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Abstract

Most plant thermal tolerance studies focus on single critical thresholds, which are arbitrary and phenomenolo-
gical, limiting the generality of findings across studies. In animals and microbes, thermal tolerance landscapes
describe the more realistic, cumulative effects of temperature. We tested this in plants by measuring the de-
cline in leaf photosynthetic efficiency (Fy/Fuz) of two species following a combination of temperatures and
exposure times. As predicted by the thermal tolerance landscape framework, we demonstrate that a general
relationship between stressful temperatures and exposure durations can be effectively employed to quantify
and compare heat tolerance within and across plant species and over time. We also show how Fvy /Fy curves
translate to natural conditions, suggesting that natural environmental temperatures often impair photosyn-
thetic function. Our findings provide more robust descriptors of heat tolerance in plants, and suggest that
heat tolerance in disparate groups of organisms can be studied with a single analytical framework.

Introduction

The use of critical endpoints or thresholds as thermal tolerance metrics has gained considerable momentum
following the seminal work by Deutschet al. (2008). They showed that tropical animals lived at temperatures
closer to their physiological limits and were, therefore, more vulnerable to global warming. These authors
originally used intrinsic rates of increase to estimate the temperature at which fitness dropped to zero and
populations were no longer sustainable. Subsequent analyses have adopted the temperature in which an
organism collapses and/or dies during a ramping experiment as a more indirect proxy of tolerance limits
(Hueyet al. 2009; Sunday et al. 2010; Clusella-Trullas et al. 2011; Sunday et al. 2014; Pinsky et al. 2019).
These so-called ‘critical thermal limits’, which presumably describe the lower and upper temperatures that
an organism can tolerate, have been measured in thousands of species (Bennett et al. 2018). However, these
estimates are not directly comparable to thermal effects on fitness and are highly sensitive to experimental
conditions such as initial temperatures and rates of temperature changes (Lutterschmidt & Hutchison 1997;
Terblanche et al. 2007). These limitations, concomitantly with increasing use of these estimates to predict
species’ resilience to warming, have sparked debate on the mechanistic basis of thermal tolerance as a trait
and the adequacy of critical endpoints as tolerance proxies (Rezendeet al. 2011; Santos et al. 2011; Terblanche
et al.2011; Rezende & Santos 2012; 2014; Huey & Kearney 2020; Orstedet al. 2022).

The fundamental concern is that critical limits, quantified as a single temperature value, ignore the cumulative
nature of physiological stress, which includes both the intensity and duration of a thermal challenge. Empirical
studies have shown that the logarithm of survival time varies linearly with temperature, a relationship well-
established for microorganisms such as bacteria and fungal spores (Bigelow 1921; Watkins & Winslow 1932),
mollusks (Ansell et al. 1980), insects (Maynard-Smith 1957; Jergensen et al. 2019) and vertebrates (Brett
1956; Somero & DeVries 1967). These thermal-death time (TDT) curves are widely used in the pest control
and food processing industry (Stumbo 1973; Tang et al. 2007 and references therein). Related approaches,
such as thermal tolerance landscapes (sensu Rezende et al. 2014) that describe TDT effects across different
survival probabilities, have been recently employed to predict heat mortality under constant and fluctuating
temperature conditions in animals (Jorgensen et al. 2019; Rezende et al. 2020; Molinaet al. 2023). There is
a growing consensus in animal studies that TDT curves and tolerance landscapes provide a more accurate
framework to estimate thermal tolerance in ecological settings (Huey & Kearney 2020; Rezende et al. 2020;
Jorgensen et al. 2022) yet the potential to apply this framework to plants remains virtually unexplored (but
see Neuner & Buchner 2023).

Thermal tolerance metrics such as the Tsg threshold, which describe the temperature required for a 50% drop
in physiological function, are now being used to estimate potential vulnerability of a given plant species under
a warming climate (Curtis et al. 2016; Sastry & Barua 2017; Perez & Feeley 2020; Cook et al. 2021; Marchin et
al. 2022). These metrics usually are based on photosynthetic thermal threshold assays to determine the point
of failure based on the physiological response of photosystems to applied thermal stress. All else being equal,
such metrics allow the comparison of tolerance among leaves, individual plants, species and environmental
effects and have been used to identify different levels of thermal vulnerability (e.g. Knight & Ackerly 2003;



