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Chlamydia trachomatis is a strict intracellular human pathogen. It is the main

bacterial cause of sexually transmitted infections and the etiologic agent of

trachoma, which is the leading cause of preventable blindness. Despite over 100

years since C. trachomatiswas first identified, there is still no vaccine. However in

recent years, the advancement of genetic manipulation approaches for C.

trachomatis has increased our understanding of the molecular pathogenesis of

C. trachomatis and progress towards a vaccine. In this mini-review, we aimed to

outline the factors related to the developmental cycle phase and specific

pathogenesis activity of C. trachomatis in order to focus priorities for future

genetic approaches. We highlight the factors known to be critical for

developmental cycle stages, gene expression regulatory factors, type III

secretion system and their effectors, and individual virulence factors with

known impacts.
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1 Introduction

The sexually transmitted pathogen Chlamydia trachomatis (CT) is the leading cause of

preventable blindness worldwide (Taylor et al., 2014) and the most common bacterial

sexually transmitted infection (STIs) in humans, with approximately 131 million cases each

year and rising (Newman et al., 2015). The majority of chlamydial infections are

asymptomatic. The infection when diagnosed can be treated with antibiotics (Scidmore,

2009). Complications of CT infections are known to include reproductive tract impacts

which can cause considerable morbidity and cost (Davies et al., 2016).

The Chlamydiae are a ubiquitous family of Gram-negative pathogens, with a unique

lifecycle. Chlamydiae species causes infection in specific animals, such as Chlamydia

muridarum in mice and hamsters (Mishkin et al., 2022), while Chlamydia psittaci

commonly infects birds and rarely humans (Hogerwerf et al., 2020). Chlamydia

pneumoniae and CT are endemic to humans, they infect different anatomical sites,
Abbreviations: CT, Chlamydia trachomatis; RB, Reticulate body; EB, Elementary body; AB, Aberrant body;

T3SS, Type 3 secretion system.
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respiratory and oculogenital, respectively (Whittum-Hudson and

Hudson, 2005). CT is further divided into serovars based on the

hypervariable region of the major outer membrane protein

(MOMP) (Hepler et al., 2018). CT serovars exhibit different tissue

tropisms. A-C infects ocular tissue and causes trachoma. D-K

primarily infects the genital tract resulting in the STI ‘chlamydia’

but in newborns can also infect respiratory and ocular conjunctiva

tissues causing pneumonia and conjunctivitis. L1-L3 infects genital

tissues and macrophages resulting in the invasive STI

‘lymphogranuloma venereum (LGV)’ (Abdelsamed et al., 2013).
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The Chlamydia developmental cycle is characterised as

biphasic, relying on specific interactions with the host cell for

nutrients in order to survive and replicate due to the reduced

chlamydial genome (Gitsels et al., 2019). There are two main

morphological bacterial phases; the extracellular infectious

elementary body (EB) and the intracellular, non-infectious,

replicative reticulate body (RB) [reviewed in (Hafner et al., 2008;

Elwell et al., 2016; Witkin et al., 2017)] (Figure 1). The infectious

EBs are robust formations with spore-like structures that consist of

disulphide cross-linked outer membrane protein complex on the
FIGURE 1

Developmental cycle of C. trachomatis. Important proteins expressed at different stages of the development cycle are shown with established
transcription factors (italicised), T3SS effectors (bolded), and proteases (underlined). Infectious EBs (coloured green) adhere to and enter the host cell
(coloured pink) using various adhesins (Ctad1, Pmps) and the T3SS. Once inside, EBs begin differentiation into replicative RBs (coloured blue). During
the RB replication phase, host cell metabolites are used to facilitate the pathogen’s survival. After several rounds of replication, the RBs then
asynchronously re-differentiate into EBs for exit via extrusion of the inclusion vacuole from the host cell or lysis of the host cell. The released EB
progeny then restarts the infection cycle. Release of EBs (late stage) varies from 48 hours to 72 hours, depending on the serovar (asterisk). In atypical
cycles, stressors trigger persistence, in which RBs (coloured green) pause replication and differentiate into long-surviving, stable ABs (coloured
orange) and enter a stasis-like state until the stressor is removed. The ABs “detect” this change and re-differentiate back into replicative RBs to
resume development. Figure produced with BioRender.
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surface. The development cycle of CT can be impacted by

environmental factors and stresses. Known stressors include

nutrient deprivation, exposure to host cytokines, and cell wall

synthesis-targeting antibiotics (Gitsels et al., 2019). Under these

conditions, RBs transition to altered morphological forms of non-

culturable, non-dividing, aberrantly enlarged “persistent” forms,

called aberrant bodies (ABs) (Panzetta et al., 2018). These forms

remain viable and can revert into an active infection once

conditions are favourable (Schoborg, 2011).

