during training. We use the New 539

Template to test whether LM can transfer stored 540

knowledge into unseen template. This can also be 541

called the robustness of LMs to distinct templates. 542

Result Table 4 shows the performance of dif- 543

ferent LMs on two query templates. For Orig- 544

inal Template, RoBERTa-Randinit(12L) has the 545

highest Acc@k and Hit@k. Compared with 546

RoBERTa(12L), RoBERTa(6L) with fewer param- 547

eters performs slightly better. This result is similar 548

to that of previous experiment, which shows that 549

LMs with fewer parameters seem to have a better 550

capability to use stored temporal knowledge. 551

However, the performance for New Tem- 552

plate shows a distinct result. In the case the 553

query template is not observed during training, 554

the performance of pre-trained RoBERTa(12L) 555

drops little and remains in a high level, with 556

0.3113Acc@1 and 0.5480Hit@10. Conversely, 557

the performance of RoBERTa-rand(12L) signif- 558

icantly declines, with only 0.0131Acc@1 and 559

0.0518Hit@10 .This result shows that pre-trained 560
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LMs have a strong robustness and can trans-561

fer stored knowledge to new templates. Com-562

pared to RoBERTa(12L), RoBERTa(6L) has lower563

performace(0.2242 Acc@1 and 0.4540 Hit@10)564

and drops more(0.4114 Acc@1 to 0.2242Acc@1,565

0.6993 Hit@10 to 0.4540 Hit@10). This result566

shows that the model with more parameters is567

less affected by new query templates and shows568

stronger robustness.569

4 Related work570

Recent research shows that pre-trained langauge571

model such as BERT (Devlin et al., 2019),572

RoBERTa (Liu et al., 2019), T5 (Raffel et al.,573

2020), GPT (Radford et al., 2018) can learn ex-574

tensive world knowledge during pre-training and575

store these factual knowledge into their parame-576

ters. (Petroni et al., 2019) constructs LAMA, a577

set of cloze-style queries such as "Barack Obama578

was born in [MASK]. –> Hawaii", to recall fac-579

tual knowledge contained in Pre-trained LMs such580

as ELMo (Peters et al., 2018) and BERT (Devlin581

et al., 2019). Their results show that PLM con-582

tains factual knowledge and has strong ability to re-583

call stored knowledge without fine-tuning. (Talmor584

et al., 2020) proposes eight cloze-stype reasoning585

tasks such as "Always-Never", "Age COMPARI-586

SON" to test different types knowledge in BERT587

and RoBERTa. While these work focus on probing588

LM in general domain, (Sung et al., 2021) construct589

biomedical factual knowledge dataset BioLAMA590

for probing biomedical LMs, further explore the591

capability of LM as specific-domain Knowledge592

Bases. (Heinzerling and Inui, 2021) conduct ex-593

periments on RoBERTa to evaluate the ability to594

store millions of facts involving millions of enti-595

ties and the ability to query stored facts. Its results596

provide a proof-of-concept for Langauge Model as597

Knowledge Bases. Moreover, (Wang et al., 2019)598

and (Zhou et al., 2020) adopt PLMs on common-599

sense reasoning tasks, indicating that PLM con-600

tains commonsense knowledge. To improve the601

performance of recalling knowledge, (Petroni et al.,602

2020) augments PLM with retrived relevant con-603

text and improve the performance of cloze-stype604

question answers. (Jiang et al., 2020) proposes605

mining-based and paraphrasing-based methods to606

generate high quality prompts, which significant607

improve the performance on LAMA.608

Within the current paradigm of using Masked609

Language Models as Knowledge Bases, research610

has focused more on using Generative Language 611

Models as Knowledge Bases. As Generative Lan- 612

guage Models can generate text sequences of any 613

length, they are more convenient as knowledge 614

bases, since they won’t be limited by the length of 615

the knowledge. (Roberts et al., 2020) fine-tunes 616

the pre-trained T5 model to three QA datasets We- 617

bQuestions (Berant et al., 2013), TriviaQA (Joshi 618

