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1. Introduction 

 
During the long service period, bridge infrastructures 

continuously suffer from both environmental influences 
such as eroding effects from the ground or the sea, and 
operational effects including the traffic (e.g., traffic-induced 
vibrations and traffic mass effects), temperature, and wind 
(Kim et al. 2018). Because of these effects, structural 
integrity is threatened all the time. Thus, it is of vital 
importance to monitor the health conditions of those major 
bridges, especially those newly constructed and aging 
bridges. Moreover, urgent damage detection tasks are often 
needed for those bridges which suffered from large-scale 
natural disasters like earthquakes and hurricanes. Huge 
losses on human life and property would have been avoided 
if effective monitoring systems had been set up on these 
bridges. 

Damage detection has always been one main research 
interest in the structural health monitoring domain. The 
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vibration-based damage detection (VBDD), aiming at 
detecting the existence, location, and severity of structural 
damage, has attracted massive research interest in civil (Xu 
et al. 2017), mechanical (Aswal et al. 2021), and aircraft 
structures (Santos et al. 2016). The basic idea of VBDD is 
that structural damage induces changes in mechanical 
properties such as stiffness and mass. These mechanical 
property changes could be further indicated by the 
variations of vibration properties (e.g., natural frequencies 
and modal shapes). By analyzing the damage features 
extracted from the vibration data, structural damage can be 
detected, localized, and quantified. Compared to the 
traditional visual inspection and non-destructive testing 
(NDT) methods such as ultrasonic, acoustic and 
piezoelectric active sensing methods, the VBDD are 
superior in the following two aspects (Zhou et al. 2021), 1) 
they are suitable for even complex structures because they 
evaluate the overall structural condition rather than 
examining only the potential damaged local area like NDT 
methods; 2) Prices of the sensing system are quite 
acceptable. 

Generally, the implementation of VBDD involves two 
procedures: feature extraction and feature discrimination. 
The former extracts damage sensitive features from the 
original measured responses while the latter discriminates 
features from damaged to healthy quantitatively. Various 
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damage features have been developed in the last three 
decades, including natural frequencies (Kordestani et al. 
2021), mode shapes (Lee et al. 2021) and their derivatives 
such as modal strain energy (Talebpour et al. 2020), mode 
shape curvature (Cao et al. 2014), the flexibility curvature 
(Nick and Aziminejad 2021) and the energy of acceleration 
signal (Kordestani et al. 2018). Compared to natural 
frequencies, mode shapes provide spatial information and 
are less sensitive to environmental changes. Hence, in this 
paper, mode shapes and one of its derivatives, namely the 
modal strain energy, are used as damage features. 

The VBDD can be classified into the model-based (or 
termed as parametric) and data-driven methods (or non-
parametric). The model-based methods aim to establish a 
computational model, e.g., finite element model, by 
updating model parameters with real measurements (Sun et 
al. 2020). Despite the high accuracy they often achieve, 
they require prior knowledge and associated assumptions 
about the real structure which are sometimes not accessible 
or accurate enough. Unlike the model-based method, the 
data-driven methods employ statistical models to directly 
interpret the vibration data into structural patterns without 
any prior knowledge. Recently, advances in the Artificial 
Intelligence (AI) technique revolutionized the data-driven 
methods by allowing large data sets processing with high 
computation speed. This improvement has made the data-
driven method as one of the most attractive and promising 
approaches in the SHM domain. 

During the last two decades, research on machine 
learning based structural damage detection have been 
extensively conducted (Sharma and Sen 2021). Basically, 
the machine learning based method is a process of mapping 
the monitoring data into different structural patterns. 
Depending on the availability of vibration data in damaged 
conditions, they could be divided into supervised and 
unsupervised. To be more specific, supervised learning 
requires labeled target values to indicate the real structural 
conditions while unsupervised ones do not. Nevertheless, 
both methods have been proven to be effective on structural 
damage detection. Additionally, some research combines 
multiple machine learning algorithms to achieve better 
detection performances. For example, as vibration signals 
are high dimensional, dimension reduction algorithms like 
Principal Components Analysis (PCA) are often performed 
to transfer the original feature vectors to low dimensional 
yet informative feature components (Islam and Kim 2019). 
It turns out this dimension reduction operation often brings 
a significant increase in the computational efficiency at the 
cost of an ignorable decrease in detection accuracy. 

The deep learning (DL) technique, a sub-branch of 
machine learning, has been successfully applied to 
computer vision, natural language processing, medical 
diagnosis, online advertising, literary translation, and 
autopilot. The DL establishes deep neural networks (DNNs) 
with multiple layers to learn features of the data with 
multiple inherent patterns. DNNs characterise their 
automatic feature extraction and extraordinary ability to 
deal with big data sets. Great advantages of introducing 
DNNs into the SHM domain include 1) expert intervention 
of feature extraction in traditional SHM will be no longer 

necessary; 2) real-time monitoring is expected as big data 
sets from large scale structures could be effectively and 
rapidly processed. 

Among various DNNs, convolutional neural networks 
(CNNs) are considered to be state-of-art due to their high 
accuracy and computational efficiency in object detection 
and classification. A CNN-based approach was first used to 
perform vibration-based damage detection on a steel frame 
(Abdeljaber et al. 2017). Since then, CNN has gained 
increasing attention on structural damage detection and 
more related research was conducted. Abdeljaber et al. 
(2018) verified the efficiency of the vibration-based CNN 
on damage quantification using acceleration data from a 
benchmark study. Teng et al. (2020) improved the 
classification accuracy and convergence speed by training 
the CNN with multiple parameters. The aforementioned 
CNNs are trained with structural responses. On the other 
hand, some CNNs are the direct adaptation of computer 
vision as they are trained with real structural images, e.g., 
crack images (Cha et al. 2017). Commonly used CNNs for 
image processing are the regional CNNs (RCNNs) and 
faster RCNNs, combinations of CNNs and region selection 
techniques. An example of RCNN by Huynh et al. (2019) 
has verified the effectiveness of RCNNs in detecting and 
cropping bolts on a box girder ridge connection. 