As an obligate intracellular organism, virulence and pathogenic

features interplay critically with host cellular factors and the host

immune system which can also contribute to disease pathology

[reviewed in (Geisler, 2010; Menon et al., 2015; Murthy et al., 2018;

Chen et al., 2019)]. The intracellular nature and unusual bi-phasic

developmental cycle has, until recently, hampered progress on

biological investigations and genetic manipulation of Chlamydia.

Recently, genetic methods have rapidly progressed and accordingly

our understanding of pathogenic mechanisms has increased (Fisher

and Beare, 2023). However, each genetic approach has their

advantages and limitations [reviewed in, (Banerjee and Nelson,

2021; Wan et al., 2023)]. Previously, Chlamydia was thought to be

genetically intractable due to its intracellular development, vacuole

niche, evasive persistence mechanism, serovar genetic variability,

and the thick wall of EB absorbing external DNA (Andersen et al.,

2021). As such, specialised techniques were developed to better

understand this clinically significant pathogen. Whole genome

sequencing (Stephens et al., 1998), allelic exchange mutagenesis

(Mueller et al., 2016), CRISPRi knockdown (Ouellette, 2018;
Frontiers in Cellular and Infection Microbiology 03
Ouellette et al., 2021) and intron insertion gene inactivation

(O'Neill et al., 2021) assist in associating genes with chlamydial

phenotypic traits, bypassing impractical traditional approaches in

genome studies [reviewed in (Read and Massey, 2014; Fisher and

Beare, 2023; Luu et al., 2023)]. Nonetheless, many of these genetic

manipulation approaches for Chlamydia are still relatively time

consuming and requires expert culture skills, hence we set out to

review what is known about potential virulence factors to guide

priorities for future genetic experiments. We do not cover metabolic

factors, although it is arguable that these are related to pathogenesis

for an obligate intracellular pathogen. We also do not cover

unknown hypothetical proteins.
2 Transcription and regulatory
factors as a target to
understand pathogenesis

The bi-phasic development is regulated by transcription factors

resulting in distinct gene expression profiles characterised as early,

mid-, or late response. Chlamydia’s genome encodes a small

number of known transcription factors (outlined in Table 1A)

and sigma factors (s) (Akers et al., 2011). The trio of chlamydial

sigma factors (s66, s28, and s54) serve as RNA polymerases to

various promotor genes (Nicholson et al., 2003; Wurihan et al.,

2021). Belland et al. (2003) detected s28 and s54 mRNA mid-

development at 8 h PI (hours post infection), whilst s66 was

detected earliest at 3 h PI. s66 is responsible for activating the
TABLE 1A C. trachomatis transcription factors and their function.

Transcription
Factor

Activation in
Developmental
Cycle

Function References

Euo Early – immediately
post-entry of EB

Repressor of late gene expression for differentiation into EB during
early stages.

(Li et al., 1998; Wurihan et al., 2021)

GrgA Early Activates transcription for euo and hcrA through interaction with
s66 and s28 promoters.

(Bao et al., 2012; Wurihan et al., 2021)

HrcA Late Conserved regulator of late gene expression of molecular chaperone
proteins (e.g. dnaK and groE operons).

(Wilson and Tan, 2002; Nicholson et al.,
2003; Wurihan et al., 2021)

TrpR Throughout Negative regulator of tryptophan synthetase (trpBA) gene
expression.

(Akers and Tan, 2006; Carlson et al., 2006)

ChxR Mid-cycle Conserved regulator of signal transduction responses. (Koo et al., 2006; Barta et al., 2014; Yang
et al., 2017)

ArgR
(Arginine-dependent
gene regulator R)

Mid- to late-cycle Regulates bacterial arginine biosynthesis and transport. (Schaumburg and Tan, 2006)

NrdR Mid- to late-cycle Regulates ribonuclease reductase transcription, dependent on
intracellular nucleotide levels.

(Kolberg et al., 2004; Case et al., 2011)

CtcC (AtoC) Late (transition from
RB to EB)

Predicted s54 RNA polymerase holoenzyme activator to regulate
phenotype differentiation and hrcA.

(Koo and Stephens, 2003; Soules et al.,
2020; Huang et al., 2022)

YtgR Throughout Iron-dependent transcriptional repressor regulator (ytg operon) and
tryptophan salvage pathway.

(Akers et al., 2011; Thompson et al., 2012;
Pokorzynski et al., 2019)

DksA Late (transition from
RB to EB)

Transcription “late” gene regulator responding to environmental
“stress” stimuli.

