
Seamless transformation from use case to
sequence diagrams
Abdulrahman Alyami1,2, Salvatore Flavio Pileggi2, Osama Sohaib2,3 and
Igor Hawryszkiewycz2

1 Department of Information Systems, College of Computer and Information Sciences, Jouf
University, Sakaka, Saudi Arabia

2 School of Computer Science, University of Technology Sydney, Sydney, Australia
3 School of Business, American University of Ras Al Khaimah, Ras Al Khaimah,
United Arab Emirates

ABSTRACT
System design is an essential subject taught in information systems and has become a
core course in its curriculum. Unified modelling language (UML) has been broadly
adopted, and it is common to support the system design process using different
diagrams. Each diagram serves a purpose by focusing on a specific part of a particular
system. Design consistency ensures a seamless process, as the diagrams are generally
interrelated. However, creating a well-designed system takes a lot of work, especially
for university students with work experience. To overcome this challenge, aligning
the concepts across diagrams is essential, which can help achieve better consistency
and management of the design system, especially in an educational setting. This
article is an extension of our previous work, as we have discussed a simple scenario of
Automated teller machines to demonstrate the alignment concepts between UML
diagrams. From a more technical perspective, the current contribution provides a
Java program that aligns concepts by converting text-based use cases to text-based
sequence diagrams. Then, the text is transformed in PlantUML to generate its
graphical representation. The developed alignment tool is expected to contribute to
helping students and instructors during the system design phases to be more
consistent and practical. Limitations and future work are presented.

Subjects Adaptive and Self-Organizing Systems, Algorithms andAnalysis of Algorithms, Emerging
Technologies, Mobile and Ubiquitous Computing, Software Engineering
Keywords UML, System design, Requirements engineering

INTRODUCTION
System design is essential in computer science and information systems (IS). It has become
a core subject taught in the information systems curriculum for undergraduates and
schools of business. System design is an approach established around the 1970s that
addresses business needs and the technical issues related to software development (Siau
et al., 2021). System design is typically considered a collection of procedures to define the
various system elements and components that adhere to a particular set of requirements
(Hoffer, George & Valacich, 2013). While system analysis includes a process of immersion
and understanding of the users’ experience toward a specific system to improve or design a
new approach based on the required specifications (Alan, Barbara & David, 2002). Thus,
system analysis and design are two topics merged into one course in IS (Kohli & Gupta,

How to cite this article Alyami A, Pileggi SF, Sohaib O, Hawryszkiewycz I. 2023. Seamless transformation from use case to sequence
diagrams. PeerJ Comput. Sci. 9:e1444 DOI 10.7717/peerj-cs.1444

Submitted 31 March 2023
Accepted 26 May 2023
Published 22 June 2023

Corresponding authors
Abdulrahman Alyami,
am.yami@ju.edu.sa
Osama Sohaib,
Osama.Sohaib@uts.edu.au

Academic editor
Tawfik Al-Hadhrami

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.1444

Copyright
2023 Alyami et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1444
mailto:am.�yami@�ju.�edu.�sa
mailto:Osama.�Sohaib@�uts.�edu.�au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1444
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

2002). Teaching in such a discipline could be a bit difficult (Chen, 2005; Cybulski & Linden,
2000), due to various factors, for instance, severe environmental changes, technological
advancements, industry demands, and developing or shifting business trends. These
factors definitely affect the students’ learning process, which necessitates enhancing and
improving teaching methods. In fact, the scientific research and project outputs must be
well-framed and plausible in genuine business environments. At a more educational level,
the emphasis is on integrated skills and designing curricula to educate students to meet the
demands of the present and the future workforce (Scott, 2009; Holdsworth et al., 2008;
Mustaquim & Nyström, 2013; Penzenstadler et al., 2018). Education is seen as a lifelong
process (Blossfeld & von Maurice, 2011), which needs to be continuously developed in line
with evolving personal and professional needs, including but not limited to determining
reality, transferring values, and socializing learners so that they can contribute to their
social development and knowledge advancement. In essence, system design and analysis
are complementary processes. System analysis works at understanding user experience and
input, which can be used to inform the design process, in contrast to system design, which
is focused on developing a blueprint for the system. In order to ensure that the system
satisfies the requirements and is successful in addressing the demands of the users, a mix of
these two approaches is essential. As a result, the system development process for any
system must include both system design and analysis.

Generally, there are two standard modelling approaches in system analysis and design:
(i) the traditional method, known as the structured and (ii) the object-oriented (Harris
et al., 2006). The former consists of two phases, i.e., analysis of the system and then
designing it by using a number of diagrams such as data flow diagrams and entity-
relationship diagrams. The latter is commonly understood as data-centric by using unified
modelling language (UML), which is a set of entities, namely “classes” that encapsulate the
data known as “attributes” as well as the processes “methods” related to every entity (Siau
et al., 2021). UML is a language that was proposed in the 1990s and adopted in practice for
modelling software requirements (Bucchiarone et al., 2020). UML is also seen as a set of
different approaches, such as object-oriented notations known as object-oriented design,
object modeling technique, and object-oriented software engineering (Gomaa, 2006). UML
has been broadly adopted in the teaching system analysis and design (Burton & Bruhn,
2004; Tanner & Scott, 2015), which combines different diagrams to represent a system’s
behaviors and features. Typically, a single diagram is a graphical representation of a
particular part of the target system. Ultimately, a system model includes several diagrams
to illustrate the target design.

Furthermore, the model might incorporate or connect to additional descriptions or
documentation related to different stages of the development process (Baumeister et al.,
2003; Duursma, Olsson & Ulf, 1993). However, the link among these stages by multiple
diagrams should be more consistent regarding the adopted concepts to provide better
system management and a seamless process. More specifically, some UML diagrams
share standard information in terms of concepts and elements. The outcome of a diagram
can be an input for another diagram. Accordingly, considering the design consistency
among the relevant UML diagrams results in better teaching system design and seamless

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 2/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

outcomes (Harris et al., 2006), which supports system development and design whether
in learning, teaching or systems design.

This article is an extension of our previous work (Alyami, Pileggi & Hawryszkiewycz,
2021), as we have discussed and analyzed a simple scenario of (ATM) to demonstrate the
alignment of concepts between UML diagrams (i.e., use case and sequence diagrams)
theoretically. Our research goal in this article is to use concept alignment to establish
consistent system design across UML diagrams. This study has the potential to make a
substantial contribution to the field of system design by establishing a consistent approach
to UML diagrams and aligning concepts. Increased output, better teamwork, and a
decrease in development-related errors are all advantages of using a consistent design
approach. In general, this research goal has the potential to significantly advance the study
of system design and its real-world applications. Transformation of the use case diagram
into a sequence diagram has already been addressed in earlier and recent previous studies
(Alami, Arman & Khamayseh, 2020; Khan &Mahmood, 2016;Murti, 2022; Sarma, Kundu
& Mall, 2007; Sawprakhon & Limpiyakorn, 2014; Swain, Mohapatra & Mall, 2010; Thakur
& Gupta, 2014). However, the difference is that this work takes the same perspective but
considers the alignment of concepts between relevant diagrams. We propose a new way
and easy seamless process of doing the transformation. We have used a text-based diagram
generation language known as PlantUML (Brown, 2020), rather than using the traces in
the extensible markup language (XML) format like previous approaches (Conrad,
Scheffner & Freytag, 2000; Rambhia, 2002). This work focuses on text-to-text-based
transformation using aligning concepts. In other approaches, transformation is based on
traversing the diagram element by element, designed graphically and generated with XML
format. A Java program is developed to convert text-based use cases to the text-based
sequence diagram. Then, the text is transformed in PlantUML to generate its graphical
representation. During the system design process, turning a use case diagram into a
sequence diagram can be helpful. This is due to the fact that it permits a more in-depth
examination of the relationships between the different system components, which then
identifies potential for improving resource efficiency and minimizing environmental
impact. In order to identify opportunities for improving resource consumption and
reducing environmental impact, use case and sequence diagram alignment can offer a
more thorough picture of how the system’s actors and components interact.

