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Abstract— Learning from demonstration (LfD) has the poten-
tial to greatly increase the applicability of robotic manipulators
in modern industrial applications. Recent progress in LfD
methods have put more emphasis in learning robustness than in
guiding the demonstration itself in order to improve robustness.
The latter is particularly important to consider when the target
system reproducing the motion is structurally different to the
demonstration system, as some demonstrated motions may
not be reproducible. In light of this, this paper introduces
a new guided learning from demonstration paradigm where
an interactive graphical user interface (GUI) guides the user
during demonstration, preventing them from demonstrating
non-reproducible motions. The key aspect of our approach
is determining the space of reproducible motions based on a
motion planning framework which finds regions in the task
space where trajectories are guaranteed to be of bounded
length. We evaluate our method on two different setups with a
six-degree-of-freedom (DOF) URS as the target system. First
our method is validated using a seven-DOF Sawyer as the
demonstration system. Then an extensive user study is carried
out where several participants are asked to demonstrate, with
and without guidance, a mock weld task using a hand held tool
tracked by a VICON system. With guidance users were able
to always carry out the task successfully in comparison to only
44% of the time without guidance.

I. INTRODUCTION

In modern industrial robotic manipulator applications there
is a desire for greater autonomy through adaptability to
novel tasks without requiring time consuming and costly
reprogramming. Unlocking this potential would present the
factories of tomorrow with the opportunity to shift from
mass production towards mass customisation [1]. Learning
from demonstration (LfD) methods are a promising direction
for achieving this autonomy [2]. LfD enables non-robot
experts to intuitively program robots that reproduce motions
with high precision. However, often LfD methods limit this
potential by restricting the demonstration to occur on the
system reproducing the motion, for example via kinaesthetic
teaching or teleoperation in order to guarantee faithful mo-
tion reproduction [3], [4], [5], [6], [7], [8]., [9], [10].

We are interested in removing this restriction and allow-
ing the demonstration and target systems to be different.
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Fig. 1: Our proposed guided learning from demonstration
approach with interactive GUI (inset) showing regions of
reproducible motions to the demonstrator based on the kine-
matics of the target robot system. The demonstrator shown
here is a non-expert and is carrying out the demonstration
without the physical robot present.

Motivating use-cases include the following: demonstrating
tasks naturally by tracking human motion directly or with
an unconstrained tool detached from the robot, carrying out
demonstrations in parallel while the target robot executes
other tasks, and demonstrating on a smaller/safer robot in
order to carry out dangerous or labour intensive tasks with
a more powerful robot.

The challenge in this scenario is that there is no longer a
direct mapping between the demonstration and target systems
due to their differing kinematic structures. A common strat-
egy is to encode the demonstration as the robot’s end-effector
trajectory. Doing so provides a common representation of the
motion that can be interpreted by the target system [11], [12].
However, in these settings the kinematic discrepancy is often
ignored or worked around by utilising a redundant robot for
motion reproduction [13], [14], [15], [16]. These robots have
more degrees of freedom (DOF) than the dimension of the
task space [17] and can utilise null-space control methods in
order to satisfy kinematic constraints, such as avoiding obsta-
cles, singularities and joint limits, whilst maintaining faithful
reproduction of the demonstrated end-effector motion [2].

In many applications a non-redundant arm may be prefer-
able over a redundant arm, for example a six-DOF over a
seven-DOF, due to being relatively lower cost, exhibiting
higher payload-to-weight ratio and having simpler kinemat-
ics for control and planning. However, these arms cannot
exploit null-space control [17] due to their kinematic struc-
ture and as a consequence may require large joint changes
between intermediate points of a demonstrated trajectory in
order to satisfy kinematic constraints.



Hence the only option is to artificially restrict the motions
of the demonstrator. While there exists work along this line
through the form of graphical user interfaces (GUI) [18] and
augmented reality [19], [20], [21], these methods usually
consider only verifying, adjusting or adding loosely defined
workspace and task constraints which do not directly con-
sider the kinematic constraints of the target system.

In this paper we formulate a new guided learning from
demonstration problem which explicitly considers these kine-
matic constraints and prevents non-reproducible motions
from being demonstrated. To compute the space of re-
producible motions we leverage an existing motion plan-
ning framework called Hausdorff approximation planner
(HAP) [22] which finds regions in the task space where
trajectories are guaranteed to be of bounded length. A novel
interactive graphical user interface (GUI) then visualises
this space to the user at demonstration time. Our GUI is
intuitive and requires no expert knowledge about the target
system from the demonstrator (see Fig. 1). For encoding
and reproducing demonstrated motions, we use Cartesian
space Dynamic Movement Primitives (CDMPs) [23] which
facilitate a common representation space.