Those CNNs have their advantages and challenges on 
damage detection. Using structural response directly as 
input is more promising to extract the features for structural 
damage detection. For the CNNs using images as input, one 
biggest challenge is that they rely heavily on image quality 
(Yu et al. 2022). Consequently, detection performance could 
be affected by lighting conditions, shooting angles, and 
shooting distances. Generally, based on the authors’ 
knowledge, main considerations and concerns about CNN-
based damage detection include architecture optimization, 
the sufficiency of training data, robust ability, real-time 
application, and uncertainty effect on the measured data. 

In this paper, a CNN based structural damage detection 
is developed for a truss bridge using dynamic responses. 
CNNs were trained using the mode shapes and normalized 
modal strain energy change (NMSEC) respectively. 
NMSEC features were conducted with PCA dimension 
reduction before inputted into the CNN. We intend to 
overcome the common challenges of the CNNs using 
dynamic responses like high computational cost, poor 
robust ability and make corresponding suggestions. The 
main contribution of this study is an updated mean square 
error (UMSE) as the loss function and performance indices 
of damage localization accuracy (DLA) and mean absolute 
error of damage degrees (MAEDD) for damage detection 
problems. The UMSE loss function achieved faster 
convergence speed and higher accuracy on damage 
quantification than that by the commonly used MSE. We 
also compared performances of different UMSE weighting 
factor combinations and made suggestions to cater for 
different needs. The DLA, MAEDD and MSE were 
employed for CNN performance evaluation. Compared to 
testing MSE, the DLA and MAEDD were proved to be a 
more straightforward way of evaluating performances for 
damage detection problems. Also, the CNN features were 
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visualized using t-distributed stochastic neighbor 
embedding (t-SNE) transformation to demonstrate the 
automatic feature extraction ability of the CNN. 
Significantly, implementing PCA on the NMSEC enables 
the training time reduced by 90%. Thus, this NMSEC-PCA 
based method would be more suitable for structural damage 
detection problems in practice, especially for large scale 
structures. 

 
 

2. Methodology 
 
2.1 The convolutional neural network (CNN) 

architecture for damage detection 
 
The CNN consists of multiple convolutional layers, 

activation layers, pooling layers, fully connected layers, and 
output layers. The brief descriptions of these layers are as 
below. 

 

● Input layer. The input layer could be vectors, 
matrices, images, or any other kinds of data. For 
damage detection problems, mode shapes, 
acceleration signals and images of the target 
structures are commonly used inputs. 

● Convolutional layer. The convolutional layer, a key 
operation of the CNN, is a process of weights 
learning of kernels, with various kernels sliding over 
the input features. This process could also be 
simplified as Output=kernelInput, where  
represents the convolution operation. The depth of 
kernels is the same as the input but the width and 
height are smaller. Each kernel produces an output 
feature and then all kernel features are stacked 
together and considered as the input of the next 
layer. 

● Activation layer. The convolutional layer is usually 
followed by a nonlinear activation layer to enable a 
nonlinear mapping and efficient training. Commonly 
used activations include Sigmoid, Tanh, and more 
recently, Rectified linear unit (Relu). Relu is used in 
this paper since it’s faster and does not have the 
gradient vanishing effect (Wang et al. 2020). 

● Pooling layers. Pooling is a process of compressing 
feature dimensions (width and height) by taking the 
maximum or average value in each input patch. The 
two most commonly used pooling layers are Max-
pooling and Average-pooling. It is worth noting that 
pooling is not a learning process but only a size 
reduction operation. It could reduce the number of 
parameters to learn and improve training speed. 

● Fully connected (FC) layers. The fully connected 
layers are the same as in artificial neural networks. 
At this point, the outputs are usually flattened into 
1D dimensional vectors before going through the 
fully connected layers. 

● Output layer. The output layer constrains the 
network’s output through the number of units and 
activation function. The unit number determines the 
output classes while the activation constrains the 
output value. For example, the sigmoid activation 
converts arbitrary values into the [0,1] interval, and 

the Relu activation zeros out negative values. In this 
paper, the CNN output layer ended with a sigmoid 
activation to achieve damage quantification. 

● Mini-batch. Training an entire huge dataset at one 
time is slow and sometimes infeasible because of 
memory constraints. In such cases, the datasets could 
be split into small batches for calculating error and 
updating coefficients of the model. Each fixed size 
of samples is called a mini-batch and the fixed 
number of samples in each mini-batch is called the 
batch size. For each iteration, a small subset of the 
whole dataset was processed. The mini-batch 
technique could improve computational efficiency as 
could allow reaching the global minimum quickly in 
the cost function. 

● Dropout. Drop out is one of the most commonly 
used techniques for reducing overfitting. When 
applying a dropout layer, the dropping out rate is 
required, representing the fraction of features that are 
zeros out, and this rate is usually set between 0.2-
0.5. For a typical CNN architecture, as shown in Fig. 
4, repeated tests are conducted to modify the model 
parameters. During the training, the overfitting 
problem might occur. When the model is overfitted 
to the training data, the validation accuracy degrades 
with the training process going. Reducing the 
network’s size and regularization techniques are 
effective ways to avoid overfitting (Yu et al. 2019). 

