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ABSTRACT Inherently ultrasound images are susceptible to noise which leads to several image quality
issues. Hence, rating of an image’s quality is crucial since diagnosing diseases requires accurate and high-
quality ultrasound images. This research presents an intelligent architecture to rate the quality of ultrasound
images. The formulated image quality recognition approach fuses feature from a Fuzzy convolutional neural
network (fuzzy CNN) and a handcrafted feature extraction method. We implement the fuzzy layer in between
the last max pooling and the fully connected layer of the multiple state-of-the-art CNN models to handle
the uncertainty of information. Moreover, the fuzzy CNN uses Particle swarm optimization (PSO) as an
optimizer. In addition, a novel Quantitative feature extraction machine (QFEM) extracts hand-crafted features
from ultrasound images. Next, the proposed method uses different classifiers to predict the image quality.
The classifiers categories ultrasound images into four types (normal, noisy, blurry, and distorted) instead of
binary classification into good or poor-quality images. The results of the proposedmethod exhibit a significant
performance in accuracy (99.62%), precision (99.62%), recall (99.61%), and f1-score (99.61%). This method
will assist a physician in automatically rating informative ultrasound images with steadfast operation in real-
time medical diagnosis.
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INDEX TERMS Ultrasound image, quantitative feature extraction machine (QFEM), particle swarm opti-
mization (PSO), feature fusion, fuzzy convolutional neural network, feature extraction.
Clinical translation statement: This research has not been trialed in any real-life diagnosis. The whole
research has been experimented with in our Lab setup. However, the research is designed to assist a physician.

I. INTRODUCTION19

Ultrasound images have an immense impact in the medical20

diagnosis fields and other imaging fields. It is widely known21

that more than 25% of medical imaging diagnosis proce-22

dures are involved with ultrasound and some major imaging23

techniques MRI, x-rays, etc. are complemented by ultrasonic24

imaging [1]. Ultrasound images are formed from the scattered25

reflection waves which are formed with random energy and 26

this causes generating speckle noise in images. It is inevitable 27

to reduce preserved edges and speckle noise for diagnosis and 28

interpretation of ultrasound images [2]. Most of the ultra- 29

sound image analysis and filtering methods concentrate on 30

the effect of speckle noise and try to reduce its effects [3] 31

but sometimes the noise makes images distorted, and blurred 32

1800712
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-3936-5539
https://orcid.org/0000-0003-1717-5109
https://orcid.org/0000-0001-8065-7173
https://orcid.org/0000-0001-5144-7169
https://orcid.org/0000-0002-5507-9399
https://orcid.org/0000-0003-0756-1006


