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Abstract

Recent progress in language models as knowl-
edge bases have shown that language models
can act as structured knowledge bases for stor-
ing relational facts. However, most existing
work only considered LM-as-KB paradigm in a
static setting, which ignores analysis of tempo-
ral dynamics of word knowledge. In this paper,
we introduce a new dataset LAMA-TK, aimed
at probing language models for temporally-
scoped knowledge. We construct cloze state-
ments to query entities and timestamps con-
tained in temporally-scoped facts. To explore
the capability of language models as temporal
knowledge bases, we propose a temporal scope-
aware RoBERTa model and formulate two prac-
tical requirements for treating language models
as temporal knowledge bases: (i) the ability to
store temporal knowledge which contained 1-N
relations. (ii) the ability to query stored tem-
poral facts, including implicit temporal facts.
Experiments show that conflicting information
poses a great challenge to the storage capacity
of language models, although language mod-
els can memorize millions of temporal knowl-
edge with a relatively high accuracy. More-
over, we show that pre-trained language mod-
els can understand implicit temporal knowl-
edge contained in temporal facts and transfer
stored knowledge to new queries with similar
semantics, even if the query templates are not
observed during training.

1 Introduction

Recently, Language models (LMs) such as BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020)
have been suggested as an alternative to world
knowledge bases (Petroni et al., 2019). The pa-
rameters of these models appear to store exten-
sive real-world knowledge during training and the
stored knowledge can be recalled by filling cloze
statements (e.g. "Dani Alves plays with [MASK].
—> Barcelona"). As a result, recent work consid-
ered language model for tasks such as closed-book
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Figure 1: Expansion of LM-as-KB paradigm in tem-
poral domain. We introduce two tasks to further ex-
plore the capability of language model. Firstly, we train
RoBERTa to memorize millions of temporally-scoped
facts and evaluate how much temporal knowledge can
be stored into a language model. Secondly, we test the
ability of language model to understand implicit tem-
poral knowledge and transfer stored knowledge to new
query templates without finetuning.

question answers (Roberts et al., 2020) , automated
fact-checking (Guo et al., 2021) and knowledge-
grounded dialogue systems (Liu et al., 2022)
However, relational facts in world knowledge
often change with time. For example, the fact "Gi-
annis Antetokounmpo played for Filathlitikos." is
true only from 2011 to 2013. These temporally-
scoped facts raise several potential challenges for
language model to store temporal knowledge:

Conflicting Information: During training on
large textual corpus, the model will inevitably see /-
N relations, e.g., "Giannis Antetokounmpo played
for Filathlitikos / Milwaukee Bucks". By limiting
the temporal scopes of facts, the model may see
less conflicting information (Dhingra et al., 2022).
However, conflicting information still exists, from
the players who played for a team in a certain year
to the politician who held multiple positions at
once. These conflicting facts will hinder the mem-
orizing process and cause the model having low
confidences in every correct answers.



Correlation between temporal scopes Tempo-
ral facts usually contain temporal scopes (e.g., the
start and the end time), and there is a strong cor-
relation between these timestamps. For example,
"Shinzo Abe served as the prime minister of Japan
from 2006 to 2007." and "Shinzd Abe served as
the prime minister of Japan from 2012 to 2014."
are two temporally-scoped facts. These facts have
the same subject, object and predicate but different
temporal scopes. As temporal knowledge bases,
LMs need to memorize not only the timestamps
associated with the facts, but also the matching
relationships between timestamps.

Implicit Temporal Knowledge: Temporally-
scoped facts usually contain implicit facts. For
example, the fact "Donald Trump served as the
president of the United States from 2017 to 2021."
contains implicit facts "Donald Trump served as
the president of the United States in 2019." and
"Donald Trump resigned from president of United
States in 2021." These implicit facts are not di-
rectly mentioned in temporally-scoped facts, but
are implied in them.

Temporal facts are common in real-world knowl-
edge bases like Wikidata. However, existing QA
datasets such as LAMA (Petroni et al., 2019),
SQuARD (Rajpurkar et al., 2016), Natural Ques-
tions (Kwiatkowski et al., 2019) focus on a specific
time period, ignoring the temporal dynamics of
world knowledge. Some Knowledge Graph Ques-
tion Answering (KGQA) datasets such as Tem-
pQuestions (Jia et al., 2018), CronQuestions (Sax-
ena et al., 2021) contain thousands of temporal
questions. But these datasets focus on temporal
reasoning and seem too hard for pre-trained LMs
without Knowledge Graph Embeddings augmented
(Saxena et al., 2021). Moreover, Masked LM
evaluation dataset TEMPLAMA (Dhingra et al.,
2022) focuses on querying factual object in a single
timestamp, ignoring the temporal information con-
tained in real-world facts such as the start time and
the end time. Therefore, we propose LAMA-TK
(short for LAnguage Model Analysis for Temporal
Knowledge), a new dataset for probing LMs for
temporal knowledge. LAMA-TK queries tempo-
ral knowledge including entity names and specific
timestamps (e.g. the start time and the end time),
and reserves all correct answers for each factual
statement. Examples from LAMA, TEMPLAMA
and LAMA-TK have been shown in Table 1