(Mandel et al., 2022)
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majority of CT promoters, whilst select late genes rely on s28- or

s54-dependent promoters (Mathews et al., 1999). These sigma

factors are regulated by specific transcription factors (Table 1A)

and anti-sigma factors. A comprehensive review of transcriptional

regulation is available from Nicholson et al. (2003) and Belland

et al. (2003).

To date, only two anti-sigma factors which inhibit s66 activity
have been characterised: CT663, a T3SS Scc4 chaperone, and the

switch-protein Regulator of Sigma B W (RsbW) kinase (Rao et al.,

2009) (Thompson et al., 2015). RsbW forms a regulatory network

with its own anti-anti-sigma factor RsbV1 and the phosphatase

RsbU. The activity of RsbW is driven by the levels

unphosphorylated RsbV1, where a deficit of RsbV1 drives the

switch-kinase towards antagonizing s66, altering transcription of

s66 development-related genes involved in metabolism and growth

(Hanson et al., 2015; Thompson et al., 2015).

Recently, transcriptional profiles for the s54 regulon was

generated using a phase-locked s54 mutant which further

revealed the role of this sigma factor in membrane remodelling

and incorporating T3SS effectors into EBs during RB differentiation

into infectious EB progeny (Soules et al., 2020). These observations

were supported by recent findings from Hatch and Ouellette

(2023) which employed CRISPR interference (CRISPRi)

gene knockdown of s54. Hatch and Ouellette (2023) also

used CRISPRi to knockdown s28 and identified this sigma-factor

to be epistatic of s54 and also involved in secondary

RB differentiation.

The use of CRISPRi to knockdown and investigate sigma factors

has provided new insights into how RB to EB differentiation is

regulated (Swoboda et al., 2023). This approach should be adopted

to investigate other transcriptional factors in CT (listed in

Table 1A). It is likely that many regulators will be essential and

cannot be inactivated, thus utilising CRISPRi to knockdown will

clarify how critical their role is in the CT development cycle as well

as determine their regulon.
3 Type III secretion system and
effector proteins

A well-known pathogenic feature of C. trachomatis is the T3SS

and their associated effector proteins (Bugalhão and Mota, 2019).

The T3SS is composed of a needle-like injectosome apparatus,

which secretes effector proteins directly from the chlamydial

cytoplasm into the host cell. Specific chlamydial chaperone 4

(Scc4; formerly CT663) precisely regulates T3SS function through

gene expression and effector networks (Gao et al., 2020). There are

80 speculated anti-host T3SS-secreted effectors (Betts-Hampikian

and Fields, 2010).

The secreted effectors have a variety of functions, including;

disrupting the cytoskeletal structure, evasion of host defences, and

prevention of host cell apoptosis, described in Table 1B (Coburn

et al., 2007). Evidence shows the T3SS not only translocates

bacterial-encoded proteins into the eukaryotic host cell’s

cytoplasm, but also into the inclusion’s lumen (da Cunha et al.,
Frontiers in Cellular and Infection Microbiology 04
2017). Some effectors (e.g. TarP and TepP) confer protection

against cellular immune response triggers, TLR2, NOD1, and

STING (stimulator of interferon genes) (Murray and McKay,

2021). The stimulation of IFN-g from STING results in activation

of indoleamine 2,3-dioxygenase (IDO), an integral element of host

defence by reducing tryptophan available for the organism.

Tryptophan is crucial to CT pathogenesis and genital CT serovars

are able to synthesise tryptophan if indole is present through a

functional tryptophan synthase (trypA) gene while ocular strains

cannot as trpA is inactivated (McClarty et al., 2006).

