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We establish a general framework for developing approximation algorithms for a class of
counting problems. Our framework is based on the cluster expansion of abstract polymer
models formalism of Kotecký and Preiss. We apply our framework to obtain efficient
algorithms for (1) approximating probability amplitudes of a class of quantum circuits close to
the identity, (2) approximating expectation values of a class of quantum circuits with operators
close to the identity, (3) approximating partition functions of a class of quantum spin systems
at high temperature, and (4) approximating thermal expectation values of a class of quantum
spin systems at high temperature with positive-semidefinite operators. Further, we obtain
hardness of approximation results for approximating probability amplitudes of quantum
circuits and partition functions of quantum spin systems. This establishes a computational
complexity transition for these problems and shows that our algorithmic conditions are
optimal under complexity-theoretic assumptions. Finally, we show that our algorithmic
condition is almost optimal for expectation values and optimal for thermal expectation values
in the sense of zero freeness.
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I. INTRODUCTION

The classification of the computational complexity of quantum problems is important for
understanding the capabilities and limitations of quantum computing. These problems include
the computation of probability amplitudes, expectation values, partition functions, and thermal
expectation values. In this paper we consider the classification of such problems in the sense of
approximate counting. We establish a general framework for developing approximation algorithms
and hardness of approximation results for a class of counting problems. By applying this framework,
we are able to obtain efficient approximation algorithms and hardness of approximation results for
several quantum problems under certain algorithmic conditions.

Our algorithmic framework is based on the cluster expansion of abstract polymer models
formalism of Kotecký and Preiss [1]. We consider polymers that are connected subgraphs of
bounded-degree bounded-rank multihypergraphs with compatibility relations defined by vertex
disjointness. The key insight underlying our framework is that when the polymer weights decay
sufficiently fast, computing the truncated cluster expansion to sufficiently high order allows us
to obtain a multiplicative approximation to the abstract polymer model partition function. Our
framework can be viewed as a straightforward generalisation of the framework of Helmuth, Perkins,
and Regts [2], and Borgs et al. [3] from the case of bounded-degree graphs to bounded-degree
bounded-rank multihypergraphs. This approach is closely related to that of Patel and Regts [4]
using Barvinok’s method [5]; see Ref. [6] for a survey of this method.

Our results concerning the approximation of quantum problems may be summarised as follows.
We obtain efficient algorithms for (1) approximating probability amplitudes of a class of quantum
circuits close to the identity, (2) approximating expectation values of a class of quantum circuits
with operators close to the identity, (3) approximating partition functions of a class of quantum
spin systems at high temperature, and (4) approximating thermal expectation values of a class of
quantum spin systems at high temperature with positive-semidefinite operators. Our approach
offers a simpler and sharper analysis compared to existing algorithms. Our algorithmic results are
summarised in Table I.

Quantum
Problem

Conditioned
Object

Algorithmic Condition
(This Work)

Algorithmic Condition
(Previous)

Probability
Amplitudes

Unitary Operators
{Ue}e∈E

∥Ue − I∥ ≤ 1

e3∆(r2)
-

Expectation
Values

Self-Adjoint Operators
{Ov}v∈V

∥Ov − I∥ ≤ 1
e3k3d ∥Ov − I∥ < 1

60k5d [7]

Partition
Functions

Inverse Temperature
β

|β| ≤ 1

e4∆(r2)
|β| ≤ 1

16e4∆(r2)
[8]

Thermal Expectation
Values

Inverse Temperature
β

|β| ≤ 1

e4∆(r2)
|β| ≤ 1

2e2(∆−1)r(∆r−r+1) [9]

TABLE I. Summary of algorithmic results for quantum problems.

Our hardness of approximation framework is based on reductions from the Ising model partition
function. We apply this framework to obtain hardness of approximation results for approximating
probability amplitudes of quantum circuits and partition functions of quantum spin systems.
This establishes a computational complexity transition for these problems and shows that our



3

algorithmic conditions are optimal under complexity-theoretic assumptions. Further, we show
that our algorithmic condition is almost optimal for expectation values and optimal for thermal
expectation values in the sense of zero freeness.