Curtis et al. 2014; Curtis et al. 2016; French et al. 2017; Sastry & Barua 2017; Drake et al. 2018; French et
al. 2019; Slot et al. 2019; Feeley et al. 2020; Perez & Feeley 2020). However, use of these critical endpoints
involves the same conceptual pitfalls discussed in the animal literature, which have sparked debate regarding
their adequacy to study plant thermal tolerance (Lancaster & Humphries 2020, 2021; Perez et al. 2021).
Indeed, several studies have shown that damage to plants caused by heat is not only determined by the
stress temperature but also the duration at a given temperature or heat dose (Bilger et al. 1984; Colombo &
Timmer 1992; Hiive et al.2011). Furthermore, at a constant temperature, increasingly longer periods of the
same stress temperature cause more damage to photosystems measured by a range of physiological techniques
(Valladares & Pearcy 1997; Dascaliuc et al. 2007; Hiive et al. 2011; Li et al. 2014; Marias et al. 2016). These
results highlight that critical limits in the plant literature likely exhibit limitations similar to those discussed
in animal studies. Accordingly, Neuner and Buchner (2023) recently unveiled the typical association between
heat intensity and duration described by the TDT curve for leaf damage and photosynthetic dysfunction
across five plant species, suggesting that a unified approach to study thermal tolerance across organisms is
not only desirable but also realistic.

Here we aim to bridge this gap and explore the potential usefulness of analytical tools developed to study
heat tolerance in other systems for application to plant lineages. Addressing this question opens the venue
not only to compare thermal tolerance across plant populations and species, but also to employ predictive
tools that utilise realistic thermal tolerance landscapes in this group. With this purpose, we investigated the
impact of heat stress on plant photosystem function (maximum quantum yield, Fy/Fy) in two Australian
arid zone species, Myoporum montanum R.Br. and Fucalyptus socialis F.Muell. ex Miq. First, we examined
if the 50% decline in function of Photosystem II (PSII), often employed in plant studies to assess response
to heat stress (T50), exhibits the expected relationship between temperature intensity and duration (Fig. 1).
Second, we analysed how this relationship varied within M. montanum longitudinally over multiple trials
to estimate intraspecific variability via potential changes in heat tolerance over the course of the summer.
Third, we compare our empirical results against recently published estimates by Neuner and Buchner (2023)
to illustrate how thermal adaptation may explain differences in heat tolerance across plant species with this
framework. And finally, as a proof-of-concept, we applied a dynamic model of thermal damage (Rezende
et al. 2020) to illustrate how this information can be employed to forecast the effect of heat stress on leaf
function under natural conditions.

Materials and Methods

Experimental set-up and species

This study was conducted at the Australia Arid Lands Botanic Garden, Port Augusta, South Australia
(AALBG, 32°27°45.0”S 137°44’33.7"E), during summer in January and February 2016. The AALBG has
a desert climate, with mean annual rainfall of 250 mm and average relative humidity of 35% in summer
(AGBoM 2018). We conducted the same set of experiments three times during the summer period, the first
set including measurements of M. montanum and E. socialis(between January 14*" to 21%%) and the second
and third including only M. montanum to obtain a longitudinal record (between January 24" to 26" and
February 15" to 19*"', respectively). M. montanum is a desert shrub or small tree to “8-m tall and E.
socialisis a slow growing multi-stemmed tree to “6 to 12-m tall (Royal Botanic Gardens and Domain Trust
2018). To determine how the thermal environment changed across sampling trial, we recorded the mean
local air temperatures at 45-min intervals from five shielded temperature sensors (iButton Thermochron®),
Ecolsolutions, Portugal) suspended near the experimental plants. The average, maximum and minimum
temperatures reached within a 24-hour period were calculated. Throughout the entire experiment, thermal
extremes ranged between 14°C and 47°C (Supplementary Fig. S1).

Heat stress measurements

For the heat tolerance measurements, we collected leaves from five established individuals of each species
grown in situ and supplemented with irrigation at the AALBG as part of their living collection. We collected