Input Target(s)
LAMA

Florence
Antarctica

Dante was born in [MASK].
Bailey Peninsula is located in [MASK].
TEMPLAMA
year: 2012 text: Cristiano Ronaldo plays for _X_.
year: 2019 text: Cristiano Ronaldo plays for _X_.
LAMA-TK

Real Madrid
Juventus FC

Michael Jordan played for [MASK] from 1995 to 1998. Chicago Bulls
Michael Jordan played for [MASK] in 2002. ‘Washington Wizard
Michael Jordan received NBA Most Valuable Player Award 1988, 1991, 1992,

in [MASK]. 1996, 1998

Table 1: Examples from LAMA, TEMPLAMA and
our proposed LAMA-TK. LAMA-TK is a novel dataset
of temporal knowledge statements, which takes into
account entities, temporal scopes and multiple answers.

In order to comprehensively explore the ability
of LMs as temporal knowledge bases, we introduce
two fundamental but practical questions for LMs
as temporal knowledge bases.

First question: What is the storage capacity
of LMs for storing temporal knowledge? What
factors will affect the model’s storage capacity?

For the first question, we use the LAMA-TK and
ask the model to store all temporal entities and tem-
poral scopes contained in temporal facts. Varying
from model scale and recording the storage per-
formance of language models. Results show that
the storage capacity of language model is directly
proportional to the model size, and little affected
by pre-training. We also find that storing tempo-
ral facts with conflicting information is more chal-
lenging than storing static facts or temporal facts
without conflicting information.

Second question: Can language model use
stored temporal knowledge for closed-book QA?
To what extent can LMs understand and use im-
plicit temporal knowledge?

For the second question, we use the LAMA-TK
to measure how well can LMs transfer stored tem-
poral knowledge to temporal knowledge queries in
zero-shot setting, where the target query templates
are not observed during training. These elaborate
queries test how well can language model under-
stand and use the stored temporal knowledge, in-
cluding the ordering and the continuity of temporal
scopes. Results show that pre-trained LMs have a
fairly good capability to understand implicit tem-
poral knowledge, and can transfer stored temporal
knowledge to target queries even if the target query
template has never been seen. Moreover, we found
that adding an appropriate amount of disturbing
to temporal scopes during training can reduce the
over dependence on temporal scopes and improve
the performance on temporal boundary query.



2 Methods

In this section, we detail the construction of
LAMA-TK including the data sources and a set
of natural language queries for probing language
models as temporal knowledge bases, as well as
the models and evaluation metric we use.

2.1 Dataset

LAMA-TK, our new temporally-scoped knowledge
probes dataset consists of two parts: a Knolwedge
Graph (KG) with temporal annotations and a set of
temporal knowledge queries.

2.1.1 Knowledge Sources

CronQuestions CronQuestions (Saxena et al.,
2021) is a dataset for Question Answering over
Knowledge Graph, including a KG with temporal
annotations and a set of temporal questions. There
are 323k facts, 125k entities and 203 relations in
its KG. We selected top 5 most frequent temporally
rich relations and resulted in a KG with 226K facts,
96k entities and 1322 timestamps.

Wikidata Wikidata' is a public knowledge base
that stored massive structured data. We use the
dump of the January 3rd, 2022 version and retrieve
facts which have both a start and an end date using
SPARQL queries. Following the previous work
(Dhingra et al., 2022), we identify the subject and
realtion pairs which have multiple objects at differ-
ent times and select 6 relations with the most such
objects. This result in a KG with 497K facts, 260k
entities, 1132 timestamps.

2.1.2 Temporal Knowledge Queries

According to the above knowledge sources, we
finally construct a KG with 639k facts, 316k en-
tities, 1601 timestamps and 7 relations. Follow-
ing previous works (Jiang et al., 2020) (Dhingra
et al., 2022), we write template for these rela-
tions and convert temporal knowledge to natural
language statements. For example, the temporal
knowledge <Barack_Obama, position_held, presi-
dent_of_the_United_States, 2009, 2017> was con-
verted into natural language statement "Barack
Obama held the position of president of the United
States from 2009 to 2017.". Based on these tex-
tual statements, we designe targeted cloze-style
queries and collect all correct answers for each
query. Statistics and example queries for different
relations have been shown in Appendix A

lwww.wikidata. org

Real-world knowledge contains extensive con-
flicting information, from the players who played
for a sport team to the politicians who held multi-
ple positions. Most of previous works do not take
into account the negative impact of conflicting in-
formation on LMs as knowledge bases. They tend
to explore the LM-as-KB paradigm within one-to-
one relationships (Heinzerling and Inui, 2021) or
only use whether LMs can recall one of the correct
answers ( e.g. Top-K accuracy) to evaluate LMs
, without taking into account whether LMs have
similar confidences in other correct answers. There-
fore, in our proposed LAMA-TK, we additionally
mask the subject of each fact to introduce more
conflicting information. Among the 2.48M masked
factual statements, there are 379K statements with
multiple answers.