M. M. Hossain et al.: Particle Swarm Optimized Fuzzy CNN With Quantitative Feature Fusion

which impacts a significant effect on image quality. As ultra-33

sound image plays a significant role in diagnosis, distorted34

images or other improper images may lead to inadequate35

information in the diagnosis system. The judgment of dis-36

ease diagnosis based on ultrasound imaging depends on the37

dexterity of the physician. Uninformative ultrasound images38

open lead to making the wrong conclusion by the physician.39

Confirming the proper quality of an ultrasound image is a40

crucial step. Hence this research presents an approach to41

rate the quality of ultrasound images by sensing whether the42

image is normal, noisy, blurry, or distorted.43

Different research has been induced to assess the quality44

of ultrasound images. On the base of ideal techniques and45

results, we have excerpted some suchworks in this paragraph.46

Rahman et al. [5] proposed an approach to determine the47

optimum threshold value of wavelet coefficient for the best48

speckle-noise reduction using Fisher discriminant analysis49

(FDA). As the main advantages, the authors claimed in terms50

of MSE, SNR, and EPF their proposed method effectively51

removed speckle noise from ultrasound images and provided52

better performances than other existing classical methods.53

Besides their method was more effective for highly inho-54

mogeneous images. The novelty of this research was in the55

estimation of the threshold value. Authors Zhang et al. [29]56

presented a nonlinear diffusion method to remove the speckle57

noise from ultrasound images. The method was developed in58

the Laplacian pyramid domain. The principal advantage of59

this methodwas that it could remove speckle noisemaximally60

by preserving small structures and edges of an ultrasound61

image. The prime novelty of this method was in the automatic62

identification of a gradient threshold for every pyramid layer63

of the nonlinear diffusion. Rahman et al. [7] presented an64

optimized speckle-noise reduction filter to reduce speckle65

noise from ultrasound images based on the differentiation of66

the diffusion in the direction of the gradient. The proposed67

method was compared with the existing Perona–Malik Filter68

Method in terms of some quantitative statistical measure-69

ments MSE, PSNR, RMSE, etc, and the method provided70

better results than the existing methods. The main advan-71

tages of this method included improving image quality while72

removing speckle noise as well as preserving and enhancing73

the edges of the image. The novelty of this method was in74

the capability of restoring fine details of an image. In the75

paper [9] an adaptive anisotropic diffusion technique was76

introduced for ultrasound images to reduce speckle noise.77

The prime advantage of this method was that it could remove78

noise from an ultrasound image with preserving edges by79

causing no blur between the frontiers of different regions.80

The novelty of this method was in the direction-oriented81

mechanism of speckle-noise reduction. The limitations of all82

methods discussed till now were that these methods could83

remove only speckle noise of ultrasound images. These meth-84

ods couldn’t detect or mitigate other ultrasound image quality85

issues. Authors Singh et al. [10] mentioned the effectiveness86

of Local binary patterns (LBP) to measure the quality of87

synthetic ultrasound images. They also demonstrated the use88

of LBP in the analysis of texture features. Themain advantage 89

of this method was that the method could easily be used to 90

generate the dataset of the synthetic ultrasound image. This 91

method also developed an objective quality assessment for 92

synthetic ultrasound images and this was the core novelty 93

of this method. The whole experiment of this method was 94

evaluated based on the feature of a single technique namely 95

LBP and it was a fundamental limitation of this method. 96

All of the methods discussed earlier are the classical meth- 97

ods that perform quality analysis of ultrasound images by 98

using various quantitative parameters like MSE, PSNR, etc. 99

In recent years several intelligent works have been introduced 100

for the exploration of ultrasound image quality based on 101

artificial intelligence. The subsequent part of this paragraph 102

presents some of these kinds of methods. Zhang et al. [4] pre- 103

sented a CNN-based image Quality assessment (IQA) model 104

for ultrasound images. To establish the IQA model they had 105

used a deep CNN and a residual network followed by a trans- 106

fer learning approach. For evaluation of the IQA model two 107

error metrics, LCC and SROCC had been used where PSNR 108

and SSIM were used to evaluate the ultrasound images qual- 109

ity. Based on the result of these measurement metrics they 110

had found that the CNN-based IQA model provided effective 111

results. This model provided an automatic no-reference IQA 112

based on Deep learning (DL) which was the prime advantage 113

and novelty of this method. The proposed IQA technique had 114

some subjective issues during image labeling and this was 115

a fundamental limitation of this method. In the paper [6] 116

a DL-based scheme FUIQA was introduced to assess the 117

fetal ultrasound image quality with the realization of two DL 118

models L-CNN and C-CNN. They had involved 8072 fetal 119

abdominal images from approximately 492 ultrasound videos 120

from which the model L-CNN localized the fetal abdominal 121

region of interest (ROI) and C-CNN evaluated the ultrasound 122

image quality based on that ROI. Later the results of the 123

FUIQA scheme were assessed by three metrics ROI, SB, UV, 124

and suggested that the local phase features were helpful to 125

improve the performance of model L-CNN. An automatic 126

quality control scheme for fetal ultrasound images was the 127

main advantage and novelty of this method. However, the 128

method was applicable only fetal ultrasound images which 129

was a prime limitation of this method. Mostafiz et al. [8] 130

proposed an automatic deep neural network system to detect 131

and reduce speckle noise from ultrasound images. The coa- 132

lescence of CNN and wavelet features had been used to 133

detect and classify ultrasound images. They attained 98.54% 134

accuracy, 98.19% sensitivity, and a specificity of 98.25% 135

for image classification. They concluded that LDA in noise 136

analysis shows better performance in terms of MSE, SNR, 137

and EPF. This method could detect and remove speckle 138

noise of an ultrasound image by itself which was the prime 139

advantage and novelty of this method. This method was only 140

applicable to the speckle noise of ultrasound images which 141

was the main limitation of this method. A Machine learning 142

(ML)-based scheme was developed in the paper [11] by 143

using the AdaBoost algorithm, to measure the quality of fetal 144
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ultrasound images. The automated detection of stomach bub-145