leaves pre-sunrise and kept them in the dark in plastic humid bags until experimentation. For each batch,
10 randomised leaves were kept on moist paper towel in sealed plastic bags. Bags were submerged in well-
mixed, temperature-controlled water baths under sub-saturating light levels (337 & 63 SE ymol m™2s™! at
leaf level underwater). Prior to heat treatment, leaves were light-adapted for 15-min in a 28°C bath then
moved to the stress treatment bath for the allocated stress duration. Leaves were then returned to a recovery
bath of 28°C for 90-min under light conditions, then dark adapted under ambient temperature overnight.
This series of baths follow an established Tsg threshold assay protocol (Curtis et al. 2014). The maximum
quantum yield of PSII (Fy/Fy) was measured with a Mini-PAM pulse amplitude fluorometer (Heinz Walz,
Effeltrich, Germany), prior to stress treatment and overnight post stress (14-16 hours) on dark-adapted
leaves. A reduction in Fy/Fy indicates reduced capacity to effectively handle photons and is a common
physiological measurement used to estimate the effects of temperature on the functioning of the PSII (Berry
& Bjorkman 1980; Maxwell & Johnson 2000). Declines in overnight Fy/Fy show continuing photoinhibition
and indicate ongoing and/or irreversible damage incurred by the photosystems, thus providing information
on damage incurred by high temperature.

To build the temperature-duration curves of heat tolerance, we first estimated how Fy /Fy decreased fol-
lowing the commonly used 15 min duration in static Tsothreshold assays (e.g. Curtis et al. 2014; Sastry &
Barua 2017) at 44, 46, 48, 50 and 52°C for M. montanum . Temperatures of 48, 50 and 52°C resulted in
a decline in overnight Fy /Fy of 12, 32 and 73% in M. montanum with a 15 min Tsq threshold of 51.1°C
(Supplementary Fig. S2). Previous Ty thresholds ofE. socialis have been similar to M. montanum , thus
the same test temperatures were used (Cook, unpublished data). Therefore, we selected these three experi-
mental temperatures and estimated the overnight Fvy /Fy following 5, 10, 15, and 30 min exposure at each
temperature. As an experimental control, we repeated the procedure at 28°C treatment. Ten detached whole
leaves were used for each temperature intensity and duration combination, totalling 480 leaves tested over
three trials for M. montanum (10 leaves x 4 durations x 4 temperatures x 3 trials) and 160 leaves for E.
socialis (10 leaves x 4 durations x 4 temperatures).

Statistical analysis

To assess how heat tolerance varied within and across species, we combined logistic regressions with a model
comparison approach (Burnham & Anderson 2002). We included overnight Fy /Fy, rescaled between 0 and
1 by dividing it by initial Fy /Fy, as the dependent variable in the following model:

Fv/Fu = Ta + time +trial + Sp (eq. 1)

where Ta = measurement temperature (28, 48, 50 and 52°C as a continuous variable), time = exposure
time (5, 10, 15 and 30 min as continuous), trial = experimental trial (categorical factor with 3 levels) and
Sp = species identity (categorical with 2 levels). We compared the fit of four different models using Akaike
Information Criterion (AIC). These models included only main effects versus all interactions on the one hand,
and time in arithmetic versus logarithmic scale and on the other hand. Consequently, the model comparison
approach is simultaneously estimating if the slope of the temperature-duration relationship varies across
trials and/or species, which should result in a better fit of models including interactions, and the adequate
temporal scale that underlies the cumulative impact of heat stress. To estimate the relative support of each
model, we employed Akaike weights (w; ), which quantify the probability that each model is the best model
given the data.

We then calculated the Tsg threshold predicted by the logistic model as a standard estimate of heat damage
across combinations of temperature and exposure times, which was then employed to fit temperature-duration
relationships (Fig. 1). Note that some combinations resulted in predicted T threshold temperatures that
fell outside the measured temperature ranges and, as such, they represent potential estimates of the thres-
holds. Consequently, we estimated the uncertainty surrounding Tsg estimates employing a bootstrap with
replacement (x1000) and included these estimates in the following linear model:

T50 = T507 - Z10g10 time (eq. 2)



where Tjy” (°C) is the intercept, corresponding to the expected Tsg following an exposure of 1 min, which
describes the elevation of the temperature-duration relationship, andz (°C) its slope, which quantifies thermal
sensitivity as the drop in temperature that results in a 10-fold increase in tolerance time (Rezende et al.
2014; 2020). With this approach, we were able to quantify both the intercept and slope of the temperature-
duration relationship with their respective standard errors. For comparative purposes, these parameters
were also calculated for the alpine speciesPinus cembra L., Picea abies (L.) H.Karst, Lariz decidua Mill.,
Kalmia procumbens (L.) Gift & Kron & P.F.Stevens ex Galasso, Banfi & F.Conti and Ranunculus glacialisL.,
studied by Neuner and Buchner (2023) (also compared with Picea mariana (Mill.) Britton and Phaseolus
vulgaris L. from published heat tolerance and duration data (Yarwood 1961; Colombo & Timmer 1992), see
Supplementary Table S3). Parameters and methods employed to estimate heat tolerance (e.g., photosynthetic
activity or visual damage) are detailed in Supplementary Table S3.

