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ABSTRACT Inherently ultrasound images are susceptible to noise which leads to several image quality
issues. Hence, rating of an image’s quality is crucial since diagnosing diseases requires accurate and high-
quality ultrasound images. This research presents an intelligent architecture to rate the quality of ultrasound
images. The formulated image quality recognition approach fuses feature from a Fuzzy convolutional neural
network (fuzzy CNN) and a handcrafted feature extraction method. We implement the fuzzy layer in between
the last max pooling and the fully connected layer of the multiple state-of-the-art CNN models to handle
the uncertainty of information. Moreover, the fuzzy CNN uses Particle swarm optimization (PSO) as an
optimizer. In addition, a novel Quantitative feature extraction machine (QFEM) extracts hand-crafted features
from ultrasound images. Next, the proposed method uses different classifiers to predict the image quality.
The classifiers categories ultrasound images into four types (normal, noisy, blurry, and distorted) instead of
binary classification into good or poor-quality images. The results of the proposed method exhibit a significant
performance in accuracy (99.62%), precision (99.62%), recall (99.61%), and f1-score (99.61%). This method
will assist a physician in automatically rating informative ultrasound images with steadfast operation in real-
time medical diagnosis.

INDEX TERMS  Ultrasound image, quantitative feature extraction machine (QFEM), particle swarm opti-
mization (PSO), feature fusion, fuzzy convolutional neural network, feature extraction.

Clinical translation statement: This research has not been trialed in any real-life diagnosis. The whole
research has been experimented with in our Lab setup. However, the research is designed to assist a physician.

I. INTRODUCTION

Ultrasound images have an immense impact in the medical
diagnosis fields and other imaging fields. It is widely known
that more than 25% of medical imaging diagnosis proce-
dures are involved with ultrasound and some major imaging
techniques MRI, x-rays, etc. are complemented by ultrasonic
imaging [1]. Ultrasound images are formed from the scattered

reflection waves which are formed with random energy and
this causes generating speckle noise in images. It is inevitable
to reduce preserved edges and speckle noise for diagnosis and
interpretation of ultrasound images [2]. Most of the ultra-
sound image analysis and filtering methods concentrate on
the effect of speckle noise and try to reduce its effects [3]
but sometimes the noise makes images distorted, and blurred
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which impacts a significant effect on image quality. As ultra-
sound image plays a significant role in diagnosis, distorted
images or other improper images may lead to inadequate
information in the diagnosis system. The judgment of dis-
ease diagnosis based on ultrasound imaging depends on the
dexterity of the physician. Uninformative ultrasound images
open lead to making the wrong conclusion by the physician.
Confirming the proper quality of an ultrasound image is a
crucial step. Hence this research presents an approach to
rate the quality of ultrasound images by sensing whether the
image is normal, noisy, blurry, or distorted.

Different research has been induced to assess the quality
of ultrasound images. On the base of ideal techniques and
results, we have excerpted some such works in this paragraph.
Rahman et al. [5] proposed an approach to determine the
optimum threshold value of wavelet coefficient for the best
speckle-noise reduction using Fisher discriminant analysis
(FDA). As the main advantages, the authors claimed in terms
of MSE, SNR, and EPF their proposed method effectively
removed speckle noise from ultrasound images and provided
better performances than other existing classical methods.
Besides their method was more effective for highly inho-
mogeneous images. The novelty of this research was in the
estimation of the threshold value. Authors Zhang et al. [29]
presented a nonlinear diffusion method to remove the speckle
noise from ultrasound images. The method was developed in
the Laplacian pyramid domain. The principal advantage of
this method was that it could remove speckle noise maximally
by preserving small structures and edges of an ultrasound
image. The prime novelty of this method was in the automatic
identification of a gradient threshold for every pyramid layer
of the nonlinear diffusion. Rahman et al. [7] presented an
optimized speckle-noise reduction filter to reduce speckle
noise from ultrasound images based on the differentiation of
the diffusion in the direction of the gradient. The proposed
method was compared with the existing Perona—Malik Filter
Method in terms of some quantitative statistical measure-
ments MSE, PSNR, RMSE, etc, and the method provided
better results than the existing methods. The main advan-
tages of this method included improving image quality while
removing speckle noise as well as preserving and enhancing
the edges of the image. The novelty of this method was in
the capability of restoring fine details of an image. In the
paper [9] an adaptive anisotropic diffusion technique was
introduced for ultrasound images to reduce speckle noise.
The prime advantage of this method was that it could remove
noise from an ultrasound image with preserving edges by
causing no blur between the frontiers of different regions.
The novelty of this method was in the direction-oriented
mechanism of speckle-noise reduction. The limitations of all
methods discussed till now were that these methods could
remove only speckle noise of ultrasound images. These meth-
ods couldn’t detect or mitigate other ultrasound image quality
issues. Authors Singh et al. [10] mentioned the effectiveness
of Local binary patterns (LBP) to measure the quality of
synthetic ultrasound images. They also demonstrated the use
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of LBP in the analysis of texture features. The main advantage
of this method was that the method could easily be used to
generate the dataset of the synthetic ultrasound image. This
method also developed an objective quality assessment for
synthetic ultrasound images and this was the core novelty
of this method. The whole experiment of this method was
evaluated based on the feature of a single technique namely
LBP and it was a fundamental limitation of this method.