This paper is structured as follows. In Section II, we introduce the necessary preliminaries.
Then, in Section III, we establish our algorithmic and hardness of approximation framework. In
Section IV, we apply our framework to several quantum problems. Finally, we conclude in Section V
with some remarks and open problems.

II. PRELIMINARIES

A. Graph Theory

A multigraph is a graph in which multiple edges between vertices are permitted. A hypergraph
is a graph in which edges between any number of vertices are permitted. A multihypergraph is
a graph in which multiple edges between vertices and edges between any number of vertices are
permitted. We shall assume that the edges in a multihypergraph are uniquely labelled, that is, all
edges are considered distinct. Let G = (V,E) be a multihypergraph. We denote the order of G by
|G| = |V (G)| and the size of G by ∥G∥ = |E(G)|. The maximum degree ∆(G) of G is the maximum
degree over all vertices of G and the rank r(G) of G is the maximum cardinality of an edge of G.
The distance d(u, v) between two vertices u and v in G is defined as the size of the shortest path
connecting them. A multihypergraph is called ∆-regular if all the vertices have degree ∆ and called
r-uniform if all the edges have cardinality r.

B. Abstract Polymer Models

An abstract polymer model is a triple (C, w,∼), where C is a countable set of objects called
polymers, w : C → C is a function that assigns to each polymer γ ∈ C a complex number wγ called
the weight of the polymer, and ∼ is a symmetric compatibility relation such that each polymer
is incompatible with itself. A set of polymers is called admissible if the polymers in the set are
all pairwise compatible. Note that the empty set is admissible. Let G denote the collection of all
admissible sets of polymers from C. The abstract polymer partition function is defined by

Z(C, w) :=
∑
Γ∈G

∏
γ∈Γ

wγ .

The archetypal example of an abstract polymer model is the independence polynomial. Let
G = (V,E) be a graph and let I denote the collection of all independent sets of G. Recall that
an independent set of G is a subset of vertices with no edges between them. The independence
polynomial I(G;x) of G is a polynomial in x, defined by

I(G;x) :=
∑
I∈I

x|I|.

This corresponds to an abstract polymer model (C, w,∼) as follows. The polymers C are the
vertices V of G, the weight function w is given by wγ = x for all γ ∈ C, and two polymers are
compatible if and only if there is no edge between them in G. An admissible set of polymers is
then an independent set of G, and it follows that the partition function of this model Z(C, w) is
precisely the independence polynomial I(G;x) of G. The abstract polymer model can be viewed
as a generalisation of the independence polynomial. In particular, it attempts to capture the
independence properties of a problem.
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A useful tool for representing a problem as an abstract model is the principle of inclusion-
exclusion. The principle is formalised by the following well-known lemma (see for example [10,
Theorem 12.1]); we provide a proof for completeness.

Lemma 1 (Principle of inclusion-exclusion). Let f be a function defined on the subsets of finite set
E, then

f(E) =
∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |f(T ).

Proof. By interchanging the summations, we have∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |f(T ) =
∑
T⊆E

(−1)|T |f(T )
∑

T⊆S⊆E

(−1)|S|

=
∑
T⊆E

f(T )
∑

S⊆E\T

(−1)|S|

=
∑
T⊆E

f(T )

|E\T |∑
m=0

(
|E\T |
m

)
(−1)m.

Now, by applying the binomial theorem, we obtain∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |f(T ) = f(E),

completing the proof. ■

As we shall see in Section IV, several quantum problems admit an abstract polymer model
representation.