bles and the umbilical vein was also proposed with AdaBoost146

which takes less than 6 seconds. In the base of accuracy,147

specificity, sensitivity, and error results they had shown the148

detection of the stomach was more accurate than the umbil-149

ical vein. An intelligence scheme for fetal ultrasound image150

quality detection was the main advantage and novelty of this151

method. The whole research was designed based on only one152

dataset and only for fetal ultrasound images. These were the153

limitations of this method. All the existing research discussed154

till now either build techniques to reduce speckle noise or155

generates a quality assessment approach. However, all most156

every technique works with only certain types of ultrasound157

images such as speckle noise, fetal ultrasound image, etc.158

So, based on the correlation and analysis of previous works,159

this research decides to build an automatic quality rating160

scheme for multiple ultrasound quality issues.161

The fundamental aim of this research is to rate whether162

an ultrasound image is normal, noisy, blurry, or distorted.163

To build the scheme this research performs feature fusion164

from an input ultrasound image by using DL and a cus-165

tomized feature extraction approach. After that classification166

is performed on these fused features to rate the quality of167

the input ultrasound image. The customized feature extrac-168

tion technique of this research is named by Quantitative169

feature extraction machine (QFEM) and it extracts several170

quantitative features from an input ultrasound image. For171

DL-based feature extraction, this research modified the exist-172

ing VGG-19 CNN model by adding a fuzzy layer to it.173

Two customary fuzzy operations namely fuzzification and174

defuzzification are utilized to construct the fuzzy layer. In any175

fuzzy process, fuzzification alters natural inputs to fuzzy176

states. After performing the fuzzy mechanism to those fuzzy177

states defuzzification alters the consequence in its natural178

form [30]. Fuzzification and defuzzification are the facile,179

operable, and feasible mechanisms that most researchers uti-180

lize to develop fuzzy logic design. For instance, the authors181

of the paper [31] developed a fuzzy scheme for analysis182

and matching the fingerprint. The authors of the paper [32]183

developed a convolution-based neuro-fuzzy architecture to184

do the analysis of sentiment from movie clips. In paper [33]185

the authors proposed a fuzzy CNN structure to predict traffic186

flow from precarious traffic accident data. In all of these187

methods [31], [32], the authors follow the approach of fuzzifi-188

cation and defuzzification in between isolated activities. The189

fuzzy VGG-19 CNN model of this research is optimized by190

utilizing the Particle swarm optimization (PSO) technique.191

PSO is a bio-inspired technique that finds an optimal solution192

from a solution space [13]. Nowadays PSO is widely utilized193

in various DL and ML approaches to increase the efficiency194

of models through the best optimization. For instance, the195

authors of the paper [34] utilized PSO to get the optimal196

parameters for CNN models. In the paper [35] the authors197

utilized PSO to optimize the parameters of the Support vec-198

tor machine (SVM). Where, PSO increased the efficiency199

of SVM to classify different types of plants. The authors200

of papers [36], [37], [38] also utilized PSO to increase the 201

efficiency of different DL techniques. Thus, this research 202

decides to examine the efficiency of PSO. Following are the 203

principal contributions involved in this research: 204

• This research increases the performance of the existing 205

VGG-19 CNN model by adding a fuzzy layer with 206

it and by optimizing the model using the PSO tech- 207

nique. Also using the fuzzy layer and PSO technique 208

proposed method analysis the performance of different 209

well-known CNN models. 210

• A fancy feature extraction technique named QFEM is 211

presented in this research which performs excellent 212

using only 120 features. 213

• The proposed method builds an automatic ultrasound 214

image quality rating schemewith a lowmisdetection rate 215

because of the fusion of features from two techniques 216

QFEM and PSO optimized fuzzy VGG-19 CNN model. 217

• This research generates its own ultrasound image dataset 218

of 2600 images to amplify the proposed scheme. 219

The next part of this paper is allocated in the follow- 220

ing way: Section II describes the prime architecture of this 221

research along with the related dataset. Section III presents 222

the obtained results of this research with the necessary dis- 223

cussion. Finally, section IV concludes the overall work of this 224

research. 225

II. MATERIALS AND METHODOLOGY 226

This section presents the dataset and main formation of this 227

research. Fig. 1 presents the overall formation of this research 228

and section A to D narrates Fig. 1 in detail. 229

FIGURE 1. The fundamental architecture of this research.