All of the methods discussed earlier are the classical meth-
ods that perform quality analysis of ultrasound images by
using various quantitative parameters like MSE, PSNR, etc.
In recent years several intelligent works have been introduced
for the exploration of ultrasound image quality based on
artificial intelligence. The subsequent part of this paragraph
presents some of these kinds of methods. Zhang et al. [4] pre-
sented a CNN-based image Quality assessment (IQA) model
for ultrasound images. To establish the IQA model they had
used a deep CNN and a residual network followed by a trans-
fer learning approach. For evaluation of the IQA model two
error metrics, LCC and SROCC had been used where PSNR
and SSIM were used to evaluate the ultrasound images qual-
ity. Based on the result of these measurement metrics they
had found that the CNN-based IQA model provided effective
results. This model provided an automatic no-reference IQA
based on Deep learning (DL) which was the prime advantage
and novelty of this method. The proposed IQA technique had
some subjective issues during image labeling and this was
a fundamental limitation of this method. In the paper [6]
a DL-based scheme FUIQA was introduced to assess the
fetal ultrasound image quality with the realization of two DL
models L-CNN and C-CNN. They had involved 8072 fetal
abdominal images from approximately 492 ultrasound videos
from which the model L-CNN localized the fetal abdominal
region of interest (ROI) and C-CNN evaluated the ultrasound
image quality based on that ROIL. Later the results of the
FUIQA scheme were assessed by three metrics ROL, SB, UV,
and suggested that the local phase features were helpful to
improve the performance of model L-CNN. An automatic
quality control scheme for fetal ultrasound images was the
main advantage and novelty of this method. However, the
method was applicable only fetal ultrasound images which
was a prime limitation of this method. Mostafiz ef al. [8]
proposed an automatic deep neural network system to detect
and reduce speckle noise from ultrasound images. The coa-
lescence of CNN and wavelet features had been used to
detect and classify ultrasound images. They attained 98.54%
accuracy, 98.19% sensitivity, and a specificity of 98.25%
for image classification. They concluded that LDA in noise
analysis shows better performance in terms of MSE, SNR,
and EPF. This method could detect and remove speckle
noise of an ultrasound image by itself which was the prime
advantage and novelty of this method. This method was only
applicable to the speckle noise of ultrasound images which
was the main limitation of this method. A Machine learning
(ML)-based scheme was developed in the paper [11] by
using the AdaBoost algorithm, to measure the quality of fetal
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ultrasound images. The automated detection of stomach bub-
bles and the umbilical vein was also proposed with AdaBoost
which takes less than 6 seconds. In the base of accuracy,
specificity, sensitivity, and error results they had shown the
detection of the stomach was more accurate than the umbil-
ical vein. An intelligence scheme for fetal ultrasound image
quality detection was the main advantage and novelty of this
method. The whole research was designed based on only one
dataset and only for fetal ultrasound images. These were the
limitations of this method. All the existing research discussed
till now either build techniques to reduce speckle noise or
generates a quality assessment approach. However, all most
every technique works with only certain types of ultrasound
images such as speckle noise, fetal ultrasound image, etc.
So, based on the correlation and analysis of previous works,
this research decides to build an automatic quality rating
scheme for multiple ultrasound quality issues.

The fundamental aim of this research is to rate whether
an ultrasound image is normal, noisy, blurry, or distorted.
To build the scheme this research performs feature fusion
from an input ultrasound image by using DL and a cus-
tomized feature extraction approach. After that classification
is performed on these fused features to rate the quality of
the input ultrasound image. The customized feature extrac-
tion technique of this research is named by Quantitative
feature extraction machine (QFEM) and it extracts several
quantitative features from an input ultrasound image. For
DL-based feature extraction, this research modified the exist-
ing VGG-19 CNN model by adding a fuzzy layer to it.
Two customary fuzzy operations namely fuzzification and
defuzzification are utilized to construct the fuzzy layer. In any
fuzzy process, fuzzification alters natural inputs to fuzzy
states. After performing the fuzzy mechanism to those fuzzy
states defuzzification alters the consequence in its natural
form [30]. Fuzzification and defuzzification are the facile,
operable, and feasible mechanisms that most researchers uti-
lize to develop fuzzy logic design. For instance, the authors
of the paper [31] developed a fuzzy scheme for analysis
and matching the fingerprint. The authors of the paper [32]
developed a convolution-based neuro-fuzzy architecture to
do the analysis of sentiment from movie clips. In paper [33]
the authors proposed a fuzzy CNN structure to predict traffic
flow from precarious traffic accident data. In all of these
methods [31], [32], the authors follow the approach of fuzzifi-
cation and defuzzification in between isolated activities. The
fuzzy VGG-19 CNN model of this research is optimized by
utilizing the Particle swarm optimization (PSO) technique.
PSO is a bio-inspired technique that finds an optimal solution
from a solution space [13]. Nowadays PSO is widely utilized
in various DL and ML approaches to increase the efficiency
of models through the best optimization. For instance, the
authors of the paper [34] utilized PSO to get the optimal
parameters for CNN models. In the paper [35] the authors
utilized PSO to optimize the parameters of the Support vec-
tor machine (SVM). Where, PSO increased the efficiency
of SVM to classify different types of plants. The authors
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of papers [36], [37], [38] also utilized PSO to increase the
efficiency of different DL techniques. Thus, this research
decides to examine the efficiency of PSO. Following are the
principal contributions involved in this research:

o This research increases the performance of the existing
VGG-19 CNN model by adding a fuzzy layer with
it and by optimizing the model using the PSO tech-
nique. Also using the fuzzy layer and PSO technique
proposed method analysis the performance of different
well-known CNN models.