2.2 Temporal Scope-Aware Language Model

Based on the contextual language model RoBERTa
(Liu et al., 2019), we propose a Temporal Scope-
aware RoBERTa to explore the capability of lan-
guage models as temporal knowledge bases.

Prompt-based Temporal Scope Modeling To
jointly modeling temporal scopes and text, we
manually write prompt templates for temporal
facts and directly encode temporal scopes in train-
ing process. Given a factual sequence of tokens
X = [z1,x2,..,x,) and its corresponding tempo-
ral scope <ST, ET> (ST i.e. Start Time, ET i.e.
End Time). We use prompt template "from ST to
ET" to convert temporal scope to natural language
text and incorporate this text into the factual se-
quence. In this case, the final factual sequence
X' = [x1,29...,xp, " from”, ST, to”, ET). See
Appendix B for further analysis.

Symbolic Representation However, pre-trained
Masked LM can only handle entities whose names
are in its vocabulary. This result in its inability to
predict entities with multiple words. In this work,
we follow (Heinzerling and Inui, 2021) to store en-
tities by symbolic representation, i.e., augmenting
the vocabulary of LM and represent all the entities
as entries in the vocabulary. The LM will project
the final hidden state of the [MASK] token onto the
vocabulary and take a softmax over the vocabulary
(Heinzerling and Inui, 2021). Although symbolic
representation is computationally expensive, it can
memorize entities with high accuracy and won’t be
affected by the length of the entity name.
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Memorizing Facts via MLM In this work, we
train the model to memorize factual knowledge
via Masked Language Modeling (MLM) (Devlin
et al., 2019). We use an Entity-level MLM to allow
LMs to memorize entities mentioned in factual
statements. Formally, Given an input sequence of
tokens X = [z1,z9,...,z;,x; + 1,..., 2] and an
two-word entity e = [x;, z; + 1]. We convert the
whole tokens of the entity to one mask token. In
this case, the masked sequence of tokens X' =
[z1, 22, ...,x; — 1,[MASK], z; + 2, ..., x,]. Since
we use symbolic representation, the masked entity
is in the vocabulary of the LM.

2.3 Models

RoBERTa(12L) In this work, we propose a
Temporal Scope-aware RoBERTa as the temporal
knowledge base. The temporal scope-aware model
is initialized from RoBERTa-base (Liu et al., 2019).

RoBERTa(6L.) We prepare a 6-layer temporal
scope-aware ROBERTa model, initialized from Dis-
tilRoBERTa (Sanh et al., 2019), to investigate how
knowledge base capability scales with model size.

RoBERTa-randinit(12L) (Heinzerling and Inui,
2021) shows that language models without pre-
training can memorize more factual statements than
pre-trained models. However, it only focuses on
memorizing static and one-to-one relationships. In
this work, we also prepare a 12-layer temporal
scope-aware RoBERTa without pre-training to fur-
ther explore the effect of pre-training in a more
practical condition.

2.4 Evaluation Metric

As there are many queries with multiple answers,
we use the top-K accuracy (Acc@K) to measure
how well the model perform on these queries. Top-
K accuracy is 1 if any of the top k answers are
included in the answer list, and is O otherwise. In
this work, we use both Acc@1 and Acc@5.

But top-k accuracy is still limited. Acc@K can
only measure whether the model can answer the
queries correctly, but it cannot indicate how many
correct answers the model has memorized (See
Appendix C for more details). Therefore, we use
Hit at top k (Hit@K) to measure whether the model
has memorized all correct answers. For each query,
if the masked entity is in the top k answers, Hit@K
is 1, otherwise is 0. In this work, we use Hit@5
and Hit@10.

3 Experiments

In this section, we design several experiments to
test whether LMs can serve as temporal knowledge
bases, including the storage capacity of LMs, as
well as the capability of LMs to understand im-
plicit temporal knowledge and use stored temporal
knowledge for closed-book QA.

3.1 Storage Capacity

To understand how much temporal knowledge can
be stored in a LM, We train prepared models to
memorize temporal facts in LAMA-TK. For each
fact in LAMA-TK, we mask the subject, object,
start time and end time repectively, and generate
four masked statements. These masked statements
then served as the training data for the LMs to
memorize via entity-level MLM, i.e., given the
masked statements "[MASK] held the position of
president of United States from 2009 to 2017.", the
model should predict the masked entity "Barack
Obama".