A. DATASET 230

The dataset [49] of this research holds four types of ultra- 231

sound images namely normal, noisy, blurry, and distorted. 232

Each type has a total of 650 ultrasound images. Thus, a total 233

of 2600 images exist in the dataset. The images of the dataset 234

are collected from various sources on the internet as well as 235

from real-life diagnostic centers. TABLE 1 presents the sam- 236

ple ultrasound images for each class of mentioned dataset. 237

1800712 VOLUME 10, 2022



M. M. Hossain et al.: Particle Swarm Optimized Fuzzy CNN With Quantitative Feature Fusion

TABLE 1. Sample images for each class of the dataset.

B. FEATURE EXTRACTION238

For feature extraction, this research uses both handcrafted239

and CNN features. Quantitative features are extracted by240

using handcrafted features and for this purpose, this research241

presents a novel feature extraction approach. For CNN-based242

feature extraction, the proposed method improves an existing243

CNN architecture by using an additional fuzzy layer with it.244

Section 1 and 2 describe the process of feature extraction245

in detail. Two popular feature selection techniques namely246

Minimum redundancy maximum relevance (mRMR) [44]247

and Recursive feature elimination (RFE) [45] are used to248

evaluate the redundancy of extracted features.249

1) QUANTITATIVE FEATURE EXTRACTION MACHINE250

QFEM is a customized feature extraction approach pre-251

sented in this research. QFEM aims to identify the pattern252

of quantitative features within the images to recognize the253

qualitative circumstance of that image. Fig. 2 illustrates the254

working method of QFEM at a glance. QFEM consists of255

N steps. In 1st step of QFEM, an image (Y3) is gained256

from the input image (X) by using the median filter [12]257

with a 3 × 3 convolution matrix. After that, 15 features258

are calculated from two images Y3 and X. These 15 fea-259

tures are identified as F3 in Fig. 2. TABLE 2 summarizes260

these features altogether. By analyzing several existing works261

(i.e- [40], [41], [42], [43]) on quantitative quality assessment 262

metrics of images this research observes most of the methods 263

commonly use these 15 features of TABLE 2. Hence these 264

15 features are selected in this research. 265

FIGURE 2. Structure of QFEM.

In the 2nd step of QFEM, an image (Y5) is gained from the 266

input image (X) by using the median filter with a 5× 5 con- 267

volution matrix. After that, 15 features (I0-I14) are calculated 268

from two images Y5 andX. These 15 features are identified as 269

F5 in Fig. 2. Sequentially median filter with n×n convolution 270

matrix gives Fn from Yn and X. After using QFEM with 271

T number of steps there exists a total of T×15 features for 272

an image. Although QFEM may apply with any number of 273

steps, the number of steps should be ascertained accord- 274

ing to user analysis. Because of getting optimum outcomes, 275

this research uses 8-steps QFEM. For a noisy image of the 276

dataset Fig. 3 demonstrates the mechanism of QFEM for this 277

research. So, by QFEM a total of 8×15 = 120 features gains 278

in this research. Fig. 3 shows the cluster-wise visualization 279

of these features for each class of the dataset. Fig. 4 shows 280

that the features of QFEM provide a clear separability among 281

classes. 282

Algorithm 1 The Working Mechanism of QFEM
Input: 2D image
Output: Feature vector

Initialization:
1. n= 2N−1, Where N= 2, 3, 4, 5, . . .
2. X ←− Input image
3. Yn←− Apply median filter on X using n×n

kernel
4. Fv←− Feature vector

Start:
1. For each N :
2. Find Yn
3. Use (X,Yn) to get Fn | Fn {P0, P1,. . . , P14}
4. Fv←− Fn
5. End for
6. Show Fv

End:

VOLUME 10, 2022 1800712
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TABLE 2. Description of the features of QFEM.
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FIGURE 3. Mechanism of QFEM for a noisy image of the dataset.