« A fancy feature extraction technique named QFEM is
presented in this research which performs excellent
using only 120 features.

o The proposed method builds an automatic ultrasound
image quality rating scheme with a low misdetection rate
because of the fusion of features from two techniques
QFEM and PSO optimized fuzzy VGG-19 CNN model.

o This research generates its own ultrasound image dataset
of 2600 images to amplify the proposed scheme.

The next part of this paper is allocated in the follow-
ing way: Section II describes the prime architecture of this
research along with the related dataset. Section III presents
the obtained results of this research with the necessary dis-
cussion. Finally, section IV concludes the overall work of this
research.

Il. MATERIALS AND METHODOLOGY

This section presents the dataset and main formation of this
research. Fig. 1 presents the overall formation of this research
and section A to D narrates Fig. 1 in detail.

PSO based fine-tuned fuzzy CNN

Dataset

Feature
extraction

J
Quantitative feature
extraction machine (QFEM)

@ 606d [
Result
analysis

FIGURE 1. The fundamental architecture of this research.

I,I, I Tisse

orsnj aimeay

L

Feature vector

A. DATASET

The dataset [49] of this research holds four types of ultra-
sound images namely normal, noisy, blurry, and distorted.
Each type has a total of 650 ultrasound images. Thus, a total
of 2600 images exist in the dataset. The images of the dataset
are collected from various sources on the internet as well as
from real-life diagnostic centers. TABLE 1 presents the sam-
ple ultrasound images for each class of mentioned dataset.
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TABLE 1. Sample images for each class of the dataset.

Class Sample

Normal

Blurry

Distorted

B. FEATURE EXTRACTION

For feature extraction, this research uses both handcrafted
and CNN features. Quantitative features are extracted by
using handcrafted features and for this purpose, this research
presents a novel feature extraction approach. For CNN-based
feature extraction, the proposed method improves an existing
CNN architecture by using an additional fuzzy layer with it.
Section 1 and 2 describe the process of feature extraction
in detail. Two popular feature selection techniques namely
Minimum redundancy maximum relevance (mRMR) [44]
and Recursive feature elimination (RFE) [45] are used to
evaluate the redundancy of extracted features.

1) QUANTITATIVE FEATURE EXTRACTION MACHINE

QFEM is a customized feature extraction approach pre-
sented in this research. QFEM aims to identify the pattern
of quantitative features within the images to recognize the
qualitative circumstance of that image. Fig. 2 illustrates the
working method of QFEM at a glance. QFEM consists of
N steps. In 1% step of QFEM, an image (Y3) is gained
from the input image (X) by using the median filter [12]
with a 3 x 3 convolution matrix. After that, 15 features
are calculated from two images Y3 and X. These 15 fea-
tures are identified as F3 in Fig. 2. TABLE 2 summarizes
these features altogether. By analyzing several existing works
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(i.e- [40], [41], [42], [43]) on quantitative quality assessment
metrics of images this research observes most of the methods
commonly use these 15 features of TABLE 2. Hence these
15 features are selected in this research.

Apply median filter

| l

Original 3X3 Median 5X5 Median 7X7 Median nxn Median
image filter image filter image filter image filter image
(X) (Y3) (Ys) (Y7) (Yn)
F3
|
Fs
I
F7
T
Fn

FIGURE 2. Structure of QFEM.

In the 2™ step of QFEM, an image (Y5) is gained from the
input image (X) by using the median filter witha 5 x 5 con-
volution matrix. After that, 15 features (Ip-I14) are calculated
from two images Y5 and X. These 15 features are identified as
Fs in Fig. 2. Sequentially median filter with nxn convolution
matrix gives F, from Y, and X. After using QFEM with
T number of steps there exists a total of Tx 15 features for
an image. Although QFEM may apply with any number of
steps, the number of steps should be ascertained accord-
ing to user analysis. Because of getting optimum outcomes,
this research uses 8-steps QFEM. For a noisy image of the
dataset Fig. 3 demonstrates the mechanism of QFEM for this
research. So, by QFEM a total of 8 x 15 = 120 features gains
in this research. Fig. 3 shows the cluster-wise visualization
of these features for each class of the dataset. Fig. 4 shows
that the features of QFEM provide a clear separability among
classes.

Algorithm 1 The Working Mechanism of QFEM
Input: 2D image
Output: Feature vector

Initialization:
1. n=2N—1, Where N=2, 3,4, 5, ...
2. X <— Input image
3. Y, <— Apply median filter on X using nxn
kernel
4. F, <— Feature vector

1. ForeachN :

2 Find Y,

3. Use (X,Y,) to get F, | Fy, {Po, Py,..., P14}
4. F,«—F,
5.  End for

6. ShowF,

End:
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TABLE 2. Description of the features of QFEM.