C. Abstract Cluster Expansion

We now define the abstract cluster expansion [1, 11]. Let Γ be a non-empty ordered tuple of
polymers. The incompatibility graph HΓ of Γ is the graph with vertex set Γ and edges between
any two polymers if and only if they are incompatible. Γ is called a cluster if its incompatibility
graph HΓ is connected. A polymer and cluster are compatible if the polymer is compatible with
every polymer in the cluster. Let GC denote the set of all clusters of polymers from C. The abstract
cluster expansion is a formal power series for logZ(C, w) in the variables wγ , defined by

log(Z(C, w)) :=
∑
Γ∈GC

φ(HΓ)
∏
γ∈Γ

wγ ,

where φ(H) denotes the Ursell function of a graph H:

φ(H) :=
1

|H|!
∑

S⊆E(H)
spanning
connected

(−1)|S|.

An important theorem due to Kotecký and Preiss [1] provides a sufficient criterion for the
absolute convergence of the cluster expansion. An improved convergence criterion is given in
Ref. [12].
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Theorem 2 (Kotecký and Preiss [1]). Let (C, w,∼) be an abstract polymer model and let a : C → R+

and d : C → R+ be functions such that∑
γ∗≁γ

|wγ∗ |ea(γ∗)+d(γ∗) ≤ a(γ),

for all polymers γ ∈ C. Then the cluster expansion for log(Z(C, w)) converges absolutely, Z(C, w) ̸= 0,
and

∑
Γ∈GC
Γ≁γ

∣∣∣∣∣∣φ(HΓ)
∏
γ∗∈Γ

wγ∗

∣∣∣∣∣∣e
∑

γ∗∈Γ d(γ∗) ≤ a(γ),

for all polymers γ ∈ C.

In the case of the independence polynomial, the radius of convergence is given by Shearer’s bound
for the Lovász Local Lemma [13]; this was elucidated by Scott and Sokal [14]. For results on the
hypergraph independence polynomial see Refs. [15, 16]. Note that the Kotecký-Preiss convergence
criterion can be viewed as a type of local lemma.

Let ∥ · ∥ : C → Z+ be a function that assigns to each polymer γ ∈ C a positive integer ∥γ∥
called the size of the polymer. A useful quantity for algorithmic purposes is the truncated cluster
expansion Tm(Z(C, w)) for log(Z(C, w)):

Tm(Z(C, w)) :=
∑
Γ∈GC
∥Γ∥≥m

φ(HΓ)
∏
γ∈Γ

wγ ,

where ∥Γ∥ =
∑

γ∈Γ ∥γ∥.
It is often convenient to consider clusters as multisets of polymers. Define a cluster to be a

multiset (Γ,mΓ) of polymers Γ with multiplicity function mΓ : Γ → Z+ whose incompatibility
graph is connected. Here the definition of the incompatibility graph is extended to multisets in the
natural way. Let ĜC denote the collection of all multiset clusters of polymers from C. Note that,

for a given multiset (Γ,mΓ), there are precisely
(
∑

γ∈Γ mΓ(γ))!∏
γ∈Γ mΓ(γ)!

tuples that correspond to it. The

abstract cluster expansion may then be written as

log(Z(C, w)) =
∑

(Γ,mΓ)∈ĜC

φ̂
(
H(Γ,mΓ)

)∏
γ∈Γ

w
mΓ(γ)
γ

mΓ(γ)!
,

where

φ̂(H) :=
∑

S⊆E(H)
spanning
connected

(−1)|S|.

D. Approximation Schemes

Let ϵ > 0 be a real number. An additive ϵ-approximation to z is a complex number ẑ such
that |z − ẑ| ≤ ϵ. A multiplicative ϵ-approximation to z is a complex number ẑ such that |z − ẑ| ≤
ϵ|z|. Note that an additive-error approximation to the logarithm of a number is equivalent to a
multiplicative approximation to that number. A fully polynomial-time approximation scheme for
a sequence of complex numbers (zn)n∈N is a deterministic algorithm that, for any n and ϵ > 0,
produces a multiplicative ϵ-approximation to zn in time polynomial in n and 1/ϵ.
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E. Computational Complexity

We shall refer to the following complexity classes: P (polynomial time), RP (randomised polyno-
mial time), BQP (bounded-error quantum polynomial time), NP (non-deterministic polynomial
time), and #P. For a formal definition of these complexity classes, we refer the reader to Ref. [17].