We evaluate the storage capacity of a LM by mea-
suring how much temporal knowledge in training
data can be memorized. For example, if the LM’s
training data contains the temporal fact "Barack
Obama held the position of president of the United
States from 2009 to 2017.", the model should mem-
orize the fact and recall the correct answer "pres-
ident of United States." with the query "Barack
Obama held the position of [MASK] from 2009 to
2017.".

Note that previous works focus on memorizing
static and one-to-one relationships, which makes
the task more lightweight, but less practical. In
this work, we ask the models to memorize all enti-
ties contained in the factual statements. Addition-
ally, masking the subject introduces a large amount
of conflicting information, which makes this task
more challenging. However, this task is more prac-
tical because as a temporal knowledge base, the LM
will inevitable see conflicting information, from the
players in a sport team to the politician who held
multiple positions. Storing conflicting information
is a basic function that a knowledge base should
have (e.g. storing N-M relations).

Result Red lines in Fig 2 shows the accuracies of
statements memorization with different RoBERTa
models. Randomly initialized RoOBERTa(12L) has
the highest recall accuracy for storing temporal
knowledge, correctly answer 83 percent of 2.5 mil-
lion masked statements, while the RoOBERTa(6L)
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Figure 2: Results of statement memorization. We report Acc@1, Acc@5, Hit@5 and Hit@10 of each model. Green
lines show the performances of models trained on LAMA-TK without conflicting information, while red lines show
the performances of models trained on LAMA-TK with conflicting information.

has the lowest recall accuracy, with 0.73 Acc@1.
As the amount of training data increases, the stor-
age accuracy of all the models gradually decreases.
Compared to the ROBERTa(12L.), RoBERTa(6L)
is more difficult to store 2.5 million masked state-
ments. The result shows that the more parameters
the model has, the slower the accuracy of state-
ments memorization decreases. Moreover, by com-
pare with the pre-trained RoOBERTa and the ran-
domly initialized RoBERTa, it can be found that
randomly initialized LM shows better storage ca-
pacity. This is similar to the result of (Heinzerling
and Inui, 2021).

Although with the increase of training data, the
statements memorization accuracy of all models
gradually decrease, the Hit@k of all models remain
in a high level. This result shows that LMs can
memorize all correct answers despite being affected
by the conflicting information.

Influence of Conflicting Information To ex-
plore the influence of conflicting information on
the storage capacity of language models, we com-
pare models trained on LAMA-TK with and with-
out conflicting information. In LAMA-TK with-
out conflicting information (non-conflict), we re-
move all masked statements with multiple answers.
Then we train RoOBERTa(6L) and RoBERTa(12L)
on LAMA-TK without conflicting information and
record the performance of models.

Green lines in Fig 2 shows the performances of
statements memorization without conflicting infor-
mation. All models can memorize 2 million state-
ments with over 0.95 Acc@1, which is much better
than memorizing statements with conflicting infor-
mation. The drop between memorizing statements
with and without conflicting information indicates
that the storage capacity of LMs is greatly affected
by conflicting information. The accuracy drop of
RoBERTa(6L) is more than that of ROBERTa(12L)

o 1-1
Training data |\ o1 —Acc@s  Hit@s  Hit@10
non-conflict | 0.9700 _ 0.9910 _ 0.9910 _ 0.9930
conflict 0.8062 09366 0.9366 0.9147

Table 2: One-to-one relationship memorization perfor-
mances of for ROBERTa(12L) trained on 2.48 million
masked statements with and without conflicting infor-
mation.

shows that models with fewer parameters are more
susceptible to conflicting information.

Moreover, Table 2 shows the influence of con-
flicting information on memorizing other one-to-
one relationships. The performance drops indicate
that conflicting information will hinder the memo-
rizing process of other temporal knowledge, even
if it is one-to-one relationship.

3.2 Temporal Boundary Query

From the first experiment, we saw that it is pos-
sible for LM to memorize millions of temporal
knowledge. We now turn to evaluate the capability
of LMs to understand and use temporally-scoped
knowledge. First of all we test whether LMs can
differentiate between stored timestamps. For ex-
ample, if the LM has memorized the fact "Barack
Obama held the position of president of the United
States from 2009 to 2017", the model should re-
call the start time "2009" with the query "Barack
Obama was elected president of the United States
in [MASK]" or recall the end time "2017" with the
query "Barack Obama resigned from president of
the United States in [MASK]".