et al., 2017) and NaturalQuestions (Kwiatkowski 619

et al., 2019) without any access to external knowl- 620

edge to test how much knowledge contained in 621

the LM. The results perform competitively with 622

retrival-based systems and indicates that large pre- 623

trained language models contain vast world knowl- 624

edge. (Lewis et al., 2021) argues that language 625

models can complete the closed-book QA tasks 626

well is mostly due to the high test-train overlaps. 627

(Wang et al., 2021) designs knowledge memory 628

task and question answering task on low test-train 629

overlaps datasets to evalute the capability of BART 630

(Lewis et al., 2020) serve as knowledge bases for 631

closed-book QA. The results show that closed-book 632

QA is still challenging for BART, both in memo- 633

rizing the knowledge and answering the questions 634

after memorizing the knowledge. (Dhingra et al., 635

2022) proposes a time-aware T5 model, which 636

jointly modeling the text with its timestamp, and 637

constrcut a new dataset TEMPLAMA probing LMs 638

for temporal facts. Apart from closed-book QA, 639

(Dai et al., 2022) examine cloze task for BERT to 640

identify the neurons that stored specific fact. The re- 641

sults show the provenance of specific knowledge in 642

parameters of the LM. (Zhu et al., 2020) and (Cao 643

et al., 2021) focus on editing stored knowledge 644

without affecting other unmodified facts. These 645

works further explore the capability of language 646

model and expand the function of language models 647

as knowledge bases. 648

5 Conclusion 649

Temporal knowledge is widely exists in real-world 650

knowledge bases. In this work, we extend LM-as- 651

KB paradigm to temporal field and argue that pre- 652

trained LMs have fairly good capability to serve as 653

temporal knowledge bases, in terms of storage ca- 654

pacity, understanding of implicit temporal facts and 655

utilization of stored knowledge. However, our anal- 656

ysis also shows that conflicting information poses 657

great challenges to LM-as-KB paradigm, such as 658

the drop in storage accuracy and the difficulty in 659

recalling multiple answers. 660
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6 Limitations661

Our proposed dataset LAMA-TK takes into ac-662

count temporal scopes of temporal facts and N-M663

relations. But LAMA-TK do not contain ques-664

tions that require complex temporal reasoning, such665

as "First-Last: [MASK] was the first president666

of United States.", "Before-After: [MASK] was667

the the president of United States after Barack668

Obama.". (Saxena et al., 2021) evaluate BERT,669

RoBERTa, KnowBERT and T5 on CronQuestions670

which contained 232K such complex questions, but671

result shows that these large pre-trained langauge672

models perform very poor (lower than 0.01 Hit@1).673

In this work, we propose the temporal scope-674

aware RoBERTa as the temporal knowledge675

base. Compared to T5 (737 million parameters),676

RoBERTa with 12 layers only has 120 million pa-677

rameters. This makes our experiments lightweight.678

Moreover, we train RoBERTa to memorize tem-679

poral facts via masked language modeling (De-680

vlin et al., 2019). It is possible that incorporat-681

ing factual knowledge into pre-trained LMs (Sun682

et al., 2019)(Sun et al., 2020) or augmented LMs683

with a memory bank (Févry et al., 2020)(Verga684

et al., 2020) allow language model memorize fac-685

tual knowledge more efficiently.686

Finally, to explore the capability of langauge687

model to memorize conflicting information (N-M688

relations), we additionally use Hit@K as the evalu-689

ation metric to evaluate how many correct answers690

contained in top-k predictions. However, we do691

not take into account how to distinguish correct an-692

swers from top-k predictions and how many correct693

answers should be recalled for a query. We plan to694

investigate these questions in future work.695
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A Statistics and Example Queries932