Feature Feature name Calculation strategy
Iy Difference of mean DM = u(X) - u(¥,)
(DM) Here, p presents the mean value
I Difference of median DMe = M(X) — M(Yy))
(DMe) Here, M presents the median value
L Mean Square Error 1 EE
(MSE) MSE=— 3" 3" [X(0.)) - Vali )P
i=0 j=0
Here, m and n present the height and width of the image, and Y, present the
median filtered image with convolution matrix size (nxn)
I3 Differe.nc.e of standard a(S) = [ZX,(s; — w)?/(mn) —1]; DSd = 6(X) — a(¥y,)
deviation (DSd) Here, N = mn, and s; is the i’th number of pixels of the image S
: - N
I Difference of Variance 62(S) = Zizl(si —W?/(mn) —1;DV=0c%(X) — 6%(Y,)
(DV)
Is Peak Signal-to-Noise PSNR = [101og,, Zn-1|
Ratio (PSNR) MSE
Is Signal to Noise Ratio P Ward VA (N
SNR = 10log e e —
(SNR) 10 Yo Z?:(}[X(l,]) — Y, (i, N]?
I Mean Absolute Error 1
(MAE) MAE—EZIX—YnI
Is Gradient magnitude
similarity deviation [W(k) WUO)]
(GMSD) 2Gx(K)Gy (K)+C
w(l) = GZ(K)+GZ(K)+C’ GMSD = ’
Here, Gx(k) and Gy(k) are the gradient magnitude at the position k for X and Y.
respectively. C is a constant and C > 0 and W(k) gradient magnitude similarity
Iy Structural similarity (2 fxlty + C1)ayy + Cy)
i SSIM(X,Y) = Y ;HereY =Y,
index measure (SSIM) &Y= (U2 + 2 + O (02 + 02 + C,) l n
Lo Covariance (Cov) 20e—u) (Yi—ty) |
Cov(X,Y) = ————;HereY =Y,
Here, x;jand y; are the i’th numbers of pixels of the image X and Y,
respectively.
I Difference of wavelet Z A24B? +C?
energy (DWE) E(S) = ;T DWE =E(X) — E(Y.)
Here, A, Bi, and C; presents the i’th number of pixels for 1-level wavelet
subband images HL, LH, and HH respectively
Iin Difference of Skewness (si—1)3
Sk(S) = ; ; DS = Si(X) — S(Yn)
(DS)
Iis Difference of Kurtosis Zi_ (xj—p)*
(DK) K,(S) = # ; DK =K, (X) - Ky (Yn)
I Diff f Ent —_3V g 1Y) =
14 Hferenee of Entropy H(S) == X1, p() *loga(P(i,)); DE = HX) - H(Y»)
Here, p(i, j) is the probability of pixel (i, j)
1800712 VOLUME 10, 2022
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FIGURE 3. Mechanism of QFEM for a noisy image of the dataset.

The median filter can able to remove speckle noise from
ultrasound images [39]. So, it can extract efficient features by
using QFEM. Moreover, this research analyzes several filters
(i.e-average filter, gaussian Filter, bilateral Filter, etc) as the
core component of QFEM, and the median filter provide the
supreme outcome over all of these. Thus, the median filter is
an ideal suit for QFEM in this research. Algorithm 1 shows
the working mechanism of QFEM.

2) PSO BASED FINE-TUNED FUZZY CNN

This research fine-tuned a pre-trained VGG-19 CNN model
by adding an extra fuzzy layer with it. During fine-tuning
PSO is used to optimize the hyperparameters of the model.
PSO performs operation on a set of particle P = {p1, p2,
p3,-..,pi}. At time t each p; has a position X; and
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Mormal
Moisy
Blurry
Distorted

FIGURE 4. Cluster-wise visualization of the features of QFEM.

a velocity vj. For the picked evaluation of objective function,
the position is remembered by each p;, and this information
is stored by a memory pbest;. Memory pbest;is updated every
time whenever p;finds a better position. Another memory
gbest holds the best position at swarm level for any particle
that has visited ever. PSO updates the value of x and v
iteratively until an efficient solution is captured. Algorithm 2
presents the working mechanism of PSO.

Fig. 5 shows the architecture of the VGG-19 CNN model
of this research. Like other CNN it has two parts namely
feature extraction and feature classification part. The feature
extraction part consists of a series of Convolution (Conv)
layers including one max-pooling layer at the end of each
Conv block and a fuzzy layer at the end of the last max-
pooling layer. The rest of the network from the end of the
fuzzy layer is defined as the feature classification part. The
fuzzy layer is added in between the last max-pooling layer
and the fully-connected layer as an additional layer with
the existing VGG-19 structure. Two fundamental operations
fuzzification and defuzzification are used to build the fuzzy
layer. In the fuzzification stage, the output map of the last
max-pooling layer is turned up to fuzzy maps by utilizing
three membership functions namely Gaussian(G), Triangu-
lar(T), and S-shaped(S). For any value q in between p and r
with a standard deviation o, these functions can be defined as
following way:

7(qu)2
G(x;q,0) =e 27
0 x<p
X—p’ P<Xx=¢q
Te;p.rq =4 420
, g<x<r
r—gq
0, X>r
0, xX=p
2
2<x ”), <x<PHT
S(x7prr)= r=p 2 2
1—2<x_r), p+r<x<r
r—p 2
1, xX>r
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Algorithm 2 The Working Mechanism of PSO