The article is structured into five sections. The second section reviews previous research
on the subject, while the third section explores the alignment concepts between the target
diagrams. The fourth section outlines the methodology employed in conducting the study,
and the fifth section provides an overview of how the PlantUML tool works. Finally, the
sixth section details the implementation process and presents the findings of the alignment
tool, followed by the conclusion.

RELATED WORK
According to Jyothi & Rao (2011), UML is a fundamental modeling language that is both
robust and versatile. It enables specialists to use diverse diagrams during various system
development process phases, improving the process as a whole. The most well-known

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 3/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

UML diagrams were assembled by Reggio et al. (2013) using data from a number of books,
online tools, courses, and training programs. The target system is designed using these
UML diagrams, which concentrate on distinct traits and facets. To adapt relevant
information and spread it throughout several stages of the development process, it is
frequently required to trace or align these diagrams (Nistala & Kumari, 2013). Several
studies (Barmi, Ebrahimi & Feldt, 2011; Nistala & Kumari, 2013; Sousa & Do Prado Leite,
2014) suggest that traceability and alignment are largely interchangeable terms in the
context of software development. The term “traceability” often refers to recording the flow
of information (Jyothi & Rao, 2011; Kirova et al., 2008). Beyhl, Berg & Giese (2013)
explored the benefits of traceability in innovative engineering processes, as it can aid in the
successful execution of new concepts for products and services. Jyothi & Rao (2011)
proposed various tracing strategies for extreme programming (Lindstrom & Jeffries, 2004)
and scrum methodologies (Permana, 2015), some of which involve requirements. Agile
methodologies place great importance on the model development process, while
traceability and alignment are critical for developing more productive system models
(Molenaar et al., 2020). Additionally, seamless alignment concepts are relevant for model
transformation within the agile development process (Jyothi & Rao, 2011; Marlowe &
Kirova, 2008).

There are various methods for model transformation suggested by Selonen, Koskimies &
Sakkinen (2003). Memon et al. (2019) create a method for moving data from UML class
diagrams to another model with a focus on idea traceability. Additionally,Hue et al. (2019)
and Hue, Hanh & Binh (2018) offer a technique for automatically and methodically
generating test cases from developed use cases. Yoshino &Matsuura (2020) offer a method
for identifying the specifications that must be included in computer programs in order for
them to automatically transfer data from an activity diagram and produce a sequence
diagram. A method for automatic model transition has also been put forth in Ramesh,
Kanth & Rao (2016). The process of data transformation used rules to develop an entity
relationship diagram and create structured query language from unified modeling
language class diagram. Segundo, Herrera & Herrera (2007) suggest a technique for
teaching students and fresh analysts how to create sequence diagrams based on
descriptions provided by a natural language. Moreover, Souza et al. (2015) apply an
approach known as the semi-automatic transformation, which is supported also by a
number of transformation criteria. Furthermore, Yue, Briand & Labiche (2010) focuses on
developing traceability connections between the system requirements and the created
diagrams. Traceability is important in software development because it helps engineers
comprehend the connections between different software system artifacts (Molenaar et al.,
2020). A technique suggested in Khan & Mahmood (2016) to facilitate and streamline the
transition from need to artifact design. The design thinking methodology can also be used
in the innovation process to foster creativity (Alyami & Hawryszkiewycz, 2020; Beyhl, Berg
& Giese, 2013). Since concepts from diverse tools must be linked to give a uniform design
in this circumstance, alignment and traceability are extremely crucial. Liu, Xu & Zou
(2018) list two significant benefits of tracing the requirements: (i) it provides direction
while making model changes, and (ii) it enhances how the final model is presented to users.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 4/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

The importance of idea alignment across UML diagrams in the context of education with a
focus on system design hasn't been specifically discussed in the literature, to the authors’
knowledge.

ALIGNMENT OF CONCEPT PERSPECTIVE
Concept alignment is the recognition and definition of semantic equivalences between
concepts from various diagrams so that they can be interpreted as a consolidated
knowledge source for the design. The design process improves the seamlessness of the
target system by matching the adopted concepts directly. Syntactic alignment and
semantic alignment are the two types of alignment that can be distinguished (Branigan,
Pickering & Nass, 2003; Brockmans et al., 2006). Semantic alignment refers to inexplicit
mapping by focusing on equivalent concepts among the different components; for
example, actors in a use case diagram can be the exact as objects in a sequence diagram.
However, the interactions among the objects in a sequence diagram can be aligned
indirectly with the identified description of the use case diagram.

In our previous work (Alyami, Pileggi & Hawryszkiewycz, 2021), we emphasized two
diagrams (i.e., use case and sequence). We discussed an example to emphasize the
importance of aligning concepts during the system design process. Many studies from our
previous literature published inHarris et al. (2006) illustrated that the consistency between
use case and sequence diagrams facilitates a better system design. Additionally, other
contributions endorsed the consistency of such diagrams, reported in Alami, Arman &
Khamayseh (2020), Khan & Mahmood (2016), Sarma, Kundu & Mall (2007) and
Sawprakhon & Limpiyakorn (2014). Accordingly, we have developed a syntactic alignment
between use case and sequence diagrams to help students and instructors during the
system design phases. We believe the syntactic alignment has contributed to speeding up
the process of development, which eventually supports the design to be more consistent
and effective.

At a general level, alignment is more about using the basic terms from the use case and
mapping them in a sequence diagram. A use case diagram typically includes different
essential elements:

� Use cases represent characteristics needed in the target system.

� Each use case indicates further descriptions of the scenario.

� An actor who triggers use cases.

� A communication line is a connection between an actor and the use case.

In contrast, a sequence diagram contains objects and communication sequences.
Sequences are collections of organized interactions among several objects. These
interactions are numbers that describe how the system’s stages should proceed. Sequence
diagrams are often the realization of use cases in sequential order for the system being
created. As a result, Table 1 provides the direct alignment from the use case diagram to the
sequence diagram in terms of syntax.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 5/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Once more, in our previous work, we illustrated the process of the alignment concepts
with a simple case study in detail as clients use an ATM system to carry out the transition
from their bank accounts. The ATM scenario is a common example that has been adopted
in previous studies (Alami, Arman & Khamayseh, 2020; El-Attar, 2011;Haugen et al., 2005;
Panigrahi et al., 2018; Ullah, Faiz & Haleem, 2022; Whittle & Schumann, 2000).
Nevertheless, Figs. 1 and 2 depict the final outcome of the aligned concepts from the use
case to sequence diagrams. These figures are recalled from our previous work with a minor
modification to meet the implementation requirements (Alyami, Pileggi &
Hawryszkiewycz, 2021).