In order to ensure that the LMs can memorize
all required knowledge, we first sample 100k fact
statements with the predicate "position held" from
LAMA-TK and mask the start time and the end
time respectively. This result in 200k masked fac-
tual statements. We train RoBERTa models to



Model Acc@1 Acc@5 Hit@5 Hit@10
RoBERTa(6L) 0.1890" 0.4510" 0.3849" 0.4944
RoBERTa-rand(12L) 0.1280 0.3260 0.2614 0.3590
RoBERTa(12L) 0.1226 0.3240 0.2689 0.3596
RoBERTa(12L) dynamic mask 10% | 0.3774(+0.2658) _ 0.7042(+0.3802) | 0.6628(+0.3930)  0.7740(+0.4144)
RoBERTa(12L) dynamic mask 100% | 0.4879(+0.3653) 0.8367(+0.5127) | 0.7611(+0.4922)  0.8838(+0.5242)

Table 3: Performances of ROBERTa models with and without dynamic time masking on 200k time queries in
zero-shot settings. Models above the midrule use orignial masking, while the ones below use dynamic time masking.
Green numbers in the brackets show the improvement dynamic time masking brings compared to RoOBERTa(12L)
with original mask. Highest and second-highest scores among all models are boldfaced and underlined. Scores
with asterisk are the highest among models with original masking.

memorized all these statements with 0.99 Acc@1.

Next, we write cloze-style templates to query
the start time and the end time mentioned in stored
facts, such as "S was elected O in [MASK]" and
"S resigned from O in [MASK]". We use these
queries to test the capability of the model to under-
stand the different between temporal scopes. We
conduct this experiment in zero-shot setting , i.e.,
the target query templates are not observed during
training. Zero-shot setting can better show whether
the model has knowledge transfer capability and
commonsense reasoning ability.

Result The results are shown in the first three
rows of Table 3. In the case where the model has
fully memorized all required temporal knowledge,
the model with fewer parameters performs better.
The performance of ROBERTa(12L) is similar to
that of RoBERTa-randinit(12L), but both are lower
than that of RoOBERTa(6L).

Dynamic Time Masking Through the above ex-
periment, we found that the model’s capability to
query temporal boundary is not satisfactory (low
Acc@1). We speculate that this result may be due
to the strong correlation between temporal scopes.
Original masking makes the model relies too much
on the remained timestamp and makes the model
difficult to query the masked timestamp without
remained timestamp. For example, we use the
masked statement "Barack Obama held the position
of president of the United State from [MASK] to
2017" to train the model, which make the model’s
prediction for masked timestamp "2009" exces-
sively relies on the remained timestamp "2017".
This makes it hard for LMs to transfer stored tem-
poral knowledge to new queries and result in the
model answering these queries with low accuracy.

To verify this conjecture, we inspired by the
dynamic masking of RoBERTa (Liu et al., 2019)
and design a dynamic time masking. As shown

Barack Obama held the position of
president of United States from 2009 to 2017.
Original Mask Dynamic Time mask
Barack Obama held the position of
president of United States from [MASK] to 2017.

Barack Obama held the position of

9
president of United States from [MASK] to 2017. 90%

Barack Obama held the position of
president of United States from 2009 to [MASK].

train
RoBERTa
query

Barack Obama was elected
president of United States in [MASK].

Barack Obama held the position of

president of United States frem-2009 to [MASK]; 0%

Barack Obama resigned from
president of United States in [MASK].

2009 2017

Figure 3: Examples of two types of masking and process
of LMs for closed-book QA. The remained timestamps
are underlined. The predicates written in red are new
query templates, which are not observed during training.

in Figure 3, during constructing masked factual
statements, we only mask the specific timestamp
1-k% of time, and for k% of time we mask the
specific timestamp and delete the other time in-
formation. To avoid using the same time mask
in every epoch, we duplicate the training data 10
times so that each statement is masked in 10 dif-
ferent ways over 50 epochs of training. Therefore,
each statements was seen with the same mask five
times during training.

Dynamic time masking reduces the strong cor-
relation between temporal scopes by adding per-
turbation to the other temporal information dur-
ing training. In this experiment, We evaluate
RoBERTa(12L) with 10% and 100% dynamic time
masking. Table 3. show the performace of these
models. By adding 10% perturbation, the ac-
curacy of RoBERTa(12L) significantly increase
to 0.3774 Acc@1, 0.7042 Acc@5. Hit@K of
RoBERTa(12L) also increase to a high level. We
also evaluate ROBERTa with 100% dynamic time
masking, which completely ignore the correlation
between start time and end time. ROBERTa with
100% dynamic time masking achieved best results
both in Acc@k and Hit@k, but 100% dynamic



Acc@1 / Acc@5 Hit@5 / Hit@10
Model Parameters Template Type Template Type
Original New Original New
RoBERTa(6L) 82M 0.4114/0.6521 0.2242/0.4115 | 0.6192/0.6993  0.3798 / 0.4540
RoBERTa-rand(12L) 125M 0.4147/0.6868 0.0131/0.0562 | 0.6457/0.7215 0.0757/0.0518
RoBERTa(12L) 125M 0.3440/0.5666  0.3113/0.5020 | 0.5281/0.6028  0.4698 / 0.5480

Table 4: Results on 20k queries with original query templates and new query templates (original query templates:
"S held the position of O in T.", new query templates: "S served as O in T."). We report Acc@1/Acc@5 and

Hit@5/Hit@ 10 of each model on two template types.

time masking causes the model unable to associate
the start time and end time and unable to handle
the facts such as politicians who held one position
several times. These results show that dynamic
time masking can efficiently help the model reduce
the strong correlation between temporal scopes and
recall the stored temporal knowledge.