Modelling heat stress in the field

To illustrate how differences in temperature-duration relationships obtained in the laboratory might translate
into field conditions, we employed the dynamic thermal survival probability model developed by Rezende et
al. (2020). This model employs differential calculus to predict how thermal damage quantified under constant
temperatures translates into variable temperatures. The analysis proceeded as follows. First, we reconstructed
hourly air temperatures for Port Augusta between January 2016 and December 2023 from daily minima and
maxima data from the Australian Bureau of Meteorology (http://www.bom.gov.au/climate/data/?ref=ftr),
employing the R package ‘chillR’ (vignette ‘hourly temperatures’, both accessed on 17 Feb 2023). Second,
we employed simultaneous records of air and leaf temperatures of M. montanum to convert weather station
temperature data into expected leaf temperatures. The latter was measured with type-t thermocouples
and HOBO®) dataloggers inserted into the epidermis of leaves. Finally, as explained in Rezende et al.
(2020, details in their Supplementary Material p. 12), we employed the ad hocdynamic.landscape function
to combine leaf temperatures with the Tso temperature-duration relationships obtained for M. montanum
and predict thermal damage under these thermal conditions. This analytical approach based in differential
calculus is applicable to any system that exhibits the typical temperature-duration relationship at constant
temperatures (Fig. 1) and has been empirically validated in insects and fish (Rezende et al. 2020, unpublished
results). For simplicity, we report only predicted daily damage on PSII function (i.e., thermal damage within
a 24-hour period), which can be employed to calculate cumulative effects over multiple days with some
additional assumptions regarding recovery rates (Rezende et al.2020).

Results

Estimates of overnight Fy /Fy; for each temperature and time combination are provided in the supplemen-
tary information (Supplementary Table S1). The model comparison approach shows that logistic regressions
including only main effects and exposure time in logarithmic scale provides the best fit to the data (Table
1). This result suggests that the slopes of the temperature-duration relationships remain relatively constant
across trials and/or species, and also provides support to the log-linear relationship predicted by the frame-
work (Fig. 1). To assess how well the best model fits the empirical observations, we performed a regular linear
regression between predicted values against observed Fy /Fyjand obtained an R? = 0.77 (Fq 635 = 2134, P <
2.2 x 10716). Thus, the best logistic model explains roughly 77% of the variance in Fy/Fy; observed across
leaf samples. Results were qualitatively similar when we repeated the analysis including only M. montanum
and removing species as a categorical factor (results not shown), and in this instance the model with only
main effects and log-transformed exposure time had an even stronger support based on Akaike weights (w; =
0.96). Also, in this analysis the fit of the model improved, based on the stronger regression between predicted
and observed Fy/Fy (R? = 0.79, Fy 475 = 1848, P < 2.2 x 10719).

As we hypothesized, empirical values of overnight Fy /F); exhibit the response predicted by the temperature-
duration framework and a large fraction of the unexplained variance can be attributed to variation in
Fv/Fy within each temperature and exposure time combination (Fig. 2). Thus, the temperature-duration
framework appears to describe the overall response of PSII to heat stress remarkably well, with some of the
unexplained variation involving differences across leaves and/or individual plants within each sample (Fig. 2,



and Supplementary Figs. S3 and S4). Accordingly, most of the variation around mean estimates was detected
at intermediate Fv /Fy (Supplementary Fig. S5), which is expected as all leaves are likely either unharmed
or completely damaged at extremely low and extremely high temperatures, respectively.

We then estimated T as the inflection point of the logistic regression (Fig. 2), as well as its standard error,
with the bootstrap analysis (Supplementary Table S2). Linear regressions between T5o estimates and log
time (eq. 2) performed separately for each trial and/or species resulted in a very good fit (Fig. 3). For M.
montanum , the R? ranged between 0.95 and 0.98 across the three trials (Fi 3098 [?] 7949 and P < 2.2
x 10716 in all cases), with the 1-min exposure time (intercept), Tsq’, varying between 59.2 and 56.2 degC
across trials and the thermal sensitivity (slope), z remaining virtually constant and corresponding to 6.5
degC (Fig. 3). In contrast, for E. socialis we obtained a Tso’ of 63.1 degC and a z of 8.2 degC with the
linear regression, though with a lower goodness of fit, resulting in an R? = 0.845 (F13998 = 2190, P < 2.2
x 10710). This illustrates how the higher variability in Fy/Fy across leaf samples and a Tsq falling often
outside the experimental temperatures for this species results in a lower precision in the estimation of its
heat tolerance (Supplementary Fig. S5). Accordingly, the standard errors associated with the temperature-
duration parameters were substantially larger for E. socialis than for M. montanum (Fig. 3), and their
overlapping z support a single slope across species and trials as suggested by the model comparison analysis
(Table 1). Parameter estimates for the temperature-duration curves are listed in Supplementary Table S3.