Table 5 shows the statistics and example queries933

from LAMA-TK. LAMA-TK contains 638,933934

temporal knowledge. All these temporal facts are935

from Wikidata (the Knowledge Graph of Cron-936

Questions(Saxena et al., 2021) is also from Wiki-937

data). For most relations, we use the prompt tem-938

plate "from ST to ET" to convert temporal scopes to939

natural language texts. However, "award received"940

is an exception. It is not a durative relation, the941

start time of the facts is always equal to the end942

time. Therefore, we use a new prompt template943

"in T" to convert these temporal scopes to texts.944

B Further Analysis on Prompt-based945

Temporal Scope Modeling946

There are some works focurs on jointly modeling947

time and text. Time-aware T5(Dhingra et al., 2022)948

add a time prefix to each text to jointly model time949

and text. For example, "year:2016 Eden Hazard950

plays for Chelsea F.C.". TimeBERT(Rosin et al.,951

2022) adds a time token to the top of the input se-952

quence and design time masking to encode time953

into the models. For example, "<2022> Joe Biden954

serves as the Preisdent of the United States of955

America."956

These works focus on modeling text with one957

timestamp. However, temporal knowledge stored958

in knowledge bases usually contains temporal959

scopes (the start time and the end time). Although960

we can split temporal scopes into years and jointly961

model the years and texts, this splitting process962

will lead to a huge increase in factual statements963

that the model needs to memorize, and introduce a964

large mount of conflicting information. For exam-965

ple, "Bradley Wiggins played for Ineos Grenadiers966

in 2010/2011/.../2015.". Section 3.1 has shown that967

conflicting information can lead to a decrease in968

the storage capacity of language models. There-969

fore, we need to find a joint modeling method that970

can preserve the semantic information of temporal971

scopes and reducing the introduction of conflicting972

information.973

To this end, we design Prompt-based Temporal974

Scope Modeling. We use prompt templates such as975

"from ST to ET" and "in T" to jointly model the tem-976

poral scopes and factual texts. These prepositions977

in the prompt templates augment the semantic infor-978

mation of timestamps. Section 3.2 shows that tem-979

poral scope-aware RoBERTa preserves the tempo-980

ral boundary of factual knowledge, and Section 3.3981

shows that temporal scope-aware RoBERTa can 982

understand the continuity of temporal scopes with- 983

out finetuning. These results provide a proof-of- 984

concept that prompt-based template scope model- 985

ing can indeed model temporally-scoped knowl- 986

edge well. 987

C Limitations of Top-K Accuracy for 988

LM-as-KB tasks 989

Top-K accuracy indicates that whether the top-k 990

predictions contain correct answers. For example, 991

for the query “Michael Houghton received Nobel 992

Prize in Physics in [MASK].”, we assume that the 993

model recalls one correct answer "1956" at top 1 994

and recalls another answer "1972" at top 100. Even 995

if the model cannot effectively recall the correct an- 996

swer "1972", the Acc@1 and Acc@5 to this query 997

is still 1. Therefore, for LM-as-KB tasks, Acc@k 998

can only indicate whether LMs can correctly an- 999

swer the query, but cannot indicate whether LMs 1000

have memorized all correct answers of a query. 1001

In this paper, we use Hit at top k (Hit@K) to 1002

evaluate whether LMs have high confidences in all 1003

correct answers. For the above example query, the 1004

model recalls one correct answer "1956" at top 1 1005

so that Hit@10 for the query "“Michael Houghton 1006

received Nobel Prize in Physics in [MASK]. –> 1007

1956" is 1. However, the model recalls another 1008

correct answer "1972" at top 100 so that Hit@10 1009

for the query "Michael Houghton received Nobel 1010

Prize in Physics in [MASK]. –> 1972" is 0. Hit@K 1011

provide a more comprehensive result for queries 1012

with multiple answers. 1013

D Why not mask the predicate? 1014

In LAMA-TK, we do not mask the predicate be- 1015

cause for most temporal facts, there is close asso- 1016

ciation between the predicate and the object. For 1017

example, given the object "Nobel Prize in Litera- 1018

ture", the model will directly predict the masked 1019

relation to be "award received", since the prediction 1020

for these relations are hardly affected by entities 1021

other than object. 1022
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Relation Name Template Correct Answers

#Relations 7 #Entities 316K #Triples 638K #Timestamps 1601

educated at [X] studied at University of Freiburg from 1928 to 1929
Philip Showalter Hench,

Bernhard Neumann

position held Murray Hill held the position of [Y] from 1968 to 1970
Minister for Transport,

Minister of Roads,

employer Emiliano Aguirre worked for University of Granada from [T] to 1974. 1971

member of sport team Michael Jordan played for Chicago Bulls from 1984 to [T]. 1993

award received Michael Houghton received Nobel Prize in Physics in [T]. 1956, 1972

Table 5: Example queries for different relations from LAMA-TK. Different from previous work, we mask not only
the object, but also the subject and timestamps. Moreover, we reserve all correct answers for each query. [X], [Y],
[T] refers to the masked subject, object, timestamp respectively. The underlined entities are unmasked entities.
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