We evaluate our method in a workbench environment on
two sets of experiments with a six-DOF URS as the target
system. First our method is validated using a seven-DOF
Sawyer as the demonstration system. Then an extensive user
study is carried out where several participants are asked
to demonstrate a mock weld task using a hand held tool
tracked by a VICON system. Users carry out the task with
and without the interactive GUI and results show that with
guidance from the GUI users had 100% success rate in
carrying out the task versus 44% without and were on
average 30% more confident in carrying out the task.

The significance of our framework is that it enables
non-expert demonstrators to confidently carry out feasible
demonstrations without the presence of the physical target
system and enables a greater range of possible demonstration
and target system setups. The key contributions in this paper
are: (1) A new guided learning from demonstration problem
formulation for ensuring robust motion transfer onto a target
system. (2) A novel approach to tackle this problem via
a method for computing regions of reproducible motions
and an interactive GUI for displaying these regions to the
demonstrator.

II. PROBLEM FORMULATION

In this section, we formulate the problem of ensuring
robust motion transfer from a demonstration system to a
target system with differing kinematic structures. First we
describe the problem setup including assumptions about the
demonstration system, target system, environment and oper-
ational scenario. Then we formulate and state the problem of
finding a region of reproducible motions for ensuring robust
transferability.

A. Problem Setup

We consider a non-trivial LfD scenario where we wish to
reproduce a demonstrated motion from one system onto an-
other target system with different kinematic structure which
may, for example, have less degrees of freedom (DOF). We
assume access to the target system’s kinematic model and
some approximate knowledge of the operational space of
the demonstrator. The environment consists of static elements
such as fixtures and equipment, known a-priori, and dynamic
objects that can be added and removed online.

We define the demonstration space as Cgep, and the
demonstration system as Sgey,. The desired motion is cap-
tured during the demonstration as a set of discrete states over
time Adern = {ti, 2:}|._, With @; € Caem. A task model [12]
is trained on g4, with generalisation capabilities, such as
temporal scaling, during motion reproduction. The trained
task model generates a trajectory A, which is used for
reproduction on the target system S;,, within its reachable
space Ciqr. We assume Cgep, and Ciq are in a common
representation space which we choose to be SE(3) since
motions within this space can be interpreted by both systems.
We further assume that Cgen, N Cior # 0. In order to
realise the reproduced motion on the target system a motion
generator interprets A, and generates executable controls,
II : A\¢gr > miar, Where g, is a sequence of control actions.

B. Region of Reproducible Motions

In general, LfD methods impose little to no assumptions
on the structure of C;,,-. However, for Sge,, and Sy, with
differing kinematic structures this is problematic since Cyq,
may not entirely cover Cgerm, that is (Caem N Crar) C Caem.
Furthermore, not all A4, are reproducible on S;4;-.

Thus to improve the robustness of the reproduction process
we wish to constrain Cg4.,, such that it is contained within
Ctar and any Age,, within this constrained space is repro-
ducible on S;,,.. More concretely, we define a reproducible
motion to be a Age,, such that the resulting Ay, when
mapped through II results in a short, smooth path in Cl,,
and is collision-free.

Problem 1 (Region of reproducible motions): Find a re-
gion R C Cgep, such that it is contained within Cy,,- and
any Agen, through this region is a reproducible motion. In
the case that multiple distinct regions exist, find R= that
maximises coverage of the anticipated operational space.

III. GUIDED LEARNING FROM DEMONSTRATION

In this section we describe our approach to finding Rx*
and then how we display this visually in order to guide
the demonstrator. Additionally we outline the task model for
encoding and reproducing the demonstrated motions. Finally,
we explain the motion generator which is a non-local control
strategy where trajectories generated from the task model are
converted into appropriate controls for the target system.

A. Finding Regions of Reproducible Motions

Here we describe the method for solving Problem 1. In
order to compute R* we utilise an existing robotic manip-
ulator planning framework called Hausdorff approximation
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(a) A region of reproducible motions found by HAP with 66%
coverage of the task space and mapped “wrist-out” configuration.
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(b) A region of reproducible motions found by HAP with 35%
coverage of the task space and mapped “wrist-in” configuration.