 

To achieve better performances, hyper-parameters such 
as the learning rate, the unit number of each layer and 
dropping out rate could be optimised. These hyper 
parameters are usually decided based on empirical results or 
parameter studies. 

 
2.2 Loss function and damage evaluation indices 
 
The loss function is also called the objective function. It 

measures the error between the predicted value and the true 
value. The commonly used MSE loss function is as follows. 

 𝑀𝑆𝐸 = 1𝑛 𝑌 − 𝑌  (1)

 
where Y and 𝑌 are the true and predicted values of the ith 
sample among the total n samples respectively. Another 
commonly used loss function is the mean absolute error 
(MAE) of the difference between the predictions and the 
targets, as shown in Eq. (2). 

 𝑀𝐴𝐸 = 1𝑛 𝑌 − 𝑌  (2)

 
More often, the MAE is used as a training metric during 

the training process while MSE is used for testing the CNN 
performances. In this paper, an updated MSE loss function 
UMSE, a training metric MAED and two testing 
performance evaluation indices DLA and MAEDD were 
specifically developed for damage detection using a popular 
framework Pytorch. 
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Fig. 1 The example target matrix 
 
 
2.2.1 The UMSE loss function 
For the damage detection problem, the training label of 

CNN is a matrix of which all locations are zeros except for 
some locations with specified damage degrees. Hence these 
locations in the training matrix could be divided into two 
categories: one called the intact region, the other called the 
damaged region. Fig. 1 illustrates the intact regions (white) 
and damaged regions (blue) using an example target matrix, 
where there are nine samples in total and three damage 
scenarios, three samples for each scenario. A loss function 
based on this location division could be designed as 
follows. 

 𝑈𝑀𝑆𝐸 = 𝛼 × 𝑀𝑆𝐸𝐼 + 𝛽 × 𝑀𝑆𝐸𝐷 (3)
 

where MSEI and MSED are the mean square error of the 
wrong detection in the intact region and the failure 
detection in the damaged region respectively. α and β are 
the weighting factors for MSEI and MSED respectively. 
They could be calculated by the following equations. 

 𝑀𝑆𝐸𝐼 = 1𝑚 𝑌 − 𝑌 𝑖 = 1,2 … 𝑚 (4)

 𝑀𝑆𝐸𝐷 = 1ℎ 𝑌 − 𝑌 𝑖 = 1,2 … ℎ (5)

 
where 𝑚 and ℎ are the number of intact and damaged 
locations in the label. It is worth noting that the sum of α 
and β is equal to one as they represent weighting factors for 
the intact and damaged regions which are the two 
components that make up the matrix of the training label. 
For example, after certain damage localization accuracy is 
reached, an assignment of β = 0.8 allows the network to 
focus on the iterations on damage degrees rather than 
wasting computation on damage locations. Moreover, an 
updated loss function with α = β = 0.5 is just the same as 
the MSE loss function except that they differ only in scale. 
The proposed loss function including the prior knowledge 
of the damage region, such the key substructure, and this is 
useful for real large-scale truss bridges. 

 
2.2.2 MAED training metric 
The MAED, the Mean absolute error (MAE) of failure 

detection in the damaged region, was proposed and used as 
a training metric. Suppose there are m damage scenarios, 
each with Nm training samples and for each sample i, there 
are k damaged elements, the MAED is defined as follows. 

 𝑀𝐴𝐸𝐷 = 1𝑁 + 2𝑁 … + 𝑘𝑁 |𝑇 − 𝑃 |
+ 𝑇 − 𝑃  + ⋯
+ 𝑇 − 𝑃   

(6)

 
where Tij and Pij stand for the true and predicted damage 
degree of the jth damaged member for the ith sample; 
Basically, MAED is the mean absolute difference of the true 
and predicted matrix in the damaged region. While the MAE 
evaluates the prediction matrix as a whole region, the 
MAED evaluates only the damage degrees in the damage 
region. Thus, the MAED is a more straightforward way of 
validating the model prediction accuracy on damage 
degrees. 

 
2.2.3 Damage localization and quantification 

indices: DLA and MAEDD 
It is of vital importance to fully evaluate the 

performance of the deep learning network on damage 
identification. The commonly used MSE and MAE indices 
do tell the damage detection accuracy as a whole but fail to 
indicate the accuracy of damage localization and 
quantification separately. To solve this problem, two 
indices, damage localization accuracy (DLA) and MAE of 
damage degrees (MAEDD) were proposed. The DLA is 
defined as follows 

 𝐷𝐿𝐴 = 𝑅𝑇𝑁 (7)
 

where R represents the number of samples of which the 
CNN outputs the correct locations of damaged members, 
while TN is the total number of testing samples. The 
definition of MAEDD is defined as follows. 

 𝑀𝐴𝐸𝐷𝐷 = 1𝑚 1𝑁 |𝑇 − 𝑃  |
+ 12𝑁 𝑇 − 𝑃  + ⋯
+ 1𝑘𝑁 𝑇 − 𝑃  

(8)

 
Different from the testing MSE and MAE, the MAEDD 

evaluates only the damage degree prediction accuracy of 
damaged members. The smaller the MAEDD, the higher 
damage quantification accuracy the network achieves. To 
avoid the incorrectly identified members have impacts on 
both DLA and MAEDD, the calculation of MAEDD 
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accounts only the correctly identified bars. With DLA and 
MAEDD, the overall performance of CNN on damage 
detection could be fully evaluated. 