3.3 Implicit Temporal Knowledge Query

In this section, we conduct experiments to test
whether LMs can understand the continuity of
temporal scopes and use stored implicit temporal
knowledge for temporal knowledge queries. For ex-
ample, if the LM has memorized the fact "Barack
Obama held the position of president of United
States from 2009 to 2017.", can LM understand
that for each year between start time and end time,
Barack Obama was the president of United States.
Moreover, can LM use this stored implicit tempo-
ral knowledge to answer the query "Barack Obama
served as [MASK] in 2012." even if the template
"S served as O in T" is not seen during training.

A controlled experiment is designed for this task.
We choose one predicate "position held" and sam-
ple all statements generating by template "S held
the position of O from ST to ET". To distinguish
whether LM answers these queries by using stored
knowledge or just by generic association, we in-
spired by previous work (Heinzerling and Inui,
2021) and add control facts. Given a fact <S, P,
O ST, ET>, we add its control <S, P, O’, ST, ET’>
involves the same subject S and predicate P, but a
distinct Object O’. Moreover, we add its control <S,
P’, O’, ST’, ET’> involves the same subject S but
distinct predicate P’ and object O’. For example,
control facts for the fact <Barack Obama, Position
Held, President of United States, 2009, 2017> are
the fact <Barack Obama, Position Held, United
States senator, 2007, 2008> and the fact <Barack
Obama, award received, Nobel Peace Prize, 2009,
2009>. To correctly answer the query "Barack
Obama held the position of [MASK] in 2012.", the

model needs to consider both the predicate and
the temporal scopes, since there are three distinct
objects are associated to "Barack Obama". Every
temporal fact has at least one control fact. This
process result in 20k factual statements.

Next, We train RoOBERTa models to memorize
all these fact statements and construct elaborate
queries. For each fact, we randomly select one
year between the start year and the end year as the
timestamp of the query. We do not consider the
start year and the end year because these boundary
timestamps can bring prompts to the query. Then
we use two types of templates to generate queries.
Firstly, we use the Original Template "S held the
position of O in T." to generate queries. This tem-
plate is also used to generate fact statements for
training. Then, we use a New Template "S served as
O in T" to generate queries. This template has sim-
ilar semantic information to the original template,
but it is not seen during training. We use the New
Template to test whether LM can transfer stored
knowledge into unseen template. This can also be
called the robustness of LMs to distinct templates.

Result Table 4 shows the performance of dif-
ferent LMs on two query templates. For Orig-
inal Template, RoBERTa-Randinit(12L) has the
highest Acc@k and Hit@k. Compared with
RoBERTa(12L), RoBERTa(6L) with fewer param-
eters performs slightly better. This result is similar
to that of previous experiment, which shows that
LMs with fewer parameters seem to have a better
capability to use stored temporal knowledge.
However, the performance for New Tem-
plate shows a distinct result. In the case the
query template is not observed during training,
the performance of pre-trained RoBERTa(12L)
drops little and remains in a high level, with
0.3113Acc@1 and 0.5480Hit@10. Conversely,
the performance of RoBERTa-rand(12L) signif-
icantly declines, with only 0.0131Acc@1 and
0.0518Hit@10 .This result shows that pre-trained



LMs have a strong robustness and can trans-
fer stored knowledge to new templates. Com-
pared to RoOBERTa(12L), RoBERTa(6L) has lower
performace(0.2242 Acc@1 and 0.4540 Hit@10)
and drops more(0.4114 Acc@1 to 0.2242Acc@1,
0.6993 Hit@10 to 0.4540 Hit@10). This result
shows that the model with more parameters is
less affected by new query templates and shows
stronger robustness.