Currently, many proposed effectors remain unconfirmed and

even more remain uncharacterised, with the only secretion evidence

provided using heterologous T3SS expression systems. By utilising

knockout genetics to disable the T3SS, followed by phenotypic and

proteomic comparison of wildtype and T3SS-null strains will be

important in confirming established and discovering new effectors

as well as unravelling their functions.
3.1 Tarp

The extracellular translocated actin-recruiting phosphoprotein

(TarP, CT456) is required in the early developmental stages

(Table 1B) (Clifton et al., 2004). TarP is Slc-1-dependent and

involved in chlamydial internalisation, and invasion of host cell

(Mueller et al., 2014; Faris et al., 2020). TarP binds to the host cell’s

major cytoskeletal component, actin. Phosphorylated TarP interacts

with a multitude of host cell signalling molecules, as well as

phosphatidylinositol 3-kinase (PI3K) and SHC-transforming

protein 1 (SHC1), involved in diverse cell functions (e.g. growth,

differentiation, motility, survival) (Shehat et al., 2021). TarP was

also discovered to impair the highly conserved Hippo signalling

pathway in infected epithelial cells, a previously unknown

chlamydia-affected pathway involved in cell proliferation and

death (Shehat et al., 2021).
3.2 TepP

The early translocator phosphoprotein, TepP, is the second Slc-

1-dependent effector and one of the few T3SS effectors where null

mutants have been characterised (Chen et al., 2014). TepP is

secreted by the T3SS to enhance CT infectivity and dampen host

immune activation. TepP is localised near the inclusion in the

eukaryotic cell’s cytosol, where it is phosphorylated by the host

kinases (Carpenter et al., 2017). It then targets host factors CRK,

PI3K and GSK3B to locally synthesise phosphoinositide-(3,4,5)-

triphosphate (PIP3) and modulate host cell signalling in nascent

infections. Specifically, PI3K is linked to inhibiting IFN-induced

gene transcription within early inclusions. A TepP null-mutant

displayed defected growth and altered host IFN-associated gene

expression required to activate early immune responses (Chen et al.,

2014). Recruitment of PI3K also suggests a role for TepP in

modulating membrane vesicle trafficking events (Carpenter

et al., 2017).
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TABLE 1B Characterised CT T3SS effector proteins and their functions in chlamydial pathogenesis.

Effector
Protein

Family
Conserved?

Localisation Host Target/s Function References

IncV
(CT005)

Specific to C.
trachomatis

Inclusion
membrane

VAPA/B Tethers the inclusion to the
endoplasmic reticulum’s
membrane contact sites.

(Stanhope et al., 2017; Stanhope and Derré,
2018; Andersen et al., 2021)

GlgX
(CT042)

Specific to C.
trachomatis

Inclusion lumen Unknown Debranches host glycogen. (Gehre et al., 2016; LaBrie et al., 2019)

Pls1
(CT049)*

Specific to C.
trachomatis

Inclusion lumen
and membrane

Unknown Proposed to mediate expansion
of the inclusion.

(Jorgensen and Valdivia, 2008)

MrcA
(CT101)

Specific to C.
trachomatis

Inclusion
membrane

Inositol 1,4,5-
triphosphate receptor
3 (ITPR3)

Regulates CT’s release by
mediating the myosin
phosphatase pathway.

(Nguyen et al., 2018; Sah and Lutter, 2020)

CteG
(CT105)

Specific to C.
trachomatis, C.
muridarum, and
C. suis

Golgi complex and
plasma membrane
of host eukaryotic
cell

Unknown Implicated in eukaryotic cell’s
vesicle trafficking and
centrosome amplification.

(Pais et al., 2019; Steiert et al., 2023)

IncA
(CT119)

Specific to C.
trachomatis

Inclusion
membrane

Vamp 3/7/8 Increases growth rate and
production of EBs during
replication through homotypic
inclusion fusion.

(Suchland et al., 2000; Dehoux et al., 2011;
Mueller et al., 2014; da Cunha et al., 2017;
Cingolani et al., 2019)

IPAM
(CT223)

Specific to C.
trachomatis

Inclusion
membrane

Centrosomal protein
170 (CEP170)

Maintains cytoskeletal
stabilisation for vesicular
trafficking.

(Dumoux et al., 2015; Olson-Wood et al.,
2021)

CpoS
(CT229)

Specific to C.
trachomatis, C.
caviae, and C.
muridarum

Inclusion
membrane

Myosin phosphatase Regulates host vesicle trafficking
across the plasma membrane
and promotes inclusion growth.

(Rzomp et al., 2006; Andersen et al., 2021)

TarP
(CT456)

Yes Eukaryotic cell
cytosol

Actin**, FAK,
Vinculin, Rac guanine
exchange factors
(Sos1, Vav2)

Facilitates invasion of host
epithelia.

(Clifton et al., 2004; Clifton et al., 2005; Lane
et al., 2008; Mueller et al., 2014; Thwaites
et al., 2015; Faris et al., 2020; Pedrosa et al.,
2020)

TmeA
(CT694)

Specific to C.
trachomatis and
C. muridarum

Inclusion
membrane and
eukaryotic cell
plasma membrane

N-WASP GTPase,
Ahnak

Facilitates invasion of host
epithelia.

(Bullock et al., 2012; Mueller et al., 2014;
McKuen et al., 2017; Faris et al., 2020)

TmeB
(CT695)

Specific to C.
trachomatis

Inclusion and
eukaryotic cell
plasma membrane

Unknown Implicated function in assisting
pathogen uptake into host cell.