Photosynthetic function in the field

The relationship Tiear = 1.63 + 0.91 T, obtained with a linear regression (R2 = 0.98) was employed
to convert air into leaf temperatures in our estimation of heat stress in the field (Fig. 4). Simulations
suggest that summer temperatures could often be stressful for M. montanum , though there are pronounced
differences from year to year. Interestingly, heat tolerance seemed to decrease from trials 1 to 3, resulting in
higher vulnerability at relatively lower temperatures. When we analyse the data on 24 h bins, we detect a
regular sigmoidal association between daily thermal damage as a function of maximum daily temperatures
(Fig. 4), which provides a relatively straightforward rule-of-thumb to diagnose differences in thermal stress
based on the temperature-duration curve. For instance, for M. montanum , the probably of thermal damage
seems to rise in days reaching maximum temperatures of approximately 40, 38.5 and 36 degC for trials 1, 2
and 3, respectively, but nears 100% when temperatures reach 45, 43 and 41 degC (Fig. 4).

Discussion

Here we show that the temperature-duration TDT framework developed to study thermal tolerance in
microorganisms and metazoans can be successfully employed to quantify heat tolerance of photosynthetic
tissue in plants. It is not entirely surprising, as multiple studies have previously reported that higher
stressful temperatures, on the one hand, or longer exposure durations, on the other hand, increase damage
to photosystems (Valladares & Pearcy 1997; Koniger et al. 1998; Dascaliuc et al. 2007; Huve et al. 2011;
Yan et al.2011; Agrawal & Jajoo 2015; Marias et al. 2017). Importantly, this general relationship between
temperature and exposure time has also been reported for other plant traits, such as visual cell death
analysis in seedlings (Colombo & Timmer 1992), leaf weight loss in green beans (Yarwood 1961) and visual
leaf damage and PSII dysfunction in alpine species (Neuner & Buchner 2023). Here we demonstrate how
these findings can be merged and analyzed with a single framework for plants for application in climate
change ecology.

Our analyses also demonstrate how variation in heat tolerance can be quantified and compared within and
across plant species, and subsequently how to employ this knowledge to estimate heat stress in natural pop-
ulations. For the limited subset employed here, analyses detected differences in heat tolerance corresponding
primarily with shifts in the elevation of the temperature-duration curves rather than changes in their re-
spective slopes (Table 1, Fig. 3). Over the course of summer sampling, there was a decline in heat tolerance
across trials. While this trend could be interpreted as a decline in tolerance with declining plant condition
with the progression of summer, counterintuitively, the environmental conditions became more benign with



the later trials. Air temperatures reduced and rainfall increased for trials 2 and 3 (Supplementary Fig. S1).
Photosystem heat tolerance can rapidly change with local environmental conditions and water status affect-
ing leaf temperature (Havaux 1992; Valladares & Pearcy 1997; Buchner & Neuner 2003; Knight & Ackerly
2003; Zhu et al. 2018; Cook et al. 2021; Sumner et al. 2022). As such, progressively lower heat tolerances
over the trials in our study most likely reflected the increasingly benign conditions over summer. Interest-
ingly, comparisons between parameters for our temperature-duration curves and those recently reported by
Neuner and Buchner (2023) suggest that (i) variation in heat tolerance within a single species, as quanti-
fied here for M. montanum , tends to be lower than variation across species but is far from negligible and
(ii) perhaps not surprisingly, that species inhabiting Australian desert environments seem to exhibit higher
tolerance to heat stress than alpine plants (Fig. 3). Additional data are clearly required to properly under-
stand how heat tolerance landscapes vary across plant lineages, contrasting distribution limits, habitats and
functional groups such as trees, and herbs. Importantly, while these analyses may not necessarily contradict
large-scale trends detected with critical thermal limits across phylogenetically disparate groups across the
globe (Lancaster & Humphries 2020), they may dramatically increase the statistical and predictive power of
future analyses at smaller spatial scales by controlling for the confounding effects of exposure duration (e.g.,
see Table 1 in Rezende et al. 2014).