The median filter can able to remove speckle noise from283

ultrasound images [39]. So, it can extract efficient features by284

using QFEM. Moreover, this research analyzes several filters285

(i.e-average filter, gaussian Filter, bilateral Filter, etc) as the286

core component of QFEM, and the median filter provide the287

supreme outcome over all of these. Thus, the median filter is288

an ideal suit for QFEM in this research. Algorithm 1 shows289

the working mechanism of QFEM.290

2) PSO BASED FINE-TUNED FUZZY CNN291

This research fine-tuned a pre-trained VGG-19 CNN model292

by adding an extra fuzzy layer with it. During fine-tuning293

PSO is used to optimize the hyperparameters of the model.294

PSO performs operation on a set of particle P = {p1, p2,295

p3, . . . , pi}. At time t each pi has a position xi and296

FIGURE 4. Cluster-wise visualization of the features of QFEM.

a velocity vi. For the picked evaluation of objective function, 297

the position is remembered by each pi, and this information 298

is stored by a memory pbesti. Memory pbestiis updated every 299

time whenever pifinds a better position. Another memory 300

gbest holds the best position at swarm level for any particle 301

that has visited ever. PSO updates the value of x and v 302

iteratively until an efficient solution is captured. Algorithm 2 303

presents the working mechanism of PSO. 304

Fig. 5 shows the architecture of the VGG-19 CNN model 305

of this research. Like other CNN it has two parts namely 306

feature extraction and feature classification part. The feature 307

extraction part consists of a series of Convolution (Conv) 308

layers including one max-pooling layer at the end of each 309

Conv block and a fuzzy layer at the end of the last max- 310

pooling layer. The rest of the network from the end of the 311

fuzzy layer is defined as the feature classification part. The 312

fuzzy layer is added in between the last max-pooling layer 313

and the fully-connected layer as an additional layer with 314

the existing VGG-19 structure. Two fundamental operations 315

fuzzification and defuzzification are used to build the fuzzy 316

layer. In the fuzzification stage, the output map of the last 317

max-pooling layer is turned up to fuzzy maps by utilizing 318

three membership functions namely Gaussian(G), Triangu- 319

lar(T), and S-shaped(S). For any value q in between p and r 320

with a standard deviation σ , these functions can be defined as 321

following way: 322

G(x; q, σ ) = e−
(x−q)2

2σ2 323

T(x; p, r, q) =



0 x ≤ p
x − p
q− p

, p < x ≤ q

r − x
r − q

, q < x < r

0, x ≥ r

324

S(x, p, r) =



0, x ≤ p

2
(
x − p
r − p

)2

, p ≤ x ≤
p+ r
2

1− 2
(
x − r
r − p

)2

,
p+ r
2
≤ x ≤ r

1, x ≥ r

325
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Algorithm 2 The Working Mechanism of PSO
Input: Set of random particles
Output: Best position of particles

Initialization:
1. Initialize random particle P = {p1, p2, p3, . . ., pi}.
2. t ←− Time
3. c1←− cognitive factors
4. c2←− Social factors
5. u1, u2←− Random values in the interval [0-1]
6. w←− inertia weight
7. pbesti←− best position of pi
8. gbest←− global best position of particle

Start:
1. While (An efficient solution is not met)
2. For each pi
3. Update velocity vi | vi(t+1) = vi (t)w+c1u1[pbesti-xi]+ c2u2[gbest-xi]
4. Update the position xi | xi(t+1)= xi(t)+ vi(t+1)
5. Use objective function f to evaluate the fitness value of pi

6. Update pbesti(t) | pbesti(t+1) =

{
pbesti (t) if f (pbesti (t)) ≤ f (pi (t + 1))
(pi (t + 1) if f (pbesti (t)) > f (pi (t + 1))

7. Update gbest(t) | gbest(t+1) = max{f(pbesti (t)), f(gbest(t))}
8. End for
9. End while

End:

Different studies have found that the ReLU activation func-326

tion with the highest value of six (6) helps the network learn327

the sparse features [46], [47]. Thus, we have selected the328

value of p and q based on the highest value (rmax). The value329

of p was selected as half of rmax, and q was selected as the330

sum of p with one-fourth of rmax. In fuzzy logic, choosing331

membership functions is a non-trivial problem. The distribu-332

tion of data is crucial in the selection process. Our research333

followed a trial-and-error process to choose the mentioned334

three membership functions. The cost of calculation and the335

number of parameters for membership functions have also336

been taken into account. The Gaussian membership function,337

for example, requires two parameters: mean and variance. It’s338

simpler to see the effect on inference when there are fewer339

parameters.340

In the defuzzification stage each of the three fuzzy maps341

is turned to crisp values by using the Mean of max (Mm)342

defuzzification technique. If xj is the max possible degrees343

in any fuzzy map and N is the occurrence number of xj then344

Mm can be defined as:345

Mm =

∑N
j=1 x̄j
N

346

This research performs fine-tuning from Conv 5 block to347

the last output layer of the network given in Fig. 3. During348

finetuning, the hyperparameter of these layers is initialized as349

the random particles (P) for the PSO. After setting xi and vi350

for each pi, the proposed CNNmodel is executed for every pi351

FIGURE 5. Illustration of proposed fuzzy layer-based VGG-19 fine-tuning
by utilizing PSO.

TABLE 3. Parameters of PSO.

and during this execution, the value of xi, vi, pbesti and gbest 352

are updated for the gained results according to Algorithm 2. 353

This execution performs iteratively and the parameter of gbest 354

particle gained at final results is considered as the optimized 355

parameter. After obtaining the optimum parameter proposed 356

CNN model is used as a feature extractor by excluding the 357

classifier part. TABLE 3 shows the general parameters of the 358

PSO algorithm for this research. 359
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To build the proposed CNN architecture this research360

uses the VGG19 CNN model. VGG19 is selected by ana-361

lyzing several CNN architectures namely VGG19 [14],362

VGG16 [15], ResNet50 [16], InceptionV3 [17],363

Xception [18], and vanilla CNN baseline [48] because of364

providing contextual outcomes.365

C. FEATURE VECTOR366

With QFEM this research extracts a total of 120 hand-367

crafted features. From PSO-based fine-tuned fuzzy CNN this368

research extracts a total of 1536 features from the last fuzzy369

layer. Thus, by combining 120 and 1536 features a total of370

1656 features exist in the feature vector for each image.371

D. CLASSIFICATION372

Random forests (RF) algorithm is used to classify the feature373

vector. Once RF is trained the system can easily rate the374

quality of an ultrasound image. RF is a popular tree-based375

supervised ML algorithm that contains multiple Decision376

trees (DT) for classification tasks. It uses bagging ensem-377

ble [19] techniques which improves classification perfor-378

mance compared to other single classifiers. In the original379

RF model, the classification and regression trees algorithm380

are used which is a DT variant method that induces DT by381

recursive, top-down, greedy, and binary partitioning of the382

data set [20], [21]. In the paper [22] it is mentioned that a383

decision tree that contains N leaves partition the feature space384

into N no. of regions Rn, 1 ≤ n ≤ N. So for each tree, the385

prediction function f(x) can be defined as386

f (x) =
N∑

n=1

Cnπ (x,Rn)387

where Cn is a constant appropriate to n388

π (x,Rn) =

{
1, if x ∈ Rn

0, otherwise
389

The RF is a robust method to handle noise and every DT390

of RF provides a unit result that assigns each input dataset to391

the most feasible label [23].392

RF is used as a classifier in this research. Because of393

providing contextual outcomes, RF is selected in this work394

by analyzing several classifiers namely Logistic regression395

(LR) [24], Naive bayes (NB) [25], K-nearest neighbors396

(KNN) [26], and Extreme gradient boosting (XGB) [27].397

III. RESULT AND DISCUSSION398

The prime concern of this work is to develop an intelli-399

gent scheme for rating the quality of an ultrasound image.400

To develop the system the dataset of this research is par-401

titioned in a ratio of 8:2, this ratio apprises that 80% of402

data are reserved for system training and the remaining 20%403

for system testing. All experiments of this work are exam-404

ined by using 5-fold cross-validation [28] and usual perfor-405

mance measurement metrics of a classifier such as Precision,406

Recall, F1-score, Accuracy, as well as Normalize confusion407

TABLE 4. Description of performance measurement metrics.