III. GENERAL FRAMEWORK

A. Approximation Algorithms

In this section we establish a general framework for developing approximation algorithms
for abstract polymer model partition functions. We consider abstract polymer models in which
the polymers are connected subgraphs of bounded-degree bounded-rank multihypergraphs and
compatibility is defined by vertex disjointness. When the polymer weights of these models decay
sufficiently fast, then the logarithm of the partition function can be controlled by a convergent
cluster expansion. Our algorithm approximates the logarithm of the partition function by computing
the truncated cluster expansion to sufficiently high order.

Our general framework is based on that of Helmuth, Perkins, and Regts [2] and Borgs et al. [3]
where approximation algorithms were developed in the setting of bounded-degree graphs. Our
algorithm can be viewed as a straightforward generalisation of theirs to the setting of bounded-degree
bounded-rank multihypergraphs. Our main theorem is as follows.

Theorem 3. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at
most ∆ and rank at most r. Further let (C, w,∼) be an abstract polymer model such that the
polymers are connected subgraphs of G and that two polymers γ and γ′ are compatible if and only if
V (γ) ∩ V (γ′) = ∅. Suppose that, for all polymers γ ∈ C, the weight wγ can be computed in time
exp(O(∥γ∥)) and satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.

Then the cluster expansion for log(Z(C, w)) converges absolutely, Z(C, w) ̸= 0, and there is a fully
polynomial-time approximation scheme for Z(C, w).

In Section IV we shall apply Theorem 3 to establish efficient approximation algorithms for
several quantum problems.

Our proof of Theorem 3 requires several lemmas. We first prove the following lemma which
bounds the number of polymers of a certain size containing a particular vertex.

Lemma 4. Let G = (V,E) be a multihypergraph of maximum degree at most ∆ and rank at most
r, and let v ∈ V be a vertex. The number of connected subgraphs with m edges that contain vertex
v is at most (e∆(r−1))m

2 .

Proof. Let Cm,v(G) denote the set of connected subgraphs of G with m edges that contain the
vertex v ∈ V . Further let T∆,r,v denote the infinite ∆-regular r-uniform linear hypertree with
root v. Recall that a hypergraph is linear if the intersection of any pair of edges contains at most
one vertex. Let T ⋆

∆,r,v be the graph with vertex set {v} ∪ E(T∆,r,v) and edges between vertices
v and e ∈ E(T∆,r,v) if and only if v ∈ e and edges between vertices e, e′ ∈ E(T∆,r,v) if and only
if e ∩ e′ ̸= ∅ and d(v, e) ̸= d(v, e′). Note that T ⋆

∆,r,v is a tree with maximum degree precisely
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(∆− 1)(r− 1)+1 ≤ ∆(r− 1) and there is a natural bijection between Cm,v(T∆,r,v) and Cm,v(T
⋆
∆,r,v).

The cardinality of Cm,v(T
⋆
∆,r,v) is at most 1

m+1

(
(m+1)∆(r−1)

m

)
[18, Lemma 2.1]. Hence, we have

|Cm,v(G)| ≤ |Cm,v(T∆,r,v)| =
∣∣Cm,v(T

⋆
∆,r,v)

∣∣ ≤ 1

m+ 1

(
(m+ 1)∆(r − 1)

m

)
≤ (e∆(r − 1))m

2
,

completing the proof. ■

Remark. The proof of Lemma 4 gives a slightly sharper bound of (e((∆−1)(r−1)+1))m

2 . Improved
bounds may be obtained for certain classes of multihypergraphs.

We now show that provided the polymer weights decay sufficiently fast, then the cluster
expansion converges absolutely and the truncated cluster expansion provides a good approximation
to log(Z(C, w)). This is formalised by the following lemma which utilises the Kotecký-Preiss
convergence criterion.