Just as with animal studies, many of the limitations of the theoretical framework apply to plants. For
example, thermal tolerance studies on leaves from adult plants often neglect the synergistic impact of other
stressors, such as dehydration, or how heat tolerance may change during different stages of the lifecycle
(Geange et al. 2021). Similarly, simulations employing the dynamic model for animals ignore spatial het-
erogeneity in light and temperature, physiological history before the stress, the existence of microhabitats
and, importantly, short- and long-term physiological recovery following a thermal stress (Huey and Kearney
2020). However, one aspect that is unique to plants is that, because they are modular organisms, stud-
ies often work with indirect proxies of temperature stress at the leaf level such as Fy/Fy, and arbitrary
thresholds such as Ty, instead of thermal mortality of the whole plant. While this approach is crucial for
comparative purposes (Lancaster & Humphries 2020, 2021; Perez et al. 2021), it remains to be determined
how different thresholds are indicative of heat tolerance in natural plant populations for more reliable pre-
dictions. For instance, the temperature-duration curves from Neuner and Buchner (2023) suggest that 50%
visual leaf damage is attained at temperatures on average 3.7 degC higher than those required for a similar
drop in Fy/Fu, hence caution is warranted when comparing curves obtained with different methods (Sup-
plementary Table S3). Here, we were able to predict the probability of M. montanumleaves of reaching Tsg
(Fig. 4), but both studies ignored how this threshold translates into leaf death and, subsequently, into plant
survival, reproduction and ultimately Darwinian fitness. Future research assessing crown dieback, plant
mortality and/or decreased seed production following heat waves in the field (Marchinet al. 2020; Breshears
et al. 2021; Milner et al.2023) may help to calibrate similar predictive models and bridge the gap between
physiological proxies of thermal stress and their demographic consequences.

To conclude, our analyses show how the theoretical framework currently employed to study heat tolerance in
animal research can be successfully employed in plants. Examination of thermal sensitivity across numerous
plant species, vegetation systems and environmental growth conditions is required to determine common
trends in thermal sensitivity. For example, there may be relationship among species differing in their un-
derlying biological mechanisms for temperature stress response, such as those capable of rapid isoprene
production (Siwko et al. 2007) and changing membrane lipid compositions (Zheng et al. 2011). Modelling
thermal sensitivity in the way we present here incorporates an important dimension to estimating plant
thermal tolerance in a thermally changing environment. This approach has the potential to highlight not
only vulnerable species but also predict their thermally vulnerable periods in greater detail and with greater
precision than current approaches, opening the prospect for meaningful predictive comparisons of thermal
limits, not only among plants (Lancaster & Humphries 2020), but also across biological kingdoms.
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at different temperatures while controlling for duration time.

Here we show that this approach can be

generalized for multiple temperatures and exposure times, in what is known as thermal-death time curves
or thermal tolerance landscapes in the animal literature (Rezende et al. 2014).

0.8 &

0.6 -

Fy/Fy

0.2 -

Trial 1

04 mmmmm e oo

0.8

0.6

04 +----

0.2 -

Figure 2 .

T T
30 35

40 45 50

Temperature (°C)

Stress duration (min)
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for M. montanum . The fitted logistic models rescaled between 0 and 0.8 are shown in the left panels, with
the dotted line indicating a 50% decline of Fy/Fy employed to estimate Tso in subsequent analyses. For
simplicity, only trial 1 is shown (for the whole dataset, see Supplementary Figs. S3 and S4). Values are
shown as means £+ SD.
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Figure 3 . Log-linear relationship between Tjothreshold for 50% collapse in Fvy/Fy; and exposure time,
for M. montanum and E. socialis . These linear functions can be described with two parameters, namely
their intercept Ts5p at 1 min because logigtime = 0 and their slope z. We also include comparable estimates
for alpine species Pinus cembra , Picea abies , Larix decidua , Kalmia procumbens and Ranunculus glacialis
based on published data (see Supplementary Table S3), which seem to exhibit lower intercepts and slopes
than our estimates. Values are shown as means + SD obtained from the bootstrap analysis.
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Figure 4. Predicted heat damage under field conditions forM. montanum measured in different trials.
We employed a linear transform to convert air temperature data from Port Augusta into predicted leaf
temperature, and then the dynamic approach by Rezende et al.
damage based on these temperatures and the temperature-duration curves obtained in the laboratory. Note
that heat tolerance decreases from trials 1 to 3. Colors as in Fig. 3.
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