Following the alignment principles defined in Table 1, Fig. 1 shows the use cases and the
interaction between the actor “customer” and the ATM system. Looking at the first use
case, “Validate the Customer” has the association steps (i.e., insert card, prompt pin code
and enter pin code). The actors of the use case are considered the objects of sequence
diagrams, while the association steps in the use case are set as the interactions of the
sequence diagram. Then the links of the use cases are represented as the direction of the
interaction in the sequence diagram, as shown in Fig. 2. Ultimately, the sequence diagram
in Fig. 2 is generated from the use cases in Fig. 1 by following the exact alignment

Table 1 Alignment of use case and sequence diagrams.

Use case diagram Sequence diagram

Actors Objects

Associations Interactions

Links Directions of interactions

Figure 1 Customer’s use cases and interactions with the ATM system.
Full-size DOI: 10.7717/peerj-cs.1444/fig-1

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 6/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-1
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

principles. More descriptions can be found in our previous work (Alyami, Pileggi &
Hawryszkiewycz, 2021), as we have generated a single sequence diagram for each use case
presented in Fig. 1.

The following section presents the methodology of the current contribution, which
focuses more on implementing the alignment tool by the Java program and the PlantUML
to generate the graphical representation.

MATERIALS AND METHODS
This section presents the methodology and the process adopted to implement the
alignment tool. The tool is developed using three open-source software. These are Java
programming language (Oracle, 2012), Eclipse modeling framework (Eclipse Foundation,
2015) and PlantUML (PlantUML, 2015).

Java is a general-purpose and high-level object oriented programming (OOP) language
(Oracle, 2012). Java lets the programmers write once and run anywhere (WORA), meaning
it needs to be compiled once and executed on all platforms that support Java (Kramer, Joy
& Spenhoff, 1996). The platforms need a Java virtual machine (JVM) (Craig, 2006). JAVA
language does not come with its IDE for development. Eclipse modeling framework is used
as an IDE for Java development (Geer, 2005).

Eclipse is an integrated development environment (IDE) that supports several
programming languages for development. It comes with several plugins for customizing
the environment. This IDE is written in Java and is widely used by Java developers. It
supports several other languages (Kastner et al., 2009), including but not limited to Ada,
ABAP, C, C++, PHP, Perl, Prolog, Python, and Mathematica. Here, Eclipse IDE is used for
writing Java code. Eclipse is chosen here because it supports both Java and PlantUML
software tools and is lightweight.

PlantUML is used to code the use case diagram textually by following the syntax of the
language (Brown, 2020). PlantUML is also used to generate the graphical representation of
the diagrams. Java is a general-purpose object-oriented programing language. It codes the

Figure 2 Created sequence diagram based on use cases. Full-size DOI: 10.7717/peerj-cs.1444/fig-2

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 7/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-2
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

transformation from the use case to the sequence diagram. PlantUML is used to create
diagrams from plain text. PlantUML is also used to allow blind people to design UML
diagrams (Muller, 2012). It is also termed a domain-specific language. PlantUML is
developed in Java language and comes with the Eclipse Plugin.

At a methodological level, this study achieves the seamless transformation based on
traversing the diagram element by element, designed graphically and generated with XML
format. A Java program is developed to convert text-based use cases to the text-based
sequence diagram. Then the text is transformed in PlantUML to generate its graphical
representation. The approach involves a step-by-step traversal of the diagram elements,
initially designed graphically and generated in an XML format. The transformation
process involves a Java program that converts text-based use cases to text-based sequence
diagrams, followed by the transformation of the text using PlantUML to generate a
graphical representation. A methodical approach to diagram transformation ensures that
the process is repeatable, consistent and accurate. Traversing the diagram element by
element ensures that no information is lost during the transformation process. This is
particularly important when dealing with complex diagrams with many interconnected
elements. Developing a Java program to convert text-based use cases to text-based
sequence diagrams provides a standardized approach to the transformation process. This
approach reduces the manual effort required to create the diagrams and ensures that the
transformation process is consistent and reliable. It also enables the automation of the
transformation process, which can further increase efficiency.

Using PlantUML to generate the graphical representation of the diagrams ensures that
the resulting diagrams are consistent with industry standards. PlantUML provides a range
of diagramming features that can be customized to suit the project’s specific requirements.
Additionally, the resulting diagrams can be easily shared and reviewed by stakeholders,
ensuring that everyone involved in the project clearly understands the system design.

The following section explains the process of generating the graphical representation of
a use case diagram and a sequence diagram using PlantUML.

PLANT UML
While preparing documents, using a word processor like Microsoft Word or opt for LaTeX
is always a choice. Microsoft works like what you see is what you get. However, LaTeX
functions embedding text within the list of commands and compiling it will yield the
document. In Microsoft Word, a small change can affect the document’s formatting, while
in LaTeX, the focus can only be kept on the content rather than formatting. A similar
choice we get in using the PlantUML tool. UML diagrams are often developed using
graphical tools, including but not limited to Microsoft Visio, Rational Rose, StarUML, and
Enterprise Architects (Khaled, 2009). All such tools use the drag and drop of elements for
building diagrams. PlantUMl is a tool used to create UML diagrams from plain text
language. In PlantUML, UML diagrams are written down instead of drawn from elements.
The language used to write these diagrams can be called application-specific because it only
works with PlantUML. It can also be described as a scripting language for UML diagrams.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 8/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

PlantUML is an open-source tool, and it also comes with plug-ins to be added to several
popular platforms and tools such as Eclipse, Net Beans, LaTeX, Microsoft Word, and PHP.

In the following section, we explore some basic syntax of the PlantUML coding
language to understand how it works. First, each block of the code has to start and end
statements @startuml and @enduml, respectively. These two statements are common for
all diagrams that are being designed. The code between these two statements contains the
code of the relevant diagram for which we shall write the statements (Madanayake, Dias &
Kodikara, 2017).

The following subsections outline the basic syntax of creating the use case diagram,
followed by the sequence diagram.

Use case diagram
Elements of the use case diagram can be expressed as follow:

Use cases
Use cases can be defined with the keyword ‘usecase’ or by just enclosing within the
parenthesis without mentioning the keyword ‘usecase’. Furthermore, usecase can be
defined with an alias by writing the keyword with ‘as’ followed by the alias you want it to
be associated with. This alias is used while describing the relationship with the actors. A
sample code is given in Fig. 3A, while the diagram generated from the code is shown in
Fig. 3B.

Actors
An actor can be defined by either enclosing within colons or can be prefixed with the
keyword ‘actor’. Similar to use cases, it can also be specified with an alias by appending the
word ‘as’ followed by the alias you want it to be associated with. This alias is used while
defining the relationship with the use cases. A sample code is given in Fig. 4A, while the
diagram generated from the code is displayed in Fig. 4B.

Different styles can represent actors in the diagram. The default style is ‘Stick man’;
other types include ‘Awesome man’ and ‘Hollow man’.