FIGURE 6. Demonstration of different parameters used to find
performance measurement metrics.

TABLE 5. The overall performance of QFEM by using different filtering
approaches.

matrix (NCM) are used to evaluate the efficiency of these 408

experiments. TABLE 4 describes these metrics at a glance 409

and Fig. 6 shows the demonstration of different parameters 410

used to find these metrics. 411

To rate the image quality by using quantitative features this 412

research presents the approach called QFEM. QFEM uses 413
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TABLE 6. The fold-wise overall accuracy of QFEM by using different
filtering approaches.

the median filter technique as a core component. Although414

any image filtering approach can be used to build QFEM the415

median filter is selected based on its suitable results by evalu-416

ating several filtering approaches. TABLE 5 shows the over-417

all performance of QFEM for different filtering approaches.418

TABLE 5 shows the median filter holds the maximum accu-419

racy of 97.69% whereas the Bilateral filter gives the nearest420

accuracy of 92.92%. TABLE 6 presents the fold-wise overall421

accuracy for the performance of TABLE 5. The exploration422

of TABLE 5 and VI prove that the median filter outperforms423

other filters in terms of performance for the dataset of this424

research.425

TABLE 7 shows the overall performance of QFEM for426

this research (median filter as the core component) regard-427

ing features of different levels. TABLE 7 shows the overall428

accuracy of QFEM increased gradually till step 8. TABLE 8429

presents the fold-wise overall accuracy for the performance430

of TABLE 7. TABLE 7 and 8 prove the justification for using431

8 steps QFEM in this research.432

TABLE 7. The overall performance of QFEM for different steps.

This research fine-tuned several well-known CNNmodels.433

TABLE 9 presents the overall performance of these models.434

TABLE 10 presents the fold-wise overall accuracy for the435

performance of TABLE 9. Tables TABLE 9 and 10 present436

the overall performance of different CNN models without437

including fuzzy layer and PSO.438

TABLE 11 presents the comparison among different439

CNN models and the proposed QFEM technique based on440

overall accuracy. Generally, handcrafted feature extraction441

TABLE 8. The fold-wise overall accuracy of QFEM for different steps.

TABLE 9. The overall performance of different fine-tuned CNN models.

TABLE 10. The fold-wise overall accuracy of different fine-tuned CNN
models.

TABLE 11. Comparison among different CNN models and proposed
QFEM technique.

gets lower performance than the DL-based approach but 442

TABLE 11 shows that QFEM outperforms different CNN 443

models. Hence, this research adds a fuzzy layer with different 444

CNN models to improve their performance. 445

TABLE 12 shows the overall performance of different 446

fine-tuned CNN models including a fuzzy layer. TABLE 13 447

presents the fold-wise overall accuracy for the performance 448

of TABLE 12. 449

TABLE 14 presents the comparison among different fine- 450

tuned CNN models with and without using fuzzy layers. 451

This comparison shows that the performance of CNN mod- 452

els improves because of the fuzzy layer. Where the fuzzy 453

VGG-19 holds the max accuracy and TABLE 12 shows this 454

accuracy is 97.46%which is less than the accuracy of 97.67% 455
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TABLE 12. The overall performance of different fine-tuned CNN models
with the fuzzy layer.

TABLE 13. The fold-wise overall accuracy of different fine-tuned CNN
models with the fuzzy layer.

TABLE 14. Effect of the performance of different CNN models due to
fuzzy layer and PSO.

TABLE 15. The overall performance of different fine-tuned fuzzy CNN
models with PSO.

of QFEM. To further extend the performance of the pro-456

posed model, this research optimizes the fuzzy CNN models457

using PSO.458

TABLE 15 shows the overall performance of differ-459

ent PSO-based optimized fuzzy CNN models. TABLE 16460

presents the fold-wise overall accuracy for the performance461

of TABLE 15. TABLE 15 and 16 present the efficiency of462

different fuzzy CNN models using PSO.463

In terms of accuracy TABLE 14, shows the comparison464

among different fuzzy CNN models of this scheme with465

and without PSO. TABLE 14 presents VGG19 fuzzy CNN466

architecture with PSO holds the most compatible accuracy of467

98.38%, which outperforms the performance of all individual468

techniques observed till now in our result and discussion part.469

TABLE 16. The fold-wise overall accuracy of different fine-tuned fuzzy
CNN models with PSO.