Fig. 2: Two distinct regions of reproducible motions found
by HAP for a workbench environment with wall obstacle and
six-DOF URS5 robot model. (a) and (b) show a discrete task
space design covering the anticipated operational space of the
demonstrator where green poses indicate they are within a
region of reproducible motions found by HAP and blue poses
are outside the region. The former has a larger coverage of
the task space due to the assigned configuration mapping.

planner (HAP) [22]. HAP operates on a user defined task
space, in our case Ciq C SE(3), and divides it into one or
more subspaces such that the path between any two points
close in a particular subspace maps to a short, smooth and
collision-free configuration space trajectory.

The key idea is that continuous task-space trajectories can
be constructed through these subspaces and the resulting
configuration space trajectory will have a bounding relation
in terms of trajectory distance. Such a mapping between
metric spaces is called an e-Gromov-Hausdorff approxi-
mation (e-GHA). Thus, any Age,, that is contained within
such a subspace in Cy,,- Will satisfy our condition for being
reproducible, assuming that the generated \;,, is spatially
identical to Ageo,.

HAP generates these maps in a pre-processing step. The

procedure for generating these maps is as follows. First,
HAP is given as input a discretised task space which ap-
proximately models the operational space, a robot model
and an environment model. An example of each are shown
in Fig. 2. An undirected graph is then constructed over the
discrete task space where poses within a ball radius of each
other are connected by an edge. An optimisation routine
then iteratively maps unique configurations to each pose
while ensuring that neighbouring poses, i.e. those connected
by an edge, are within some specified bounded distance.
Kinematic constraints are additionally considered, such as
avoiding collision and remaining within joint limits.

The e-GHA that minimises the sum of all path costs
through the graph is kept. This process can be repeated
multiple times with a penalty added to paths that pass
through previously mapped poses in order to find multiple
distinct subspaces (see Fig. 2). We choose the largest cover-
ing subspace found by HAP to be Rx.

Extending on HAP, we account for dynamic objects in the
scene by performing an update to R* rather than completely
recomputing R+, which is computationally expensive. We
perform this update by iterating over all the mapped config-
urations and check that they are still collision-free and if not
remove them from Rx.

B. Interactive Visual Guidance

Given the found R+ we wish to utilise this representation
to guide demonstrations such that A\g.,,, C Rx*. In order to do
so, we design a graphical user interface (GUI) which displays
to the user where the pose of Sge,, is within Rx. Note that
this GUI should be intuitive enough for a non-expert user to
interpret and make effective use of without any knowledge
about the underlying kinematics of the target system.

The main idea of the GUI is to block the demonstrator
from moving Sy, into regions of the task space that are out-
side of Rx, which we will refer to as R«. The representation
of R output by HAP is a discrete set of poses in SE(3). One
option is to display a dense grid of arrows at each of these
poses, similar to Fig. 2; however, this would be too cluttered
and confusing for the user to follow. Instead we compact six
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Fig. 3: Demonstration system setup for validation experi-
ments consisting of a seven-DOF Sawyer robot, workbench
environment with a wall obstacle and interactive GUI shown
on a monitor.
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(a) 1st segment of unsuccess- (b) 2nd segment of unsuccess-
ful demonstration. ful demonstration.
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(c) 1st segment of successful (d) 2nd segment of successful
demonstration. demonstration.

Fig. 4: Two example demonstration sequences with GUI overlaid (top row) and their corresponding reproduced motion
(bottom row). The sequence in (a)-(b) attempts a downward facing orientation of the end effector on the far side of the
wall and fails due to running into the red voxels in the GUI. The sequence in (c)-(d) succeeds due to pitching back the

orientation of the end effector.

dimensional space - translation and orientation - into three
dimensions by blocking the regions in R+ dynamically when
necessary. We achieve this by only displaying red voxels
at poses that are within a similar orientation to the current
pose of Sgem- We compute this similarity by taking the dot
product between the forward pose axes of Sge,, and R+ and
only display voxels corresponding to poses within a given
similarity threshold. In order to track where Sy, is in the
environment, we display an arrow showing its position and
forward pose axis during demonstration.

C. Task Model

As SE(3) is the common representation space, \ge,, and
Atqr are a sequence of poses represented as position, p, and
quaternion, q. Thus we choose Cartesian space Dynamic
Movement Primitives (CDMPs) as our robot-independent
task model. However, the general idea can be extended to
other trajectory-based LfD task models.

A single demonstration of a desired motion is recorded as
a trajectory Agem = {ti, Pi, Qi } ]iT:O. The task model consists
of two parameterised dynamical second-order systems with
an additional term for external forces which shapes the
trajectory to match the demonstration. The nonlinear shape of
the demonstrated trajectory is modelled via weighted kernel
functions, e.g., radial basis functions. For producing A, the
dynamical systems including external wrenches with learned
weights are numerically solved, resulting in a continuous
model representation in SFE(3). In our work, we applied the
revised bio-inspired formulation by Koutras et al. [23], [24].
For an in-depth explanation of DMPs see [25].