Input: Set of random particles
Output: Best position of particles

Initialization:

Initialize random particle P = {pj, p2, p3, - . -, Pi/}-

1
2. t <— Time

3. ¢l <— cognitive factors

4. 2 <— Social factors

5. ul, u2 <— Random values in the interval [0-1]
6. w <— inertia weight

7. pbest; <— best position of p;

8. gbest <— global best position of particle

Start:
1. While (An efficient solution is not met)
2 For each p;
3 Update velocity v; | vi(t+1) = v; (t)w+clul [pbest;-x;]+ c2u2[gbest-x;]
4. Update the position x; | xi(t+1)= xi(t) + vi(t+1)
5. Use objective function f to evaluate the fitness value of p;
6 Update pbest;(t) | pbesti(t+1) = phesti () if.f (pbest; (1)) = f(pi ( + 1))
(i (t + 1) if f (pbest; (1)) > f(pi (t + 1))
7. Update gbest(t) | gbest(t+1) = max{f(pbest; (1)), flgbest(t))}
8 End for
9. End while
End:

Different studies have found that the ReLU activation func-
tion with the highest value of six (6) helps the network learn
the sparse features [46], [47]. Thus, we have selected the
value of p and q based on the highest value (ryax). The value
of p was selected as half of rmax, and q was selected as the
sum of p with one-fourth of rpyax. In fuzzy logic, choosing
membership functions is a non-trivial problem. The distribu-
tion of data is crucial in the selection process. Our research
followed a trial-and-error process to choose the mentioned
three membership functions. The cost of calculation and the
number of parameters for membership functions have also
been taken into account. The Gaussian membership function,
for example, requires two parameters: mean and variance. It’s
simpler to see the effect on inference when there are fewer
parameters.

In the defuzzification stage each of the three fuzzy maps
is turned to crisp values by using the Mean of max (Mp,)
defuzzification technique. If x; is the max possible degrees
in any fuzzy map and N is the occurrence number of x; then
M, can be defined as:

N -
2 =15

My = =2

This research performs fine-tuning from Conv 5 block to
the last output layer of the network given in Fig. 3. During
finetuning, the hyperparameter of these layers is initialized as
the random particles (P) for the PSO. After setting x; and v;
for each p;, the proposed CNN model is executed for every p;
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Fine-tuning by utilizing PSO

Fuzzy layer

Defuzsifi

Fully connected + Rel.L | Output

FIGURE 5. Illustration of proposed fuzzy layer-based VGG-19 fine-tuning
by utilizing PSO.

TABLE 3. Parameters of PSO.

Parameter Value
Swarm size 10
iterations 15
Cognitive factor 1.4
Social factor 1.5
Inertia weight 0.9

and during this execution, the value of x;, vi, pbest; and gbest
are updated for the gained results according to Algorithm 2.
This execution performs iteratively and the parameter of gbest
particle gained at final results is considered as the optimized
parameter. After obtaining the optimum parameter proposed
CNN model is used as a feature extractor by excluding the
classifier part. TABLE 3 shows the general parameters of the
PSO algorithm for this research.
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To build the proposed CNN architecture this research
uses the VGG19 CNN model. VGG19 is selected by ana-
lyzing several CNN architectures namely VGGI9 [14],
VGG16 [15], ResNet50 [16], InceptionV3  [17],
Xception [18], and vanilla CNN baseline [48] because of
providing contextual outcomes.

C. FEATURE VECTOR

With QFEM this research extracts a total of 120 hand-
crafted features. From PSO-based fine-tuned fuzzy CNN this
research extracts a total of 1536 features from the last fuzzy
layer. Thus, by combining 120 and 1536 features a total of
1656 features exist in the feature vector for each image.

D. CLASSIFICATION

Random forests (RF) algorithm is used to classify the feature
vector. Once RF is trained the system can easily rate the
quality of an ultrasound image. RF is a popular tree-based
supervised ML algorithm that contains multiple Decision
trees (DT) for classification tasks. It uses bagging ensem-
ble [19] techniques which improves classification perfor-
mance compared to other single classifiers. In the original
RF model, the classification and regression trees algorithm
are used which is a DT variant method that induces DT by
recursive, top-down, greedy, and binary partitioning of the
data set [20], [21]. In the paper [22] it is mentioned that a
decision tree that contains N leaves partition the feature space
into N no. of regions Ry, 1 <n < N. So for each tree, the
prediction function f(x) can be defined as

N
f(x) = ZCnn(x,Rn)

n=1

where C,, is a constant appropriate to n

1, ifxeR,
0, otherwise

7 (X,Rp) = I

The RF is a robust method to handle noise and every DT
of RF provides a unit result that assigns each input dataset to
the most feasible label [23].

RF is used as a classifier in this research. Because of
providing contextual outcomes, RF is selected in this work
by analyzing several classifiers namely Logistic regression
(LR) [24], Naive bayes (NB) [25], K-nearest neighbors
(KNN) [26], and Extreme gradient boosting (XGB) [27].