Figure 3 Use case names scenario. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-3

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 9/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-3
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Use case description
Use cases can be added with a description that spans across several lines. Quotes can be
used to add the description. Separators can separate description. Following are the type of
separators supported by the PlantUML:

--(dashes)

.. (periods)

== (equals)

__ (underscores)

Figure 5B, shows the generated diagram from the code presented in Fig. 5A.

Relationships
The symbol of an arrow --> is used to define the relationship between actors and use cases.
The more dashes in the arrow, the longer will be the size of the arrow. The link between the
actor and the use case can be set as vertically or horizontally in the diagram. A sample code
is given in Fig. 6A, while the generated diagram from the code is shown in Fig. 6B.

The direction and type of the link between the actor and the use case can be changed
from left to right. Furthermore, the style of the arrow can also be changed from a
continuous line to a dotted line. A sample code is given in Fig. 7A, while the generated
diagram from the code is shown in Fig. 7B.

Figure 4 Use case actors. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-4

Figure 5 Use case description. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-5

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 10/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-4
http://dx.doi.org/10.7717/peerj-cs.1444/fig-5
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Apart from these elements, there are other elements supported by PlantUML, for
instance, package, extension, notes, stereotypes, and splitting diagrams. However, these are
not objects of this work. Further information can be referred to PlantUML guide
(Sasidharan, 2016).

The following section is dedicated to illustrating the elements of the sequence diagram.

Figure 6 Relationships. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-6

Figure 7 Direction and type of the relationship. (A) Sample code. (B) Diagram generated from the
code. Full-size DOI: 10.7717/peerj-cs.1444/fig-7

Figure 8 Sequence diagram. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-8

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 11/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-6
http://dx.doi.org/10.7717/peerj-cs.1444/fig-7
http://dx.doi.org/10.7717/peerj-cs.1444/fig-8
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Sequence diagram
In the main, the sequence diagram consists of participants and messages. Participants are
not declared explicitly in the sequence diagram as actors, which are displayed in the use
case diagram. For messages, directed arrows -> and double dashed arrows --> are used. A
Sample code is given in Fig. 8A, and the generated diagram from the code is presented in
Fig. 8B.

Declaring participant
Declaring the participant is optional. However, declaring it will provide more power and
control to it. For example, the participant’s shape can be changed from default to its
corresponding user class. These shapes include actor, boundary, control, entity, database,
collections and queue. Participants can be renamed using ‘as’ keyword.

Message to self
A message can be sent from one participant to another and to itself. At the same time, it
can include multi-line messages.

Message sequence number
Every message that is sent from one participant to another must be numbered. There are
two ways to number the message. Either it can be given manually, or it should be
autogenerated to add numbers. The keyword used is called ‘autonumber’. A sample
program is given in Fig. 9A, and the generated diagram from the code is shown in Fig. 9B.

IMPLEMENTATION AND RESULTS
The complete internal structure of the tool containing the alignment process of use case to
sequence diagram is illustrated in Fig. 10. The alignment tool mainly consists of four steps.
The first step is to program the use case diagram in plain text. The second step is
generating a graphical representation of the use case diagram from plain text. This second
step is optional, not mandatory and can be omitted. However, it is necessary to visualize
the diagram graphically to verify whether it is correctly programmed. The third step is
generating a text-based sequence diagram from a text-based use case diagram. This step is

Figure 9 Message sequence number. (A) Sample code. (B) Diagram generated from the code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-9

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 12/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-9
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

the core of the alignment process. Finally, the fourth step is developing a graphical
representation of the sequence diagram from the text generated in the third step.

A further explanation of each step is explained one by one in the following sections.

Step 1: write the text for the use case diagram
The first step of the alignment tool is to program the use case diagram in PlantUML text-
based language. The same case study of the ATM scenario is used to test our theoretical
alignment concept addressed in previous work and summarized in “Related Work”.

Here the use case diagram is coded in plain text for the same running example of the
ATM scenario. The complete program is given below.

1. @startuml

2. left to right direction

3. actor Customer

4. actor ATM

5. actor BankSystem

6. usecase UC1 as “1.VALIDATE THE CUSTOMER.

7. ==

8. <size:10>Insert Card</size>

9. --

10. <size:10>Prompt Pin Code </size>

11. --

12. <size:10>Enter Pin Code </size>”

13. Customer-->UC1

14. UC1<--ATM

15. usecase UC2 as “2.AUTHENTICATION.

16. ==

17. <size:10>Check Pin Code </size>

18. --

19. <size:10> Reply </size>

20. --

21. "

22. ATM-->UC2

23. UC2<--BankSystem

24. usecase UC3 as “3.CHECK BALANCE.

25. ==

26. <size:10>Prompt Access Status </size>

27. --

28. <size:10>Check Amount </size>

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 13/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

29. --"

30. Customer-->UC3

31. UC3<--ATM

32. usecase UC4 as “4.CHECK AMOUNT.

33. ==

34. <size:10> Check Database </size>

35. --

36. <size:10> Reply </size>

37. --”

38. ATM-->UC4

39. UC4<--BankSystem

40. usecase UC5 as “5.TRANSFER FUNDS.

41. ==

42. <size:10> Prompt Amount </size>

43. --

44. <size:10> Transfer Funds </size>

45. --”

46. Customer-->UC5

47. UC5<--ATM

48. usecase UC6 as “6.PERFORM TRANSFER.

49. ==

50. <size:10> Update Database </size>

51. --

52. <size:10> Transfer Confirmation </size>

53. --”

54. ATM-->UC6

55. UC6<--BankSystem

56. @enduml

Line 1 is the beginning of the program. Line 2 enforces the left-to-right direction of the
arrow instead of the default behavior of top to bottom. Lines 3 to 5 are the declaration of
the actors. From lines 6 to 14 are the first use case of “VALIDATE THE CUSTOMER”.
Line 6 is the declaration of the use case. Lines 7 to 12 are the links of use cases. Lines 13 and
14 are the use case links with the actors: Customer and ATM. Lines 15 to 23 are the second
use case “AUTHENTICATION”. Lines 24 to 31 are the third use case “CHECK
BALANCE”. Lines 32 to 39 are the fourth use case “CHECK AMOUNT”. Lines 40 to 47
are the fifth use case “TRANSFER FUNDS”. Lines 48 to 55 are the sixth use case
“PERFORM TRANSFER”. Finally, line 56 is the end of the program.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 14/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Step 2: create a use case diagram from the code
The code of the use case diagram is explained in the first step, which would be written in a
simple notepad or any WordPad file and then saved as a text file with a .txt extension (e.g.,
usecase.txt). To create the graphical representation of the text file, a PlantUML Java batch
file is executed. PlantUML batch file can be downloaded from PlantUML’s official website
or from several websites that allow creating the diagrams online, such as https://www.
plantuml.com/plantuml/uml. The PlantUML batch file and the use case diagram text
should be in the same folder. The next step is to right-click the batch file and click edit. A
new editable window would appear. Just write the following command in the file ‘java-jar
plantuml.jar usecase.txt’, followed by saving and closing the file, as shown in Fig. 11.