(Mueller and Fields, 2015; McKuen et al.,
2017; Andersen et al., 2021; Scanlon et al.,
2023)

Nue
(CT737)

Specific to C.
trachomatis

Eukaryotic cell
nucleus

H2B, H3 and H4 Targets and translocates the host
cell nucleus.

(Pennini et al., 2010; Andersen et al., 2021)

InaC
(CT813)

Specific to C.
trachomatis and
C. muridarum

Inclusion
membrane

14-3-3 proteins,
ARF1, ARF4, Vamp7
and Vamp8

Regulates inclusion structure and
stability and nutrient acquisition.

(Wesolowski et al., 2017; Andersen et al.,
2021; Olson-Wood et al., 2021)

CT850 Yes Inclusion
membrane

DYNLT1 Promote inclusion tethering to
host cell nucleus.

(Mital et al., 2015)

TepP
(CT875)

Specific to C.
trachomatis

Eukaryotic cell
cytosol near the
inclusion

CRK, CRKL, GSK3B,
PI3K

Prevents neutrophil-mediated
recruitment of immune cells and
permits prolonged infections.

(Yi-Shan et al., 2014; Andersen et al., 2021;
Dolat and Valdivia, 2021)

CopN
(Chlamydial
outer
protein N)
(CT089)

Specific to C.
trachomatis and
C. pneumoniae

Inclusion
membrane

ab-tubulin Regulates T3SS effectors
secretion and translocation
proteins.

(Archuleta et al., 2011; Hanson et al., 2015)
F
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*Currently considered to be a CT T3SS substrate but yet to be experimentally validated.
**TarP direct polymerisation of actin has not been directly associated to plasma membrane reorganisation during EB invasion.
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3.3 Inc proteins

Inc proteins, or inclusion membrane proteins, are characterised

by the presence of SNARE-like motifs in their coding sequence and

have a diversity of functions. CT genome is predicted to encode 55

putative Inc proteins, with 37 confirmed (Weber et al., 2016). There is

divergent Inc content across the Chlamydiaceae family, each

possessing a distinct distribution pattern along the chlamydial

inclusion membrane (Mital et al., 2013). IncA is required for

inclusion vacuole fusion (Table 1B), other functions of Inc proteins

include; host cell viability (IncG), establishing infection (IncD) and

promoting replication (IncV). Chlamydial T3SS-secreted inclusion

factors have been studied in greater detail by da Cunha et al. (2017),

and Dehoux et al. (2011). Here, we focus on recent IncM, IncS and

CpoS which have been recently characterised.

The IncM effector targets host cell microtubules, as exhibited by

its action in host cell multinucleation, centrosome positioning and

Golgi distribution. This was found to impact inclusion morphology

stabilisation, as IncM-null mutants exhibited defects in these areas,

compared to wildtype strains (Luıś et al., 2023).

The IncS effector is important for mediating EB exit via host-cell

lysis during the late stages. IncS regulates Golgi translocation and

activation of STING, which is needed for host-cell lysis and

bacterial exit at the correct development stage for typical growth

(Bishop and Derré, 2022).

Lastly, CpoS (chlamydial promoter of survival) suppresses

apoptosis and necrosis of host cells to prolong chlamydial

infection and increase infectivity (Sixt et al., 2017). CpoS

affords protection from within the inclusion, thus can only

counteract nearby pro-death host signalling (e.g. STING). CpoS-

null mutants exhibited attenuated infections, with expedited

clearance from murine genital tract models and reduce

propagation in cell cultures. Recently, CpoS was found to block

Rab GTPases required for lipid transport regulation, as well as the

formation of inclusion microdomains of many Incs needed for

pathogen-host cell interactions (i.e. IPAM, IncD and CT222)

(Meier et al., 2023).
3.4 ChlaDUB

CT868 (ChlaDUB1/Cdu1) and CT867 (ChlaDUB2/Cdu2) are

both deubiquitinases which are delivered to the host cytosol, but

have differing impacts on CT infectivity. ChlaDUB1 is solely

localised to the inclusion membrane where it deubiquinates the

anti-apoptosis protein MCL-1. This prevents MCL-1 depletion and

apoptosis, thus inhibiting premature host-cell death to allow EB

progeny release and increasing infectivity (Fischer et al., 2017).

ChlaDUB1 also prevents degradation of host glucose-transporter-1

(GLUT-1) and GLUT-3 proteins (Wang et al., 2017). This likely

supports growth as knockdown of host GLUT-1, GLUT-3 and

adolase A impairs C. trachomatis infection (Wang et al., 2017).