Lemma 5. Let G = (V,E) be a multihypergraph of maximum degree at most ∆ and rank at most r.
Further let (C, w,∼) be an abstract polymer model such that the polymers are connected subgraphs
of G and that two polymers γ and γ′ are compatible if and only if V (γ) ∩ V (γ′) = ∅. Suppose that,
for all polymers γ ∈ C, the weight wγ satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.

Then the cluster expansion for log(Z(C, w)) converges absolutely, Z(C, w) ̸= 0, and for m ∈ Z+,

|Tm(Z(C, w))− log(Z(C, w))| ≤ |G|e−
m
2 .

Proof. We introduce a polymer γv to every vertex v in G consisting of only that vertex. We define
γv to be incompatible with every polymer that contains v. Then, we have

∑
γ≁γv

|wγ |e
1
2(

1
r−1

|γ|+∥γ∥) ≤ e
1

2(r−1)

∑
γ≁γv

|wγ |e∥γ∥ ≤ e
1

2(r−1)

∑
γ≁γv

(
1

e2∆
(
r
2

))∥γ∥

,

where we have used the fact that |γ| ≤ (r − 1)∥γ∥+ 1. By Lemma 4, the number of polymers γ

with ∥γ∥ = m that are incompatible with γv is at most (e∆(r−1))m

2 . Thus, we may write

∑
γ≁γv

|wγ |e
1
2(

1
r−1

|γ|+∥γ∥) ≤ e
1

2(r−1)

2

∞∑
m=1

(
2

er

)m

≤ 1

2(r − 1)
.

Fix a polymer γ. By summing over all vertices in γ, we obtain∑
γ∗≁γ

|wγ∗ |e
1
2(

1
r−1

|γ∗|+∥γ∗∥) ≤ 1

2(r − 1)
|γ|.

Now by applying Theorem 2 with a(γ) = 1
2(r−1) |γ| and d(γ) = 1

2∥γ∥, we have that the cluster

expansion converges absolutely, Z(C, w) ̸= 0, and

∑
Γ∈GC
Γ∋γv

∣∣∣∣∣∣φ(HΓ)
∏
γ∈Γ

wγ

∣∣∣∣∣∣e 1
2
∥Γ∥ ≤ 1.
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By summing over all vertices in G, we obtain

∑
Γ∈GC
∥Γ∥≥m

∣∣∣∣∣∣φ(HΓ)
∏
γ∈Γ

wγ

∣∣∣∣∣∣ ≤ |G|e−
m
2 ,

completing the proof. ■

Lemma 5 implies that to obtain a multiplicative ϵ-approximation Z(C, w), it is sufficient to
compute the truncated cluster expansion Tm(Z(C, w)) to order m = O(log(|G|/ϵ)). We shall now

establish an algorithm for computing Tm(Z(C, w)) in time exp(O(m)) · |G|O(1). This requires the
following two lemmas.

Lemma 6. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r. Further let (C, w,∼) be an abstract polymer model such that the polymers are
connected subgraphs of G and that two polymers γ and γ′ are compatible if and only if V (γ)∩V (γ′) =

∅. The clusters of size at most m can be listed in time exp(O(m)) · |G|O(1).

Proof. Our proof follows a similar approach to that of Ref. [2, Theorem 6]. We list all connected

subgraphs of G with at most m edges in time exp(O(m)) · |G|O(1) by depth-first search. For each
of these subgraphs, we consider all ways to label the edges with positive integers such that their
sum is at most m in time exp(O(m)). For each of these labelled subgraphs, we consider all clusters
that correspond to it, i.e., clusters whose multiset sum over polymers induces the subgraph with
multiplicities given by the edge labels.

We now prove by induction that the number of such clusters for a subgraph with label sum m is
at most (e∆(r − 1))2m. This is clearly true when m = 0. Now suppose that the number of such
clusters for a subgraph with label sum m is at most (e∆(r − 1))2m. For a subgraph with label sum
m+ 1, we choose an arbitrary vertex in the subgraph and consider all polymers that contain that
vertex. By Lemma 4, there are at most (e∆(r − 1))n such polymers of size n. By removing each
polymer from the subgraph and applying the induction hypothesis, we have that the number of
clusters in the subgraph is at most

m+1∑
n=1

(e∆(r − 1))n(e∆(r − 1))2(m+1−n) ≤ (e∆(r − 1))2(m+1)
m+1∑
n=1

(e∆(r − 1))−n ≤ (e∆(r − 1))2(m+1),

completing the induction. These clusters can be enumerated in time exp(O(m)) by depth-first
search, completing the proof. ■

Lemma 7. The Ursell function φ(H) can be computed in time exp(O(|H|)).