Afterward, double-click the batch file, and within a few seconds, a new PNG file will
appear in the same folder containing the PlantUML batch file and usecase.txt file. That
PNG file would be the graphical representation of the use case diagram. For the code given

Figure 10 The internal structure of the tool. Full-size DOI: 10.7717/peerj-cs.1444/fig-10

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 15/26

https://www.plantuml.com/plantuml/uml
https://www.plantuml.com/plantuml/uml
http://dx.doi.org/10.7717/peerj-cs.1444/fig-10
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

in the first step, the following PNG file is created, as shown in Fig. 12. As mentioned earlier,
Eclipse IDE also comes with the PlantUML plugin. Therefore, the graphical representation
can also be viewed in the IDE. However, the authors did not find the plugin to be stable
while implementing this tool, and encountered problems.

Step 3: alignment from use case text to sequence text
The third and most important step is the generation of sequence diagram code from the
use case diagram code given in step 1, considering the perspective of aligning concepts
between the target diagrams. A visual illustration of the tool is presented in Fig. 13.

The alignment tool is implemented in Java, which takes the usecase.txt file as input and
generates the corresponding sequence diagram text file ‘sequence.txt’ output. The
alignment code is programmed in Eclipse IDE that follows alignment principles as
explained in previous work and recalled in “Related Work”. After executing the Java file, it
automatically generates the following code below.

1. @startuml

2. Customer->ATM: 1. Insert Card

3. ATM->Customer: 2. Prompt Pin Code

Figure 11 The process of using PlantUML. Full-size DOI: 10.7717/peerj-cs.1444/fig-11

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 16/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-11
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

4. Customer->ATM: 3. Enter Pin Code

5. ATM->BankSystem : 4. Check Pin Code

6. BankSystem ->ATM: 5. Reply

7. Customer->ATM: 6. Prompt Access Status

8. ATM->Customer: 7. Check Amount

9. ATM->BankSystem: 8. Check Database

10. BankSystem->ATM: 9. Reply

11. Customer->ATM: 10. Prompt Amount

12. ATM->Customer: 11. Transfer Funds

13. ATM->BankSystem: 12. Update Database

14. BankSystem->ATM: 13. Transfer Confirmation

15. @enduml

In this code, line 1 is the beginning of the program, and from Lines 2 to 14 are all
interactions of the use cases that have now become the messages between the objects. Line
15 is the end of the program. Contrary to the use case diagram, messages are encapsulated
in the body of each use case, followed by the actors who interact with that use case. In the
sequence diagram, each interaction is specified with the objects that belong to it, as well as
its direction from where it initiates and ends.

The pseudocode of this algorithm is listed in Table 2. It starts with the initialization of
variables corresponding to the use case file, sequence file and an array of strings. The array
of strings is used to store exact relevant elements of the use case in order to use them for
sequence diagram generation. Afterwards, a loop is applied to read the usecase.txt file line
by line until the file ends. The algorithm uses the traceability mechanism for each use case
until it finishes all the use cases before the file ends. The algorithm searches for the string
use case in the file and records the start of the use case. Then it searches for the <size:10>
and </size> strings to record the associations (links) of that use case in the array of strings
after storing all the associations of use cases. It then looks for --> string and <-- string,
respectively, to extract the exact actors performing that use case and their left, and right
position of the string is correctly recorded. This process is repeated until the end of the file
is reached, and all the information is recorded in the string.

The next step is to generate a sequence diagram by extracting the information from the
array of strings and putting it into the sequence.txt file accordingly. Another loop is used
until the end of the array of strings. For each use case, the association becomes the
interaction and left-side and right-side strings stored in the array become the objects of the
sequence diagram. This process is repeated until the end of the string. Finally, the
@endUML string is added to the sequence diagram to close the diagram, which is the end
of the algorithm.

Step 4: creating sequence diagram from the generated code
The last and final step of the tool is to visualize what was generated by our java program in
the third step. When the tool yields the sequence.txt file, similar to the first step, the

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 17/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Figure 13 Generation of sequence diagram code from use case diagram code.
Full-size DOI: 10.7717/peerj-cs.1444/fig-13

Figure 12 Graphical use case diagram generated by PlantUML for the ATM scenario code. Full-size DOI: 10.7717/peerj-cs.1444/fig-12

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 18/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-13
http://dx.doi.org/10.7717/peerj-cs.1444/fig-12
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Table 2 Algorithm to transform use case diagram to sequence diagram.

Input: Usecase.txt file that contains the code in PlantUML of Use case diagram

Output: Sequence.txt file that contains the code in PlantUML sequence diagram

1 Initialization of variables: readfile = usecase.txt, writefile = sequence.txt and string array interaction

2 write @staruml in the beginning of interaction array

3 while (readfile.readline() not equal to null) do

4 read one line from the usecase.txt file

5 search the string usecase in the line

6 try

7 extract usecase from the line

8 catch

9 search the string for <size:10> and </size>

10 try

11 extract Interaction between <size:10> and </size>

12 store in interaction array

13 catch

14 search the string for -->

15 try

16 if string contains --> then

17 extract left side string of -->

18 store in interaction array

19 else do nothing

20 catch

21 search the line string for <--

22 try

23 if string contains <-- then

24 extract right side string of <--

25 store in interaction array

26 else do nothing

27 catch

28 end

29 create the sequence.txt file in writefile

30 write @staruml in writefile

31 for (each use case in the interaction string)

32 write left side string of --> in the writefile

33 write the symbol --> in the writefile

34 write right side of string of --> in the writefile

35 end for loop

36 write @enduml in the end of writefile

37 close writefile

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 19/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

PlantUML batch file will create the diagram. The exact process will be applied as previously
used to generate a use case diagram graphical representation. The PlantUML batch and
sequence diagram text files should be in the same folder. The next step is to right-click the
batch file and click edit. A new editable window will appear. Write the following command
in the file ‘java-jar plantuml.jar sequence.txt’, then save and close it. Afterward, double-
click the batch file, and within a few seconds, a new PNG file will appear in the same folder
containing the PlantUML batch file and sequence.txt file. That PNG file will be the
graphical representation of the sequence diagram. The following PNG file is created for the
code generated in the third step, as shown in Fig. 14.

CONCLUSION
The article highlights the use of PlantUML, a text-based diagram generation language, for
the text-to-text-based transformation of use case diagrams to sequence diagrams. This
approach differs from previous approaches that relied on XML format traces and focused
on the element-by-element traversal of graphical diagrams. Instead, this work aligns
concepts between text-based use cases and text-based sequence diagrams. The
contribution of this study includes, firstly, it allows for a more flexible and customizable
approach to diagram creation as the constraints of graphical design tools do not limit it.
Secondly, it facilitates better collaboration and easier management of changes.

Figure 14 Sequence diagram created by PlantUML for the code generated by the alignment tool.
Full-size DOI: 10.7717/peerj-cs.1444/fig-14

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 20/26

http://dx.doi.org/10.7717/peerj-cs.1444/fig-14
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Moreover, text-based transformation enables the creation of diagrams in multiple
formats, making themmore accessible to a broader range of users. Using a Java program to
convert text-based use cases to text-based sequence diagrams provides a standardized
approach to diagram creation, which can be easily automated, reducing manual effort and
increasing efficiency. Aligning the concepts of use case and sequence diagrams in a text-
based format allows for more accessible translation between the two formats, as they share
common elements such as actors, actions, and messages. This approach also allows for
better integration with other text-based software engineering tools, such as code
generation tools.