 
2.3 The mode shape based and modal strain 

energy based damage index 
 
This section introduces the commonly used features for 

structural damage detection, namely, mode shape and modal 
strain energy based features. To get structural mode shapes, 
modal analysis is conducted. For free vibration of the 
undamped structure, this could be represented by Paz and 
Kim (2019) 

 (𝐾 − 𝜔 𝑀)𝜑 = 0, 𝑖 = 1 … … 𝑛𝑑𝑓 (9)
 

where K and M are the stiffness matrix and mass matrix 
respectively. 𝜔  is the 𝑖  natural frequency and 𝜑  is 
the modal shape vector corresponding to the 𝑖  frequency. 
In this paper, the first six modes of the designed damaged 
scenarios were extracted using the finite element software 
Ansys 19.0. 

The modal strain energy of the eth structural element in 
mode i is defined as Wang and Xu (2019) 

 𝑚𝑠𝑒 = 12 𝜑 𝐾 𝜑 , 𝑖 = 1, … , 𝑛𝑑𝑓, 𝑒 = 1, … , 𝑛𝑡𝑒 
(10)

 
where 𝜑  is the nodal displacement of the eth element in 
mode i, namely the mode shape. 𝐾  is the stiffness matrix 
of the eth element. The total modal strain energy of the 
mode i could be calculated as 

 𝑚𝑠𝑒 = 𝑚𝑠𝑒  𝑖 = 1, … , 𝑛𝑑𝑓, 𝑒 = 1, … , 𝑛𝑡𝑒 
(11)

 
By Eq. (11), the modal strain energy of eth element in ith 

mode is normalized by the modal energy summation of the 
eth element 

 𝑛𝑚𝑠𝑒 = 𝑚𝑠𝑒𝑚𝑠𝑒  𝑖 = 1, … , 𝑛𝑑𝑓,   𝑒 = 1, … , 𝑛𝑡𝑒 
(12)

 
Structural damage, defined by the reduction of the 

elemental stiffness, leads to changes of the 𝑛𝑚𝑠𝑒 . Thus, 
an index called normalized modal strain energy change 
(NMSEC) is defined based on the difference of the 𝑛𝑚𝑠𝑒  
before and after damage, as expressed in Eq. (13). 

 𝑛𝑚𝑠𝑒𝑐 = (𝑛𝑚𝑠𝑒 ) − (𝑛𝑚𝑠𝑒 )  , 𝑒 = 1,2, … 𝑛𝑡𝑒 (13)

 
 
 
 
 

where (𝑛𝑚𝑠𝑒 )  and (𝑛𝑚𝑠𝑒 )  denote the normalized 
modal strain energy in damaged and healthy scenarios. 

Another commonly used modal strain energy based 
index for damage detection is MSEBI, defined as follows 
(Lee et al. 2021). 

 𝑀𝑆𝐸𝐵𝐼 = max 0, (𝑛𝑚𝑠𝑒 ) − (𝑛𝑚𝑠𝑒 )(𝑛𝑚𝑠𝑒 )  (14)

 
In this paper, the original NMSEC datasets were used 

for CNN training rather than MSEBI. The main reason is 
that the NMSEC does not have the max operation, meaning 
that negative values are also taken into consideration. Also, 
the NMSEC matrix is filled with values in the range of 
[-1,1] which are inherently suitable for the training since no 
normalization will be needed in such a case. We firstly 
conducted the principal component analysis (PCA) on the 
original NMSEC data and then fed the produced datasets 
into the CNN. 

 
2.4 Effects by element and mode based on 

principal component analysis (PCA) 
 
In this paper, the effects by element and mode were also 

investigated. This started with dimension reduction of the 
original NMSEC dataset with PCA. After that, the selected 
PCs could be expressed by the linear combination of the 
original variables. In this paper, the original NMSEC input 
is 960 dimensional (160 elements × 6 modes). Suppose 36 
PCs were selected (this result could be further seen in 
Section 3.4), these selected PCs could be expressed as 
follows. 

 𝑃𝐶 𝑃𝐶 … 𝑃𝐶
= 𝑋 𝑋 … 𝑋 𝑤 𝑤 , ⋯ 𝑤 ,𝑤 , 𝑤 ⋯ 𝑤 ,⋮ ⋮ ⋮ ⋮𝑤 , 𝑤 , ⋯ 𝑤 ,

(15)

 
where PCj and Xi is the jth principal component and the ith 
original variable. The wij is the coefficient of the ih original 
variable in the jth principal component, namely the loadings. 
This equation could be simplified as 

 𝑃 = 𝑋𝑊 (16)
 

where P, X and W denote the principal component matrix, 
original variable vector, and the loadings. The importance 
of original variables could be measured by multiplying the 
principal component matrix P by the explained variance 
ratio vector, as written in 

 𝑃𝑅 = 𝑋𝑊𝑅  (17)
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where R = (r1, r2,... r36) and rj stands for the explained 
variance ratio of the jth principal component (PCj). Eq. (18) 
could also be written in the matrix form. 

 𝑋𝑊𝑅 = 𝑐 𝑋 + 𝑐 𝑋 + ⋯ + 𝑐 𝑋  (19)
 

where 𝑐  = 𝑤 𝑟 + 𝑤 𝑟 + ⋯ + 𝑤 , 𝑟 , 𝑖 = 1,2, … 960. 𝑐  , the coefficient for Xi, represents the importance of 𝑋  
for the whole dataset. 

To evaluate the effect of the element, for the element k, 
the coefficients of the six modes could be added together 
and then normalized with respect to the total coefficients’ 
summation. This could be considered as the coefficient for 
the bar element k, as written in 

 𝐸 = ∑ 𝑐 ( )∑ |𝑐 |  𝑚 = 1,2 … 6,    𝑘 = 1,2, … 160,  𝑛 = 1,2, … 960 (20)

 
Accordingly, the effect by mode could also be evaluated 
according to the following equation. 