Ill. RESULT AND DISCUSSION

The prime concern of this work is to develop an intelli-
gent scheme for rating the quality of an ultrasound image.
To develop the system the dataset of this research is par-
titioned in a ratio of 8:2, this ratio apprises that 80% of
data are reserved for system training and the remaining 20%
for system testing. All experiments of this work are exam-
ined by using 5-fold cross-validation [28] and usual perfor-
mance measurement metrics of a classifier such as Precision,
Recall, Fl-score, Accuracy, as well as Normalize confusion
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TABLE 4. Description of performance measurement metrics.

Metrics

Accuracy (A)

Description

Presents the percentage of aggregated
right prediction.

TP+TN
=————— X100
FP+TP+FN+TN

Defined as the measure of the quality of
the model.

P=—L_x100

TP+FP
Defined as the measure of the quantity

of the model.

R=—2L"x100
TP+FN

Presents how robust and precise a

model is
RXP

F1=2x—x100
R+P

Precision (P)

Recall (R)

Fl1-score (F1)

NCM Presents actual and wrong detection
rates of different classes in a tabular
form.
A3 True False
:i', — negative positive True negative (TN)
a (TN) (FP)
= False True
w| =— negative positive False negative (FN)
£ " (FN) (TP)
o
=
=
= ==
<| 2|
=
True False
negative positive True negative (TN)
= (TN) (FP)
E_]
s
T T T T
Normal Noisy Blurry Distorted

Predicted class

FIGURE 6. Demonstration of different parameters used to find
performance measurement metrics.

TABLE 5. The overall performance of QFEM by using different filtering
approaches.

Filter A P R F1
Average 81.62 81.99 81.65 81.76
Gaussian 84.96 85.05 84.94 84.95

Min 72.85 72.76 72.94 72.80
Max 79.62 79.81 79.63 79.67
Bilateral 92.92 92.91 92.87 92.87
Median 97.69 97.69 97.66 97.67

matrix (NCM) are used to evaluate the efficiency of these
experiments. TABLE 4 describes these metrics at a glance
and Fig. 6 shows the demonstration of different parameters
used to find these metrics.

To rate the image quality by using quantitative features this
research presents the approach called QFEM. QFEM uses
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TABLE 6. The fold-wise overall accuracy of QFEM by using different
filtering approaches.

Filter Foldl Fold2 Fold3 Fold4 Fold5
Average 82.88  80.77 82.50 82.31  79.62
Gaussian 84.04 86.15 86.15 82.69 85.77

Min 71.15 72,50 7250 7538  72.69
Max 7942  78.65 80.58 80.58  78.85
Bilateral 93.08  92.31 92.88 92.69 93.65
Median 98.27 96.92 97.69 97.31 98.27

the median filter technique as a core component. Although
any image filtering approach can be used to build QFEM the
median filter is selected based on its suitable results by evalu-
ating several filtering approaches. TABLE 5 shows the over-
all performance of QFEM for different filtering approaches.
TABLE 5 shows the median filter holds the maximum accu-
racy of 97.69% whereas the Bilateral filter gives the nearest
accuracy of 92.92%. TABLE 6 presents the fold-wise overall
accuracy for the performance of TABLE 5. The exploration
of TABLE 5 and VI prove that the median filter outperforms
other filters in terms of performance for the dataset of this
research.

TABLE 7 shows the overall performance of QFEM for
this research (median filter as the core component) regard-
ing features of different levels. TABLE 7 shows the overall
accuracy of QFEM increased gradually till step 8. TABLE 8
presents the fold-wise overall accuracy for the performance
of TABLE 7. TABLE 7 and 8 prove the justification for using
8 steps QFEM in this research.

TABLE 7. The overall performance of QFEM for different steps.

Step No. of A P R F1
No. feature
I 15 64.46 64.42 64.43 64.42
2nd 30 78.65 78.55 78.59 78.56
3 45 84.31 84.57 84.31 84.43
4t 60 87.38 87.72 87.39 87.52
5t 75 92.62 92.79 92.62 92.64
6 90 93.15 93.25 93.17 93.20
7t 105 95.69 95.75 95.70 95.70
gth 120 97.69 97.69 97.66 97.67
gth 135 92.19 92.36 92.19 92.23
1ot 150 84.65 84.67 84.64 84.64

This research fine-tuned several well-known CNN models.
TABLE 9 presents the overall performance of these models.
TABLE 10 presents the fold-wise overall accuracy for the
performance of TABLE 9. Tables TABLE 9 and 10 present
the overall performance of different CNN models without
including fuzzy layer and PSO.

TABLE 11 presents the comparison among different
CNN models and the proposed QFEM technique based on
overall accuracy. Generally, handcrafted feature extraction
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TABLE 8. The fold-wise overall accuracy of QFEM for different steps.

Step Foldl Fold2 Fold3 Fold4 Fold5
No.
I 66.15 62.88  66.15 63.46  63.65
2nd 79.23 77.69  77.11 82.88 76.35
3 85.19  81.53 83.08 85.77 85.96
4t 87.31 87.50  86.35 89.23 86.54
5t 92.31 90.96 9327  93.85 92.69
6t 93.08 9135 94.04 9346  93.85
7th 97.12 9538  96.15 95.19  94.62
gt 98.27 9692 97.69 97.31 98.27
gth 92.88 90.58  92.50  92.88 92.12
10% 83.85 8596  86.92 82.11 84.42

TABLE 9. The overall performance of different fine-tuned CNN models.