In conclusion, the text-to-text-based transformation using aligning concepts of use case
diagrams to sequence diagrams using PlantUML is a promising approach that offers
several benefits over previous methods. Its flexibility, standardization, and integration with
other software engineering tools make it valuable for diagram creation and transformation.

In the educational context, aligning concepts between the relevant diagrams helps
strengthen the system specification requirements, resulting in a seamless process.
Additionally, the alignment concepts offer a more unified approach that enables better
control of the system complexity over the different phases of the target design. Overall, the
aligning concepts among homogeneous diagrams should be considered for providing a
seamless process, which is the focus of our current study.

The limitation of this work is that certain features of the diagrams of both use cases and
sequences need to be implemented. Our current focus is on the primary and essential
features. Additionally, writing the code of the use case diagram needs to be followed in the
same way explained in this article to avoid unnecessary errors. Future work will involve
extending the alignment of the sequence diagram to the collaboration diagram. This is
because the two diagrams have similar ideas and components, such as elements and objects
(Dobing & Parsons, 2006). The collaboration diagram portrays objects and their
relationships, illustrating how they interact with one another.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Osama Sohaib is an Academic Editor for PeerJ Computer Science.

Author Contributions
� Abdulrahman Alyami conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Salvatore Flavio Pileggi conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 21/26

http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

� Osama Sohaib performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

� Igor Hawryszkiewycz conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The text code for the scenario discussed in the article is available in Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1444#supplemental-information.

REFERENCES
Alami N, Arman N, Khamayseh F. 2020. Generating sequence diagrams from Arabic user

requirements using MADA+TOKAN tool. International Arab Journal of Information
Technology 17(1):65–72 DOI 10.34028/iajit/17/1/8.

Alan D, Barbara HW, David T. 2002. System analysis and design: an objective-oriented approach
with UML. Hoboken: Wiley.

Alyami A, Hawryszkiewycz I. 2020. Evaluating design thinking teaching. In: EDULEARN20
Proceedings. IATED, 7063–7068.

Alyami A, Pileggi SF, Hawryszkiewycz I. 2021. Enhancing and consolidating requirements
specification in teaching system design by aligning concepts from heterogeneous diagrams.
EDULEARN21 Proceedings 1:132–141 DOI 10.21125/edulearn.2021.0061.

Barmi ZA, Ebrahimi AH, Feldt R. 2011. Alignment of requirements specification and testing: a
systematic mapping study. In: Proceedings—4th IEEE International Conference on Software
Testing, Verification, and Validation Workshops, ICSTW 2011. Piscataway: IEEE, 476–485.

Baumeister H, Koch N, Kosiuczenko P, Wirsing M. 2003. Extending activity diagrams to model
mobile systems. In: Aksit M, Mezini M, Unland R, eds. Objects, Components, Architectures,
Services, and Applications for a Networked World. NODe 2002. Lecture Notes in Computer
Science. Vol. 2591. Berlin, Heidelberg: Springer, 278–293 DOI 10.1007/3-540-36557-5_21.

Beyhl T, Berg G, Giese H. 2013. Why innovation processes need to support traceability. In: 2013
7th International Workshop on Traceability in Emerging Forms of Software Engineering, TEFSE
2013—Proceedings. Piscataway: IEEE, 1–4.

Blossfeld H-P, von Maurice J. 2011. 2 Education as a lifelong process. Zeitschrift für
Erziehungswissenschaft 14(S2):19–34 DOI 10.1007/s11618-011-0179-2.

Branigan HP, Pickering MJ, Nass C. 2003. Syntactic alignment between computers and people:
the role of belief about mental states coordinating utterances during turn-taking view project
joint naming view project. 186–191. Available at https://www.researchgate.net/publication/
228918560 (accessed 2 March 2021).

Brockmans S, Ehrig M, Koschmider A, Oberweis A, Studer R. 2006. Semantic alignment of
business processes. In: ICEIS 2006—8th International Conference on Enterprise Information
Systems, Proceedings. Cary: SAS, 191–196.

Brown. 2020. Modelling software architecture with plant UML. Available at https://dev.to/
simonbrown/modelling-software-architecture-with-plantuml-56fc (accessed 11 October 2022).

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 22/26

http://dx.doi.org/10.7717/peerj-cs.1444#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1444#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1444#supplemental-information
http://dx.doi.org/10.34028/iajit/17/1/8
http://dx.doi.org/10.21125/edulearn.2021.0061
http://dx.doi.org/10.1007/3-540-36557-5_21
http://dx.doi.org/10.1007/s11618-011-0179-2
https://www.researchgate.net/publication/228918560
https://www.researchgate.net/publication/228918560
https://dev.to/simonbrown/modelling-software-architecture-with-plantuml-56fc
https://dev.to/simonbrown/modelling-software-architecture-with-plantuml-56fc
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Bucchiarone A, Cabot J, Paige RF, Pierantonio A. 2020. Grand challenges in model-driven
engineering: an analysis of the state of the research. Software and Systems Modeling 19(1):5–13
DOI 10.1007/s10270-019-00773-6.

Burton PJ, Bruhn RE. 2004. Using UML to facilitate the teaching of object-oriented systems
analysis and design. Journal of Computing Sciences in Colleges 19(3):278–290
DOI 10.5555/948835.948863.

Chen B. 2005. Teaching systems analysis and design: bringing the real world into classroom. In:
Proceedings of ISECON.

Conrad R, Scheffner D, Freytag JC. 2000. XML conceptual modeling using UML. In:
Laender AHF, Liddle SW, Storey VC, eds. Conceptual Modeling — ER 2000. ER 2000. Lecture
Notes in Computer Science. Vol. 1920. Berlin, Heidelberg: Springer Verlag, 558–571
DOI 10.1007/3-540-45393-8_40.

Craig ID. 2006. The Java virtual machine. In: Virtual Machines. London: Springer. Available at
http://www.ic.uff.br/~cbraga/comp/ch5-inside-jvm.pdf.gz.

Cybulski JL, Linden T. 2000. Teaching systems analysis and design using multimedia and patterns.
In: Software Engineering Education Conference, Proceedings. Piscataway: IEEE, 113–122.

Dobing B, Parsons J. 2006. How UML is used. Communications of the ACM, Association for
Computing Machinery, 109–113. Available at www.omg.org (accessed 26 April 2023).

Duursma C, Olsson O, Ulf S. 1993. Task model definition and task analysis process. In: ESPRIT
Project P5248 KADS-II CK-VUB-04. Vrije Universiteit Brussel. Available at https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=cc5c3b32de69f00ed2259e91b1da88ab3a578c33.

Eclipse Foundation. 2015. EMF: eclipse modeling framework. Ottawa: The Eclipse Foundation.

El-Attar M. 2011. A systematic approach to assemble sequence diagrams from use case scenarios.
In: ICCRD2011—2011 3rd International Conference on Computer Research and Development. 4:
Piscataway: IEEE, 171–175.

Geer D. 2005. Eclipse becomes the dominant Java IDE. Computer 38(7):16–18
DOI 10.1109/MC.2005.228.