 𝑀 = ∑ |𝑐 |( )∑ |𝑐 |  𝑖 = 1,2 … 6,   𝑘 = 160(𝑖 − 1),  𝑛 = 1,2, … 960 (21)

 
where 𝑀  represents the effects of mode i. The normalized 𝑀  were used for mode effect evaluations. The effect 

 
 

 
 

 
evaluation on bar elements and modes would potentially  
work as a guidance for representative information selection 
for damage detection and thus would greatly reduce the 
computational cost. 

 
2.5 Flowchart of this paper 
 
For clarity, Fig. 2 illustrates the procedures of damage 

detection on a truss bridge model using the proposed loss 
function and indices. Firstly, the mode shapes under three 
damaged scenarios were extracted from a FE model of a 
truss bridge. These mode shapes were trained in CNN with 
the proposed UMSE as a loss function. After the training, 
DLA and MAEDD were used for performance evaluation on 
damage detection. Moreover, the modal strain energy was 
extracted and corresponding NMSEC were calculated and 
then conducted with PCA. The effects by element and mode 
were analyzed based on theories in Section 2.4. Finally, 
dimension-reduced data (The PCs, namely the NMSEC-
PCA data) were inputted into the CNN for damage 
detection. 

 
 

3. Numerical simulations 
 
3.1 Numerical modelling 
 
Fig. 3 shows the finite element model of a truss bridge 

constructed in Ansys workbench 19.0. The bridge model 
consists of 56 nodes and 160 beam elements. It is with 

 
 

 
 

𝑃𝑅 = 𝑋 𝑋 … 𝑋 𝑤 𝑤 , ⋯ 𝑤 ,𝑤 , 𝑤 ⋯ 𝑤 ,⋮ ⋮ ⋮ ⋮𝑤 , 𝑤 , ⋯ 𝑤 ,
𝑟𝑟⋮𝑟

         = 𝑋 𝑋 … 𝑋 𝑤 𝑟 + 𝑤 , 𝑟 + ⋯ + 𝑤 , 𝑟𝑤 , 𝑟 + 𝑤 𝑟 + ⋯ + 𝑤 , 𝑟⋮𝑤 , 𝑟 + 𝑤 , 𝑟 + ⋯ + 𝑤 , 𝑟  

(18)

 
Fig. 2 Flowchart of the investigations

Fig. 3 Finite element model of the truss bridge
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length of 8.4 m, a width of 0.6 m, and a height of 0.6 m. The 
left end of the model is pin supported. The right-end are 
constrained in X, Z directions and free in the longitudinal 
direction Y. The bridge model is a frame structure with 
members simulated by BEAM188 element with circular 
tube section, giving 336 (56 × 6) degrees-of-freedom 
(DOFs). The Young’s modulus and density are 2.0E11N/m2 
and 7800 kg/m3 respectively. The designed damage 
scenarios consist of single damage, double damage, and 
triple damage. Details of the damaged element number and 
locations are given in Table 1. The damage is simulated by 
elastic modulus reduction of bar elements. For instance, 

 
 

 
 

 
 

10% damage of a certain bar element means a 10% 
reduction of the elastic modulus on that bar. 

 
3.2 Implementation details of CNN 
 
Modal analysis was conducted on the finite element 

model of the truss bridge. The first six mode shapes of the 
designed damaged scenarios were extracted and taken as the 
original input of CNN. Fig. 4 shows the data preparation 
and the architecture of CNN. As can be seen, the original 
data were nodal displacement data, namely the mode 
shapes, at six DOFs in six modes and they were flattened to 

 
 

 
 

 

Table 1 Scenarios for damage detection 

Scenarios 
Damaged elements 

No. Location 

Single 
damage 129 

 

Double 
damage 82,96 

Triple 
damage 

13,89 
100 

 

*Elements in red are damaged 

 
Fig. 4 The data preparation and the architecture of the CNN

Table 2 Mode shape based CNN architecture 
Layer Layer type Kernel size No. of kernels/neurons Stride Activation Output shape

1 Input - -  - 45×45 
2 Convolution 3×3 100 1 ReLu 43×43 
3 Max pooling 2×2  2 - 21×21 
4 Convolution 3×3 300 1 ReLu 19×19 
5 Max pooling 2×2  2 - 9×9 
6 FC - 300 - - - 
7 Output - 160 - Sigmoid - 
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one-dimensional (1D) vector of shape 1 × 2016 (56 nodes × 
6 DOFs × 6 modes). To apply 2D convolution, they were 
reshaped to a square matrix of 1 × 45 × 45 with 9 padded 
zeros. Before being fed into CNN, these mode shapes were 
rescaled to a range of [-1,1] using min-max normalization. 

To get enough training samples, for each scenario, 2000 
randomly generated damage degrees from 0 to 1 were 
generated and corresponding mode shapes were extracted 
and used for training. In total, the dataset concluded 6000 
samples from three scenarios, each with 2000 samples. The 
dataset division was 70% (4200 samples) for training, 15% 
(900 samples) for validation, and 15% (900 samples) for 
testing. 

Table 2 presents the architecture of the CNN with mode 
shapes as input. It contained two convolutional layers with 
kernel size 3, each followed by a ReLu activation and max-
pooling layer with a kernel of size 2×2. After the 
convolution, damage features were flattened into vectors 
and went through multiple fully connected (FC) layers. The 
first FC layer contained 300 neurons while the output layer 
contained 160 neurons as there are 160 potential damaged 
bar elements. Since CNN aimed to quantify damage, the 
output layer was a regression layer with the sigmoid 
activation. The proposed UMSE (Eq. (3)) was used as the 
loss function and rmsprop as the optimizer. The learning 
rate was 0.0002. The proposed MAED (Eq. (6)) worked as a 
training metric and DLA (Eq. (7)) and MAEDD (Eq. (8)) 
were used for the performance evaluation. 