Inactivation of ChlaDUB1 in CT also enhanced sensitivity to IFN-g
and reduced infectivity in murine infections (Fischer et al., 2017).

Alternatively, inactivation of ChlaDUB2, which localises at the
Frontiers in Cellular and Infection Microbiology 06
inclusion membrane and host cytosol, did not impair infection

(Pruneda et al., 2018). However, both ChlaDUBs were found to be

involved in Golgi fragmentation (Pruneda et al., 2018).
4 Adhesins

4.1 Ctad1

C. trachomatis adhesin 1 (Ctad1) is a highly conserved 47 kDa

invasin encoded by CT017. It contains two SH3 (src Homology-3)

domains located near the N-terminus. These domains are

responsible for Ctad1 binding to integrin b1 subunits on human

epithelial cells (Stallmann and Hegemann, 2016). Ctad1 is

expressed on the surface of EBs and mediates C. trachomatis

invasion. Upon binding to integrin b1, Ctad1 triggers activation

of the host mitogen-activated protein kinase (MAPK) pathway

leading to extracellular signal-regulated kinase 1/2 (ERK1/2)

phosphorylation and internalisation of EBs (Stallmann and

Hegemann, 2016). Blocking of Ctad1 receptors with recombinant

Ctad1 was shown to significantly reduce EB adhesion and

internalisation, illustrating its role in virulence (Stallmann and

Hegemann, 2016).
4.2 PMPs

Polymorphic membrane proteins (Pmps) are a group of type V

autotransporter proteins unique to Chlamydiaceae, with variable

numbers of Pmps encoded on the genomes. In CT, there are 9 Pmps

and all nine are involved in adhesion (Becker and Hegemann, 2014).

Pmps consist of a signal peptide, an N-terminus passenger

domain and a C-terminus b channel domain. The C-terminus

domain allows translocation of the passenger domain through the

outer membrane. After translocation through the outer membrane,

Pmps can remain surface bound or be further cleaved and secreted

into the inclusion. It has been suggested that the different cleavage

of PmpD may lead to fragments with different functions (Swanson

et al., 2009).

The expression of Pmps are temporally and developmentally

driven. For instance, pmpA and pmpI expression peaked earliest at

12–18 hours post infection and were only detected in RBs (Nunes

et al., 2007; Carrasco et al., 2011; Saka et al., 2011). This suggests

that both proteins play an important role in RB development. In

contrast, pmpD peaks mid-cycle at 12-24 hours post infection,

whereas expression of other pmps (pmpB-H) occurred later

(Kiselev et al., 2009). This indicates the latter’s involvement in the

late stages (such as RB to EB transition) or early stages of infection

(EB attachment) (Kiselev et al., 2009; Carrasco et al., 2011; Saka

et al., 2011). Remarkably, the expression of the same pmp can vary

drastically between different strains (Tan et al., 2009) and even in

different inclusions for the same culture (Tan et al., 2010). Besides

pmpG, the regulatory mechanism behind Pmp variation is

unknown. The flexibility to alter Pmps expression may allow CT

to evade antibody recognition targeted against a specific Pmp.
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The importance of Pmps as adhesins in CT pathogenesis is best

characterised in PmpD. Pre-incubation with recombinant PmpD

was found to inhibit CT attachment (Becker and Hegemann, 2014).

CT PmpD null mutants also had a 70% reduced host cell

attachment and decreased RBs attached to the inclusion

membrane, suggesting an additional role for PmpD in

maintaining RB-inclusion interactions (Kari et al., 2014).

Infection in non-human primates with these PmpD null

mutants showed decreased chlamydial burden illustrating its

role in pathogenesis (Kari et al., 2014). Although all Pmps are

involved in adhesion, it remains unclear what the relative

importance of each Pmp to CT is. pmpA, pmpD and pmpI are the

most conserved CT Pmp genes and their expression are also

unaffected by penicillin-induced stress, suggesting a greater

selection pressure to maintain those genes relative to other Pmps

(Carrasco et al., 2011).

Pmps may also play an important role in modulating the

immune response. In C. pneumoniae and C. psittaci, the N-

terminal Pmp21/PmpD activates Toll-like receptor 2 (TLR2),

myeloid differentiation factor 88 (MYD88) and nuclear factor kB
(NF-kB) signalling leading to Th2 polarised macrophages and

upregulation of various cytokines/chemokines including IL-8, IL-

6, IL-10 and monocyte chemoattractant protein-1 (MCP-1) (Wehrl

et al., 2004). Importantly, Th2 polarised macrophages were

associated with reduced nitric oxide (NO) production and

Chlamydia killing (Chu et al., 2020). Whether CT Pmps also can

modulate the host immune response remains to be seen.