Gomaa H. 2006. Designing concurrent, distributed, and real-time applications with UML. In:
Proceedings—International Conference on Software Engineering. Piscataway: IEEE Computer
Society, 1059–1060.

Harris AL, Lang M, Oates B, Siau K. 2006. Systems analysis & design: an essential part of IS
education. Journal of Information Systems Education 17(3):241–248.

Haugen Ø, Husa KE, Runde RK, Stølen K. 2005. STAIRS towards formal design with sequence
diagrams. Software and Systems Modeling 4(4):355–357 DOI 10.1007/s10270-005-0087-0.

Hoffer JA, George JF, Valacich JS. 2013. Modern systems analysis and design, global edition.
London, UK: Pearson, 553.

Holdsworth S, Wyborn C, Bekessy S, Thomas I. 2008. Professional development for education for
sustainability: how advanced are Australian universities? International Journal of Sustainability
in Higher Education 9(2):131–146 DOI 10.1108/14676370810856288.

Hue CTM, Dang DH, Binh NN, Truong AH. 2019. USLTG: test case automatic generation by
transforming use cases. International Journal of Software Engineering and Knowledge
Engineering 29(9):1313–1345 DOI 10.1142/S0218194019500414.

Hue CTM, Hanh DD, Binh NN. 2018. A transformation-based method for test case automatic
generation from use cases. In: Proceedings of 2018 10th International Conference on Knowledge
and Systems Engineering, KSE 2018. Piscataway: IEEE, 252–257.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 23/26

http://dx.doi.org/10.1007/s10270-019-00773-6
http://dx.doi.org/10.5555/948835.948863
http://dx.doi.org/10.1007/3-540-45393-8_40
http://www.ic.uff.br/~cbraga/comp/ch5-inside-jvm.pdf.gz
www.omg.org
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cc5c3b32de69f00ed2259e91b1da88ab3a578c33
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cc5c3b32de69f00ed2259e91b1da88ab3a578c33
http://dx.doi.org/10.1109/MC.2005.228
http://dx.doi.org/10.1007/s10270-005-0087-0
http://dx.doi.org/10.1108/14676370810856288
http://dx.doi.org/10.1142/S0218194019500414
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Jyothi V, Rao K. 2011. Effective implementation of agile practices. Development 2(3):41–48
DOI 10.14569/IJACSA.2011.020308.

Kastner C, T€hum T, Saake G, Feigenspan J, Leich T, Wielgorz F, Apel S. 2009. FeatureIDE: a tool
framework for feature-oriented software development. In: Proceedings—International
Conference on Software Engineering. Piscataway: IEEE, 611–614.

Khaled L. 2009. A comparison between UML tools. In: 2nd International Conference on
Environmental and Computer Science, ICECS 2009. Piscataway: IEEE, 111–114.

Khan YA, Mahmood S. 2016. Generating UML sequence diagrams from use case maps: a model
transformation approach. Arabian Journal for Science and Engineering 41(3):965–986
DOI 10.1007/s13369-015-1926-0.

Kirova V, Kirby N, Kothari D, Childress G. 2008. Effective requirements traceability: models,
tools, and practices. Bell Labs Technical Journal 12(4):143–157 DOI 10.1002/bltj.20272.

Kohli R, Gupta JND. 2002. Effectiveness of systems analysis and design education: an exploratory
study. Journal of End User Computing 14(3):16–31 DOI 10.5555/958110.958121.

Kramer D, Joy B, Spenhoff D. 1996. The Java™ platform. Palo Alto: JavaSoft.

Lindstrom L, Jeffries R. 2004. Extreme programming and agile software development
methodologies. Information Systems Management 21(3):41–52
DOI 10.1201/1078/44432.21.3.20040601/82476.7.

Liu H, Xu Z, Zou Y. 2018. Deep learning based feature envy detection. In: ASE 2018—Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
Piscataway: IEEE, 385–396.

Madanayake RS, Dias GKA, Kodikara ND. 2017. Transforming simplified requirement in to a
UML use case diagram using an open source tool. International Journal of Computer Science and
Software Engineering 6(3):61–70.

Marlowe T, Kirova V. 2008. Addressing change in collaborative software development: process
and product agility and automated traceability. In: WMSCI 2008—The 12th World Multi-
Conference on Systemics, Cybernetics and Informatics, Jointly with the 14th International
Conference on Information Systems Analysis and Synthesis, ISAS 2008—Proceedings. 1:209–215.

Memon MA, Hassan Z, Dahri K, Shaikh A, Nizamani MA. 2019. Aspect Oriented UML to
ECOREModel Transformation. The ISC International Journal of Information Security 11(3):97–
103 DOI 10.22042/isecure.2019.11.0.13.

Molenaar S, Spijkman T, Dalpiaz F, Brinkkemper S. 2020. Explicit alignment of requirements
and architecture in agile development. In: Madhavji N, Pasquale L, Ferrari A, Gnesi S, eds.
Requirements Engineering: Foundation for Software Quality. REFSQ 2020. Lecture Notes in
Computer Science. Vol. 12045. Cham: Springer, 169–185 DOI 10.1007/978-3-030-44429-7_13.

Muller K. 2012.How to make unified modeling language diagrams accessible for blind students. In:
Miesenberger K, Karshmer A, Penaz P, Zagler W, eds. Computers Helping People with Special
Needs. ICCHP 2012. Lecture Notes in Computer Science. Vol. 7382. Berlin, Heidelberg: Springer,
186–190 DOI 10.1007/978-3-642-31522-0_27.

Murti K. 2022. UML for embedded systems. In: Design Principles for Embedded Systems.
Transactions on Computer Systems and Networks. Singapore: Springer, 119–153
DOI 10.1007/978-981-16-3293-8_5.

Mustaquim MM, Nyström T. 2013. Designing sustainable it system—from the perspective of
universal design principles. In: Stephandis C, Antona M, eds. Universal Access in Human-
Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion:
Proceedings, Part I. Berlin, Heidelberg: Springer, 77–86.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 24/26

http://dx.doi.org/10.14569/IJACSA.2011.020308
http://dx.doi.org/10.1007/s13369-015-1926-0
http://dx.doi.org/10.1002/bltj.20272
http://dx.doi.org/10.5555/958110.958121
http://dx.doi.org/10.1201/1078/44432.21.3.20040601/82476.7
http://dx.doi.org/10.22042/isecure.2019.11.0.13
http://dx.doi.org/10.1007/978-3-030-44429-7_13
http://dx.doi.org/10.1007/978-3-642-31522-0_27
http://dx.doi.org/10.1007/978-981-16-3293-8_5
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Nistala P, Kumari P. 2013. Establishing content traceability for software applications: an approach
based on structuring and tracking of configuration elements. In: 2013 7th International
Workshop on Traceability in Emerging Forms of Software Engineering, TEFSE 2013—
Proceedings. Piscataway: IEEE, 68–71.

Oracle. 2012. The Java programming language platforms. Vol. 29. Boston: Addison Wesley, 3–6.

Panigrahi SS, Shaurya S, Das P, Swain AK, Jena AK. 2018. Test scenarios generation using UML
sequence diagram. In: Proceedings—2018 International Conference on Information Technology,
ICIT 2018. Piscataway: IEEE, 50–56.