4 Related work

Recent research shows that pre-trained langauge
model such as BERT (Devlin et al.,, 2019),
RoBERTa (Liu et al., 2019), T5 (Raffel et al.,
2020), GPT (Radford et al., 2018) can learn ex-
tensive world knowledge during pre-training and
store these factual knowledge into their parame-
ters. (Petroni et al., 2019) constructs LAMA, a
set of cloze-style queries such as "Barack Obama
was born in [MASK]. —> Hawaii", to recall fac-
tual knowledge contained in Pre-trained LMs such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019). Their results show that PLM con-
tains factual knowledge and has strong ability to re-
call stored knowledge without fine-tuning. (Talmor
et al., 2020) proposes eight cloze-stype reasoning
tasks such as "Always-Never", "Age COMPARI-
SON" to test different types knowledge in BERT
and RoBERTa. While these work focus on probing
LM in general domain, (Sung et al., 2021) construct
biomedical factual knowledge dataset BioLAMA
for probing biomedical LMs, further explore the
capability of LM as specific-domain Knowledge
Bases. (Heinzerling and Inui, 2021) conduct ex-
periments on ROBERTa to evaluate the ability to
store millions of facts involving millions of enti-
ties and the ability to query stored facts. Its results
provide a proof-of-concept for Langauge Model as
Knowledge Bases. Moreover, (Wang et al., 2019)
and (Zhou et al., 2020) adopt PLMs on common-
sense reasoning tasks, indicating that PLM con-
tains commonsense knowledge. To improve the
performance of recalling knowledge, (Petroni et al.,
2020) augments PLM with retrived relevant con-
text and improve the performance of cloze-stype
question answers. (Jiang et al., 2020) proposes
mining-based and paraphrasing-based methods to
generate high quality prompts, which significant
improve the performance on LAMA.

Within the current paradigm of using Masked
Language Models as Knowledge Bases, research

has focused more on using Generative Language
Models as Knowledge Bases. As Generative Lan-
guage Models can generate text sequences of any
length, they are more convenient as knowledge
bases, since they won’t be limited by the length of
the knowledge. (Roberts et al., 2020) fine-tunes
the pre-trained TS5 model to three QA datasets We-
bQuestions (Berant et al., 2013), TriviaQA (Joshi
et al., 2017) and NaturalQuestions (Kwiatkowski
et al., 2019) without any access to external knowl-
edge to test how much knowledge contained in
the LM. The results perform competitively with
retrival-based systems and indicates that large pre-
trained language models contain vast world knowl-
edge. (Lewis et al., 2021) argues that language
models can complete the closed-book QA tasks
well is mostly due to the high test-train overlaps.
(Wang et al., 2021) designs knowledge memory
task and question answering task on low test-train
overlaps datasets to evalute the capability of BART
(Lewis et al., 2020) serve as knowledge bases for
closed-book QA. The results show that closed-book
QA is still challenging for BART, both in memo-
rizing the knowledge and answering the questions
after memorizing the knowledge. (Dhingra et al.,
2022) proposes a time-aware TS5 model, which
jointly modeling the text with its timestamp, and
constrcut a new dataset TEMPLAMA probing LMs
for temporal facts. Apart from closed-book QA,
(Dai et al., 2022) examine cloze task for BERT to
identify the neurons that stored specific fact. The re-
sults show the provenance of specific knowledge in
parameters of the LM. (Zhu et al., 2020) and (Cao
et al., 2021) focus on editing stored knowledge
without affecting other unmodified facts. These
works further explore the capability of language
model and expand the function of language models
as knowledge bases.

5 Conclusion

Temporal knowledge is widely exists in real-world
knowledge bases. In this work, we extend LM-as-
KB paradigm to temporal field and argue that pre-
trained LMs have fairly good capability to serve as
temporal knowledge bases, in terms of storage ca-
pacity, understanding of implicit temporal facts and
utilization of stored knowledge. However, our anal-
ysis also shows that conflicting information poses
great challenges to LM-as-KB paradigm, such as
the drop in storage accuracy and the difficulty in
recalling multiple answers.



6 Limitations

Our proposed dataset LAMA-TK takes into ac-
count temporal scopes of temporal facts and N-M
relations. But LAMA-TK do not contain ques-
tions that require complex temporal reasoning, such
as "First-Last: [MASK] was the first president
of United States.", "Before-After: [MASK] was
the the president of United States after Barack
Obama.". (Saxena et al., 2021) evaluate BERT,
RoBERTa, KnowBERT and T5 on CronQuestions
which contained 232K such complex questions, but
result shows that these large pre-trained langauge
models perform very poor (lower than 0.01 Hit@1).

In this work, we propose the temporal scope-
aware RoBERTa as the temporal knowledge
base. Compared to TS5 (737 million parameters),
RoBERTa with 12 layers only has 120 million pa-
rameters. This makes our experiments lightweight.
Moreover, we train RoOBERTa to memorize tem-
poral facts via masked language modeling (De-
vlin et al., 2019). It is possible that incorporat-
ing factual knowledge into pre-trained LMs (Sun
et al., 2019)(Sun et al., 2020) or augmented LMs
with a memory bank (Févry et al., 2020)(Verga
et al., 2020) allow language model memorize fac-
tual knowledge more efficiently.