Finally, genomic evidence has suggested that Pmps may be

associated with tissue tropism and adaptation. Phylogenetic typing

using 6 pmp genes (pmpB, pmpC, pmpF, pmpG, pmpH and pmpI)

were able to separate CT strains into their respective biovars and

serotypes (Gomes et al., 2006) These genes were under positive

selection in one or more niches (Borges et al., 2012), suggesting that

Pmps are involved in driving specific host-cell interactions or

disease outcomes. However, the mechanisms of how these unique

Pmp mutations contribute to phenotypic or virulence differences in

CT are yet to be elucidated and are likely to benefit from

fluorescence-reported allelic exchange mutagenesis (FRAEM)

approaches now available (Mueller et al., 2016).
5 Cytotoxin

The human CT urogenital serovars (D-K) encode a partial 73

kDa cytotoxin (CT166) (Carlson et al., 2004). This cytotoxin was

found to contain a functional glycosyltransferase DXD domain and

UDP-glucose binding domain with significant homology to the

large cytotoxins (LCT) from Clostridioides difficile (Belland et al.,

2001). The chlamydial cytotoxin is responsible for the cytopathic

ballooning effects seen in infected host cells by glucosylating the

Rho-GTPase protein, Rac1. This inactivates Rac1 leading to actin

remodelling (Thalmann et al., 2010). In addition to Rac1, the

cytotoxin also glucosylates other small GTPases including H-Ras,

K-Ras and N-Ras. This was found to inhibit ERK1/2 and P13K/Akt

signalling pathways leading to reduced cell cycle progression,
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division, and migration (Bothe et al., 2015). Crucial to Rac1 and

Ras glucosylation is the DXD motif with mutations in this motif

shown to abrogate glucosylation (Thalmann et al., 2010; Bothe et al.,

2015). However, DXD mutated cytotoxin was still capable of

reducing cellular migration suggesting that there may be other

toxin effects independent to the DXD motif (Bothe et al., 2015).

Currently, the importance and role of the cytotoxin in CT

pathogenesis is unclear. CT166 is present in EBs at the start of

infection but is rapidly degraded after 2 hours post-infection

(Belland et al., 2001). This suggests potential importance in the

initial stages of infection. Ectopic overexpression of CT166 in

HeLa cells reduced CT uptake. It was suggested that the chlamydial

cytotoxin controls Chlamydia uptake and functions to limit excessive

actin polymerisation from other virulence factors such as Tarp

(Thalmann et al., 2010). The cytotoxin has also been hypothesised to

preserve host energy and nutrients for Chlamydia by limiting energy

intensive processes such as cell division and migration (Bothe

et al., 2015).

Only urogenital serovars encode a functional cytotoxin. In

ocular serovars, the glycosyltransferase domain is deleted while in

LGV serovars, both domains are absent (Carlson et al., 2004). It has

been argued that the progressive loss of the cytotoxin gene in CT

compared to other Chlamydia species like C. muridarum, which

encodes 3 paralogous copies, may reflect host adaptation and that

the cytotoxin is redundant for human infection.
6 Plasmid

Chlamydia retains a highly conserved ~7.5 kb virulence plasmid

that was found to be significant in vivo (Zhong, 2016). The plasmid

encodes 8 glycoproteins (pGP1-8) that have a variety of functions

including promoting infection ascension, inducing pro-

inflammatory responses, and promoting extrusion processes.

pGP3, is a master transcriptional regulator of both plasmid and

chromosomal genes (Turman et al., 2023). Virulence plasmid-

deficient or pGP3-deficient strains resulted in attenuated

infections (Carlson et al., 2008). Under stressful conditions, CT

plasmid copy numbers increase, presumably to upregulate T3SS-

secreted substrates and ensure in vivo survival (Dirks et al., 2021).

Expression of pGP3 is regulated by pGP4, which similarly is

involved in regulating expression of chromosomal glycogen

synthase (GlgA), and other proteins with currently unknown

functions in pathogenesis, CT050, CT143, and CT144 (Lei et al.,

2021). pGP4 was proposed to serve as a plasmid pGP4-dependent

secretion system, imperative for delivering pGP3 and GlgA to the

host cytosol to increase host glycogen stores (Lei et al., 2021).

Contrary to previous results from (da Cunha et al., 2017) this

secretion was independent of the T2SS and T3SS (Lei et al., 2021).

pGP4-deficient CT strains demonstrate varied transcription of

chromosomal and plasmid genes, responsible for various duties

(e.g. glycogen synthesis and inclusion morphology) within the

developmental cycle that impact virulence (Song et al., 2013).