Penzenstadler B, Betz S, Venters CC, Chitchyan R, Porras J, Seyff N, Duboc L, Becker C. 2018.
Everything is INTERRELATED: teaching software engineering for sustainability. Proceedings—
International Conference on Software Engineering 18:153–162 DOI 10.1145/3183377.

Permana PAG. 2015. Scrum method implementation in a software development project
management. International Journal of Advanced Computer Science and Applications
6(9):198–204.

PlantUML. 2015. PlantUML: open-source tool that uses simple textual descriptions to draw UML
diagrams. Available at http://plantuml.com/ (accessed 9 November 2022).

Rambhia A. 2002. XML distributed systems design. Indianapolis: SAMS.

Ramesh G, Kanth TR, Rao AA. 2016. An extended model driven framework for end-to-end
consistent model transformation. Indian Journal of Computer Science and Engineering
7(4):118–132.

Reggio G, Leotta M, Ricca F, Clerissi D. 2013. What are the used UML diagrams? A Preliminary
Survey. In: EESSMod@ MoDELS. 3–12. Available at https://ceur-ws.org/Vol-1078/paper1.pdf.

Sarma M, Kundu D, Mall R. 2007. Automatic test case generation from UML sequence diagrams.
In: Proceedings of the 15th International Conference on Advanced Computing and
Communications, ADCOM 2007. Piscataway: IEEE, 60–65.

Sasidharan DK. 2016. Drawing UML with PlantUML. PlantUML Language Reference Guide.
Available at https://deepu.js.org/svg-seq-diagram/Reference_Guide.pdf.

Sawprakhon P, Limpiyakorn Y. 2014. Sequence diagram generation with model transformation
technology. In: Proceedings of the International MultiConference of Engineers and Computer
Scientists. Available at https://www.iaeng.org/publication/IMECS2014/IMECS2014_pp584-589.
pdf.

Scott RH. 2009. Sustainable curriculum, sustainable university. 2. Available at https://ro.ecu.edu.
au/eculture/vol2/iss1/15/ (accessed 15 January 2023).

Segundo CLM, Herrera CRR, Herrera KYP. 2007.UML sequence diagram generator system from
use case description using natural language. In: Electronics, Robotics and Automotive Mechanics
Conference, CERMA, 2007—Proceedings. Piscataway: IEEE, 360–363.

Selonen P, Koskimies K, Sakkinen M. 2003. Transformations between UML diagrams. Journal of
Database Management 14(3):37–55 DOI 10.4018/jdm.2003070103.

Siau K, Woo C, Story VC, Chiang RHL, Chua CEH, Beard JW. 2021. Information systems
analysis and design: past revolutions, present challenges, and future research directions.
Communications of the Association for Information Systems 44:123–148
DOI 10.17705/1CAIS.05037.

Sousa HP, Do Prado Leite JCS. 2014.Modeling organizational alignment. Cham: Springer Verlag,
407–414.

Souza FCDe, Antonio F, Giorno DC, Paulo S. 2015. Automatic generation of sequence diagrams
and updating domain model from use cases. In: SOFTENG 2015: The First International

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 25/26

http://dx.doi.org/10.1145/3183377
http://plantuml.com/
https://ceur-ws.org/Vol-1078/paper1.pdf
https://deepu.js.org/svg-seq-diagram/Reference_Guide.pdf
https://www.iaeng.org/publication/IMECS2014/IMECS2014_pp584-589.pdf
https://www.iaeng.org/publication/IMECS2014/IMECS2014_pp584-589.pdf
https://ro.ecu.edu.au/eculture/vol2/iss1/15/
https://ro.ecu.edu.au/eculture/vol2/iss1/15/
http://dx.doi.org/10.4018/jdm.2003070103
http://dx.doi.org/10.17705/1CAIS.05037
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

Conference on Advances and Trends in Software Engineering. Available at http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.695.8194&rep=rep1&type=pdf (accessed 15 October 2020).

Swain SK, Mohapatra DP, Mall R. 2010. Test case generation based on use case and sequence
diagram. International Journal of Software Engineering 3(2):21–52.

Tanner M, Scott E. 2015. A flipped classroom approach to teaching systems analysis, design and
implementation. Journal of Information Technology Education: Research 14(2015):219–241
DOI 10.28945/2266.

Thakur JS, Gupta A. 2014. Automatic generation of sequence diagram from use case specification.
In: ACM International Conference Proceeding Series. New York: Association for Computing
Machinery.

Ullah U, Faiz RB, Haleem M. 2022.Modeling and verification of authentication threats mitigation
in aspect-oriented mal sequence woven model. PLOS ONE 17(7):e0270702
DOI 10.1371/journal.pone.0270702.

Whittle J, Schumann J. 2000. Generating statechart designs from scenarios. In: Proceedings—
International Conference on Software Engineering. New York: Association for Computing
Machinery, 314–323.

Yoshino K, Matsuura S. 2020. Requirements traceability management support tool for UML
models. In: Proceedings of the 2020 9th International Conference on Software and Computer
Applications. 163–166.

Yue T, Briand LC, Labiche Y. 2010. Automatically deriving UML sequence diagrams from use
cases. Simula Research Laboratory. Technical Report. Available at https://www.researchgate.net/
profile/Yvan-Labiche/publication/260385472_Automatically_Deriving_UML_Sequence_
Diagrams_from_Use_Cases/links/547fce970cf2ccc7f8bb0655/Automatically-Deriving-UML-
Sequence-Diagrams-from-Use-Cases.pdf.

Alyami et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1444 26/26

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.8194&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.8194&rep=rep1&type=pdf
http://dx.doi.org/10.28945/2266
http://dx.doi.org/10.1371/journal.pone.0270702
https://www.researchgate.net/profile/Yvan-Labiche/publication/260385472_Automatically_Deriving_UML_Sequence_Diagrams_from_Use_Cases/links/547fce970cf2ccc7f8bb0655/Automatically-Deriving-UML-Sequence-Diagrams-from-Use-Cases.pdf
https://www.researchgate.net/profile/Yvan-Labiche/publication/260385472_Automatically_Deriving_UML_Sequence_Diagrams_from_Use_Cases/links/547fce970cf2ccc7f8bb0655/Automatically-Deriving-UML-Sequence-Diagrams-from-Use-Cases.pdf
https://www.researchgate.net/profile/Yvan-Labiche/publication/260385472_Automatically_Deriving_UML_Sequence_Diagrams_from_Use_Cases/links/547fce970cf2ccc7f8bb0655/Automatically-Deriving-UML-Sequence-Diagrams-from-Use-Cases.pdf
https://www.researchgate.net/profile/Yvan-Labiche/publication/260385472_Automatically_Deriving_UML_Sequence_Diagrams_from_Use_Cases/links/547fce970cf2ccc7f8bb0655/Automatically-Deriving-UML-Sequence-Diagrams-from-Use-Cases.pdf
http://dx.doi.org/10.7717/peerj-cs.1444
https://peerj.com/computer-science/

	Seamless transformation from use case to sequence diagrams
	Introduction
	Related work
	Alignment of concept perspective
	Materials and Methods
	Plant uml
	Implementation and results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