CNN model A P R F1
VGG19 96.23 96.30 96.23 96.24
VGG16 93.15 93.28 93.17 93.20

ResNet50 94.31 94.39 94.32 94.34

InceptionV3 74.92 74.37 74.64 74.43
Xception 87.31 87.18 87.09 87.08
Vanilla 81.35 81.25 81.27 80.97

TABLE 10. The fold-wise overall accuracy of different fine-tuned CNN
models.

CNN model Fold1l Fold2 Fold3 Fold4 Fold5
VGG19 95.58 96.92 96.73 96.15 95.77
VGG16 94.62 9212 9250 92.69 93.85

ResNet50 9423 93.08 94.62 9519 94.42

InceptionV3 7558 73.85 7538 7596 73.85
Xception 87.88 85.58 88.65 88.46 85.96
Vanilla 80.57 80.19 81.34 82.88 81.73

TABLE 11. Comparison among different CNN models and proposed
QFEM technique.

QFEM VGG19 VGG16 ResNet50 InceptionV3 Xception Vanilla
97.69 96.23 93.15 94.31 74.92 §87.31 81.35

gets lower performance than the DL-based approach but
TABLE 11 shows that QFEM outperforms different CNN
models. Hence, this research adds a fuzzy layer with different
CNN models to improve their performance.

TABLE 12 shows the overall performance of different
fine-tuned CNN models including a fuzzy layer. TABLE 13
presents the fold-wise overall accuracy for the performance
of TABLE 12.

TABLE 14 presents the comparison among different fine-
tuned CNN models with and without using fuzzy layers.
This comparison shows that the performance of CNN mod-
els improves because of the fuzzy layer. Where the fuzzy
VGG-19 holds the max accuracy and TABLE 12 shows this
accuracy is 97.46% which is less than the accuracy of 97.67%
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TABLE 12. The overall performance of different fine-tuned CNN models

TABLE 16. The fold-wise overall accuracy of different fine-tuned fuzzy
with the fuzzy layer.

CNN models with PSO.

CNN model

A

P R F1 CNNmodel Fold1 Fold2 Fold3 Fold4 Fold5
VGG19 97.46 97.45 97.43 97.43 VGG19 98.27 97.12 9942 98.65 98.46
VGG16 95.81 95.85 95.81 95.82 VGG16 97.88 97.50 97.69 98.65 96.92
ResNet50 96.04 96.07 96.05 96.05 ResNet50 98.46 9731 97.50 97.88 98.08

InceptionV3 77.58 77.61 77.63 77.61 InceptionV3 80.96 78.46 78.08 8038 78.27

Xception 90.12 90.29 90.16 90.22 Xception 9135 89.62 9096 93.08 91.15
Vanilla 90.00 90.25 90.03 90.02 Vanilla 94.61 95.00 93.65 94.61 95.76
TABLE 13. The fold-wise overall accuracy of different fine-tuned CNN TABLE 17. Performance of proposed scheme.
models with the fuzzy layer.

CNNmodel Fold1 Fold2 Fold3 Fold4 Fold5 Technique  Class A P R F1
VGG19 9846 96.54 96.73 98.08 97.50 QFEM+PSO  Normal 99.69 99.39 99.69 99.54
VGGI6 9654 9327 9615 9635 96.73 VtgsGedl ;“EZEF Noisy 100 99.85 100  99.93

ResNet50 96.92 9538 96.54 9577 95.58 classifier Blurry 99.39 99.24 99.39 99.31

InceptionV3 77.88 7596 77.12 76.73  80.19 Distorted 9936 100 99.36 99.68
Xception 90.77 87.88 90.19 9038 91.35 Overall 99.62 99.62 99.61 99.61
Vanilla 89.42 89.23 90.00 90.38 90.96

TABLE 18. The fold-wise accuracy of the proposed scheme.
TABLE 14. Effect of the performance of different CNN models due to
fuzzy layer and PSO.
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
CNN VGG19 VGG16 ResNe nception ception anilla
o (50 Anception¥3 - Necption - Vanill 99.81 99.23 100 99.42 99.62
Original _ 96.23 93.15 9431 74.92 87.31 8135

With fuzzy  97.46 95.81 96.04 77.58 90.12 90.00
layer

Withyfuzzy 98.38 97.73 97.85 79.23 91.23 94.73

layer +
PSO

TABLE 15. The overall performance of different fine-tuned fuzzy CNN

models with PSO.

Normal

99.70%

0.15%

0.15%

0

.00%

CNN model A P R F1 2 BV 100.00% [N 0.00%
VGG19 98.38 98.41 98.39 98.39 @ =
VGG16 97.73 97.76 9772 97.74 S
ResNetS0  97.85  97.87 9785  97.86 2
InceptionV3 79.23 78.80 78.93 78.80 _E 0.61% 0.00% 99.39% 0.00%
Xception 91.23 91.14 91.09 91.10 =
Vanilla 94.73 94.70 94.69 94.69
4 =1 ) o, o, 0,
of QFEM. To further extend the performance of the pro- g 0-00% 0-00% 0-64% 99.36%
posed model, this research optimizes the fuzzy CNN models

g
Normal

using PSO.

TABLE 15 shows the overall performance of differ-
ent PSO-based optimized fuzzy CNN models. TABLE 16
presents the fold-wise overall accuracy for the performance
of TABLE 15. TABLE 15 and 16 present the efficiency of
different fuzzy CNN models using PSO.