Finally, to explore the capability of langauge
model to memorize conflicting information (N-M
relations), we additionally use Hit@K as the evalu-
ation metric to evaluate how many correct answers
contained in top-k predictions. However, we do
not take into account how to distinguish correct an-
swers from top-k predictions and how many correct
answers should be recalled for a query. We plan to
investigate these questions in future work.
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A Statistics and Example Queries

Table 5 shows the statistics and example queries
from LAMA-TK. LAMA-TK contains 638,933
temporal knowledge. All these temporal facts are
from Wikidata (the Knowledge Graph of Cron-
Questions(Saxena et al., 2021) is also from Wiki-
data). For most relations, we use the prompt tem-
plate "from ST to ET" to convert temporal scopes to
natural language texts. However, "award received"
is an exception. It is not a durative relation, the
start time of the facts is always equal to the end
time. Therefore, we use a new prompt template
"in T" to convert these temporal scopes to texts.

B Further Analysis on Prompt-based
Temporal Scope Modeling

There are some works focurs on jointly modeling
time and text. Time-aware T5(Dhingra et al., 2022)
add a time prefix to each text to jointly model time
and text. For example, "year:2016 Eden Hazard
plays for Chelsea F.C.". TimeBERT(Rosin et al.,
2022) adds a time token to the top of the input se-
quence and design time masking to encode time
into the models. For example, "<2022> Joe Biden
serves as the Preisdent of the United States of
America."

These works focus on modeling text with one
timestamp. However, temporal knowledge stored
in knowledge bases usually contains temporal
scopes (the start time and the end time). Although
we can split temporal scopes into years and jointly
model the years and texts, this splitting process
will lead to a huge increase in factual statements
that the model needs to memorize, and introduce a
large mount of conflicting information. For exam-
ple, "Bradley Wiggins played for Ineos Grenadiers
in 2010/2011/.../2015.". Section 3.1 has shown that
conflicting information can lead to a decrease in
the storage capacity of language models. There-
fore, we need to find a joint modeling method that
can preserve the semantic information of temporal
scopes and reducing the introduction of conflicting
information.

To this end, we design Prompt-based Temporal
Scope Modeling. We use prompt templates such as
"from ST to ET" and "in T" to jointly model the tem-
poral scopes and factual texts. These prepositions
in the prompt templates augment the semantic infor-
mation of timestamps. Section 3.2 shows that tem-
poral scope-aware RoBERTa preserves the tempo-
ral boundary of factual knowledge, and Section 3.3
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shows that temporal scope-aware RoBERTa can
understand the continuity of temporal scopes with-
out finetuning. These results provide a proof-of-
concept that prompt-based template scope model-
ing can indeed model temporally-scoped knowl-
edge well.

C Limitations of Top-K Accuracy for
LM-as-KB tasks

Top-K accuracy indicates that whether the top-k
predictions contain correct answers. For example,
for the query “Michael Houghton received Nobel
Prize in Physics in [MASK].”, we assume that the
model recalls one correct answer "1956" at top 1
and recalls another answer "1972" at top 100. Even
if the model cannot effectively recall the correct an-
swer "1972", the Acc@1 and Acc@5 to this query
is still 1. Therefore, for LM-as-KB tasks, Acc@k
can only indicate whether LMs can correctly an-
swer the query, but cannot indicate whether LMs
have memorized all correct answers of a query.

In this paper, we use Hit at top k (Hit@K) to
evaluate whether LMs have high confidences in all
correct answers. For the above example query, the
model recalls one correct answer "1956" at top 1
so that Hit@10 for the query "“Michael Houghton
received Nobel Prize in Physics in [MASK]. —>
1956" i1s 1. However, the model recalls another
correct answer "1972" at top 100 so that Hit@ 10
for the query "Michael Houghton received Nobel
Prize in Physics in [MASK]. — 1972" is 0. Hit@K
provide a more comprehensive result for queries
with multiple answers.

D Why not mask the predicate?

In LAMA-TK, we do not mask the predicate be-
cause for most temporal facts, there is close asso-
ciation between the predicate and the object. For
example, given the object "Nobel Prize in Litera-
ture", the model will directly predict the masked
relation to be "award received", since the prediction
for these relations are hardly affected by entities
other than object.



Relation Name Template Correct Answers

#Relations 7 #Entities 316K #Triples 638K #Timestamps 1601

. . . . Philip Showalter Hench,
educated at [X] studied at University of Freiburg from 1928 to 1929
Bernhard Neumann
- . . Minister for Transport,
position held Murray Hill held the position of [Y] from 1968 to 1970
I Minister of Roads,

employer Emiliano Aguirre worked for University of Granada from [T] to 1974. 1971

member of sport team  Michael Jordan played for Chicago Bulls from 1984 to [T]. 1993

award received Michael Houghton received Nobel Prize in Physics in [T]. 1956, 1972

Table 5: Example queries for different relations from LAMA-TK. Different from previous work, we mask not only
the object, but also the subject and timestamps. Moreover, we reserve all correct answers for each query. [X], [Y],
[T] refers to the masked subject, object, timestamp respectively. The underlined entities are unmasked entities.
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