 
3.3 Data augmentation 
 
Data augmentation is a commonly used technique for 

mitigating overfitting in computer vision. With data 
augmentation, more training samples could be generated 
from the existing training samples. In this study, 900 extra 
training samples were generated by adding 5% Gaussian 
white noise to the original datasets as shown in Eq. (22), 
300 for each damage scenario. 

 ℎ = ℎ(1 + 𝑁𝑙 ∗ 𝑅) (22)
 

where ℎ is the original data, and ℎ is the data with the 
noise. 𝑅 follows the normal distribution of 𝑁(0,1). Nl is 
the noise level and here is 5%. By feeding the network with 
these extra samples, the learning ability and anti-noise 
ability are expected to improve. 

 

 
 

Fig. 5 Explained variance by components
 
 
3.4 Modal strain energy based PCA 
 
The NMSEC training data was conducted with PCA for 

dimensionality reduction. The explained variance by the 
first forty components was shown in Fig. 5. The result 
showed that the first 10 components contained 
approximately 90% of the variance, while around 30 
components described close to 100% of the variance. Here 
36 components, retaining 99.98% of the variance, were 
selected. With the PCA, the dimension of the train data 
matrix was reduced from the original 960 (160 elements × 6 
modes) to 36. The transformed matrix was then reshaped to 
6 × 6 and inputted into CNN. The architecture of NMSEC-
PCA based CNN is given in Table 3 The proposed UMSE 
and MAED were used as the loss function and training 
metric. DLA and MAEDD were used for performance 
evaluation. 

 
 

4. Results and discussions 
 
4.1 Architecture selection 
 
Network architecture selection is important to achieve 

high performance. In this section, three architectures with a 
different number of convolutional layers were compared 
and the commonly used MSE was used as a loss function. 
Fig. 6 shows the validation loss comparison of these 
architectures. Among all, one convolutional layer CNN with 
100 kernels (CNN1) converges the fastest, while the 
network with two convolutional layers (CNN2) achieves the 
best loss performance. After training, for each CNN, 900 

Table 3 NMSEC-PCA based CNN architecture 
Layer Layer type Kernel size No. of kernels/neurons Stride Activation Output shape

1 Input - -  - 6×6 
2 Convolution 2×2 100 1 ReLu 5×5 
3 Max pooling 2×2  2 - 2×2 
4 Convolution 2×2 300 1 ReLu 1×1 
5 FC - 300 - - - 
6 Output - 160 - Sigmoid - 
7 Input - -  - 6×6 
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Fig. 6 Validation loss of different architectures
 
 

Table 4 Comparisons of architectures 

Architectures Test MSE DLA MAEDD 
100 6.3165e-05 96.33% 0.038 

100-300 2.1903e-05 99.66% 0.026 
100-300-300 6.3046e-05 98.00% 0.037 

 

 
 

samples were tested and a prediction matrix could be 
obtained. Table 4 shows the prediction results when 
evaluated with three statistical indices. It can be seen that 
CNN2 outperforms other architectures in terms of testing 
MSE (2.1903e-05), DLA (99.66%), and MAEDD (0.026). 
Overall, CNN with two convolutional layers achieved the 
best performance and was thus used for the rest of this 
paper. 

 
4.2 Effects of the loss function 
 
To study the effects of weighting factors α and β on 

CNN performance, a parameter study on the updated loss 
function was conducted. The validation curves of the 
updated MSE (UMSE) with selective weighting parameter 
combinations were compared, as presented in Fig. 7. It can 
be seen that the updated MSE with α = 0 and β = 1 (C8) 
converged the fastest among all, followed by α = 0.2 and β 
= 0.8 (C7). Moreover, with enough epochs of 800, most 
MAED curves converged to the same level. Interestingly, 
for cases where β < 0.4, namely C1-C3, the MAED curves 
remained stable around 0.5 at the beginning. For C1, the 

 
 

 

Fig. 7 Comparisons of validation curves relating to different 
weighting factor combination 

 
 

MAED even ended at around 0.5. This is because the CNN 
is trapped into a local optimum of a prediction matrix filled 
mostly with values close to zero. In such a case, the values 
in the damaged regions were also near zero, leading to a 
poor damage localization accuracy. 

Testing performances of these combinations (C1-C8) 
were also compared in terms of testing MSE, DLA, and 
MAEDD as shown in Table 5. It can be seen that from C2 to 
C7, as β grows, the DLA remained stable at around 99% 
while both testing MSE and MAEDD saw improvements, 
test MSE from 4.466 e-5 to 1.307e-5 and MAEDD from 
0.0359 to 0.0170. Among all combinations, C7(α = 0.2 and 
β = 0.8) performed the best, achieving low test MSE 
(1.307e-05) and MAEDD (0.0170). 

When α = 1, C1 reached a random DLA of 33% as the 
prediction matrix was filled mostly with near-zero numbers. 
As expected, in C8 where β = 1, the CNN achieved the best 
MAEDD but the worst DLA (0.78%). This means that it 
failed to locate damage in 893 out of a total 900 testing 
samples. The main reason is that the UMSE of C8 
considered only the values in the damaged regions, leading 
to a prediction matrix where intact regions filled mostly 
with values around 0.5. 

Based on the above analysis, β relates to how close the 
damage degrees are predicted, namely the MAEDD, while α 
relates to the damage localization accuracy (DLA). In other 
words, with high β, the updated MSE would usually achieve 
good damage quantification performance, while with a high 
α, a better damage localization accuracy could be expected. 