D. Motion Reproduction

For reproducing the demonstrated motion on Sy, we
utilise the e-GHA mapping found by HAP to map A, to
a sequence of arm configurations, q, = {61,062, ..., 07}
However, poses in Ay, are in continuous space where as
the e-GHA mapping is defined over a discrete task space.

Hence, in order to remain within R+ a configuration is
assigned to each § € my,, that is close to the e-GHA
mapping. We achieve this by computing all the IK solutions
for each x € A4, and then choosing the IK solution that
minimises the euclidean distance to any of the %k closest
mapped configuration in TRx.

IV. EXPERIMENTS

This section presents the experimental evaluation of the
proposed guided learning from demonstration approach. A
validation experiment and a comprehensive user study were
conducted to showcase the efficacy and usability of our
guided learning from demonstration method. In both exper-
iments the interactive GUI is displayed to the demonstrator
on a monitor during demonstration. The environment and
task space discretisation strategy used in the experiments is
the same as shown in Fig. 2. Additional footage from the
experiments is included in the attached supplementary video.

A. Validation

In order to validate our approach we utilise a redundant
seven-DOF Sawyer arm as the demonstration system, which
is moved kinaesthetically (see Fig. 3). The target system is a
simulated six-DOF URS. In this experiment we demonstrate
motions around the wall obstacle and aim to show that
avoiding red voxel regions displayed by the GUI leads to
successful reproduction and vice versa when not.

Example demonstration sequences and their reproduced
motions are shown in Fig. 4. The sequence in Figs. 4a and 4b
attempts to move around the wall in an orientation normal
to the workbench for the entire trajectory. However, as can
be seen in the corresponding GUI snapshots this leads to
moving through the red voxels. The explanation for this is
that the arm must perform a large joint angle change in order
to avoid colliding its wrist with the wall. This results in a
poorly reproduced end effector trajectory, shown as a black
line in the bottom row of Fig. 4b.
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Fig. 5: Representative user study results showing diverse success and failure cases. Reproduced motions (bottom row) and
corresponding GUI output (top row) are shown. (a) and (b) are two non-guided demonstrations that failed (GUI shown here
for convenience - not shown to users). (c) and (d) are two successfully demonstrated tasks using our guided method.
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Fig. 6: Quantitative results from the user study. (a) shows
the distribution of number of trials required to successfully
demonstrate the weld task and (b) shows the percentage
increase/ decrease in the collected subjective metrics.

In contrast, the demonstrated sequence in Figs. 4c and 4d
avoids this problem by pitching back the orientation of the
end effector. In this orientation the red voxels on the far
side of the wall disappear and the trajectory is able to be
reproduced successfully. This observed behaviour validates
our method for this particular scenario and confirms our
claim that reproduction can fail if the kinematics of the target
system are not considered when guiding demonstrations,
even in a relatively simple environment.

B. User Study

A subsequent user study was conducted with nine partic-
ipants to evaluate the usability of our system. Users were
tasked with carrying out a mock weld demonstration which
consisted of placing an object to be welded on the work-
bench, shown in Fig. 1 and then performing a weld along a
marked edge of the object using a hand-held 3D printed tool
tracked by a VICON system. Nine users participated in the
study consisting of three women and six men, five of which

had little to no experience with robot arms.

For the user study we additionally enhanced the GUI to
assist users with depth perception by dynamically increasing
the opacity of the voxels within some distance threshold
of the weld tool position. Furthermore, red boxes above
the position of the tool are temporarily removed to prevent
obstructing the view of the demonstrator. An example of this
is shown in Fig. 1 for a particular position and orientation
of the weld tool.

Regarding evaluation against other methods, existing work
that deals with transferring motion between two different
systems utilise null-space control. Since the target system
is non-redundant, the former is not possible.

Thus, first each user was asked to perform the task without
the guidance of the interactive GUI. They were given a
maximum of three attempts which involved carrying out the
demonstration and then verifying that it was reproducible on
a simulated URS in the same environment. If successful the
reproduction was carried out on the real URS robot.

Afterwards, the user was asked to carry out the same task
with the guidance of the GUI, again with three attempts. If
the user was successful in the unguided attempt they were
asked to find another valid placement of the weld object.
The main advantage of having the GUI was that it helped
users make an informed decision on where to place the weld
object. Furthermore, users were able to place the object and
then update the region of feasible motion before carrying out
the demonstration.