TABLE 17. Performance of proposed scheme.

TABLE 18. The fold-wise accuracy of the proposed scheme.

FIGURE 7. NCM of the proposed scheme.

The feature fusion of the QFEM and PSO-based fuzzy 470

VGG19 model provides the actual outcome of this research 471

and TABLE 17 presents this result. TABLE 18 presents the 472

fold-wise accuracy for the result of TABLE 17. Fig.7 presents 473

the NCM of this scheme for the result of TABLE 17. 474

The receiver operator characteristic (ROC) curve is a per- 475

formance evaluation metric of a classifier. It presents the 476

VOLUME 10, 2022 1800712



M. M. Hossain et al.: Particle Swarm Optimized Fuzzy CNN With Quantitative Feature Fusion

FIGURE 8. Roc curve of the proposed scheme, where classes 0,1,2 and
3 present Normal, Noisy, Blurry, and Distorted ultrasound images
respectively.

TABLE 19. Comparison of the performance of this research with and
without feature fusion.

TABLE 20. The overall performance of different classifiers for the
proposed scheme.

TP rate against the FP rate. In this curve, the more the477

value of the area under the curve is closer to one the more,478

good the classifier is. Fig. 8 shows the ROC curve for this479

research. TABLE 19 shows the performance comparison of480

this research with and without feature fusion. TABLE 19481

shows that using QFEM and PSO-based fuzzy VGG19 CNN482

the highest accuracy gained is 97.67% and 98.38% respec-483

tively. Meanwhile, the fusion of these two techniques pro-484

vides an overall accuracy of 99.62% which outperforms each485

individual technique.486

This research analyzes several classifiers and from those487

RF is selected for giving the most preferable outcome.488

TABLE 20 presents the overall performance of different clas-489

sifiers. TABLE 20 presents that the RF classifier provides the490

highest accuracy of 99.62%. TABLE 21 presents the fold-491

wise overall accuracy for the performance of TABLE 20.492

TABLE 20 and 21 prove the justification for utilizing RF in493

this scheme.494

To evaluate the redundancy of the features, this research495

examines two feature selection techniques namely mRMR496

and RFE. TABLE 22 presents the overall performance of the497

TABLE 21. The fold-wise overall accuracy of different classifiers for the
proposed scheme.

TABLE 22. The overall performance of different feature selection
techniques.

TABLE 23. The fold-wise overall accuracy of different feature selection
techniques.

proposed model for these techniques. TABLE 23 presents the 498

fold-wise overall accuracy for the performance of TABLE 22. 499

TABLE 22 presents that mRMR provides the best accuracy of 500

97.54% between mRMR and RFE and this result is less than 501

the proposed model (99.62%). This indicates the 1656 fea- 502

tures need no redundancy reduction. 503

From the analysis of related research as far as we know 504

this is the first DL-based work to rate Ultrasound image 505

quality. Hence this research puts no comparison with exist- 506

ing approaches to evaluate the performance of the proposed 507

method. 508

IV. CONCLUSION 509

This research presents an intelligent model to rate whether 510

an Ultrasound image is normal, noisy, blurry, or distorted. 511

To develop the scheme proposed method performs feature 512

fusion from an ultrasound image by using a customized 513

feature extraction approach and a PSO-based fuzzy VGG19 514

CNN technique and then the RF classifier recognize the qual- 515

ity type of that image from the fused features. Based on the 516

results we have found the proposed approach as an efficient 517

system for ultrasound quality rating by holding an inaccuracy 518

of 0.38%only. In the future, besides the quality rating, wewill 519

try to restore the quality of an ultrasound image to normal if 520

the quality is not detected as normal. However, the proposed 521

method will assist physicians to make any decision during 522

ultrasound imaging-based diagnosis. 523
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