In terms of accuracy TABLE 14, shows the comparison
among different fuzzy CNN models of this scheme with
and without PSO. TABLE 14 presents VGG19 fuzzy CNN
architecture with PSO holds the most compatible accuracy of
98.38%, which outperforms the performance of all individual
techniques observed till now in our result and discussion part.

Noisy Blurry Distorted
Predicted class —————————-

FIGURE 7. NCM of the proposed scheme.

The feature fusion of the QFEM and PSO-based fuzzy
VGG19 model provides the actual outcome of this research
and TABLE 17 presents this result. TABLE 18 presents the
fold-wise accuracy for the result of TABLE 17. Fig.7 presents
the NCM of this scheme for the result of TABLE 17.

The receiver operator characteristic (ROC) curve is a per-
formance evaluation metric of a classifier. It presents the
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micro-average ROC curve (area = 0.9962)

TABLE 21. The fold-wise overall accuracy of different classifiers for the
proposed scheme.

Classifier Fold1 Fold2 Fold3 Fold4 Fold5
LR 92.88 9423 8923 92112 9596
NB 87.69 86.54 88.46 89.04 87.50

KNN 61.73  60.77 60.58 6442 60.38
XGB 100 98.27 98.85 9942 98.65
RF 99.81 99.23 100 99.42  99.62

-, = = macro-average ROC curve (area = 0.9962)

02 PR = ROC curve of class 0 (area = 0.9969)
,/’ = ROC curve of class 1 (area = 1.0000)
Pig = ROC curve of class 2 (area = 0.9953)
,/’ ROC curve of class 3 (area = 0.9924)
0.0 T r T T
0.0 0.2 04 06 08 10

False Positive Rate

FIGURE 8. Roc curve of the proposed scheme, where classes 0,1,2 and
3 present Normal, Noisy, Blurry, and Distorted ultrasound images
respectively.

TABLE 19. Comparison of the performance of this research with and
without feature fusion.

Technique A P R F1
Without QFEM 97.69 97.69 97.66 97.67
fusion PSO-based fuzzy VGG19 98.38  98.41 98.39  98.39
With QFEM + PSO-based fuzzy 99.62 99.62 99.61 99.61
fusion VGG19
TABLE 20. The overall performance of different classifiers for the
proposed scheme.
Classifier A P R F1
LR 92.88 92.99 92.91 92.92
NB 87.85 87.71 87.86 87.66
KNN 61.58 59.05 61.06 59.73
XGB 99.04 99.03 99.03 99.03
RF 99.62 99.62 99.61 99.61

TP rate against the FP rate. In this curve, the more the
value of the area under the curve is closer to one the more,
good the classifier is. Fig. 8 shows the ROC curve for this
research. TABLE 19 shows the performance comparison of
this research with and without feature fusion. TABLE 19
shows that using QFEM and PSO-based fuzzy VGG19 CNN
the highest accuracy gained is 97.67% and 98.38% respec-
tively. Meanwhile, the fusion of these two techniques pro-
vides an overall accuracy of 99.62% which outperforms each
individual technique.

This research analyzes several classifiers and from those
RF is selected for giving the most preferable outcome.
TABLE 20 presents the overall performance of different clas-
sifiers. TABLE 20 presents that the RF classifier provides the
highest accuracy of 99.62%. TABLE 21 presents the fold-
wise overall accuracy for the performance of TABLE 20.
TABLE 20 and 21 prove the justification for utilizing RF in
this scheme.

To evaluate the redundancy of the features, this research
examines two feature selection techniques namely mRMR
and RFE. TABLE 22 presents the overall performance of the
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TABLE 22. The overall performance of different feature selection
techniques.

Technique A P R F1
mRMR 97.62 97.59 97.60 97.58
RFE 95.15 95.13 95.12 95.10

TABLE 23. The fold-wise overall accuracy of different feature selection
techniques.

Technique Fold1 Fold2 Fold3 Fold4 FoldS
mRMR 97.88 9634 97.69 97.88  98.26
RFE 94.61 9538 9480 95.19 95.76

proposed model for these techniques. TABLE 23 presents the
fold-wise overall accuracy for the performance of TABLE 22.
TABLE 22 presents that mRMR provides the best accuracy of
97.54% between mRMR and RFE and this result is less than
the proposed model (99.62%). This indicates the 1656 fea-
tures need no redundancy reduction.

From the analysis of related research as far as we know
this is the first DL-based work to rate Ultrasound image
quality. Hence this research puts no comparison with exist-
ing approaches to evaluate the performance of the proposed
method.

IV. CONCLUSION

This research presents an intelligent model to rate whether
an Ultrasound image is normal, noisy, blurry, or distorted.
To develop the scheme proposed method performs feature
fusion from an ultrasound image by using a customized
feature extraction approach and a PSO-based fuzzy VGG19
CNN technique and then the RF classifier recognize the qual-
ity type of that image from the fused features. Based on the
results we have found the proposed approach as an efficient
system for ultrasound quality rating by holding an inaccuracy
of 0.38% only. In the future, besides the quality rating, we will
try to restore the quality of an ultrasound image to normal if
the quality is not detected as normal. However, the proposed
method will assist physicians to make any decision during
ultrasound imaging-based diagnosis.
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