Additionally, pGP4 has been implicated in boosting Euo’s ability

to bind and repress Euo-dependent transcription promoters
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(Table 1A), thus temporally altering late gene expression necessary

for RB differentiation into infectious progeny (Zhang et al., 2020).

However, plasmid-deficient CT is also capable of inducing sequelae

as severe as wild-type strains containing the plasmid (Qu et al.,

2015). Thus, the exact role of chlamydial plasmid’s function in

pathogenesis remains unknown but can be investigated using new

techniques such as FRAEM to create gene deletions (Mueller et al.,

2016; Ghosh et al., 2020; Fields et al., 2022).
7 Other characterised chlamydial
virulence factors

CT’s pathogenesis is additionally mediated by various proteases

and membrane proteins. HtrA (DegP) is a periplasmic serine protease

with chaperone functions, including proteolysis of abnormal or

misfolded proteins, and serves as a stress response protein that is

upregulated in some persistence and stress models (e.g. high

temperatures, antibiotics) (Huston et al., 2007; Huston et al., 2008).

Little was known about the exact role HtrA played in Chlamydia’s

pathogenesis prior to inhibition studies with JO146 (Patel et al., 2014).

This inhibitor was most effective in CT’s mid-replication cycle, where

administration of the drug resulted in a significant loss in overall

vacuole size and in viable infectious EB progeny (Gloeckl et al., 2013;

Ong et al., 2013; Lawrence et al., 2016).

Chlamydia Protease-like Activity Factor (CPAF) is a secreted

protease that was initially thought to degrade dozens of host proteins

involved in Golgi reorganisation, apoptosis, cytoskeleton remodelling

and immune regulation. However, these initial CPAF targets identified

were disproven as artefacts from in vitro post-lysis degradation, as

CPAF is not inhibited by standard protease inhibitors (Chen et al.,

2012). To clarify the role of CPAF, a reverse genetics approach re-

established CPAF’s likely functions in targeting specific host cell

proteins (i.e. vimentin and lamin-associated protein 1) impacting on

late stages of infection and development of infectious progeny, however

CPAF is not essential for either process (Snavely et al., 2014).

Additional experiments also revealed CPAF as a key factor for

evading host immune response by paralysing early recruitment of

polymorphonuclear cells. Secreted CPAF cleaves FPR2 on the surface

of neutrophils, inhibiting their activation, oxidative bursts and

production of neutrophil extracellular traps thus establishing longer

infections (Rajeeve et al., 2018).

Other important CT proteases include Ptr which is localised to

the inclusion lumen and is expressed throughout CT ’s

development. A CT LGV-L2 ptr-null mutant demonstrated

impaired genome replication after IFN-g removal, along with

decreased progeny generation (Panzetta et al., 2019). This links

Ptr’s role in recovering from IFN-g-induced persistence. The

periplasmic Tail-specific protease, Tsp, has also been identified as

critical for the differentiation from RB to EB via genetic approaches

which alter Tsp expression levels (Swoboda et al., 2023).

Lastly, the major outer membrane protein (MOMP) is an

immunodominant antigen. It functions as a porin, a cytoadhesin,

and is the dominant component of the outer membrane complex

that maintains EB stability (Wang et al., 2006; Guifeng et al., 2007).
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8 Discussion and conclusion

Genetic approaches to investigate CT are still time consuming and

technically difficult. Genome wide genetic manipulation and screening

approaches remain challenging. Therefore, selective approaches to

genetic manipulation guided by current knowledge of virulence

functions, homolog functions, etc. has been used to target loci for

genetic manipulation. These genetic approaches in CT have already

confirmed the role of several established virulence factors while also

overturning or disputing other widely-held understandings inChlamydia

pathogenesis such as the role of the T3SS in secreting plasmid regulated

chromosomally-encoded proteins and the role of CPAF (Snavely et al.,

2014; Lei et al., 2021). While significant advances in genetic approaches

have been made in CT, the progress in other Chlamydia species remains

behind. Application or modification of genetic approaches in CT like

CRISPRi to other species will allow comparative studies to reveal

important determinants of host tropism. Moreover, the recent

development of a multiplexed CRISPRi knockdown system in CT is

an exciting advancement which will allow interactions between two or

more genes to be investigated, providing a more wholistic systems

understanding of chlamydia pathogenesis (Hatch and Ouellette, 2023).

Ultimately, rapidly expanding the arsenal of genetically investigated

virulence factors in CT could inform novel treatment approaches or

future attempts to develop a live attenuated vaccine strain.
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