 
 

Table 5 CNN testing results evaluation of the updated MSE 
Combination No. Loss function of CNN Testing MSE DLA (%) MAEDD 

C1 α = 1 and β = 0 0.0041 33.33 0.517 
C2 α = 0.9 and β = 0.1 4.466e-05 98.33 0.0359 
C3 α = 0.7 and β = 0.3 1.920e-05 99.78 0.0202 
C4 α = 0.6 and β = 0.4 2.741e-05 97.67 0.0265 
C5 α = 0.5 and β = 0.5 (MSE) 2.221e-05 99.00 0.0268 
C6 α = 0.4 and β = 0.6 2.355e-05 98.67 0.0236 
C7 α = 0.2 and β = 0.8 1.307e-05 98.67 0.0170 
C8 α = 0 and β = 1.0 0.2558 0.78 0.0086 
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It is worth noting that, in practice, α and β should be 
rigorously assigned according to situations. Generally, β in 
the range of [0.3,0.8] is recommended to get a higher CNN 
performance as well as avoiding local optimum. For the rest 
of this paper, the updated MSE with α = 0.2 and β = 0.8 was 
used as it achieved not only a faster convergence speed but 
also the best testing MSE, MAEDD, and a relatively higher 
DLA. 

Merits of the proposed UMSE loss function are as 
follows: 1). It is with high flexibility as the users could 
weigh the damage localization and damage quantification 
by assigning different weighting factor values. 2). The 
updated MSE loss function (β > 0.5) avoids unnecessary 
iterations on the intact region but focuses on only the 

 
 

Fig. 8 CNN feature visualization with t-SNE: (a) the input; 
(b) after first Conv layer; (c) after the second Conv 
layer; (d) after the FC layer

 
 

 
 

predictions of damage degrees in the damaged region, thus 
achieving a higher damage quantification accuracy. 3). The 
practical engineering projects usually consist of thousands 
of bar elements, resulting in a large CNN training label 
matrix. The customized UMSE would greatly reduce the 
epoch number, iteration time and enhance the damage 
detection accuracy of the network. 

 
4.3 Feature visualization 
 
To demonstrate the automatic feature extraction ability 

of the proposed CNN, the t-distributed Stochastic Neighbor 
Embedding (t-SNE) was used for feature visualization. The 
t-SNE was proposed by Maaten and Hinton (2008) for 
dimension reduction of high-dimensional data for 
visualization. The t-SNE firstly converts the points 
similarities to joint probabilities and then takes the 
Kullback-Leibler divergences between joint probabilities of 
the low-dimensional space and high dimensional data as 
cost function (Lin et al. 2017). The result of t-SNE varies 
due to the different initializations. 

In this study, the testing datasets (900 samples, three 
scenarios each with 300 samples) were inputted into the 
CNN for visualization. It is worth noting that as the original 
outputs of the convolutional layers were four dimensional 
array (samples, channel, width, height), they were reshaped 
to two dimensional array before conducting the t-SNE 
transformation. Four output features were visualized as 
shown in the Fig. 8, including the features of the original 
testing data, features after two convolutional layers and 
features after fully connected layer. It can be seen that the 
original testing data were dispersed into several clusters 
(Fig. 8(a)) while after the two convolution layers, fewer 
clusters were seen. In Fig. 8(d), most points from the same 

 
 

 
 

 

(a) Loss curves of the CNNs (b)Validation curves of the CNNs 

Fig. 9 Comparisons of the CNN with and without data augmentation 

Table 6 CNN performance evaluation using noise-free and 5% noise testing samples 

Test samples 
Testing MSE DLA MAEDD 

CNN 1 CNN 2 CNN 1 CNN 2 CNN1 CNN 2 
Noise-free 1.3067e-5 1.9706e-05 98.67% 98.88% 0.0170 0.0186 
3% noise 0.0003 0.0002 89.22% 92.33% 0.0850 0.0649 
5% noise 0.0006 0.0004 81.00% 88.11% 0.134 0.0941 
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scenarios gather in the same cluster, indicating good feature 
extraction ability of the proposed CNN. 

 
4.4 Effects of data augmentation 
 
For comparison, two Convnets, CNN1 and CNN2, were 

trained, CNN2 with data augmentation while CNN1 
without. Implementation details of data augmentation could 
be seen in Section 3.3. After the training, the original 900 
testing samples were added with 3% and 5% noise and were 
tested respectively. Fig. 9 shows the validation loss and 
metric (MAED) of the Convnets. It can be seen that the 
CNN2 converges slightly fast in the first 200 epochs. A 
positive effect of data augmentation on anti-noise ability 
could be seen in Table 6 where the prediction results of 
noise-free 3% and 5% noise polluted samples are evaluated 
in terms of testing MSE, DLA, and MAEDD. When tested 
with noise-free samples, both CNN1 and CNN2 achieved 
high damage detection accuracy, with the testing MSE from 
1.30e to 5-1.97e-5, DLA at around 98%, and MAEDD at 
around 0.018. However, when tested with noise polluted 

 
 

samples, both showed noticeably declined performances in 
all three indices. Despite of the declines, CNN2 achieved 
higher damage localization and quantitation accuracy than 
CNN1 for both 3% and 5% noise polluted data. 

To further prove the effectiveness of data augmentation, 
prediction results of three randomly selected samples 
(Samples 26, 418 and 635) were presented in Fig. 10. It can 
be seen that 1) when tested with non-noise testing data, both 
CNN1 and CNN2 achieved high detection accuracy on 
damage localization and quantification in all samples; 2) for 
the polluted data (3% and 5% noise), CNN2 outperformed 
CNN1 on damage localization and quantification. 
Particularly, in Fig. 10(b), for the 5% noise polluted sample, 
CNN1 failed to detect the damaged bar 96 and showed false 
alarms on other elements while CNN2 successfully 
identified the damaged bars with acceptable prediction 
accuracy on damage degrees. Overall, although Convnets 
trained by the original mode shape datasets could achieve 
high damage detection accuracy, they may exhibit slightly 
poor robustness to the noise. In such cases, data 
augmentation is a way to mitigate this problem. 