Representative trials from the user study are shown in
Fig. 5. Quantitative results are summarised in Fig. 6. Fig. 6a
shows the distribution of the number of trials required to
successfully demonstrate the weld task. Note that five out of
the nine participants were unsuccessful in all three attempts
for the non-guided experiment. As can be seen, all users
were able to successfully demonstrate the task within two
attempts with guidance, where as a majority of users - 56%
- failed to do so at all without guidance.

To assess usability we chose subjective metrics based on
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Fig. 7: Different regions of the subspace being blocked due to: All IK solutions in collision (red), requiring large change in
configuration in order to reach (green) and no IK solution due being outside the arm’s reachability (blue).

a previous usability study on socially assistive robots [26].
Their study categorised their evaluation metrics into effec-
tiveness, efficiency and satisfaction with which users were
able to achieve given tasks [27]. In a similar fashion we
asked users to rate on a 5-point scale how confident they
were and how easy it was to carry out the task with and
without the GUI. In addition, we asked how surprised they
were at the reproduced trajectory. The percentage increase
and decrease in each of these metrics is shown in Fig. 6b.

As can be seen, almost all participants were more confi-
dent when carrying out the task when utilising guidance from
the GUIL Ease of use was comparable which is a positive
result considering the addition of the GUI during demon-
stration. And users were less surprised by the reproduced
motions when using the GUI which can be explained by the
absence of large, spontaneous joint changes.

We additionally asked participants the following questions
on a 5-point scale specifically about the effectiveness and
design of the GUI:

« How effective was the GUI at improving your decision
of where to place the weld object?

o How intuitive was the GUI in assisting with the task?

o How effective was the GUI in providing spatial aware-
ness, i.e. avoid red voxels?

« Is the extra effort to use the GUI worth it over trial and
error (without any guidance)?

On average users gave a rating of 4 and above which indi-
cates that our GUI design was overall effective and intuitive
enough for assisting with the given task. Furthermore, all
participants rated the last question a 5 which reinforces the
value of our method over a trial and error approach.

In terms of qualitative feeedback, some participants de-
sired more suggestive guidance. For example providing rec-
ommended object placements to the user. Other suggested
improvements included receiving more information on the
source of failure when entering a red voxel and the option
to display the simulated robot in the GUI.

V. DISCUSSION
A. Analysing Rx*

To explain the poses in R, color coded voxels are shown
in Fig. 7 for varying end-effector orientations. The green
voxels behind the wall are blocked due to requiring a large
change about the wrist to avoid collision with the wall or
table which would violate our region of reproducible motions

condition. The red voxels indicate regions where no IK
solution is possible without environment collision. The blue
voxels indicate regions outside the reachability of Sy,.

B. Practical Considerations

We designed the discretised task space for the experiments,
shown in Fig. 2, such that all poses were approximately
oriented in a nominal direction, facing down into the work-
bench. Allowing any greater deviations from this nominal
direction would result in an ambiguous guidance in the
GUI. For example, it may be possible to rotate the end
effector about a point in the workspace in one direction
but rotating in the other direction may require a large joint
angle change to avoid self-collision or joint limits. However,
this is a limitation of the GUI rather than our method for
finding R*. A work around is to define multiple task spaces
with the required nominal directions and then carry out
demonstrations independently for each of these.

Furthermore, the R* found is approximated by this dis-
cretisation. Hence if more granularity is required for more
fine motor tasks one could increase the resolution. To combat
the increase in computation, one could potentially employ a
multi-resolution strategy.

VI. CONCLUSIONS

We presented a new guided learning from demonstration
formulation for ensuring reproducibility when transferring a
demonstrated motion to a system with differing kinematic
structure. To address this problem we leveraged an existing
robotic manipulator planner to compute regions of repro-
ducible motions and then utilised this to provide intuitive
guidance to the demonstrator via a novel interactive GUI.
Results from our user study showcased the significance
of being able to demonstrate reproducible motions reliably
without the presence of the physical target system.

Future work includes improving the GUI design to allow
for more flexible operational space definition and exploring
other guidance mediums such as augmented reality and
haptic feedback, which would be beneficial in more chal-
lenging cluttered environments. Presenting suggestions to
the user, such as where to place objects in order to carry
out a task successfully, is another important avenue for
improving usability. Furthermore, HAP has the ability to find
subspaces that satisfy additional target system constraints,
such as minimum manipulability and joint torques, which
could facilitate more interesting setups.
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