 
(a) Prediction results of sample 26 (damaged bar number: 129)

 

 

(b) Prediction results of sample 418 (damaged bar number: 82,96)
 

 

(c) Prediction results of sample 635 (damaged bar number: 13,89,100) 

Fig. 10 Prediction results of selective samples using CNN1 and CNN2 
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Fig. 11 NMSEC-PCA based CNN feature visualization 
with t-SNE: (a) the input; (b) after first Conv layer; 
(c) after the second Conv layer; (d) after the FC 
layer 

 
 
4.5 The NMSEC-PCA based CNN 
 
According to Section 3.4, the PCA dimensionality 

reduction process produced a NMSEC-PCA based input as 
a 36 dimensional matrix. It was then reshaped to 1 × 6 × 6 
and fed into CNN. After the training, the features of the 
CNN using testing samples were visualized using t-SNE 
method, as presented in Fig. 11. Fig. 12 presents the 
validation curve comparisons between the mode shape 

 
 

 

 
 

 

Fig. 12 Validation curve comparisons between mode shapes 
based and NMSEC-PCA based index 

 
 
Table 7 Comparisons of the two methods 

Methods Mode shape based NMSEC-PCA based
Input shape 4200 × 1 × 45 × 45 4200 × 1 × 6 × 6 

Training time Around 10 minutes Within a minute 
Testing MSE 1.3067e-05 3.9385e-5 
Testing DLA 98.67% 99.22% 

Testing MAEDD 0.0170 0.0154 
 
 

 

 
 
 

 
Fig. 13 Prediction results of selective samples using mode shape based CNN and NMSEC-PCA based CNN

 
Fig. 14 The effect by bar element
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Fig. 15 The effect by mode 
 
 

based method and the NMSEC-PCA based method. 
Accordingly, Table 7 compares these two methods in terms 
of input shape, training time, and testing indices. Testing 
results on selected samples (Samples 26,418 and 635) of 
these two CNNs were also compared in Fig. 13. Overall, it 
can be seen that these two methods achieved almost the 
same convergence rate and testing performance. In terms of 
testing DLA and MAEDD, the NMSEC-PCA based CNN 
achieved slightly higher accuracy. However, the training of 
NMSEC-PCA based method is ten times faster than that of 
the mode shape based one. This advantage would enable the 
NMSEC-PCA based method to have more potential for real 
application on the damage detection problem of large-scale 
structures. 

 
4.6 Effects by element and mode 
 
From the obtained PCs, effects by element and mode 

were calculated according to Eqs. (20)-(22) and results are 
shown in Figs. 14-15 respectively. According to Fig. 14, 
Bar elements 10,108 and 115 account for the first three 
most valuable pieces of modal strain energy information. 
Fig. 15 shows that Mode 4 accounts for the most 
information of the whole dataset while Mode 6 contributes 
the least information, thus Mode 6 could be removed. The 
further analysis could help estimate the sensitivity of 
elements and modes on the modal strain energy. 

 
 

5. Conclusions 
 
This paper proposed a novel updated loss function 

UMSE and damage detection evaluation indices for damage 
detection problem and the efficiency of the proposed 
method was demonstrated using a truss bridge model. PCA 
was conducted on the NMSEC for dimension reduction. 
The NMSEC-PCA based data were trained by CNN and 
damage detection accuracy were compared to the mode 
shape based CNN. The following conclusions could be 
drawn. 

 

● CNN with two convolutional layers were selected as 
it achieved the best damage detection accuracy. The 
t-SNE were employed to visualize the output of each 
network layer to demonstrate the automatic feature 
extraction of the proposed CNN. 

● The proposed UMSE loss function outperforms the 
commonly used MSE as it could greatly reduce the 
computational cost, achieve faster convergence 
speed and higher detection accuracy, and is highly 
flexible for practical engineering structures 
applications as it could be customized according to 
needs. Based on this research, a combination of 
α=0.2 and β=0.8 in the UMSE is suggested for 
damage quantification problems. 

● For a clear comparison, we used both testing MSE 
and proposed indices (DLA and MAEDD) for 
evaluation. A near-zero testing MSE cannot indicate 
an overall high detection accuracy since they are 
inherently near zeros in this study. In reality, even a 
slight change in testing MSE could mean a great 
difference in the damage accuracy. An example of 
this could be seen in Table 6. When the two CNNs 
were tested by 5% noise polluted samples, there is 
only a slight difference in the testing MSE 
(CNN1:0.0006 and CNN2:0.0004) while notable 
differences were seen in DLA and MAEDD. 
Therefore specifically developed indices are needed. 

● When tested with noise polluted data, the CNN with 
data augmentation achieved better detection 
accuracy than the one without. In practice, the mode 
shape based CNN may exhibit a slightly poor robust 
ability. In such a case, data augmentation, that is 
generating samples by adding noise, could be a way 
to mitigate the noise effect. 

● Compared to mode shape input, the NMSEC-PCA as 
input is computationally cheaper yet equally 
effective. This reduction on computation cost would 
allow CNN more suitable for real structural 
application especially for large scale and complex 
structures. 

● Effects by element and mode were analyzed based 
on NMSEC-PCA index. The result could potentially 
provide guidance on selecting valuable components 
from the original modal strain energy training data 
for the future research. 

 

The experimental study will be conducted to further 
verify the proposed method next step. 
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