Proof. Our proof follows that of Ref. [2, Lemma 5]. For a connected graph H, we have

φ(H) =
1

∥H∥!
∑

S⊆E(H)
spanning
connected

(−1)|S| = −(−1)|H|

∥H∥!
TH(0, 1),

where TH(x, y) denotes the Tutte polynomial of H defined by

TH(x, y) :=
∑
S⊆E

(x− 1)k(S)−k(E)(y − 1)k(S)+|S|−|H|.

Here k(S) denotes the number of connected components of the subgraph with edge set S. The
Ursell function can then be computed in time exp(O(|H|)) by evaluating the Tutte polynomial in
time exp(O(|H|)) via an algorithm of Börklund et al. [19]. This completes the proof. ■
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Lemma 8. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r. Further let (C, w,∼) be an abstract polymer model such that the polymers are
connected subgraphs of G and that two polymers γ and γ′ are compatible if and only if V (γ)∩V (γ′) =
∅. Suppose that, for all polymers γ ∈ C, the weight wγ can be computed in time exp(O(∥γ∥)). Then

the truncated cluster expansion Tm(Z(C, w)) can be computed in time exp(O(m)) · |G|O(1).

Proof. We can list all clusters of size at most m in time exp(O(m)) · |G|O(1) by Lemma 6. For
each of these clusters, we can compute the Ursell function in time exp(O(m)) by Lemma 7, and
the polymer weights in time exp(O(m)) by assumption. Hence, the truncated cluster expansion

Tm(Z(C, w)) can be computed in time exp(O(m)) · |G|O(1). ■

Combining Lemma 5 with Lemma 8 proves Theorem 3.

B. Hardness of Approximation

In this section we establish the hardness of approximating abstract polymer model partition
functions. In particular, we establish the hardness of approximating the Ising model partition
function at imaginary temperature on bounded-degree graphs, which will be useful for our purposes
via reductions. This setting was studied in Ref. [20], which established hardness of approximation
results for this problem. We utilise the results of Ref. [20] to obtain significantly sharper bounds
when the maximum degree is sufficiently large.

We model an Ising system by a multigraph G = (V,E). At each vertex v of G there is a
2-dimensional classical spin space {−1,+1}. The classical spin space on the multihypergraph is
given by {−1,+1}V . An interaction ϕ assigns a real number ϕ(e) to each edge e of G. We are
interested in the partition function ZIsing(G;β) at inverse temperature β, defined by

ZIsing(G;β) :=
∑

σ∈{−1,+1}V

∏
{u,v}∈E

e−βϕ({u,v})σuσv .

We shall normalise the partition function by a multiplicative factor of 1
2|G| . Further, we shall assume

that |ϕ(e)| ≤ 1 for all e ∈ E, which is always possible by a rescaling of β. We shall consider the
case where the inverse temperature β is imaginary, i.e., β = iθ for θ ∈ R. Our hardness result
concerning the approximation of ZIsing(G; iθ) is as follows.

Theorem 9. Fix ϵ > 0, ∆ ∈ Z≥3, and θ ∈ R such that |θ| ≥ 3π
5(∆−2) . It is #P-hard to approximate

the Ising model partition function ZIsing(G; iθ) up to a multiplicative ϵ-approximation on multigraphs
of maximum degree at most ∆.

Proof. By Ref. [20, Theorem 3], it is #P-hard to approximate the Ising model partition function
ZIsing(G; iθ) up to a multiplicative ϵ-approximation on multigraphs of maximum degree 3 for

|θ| ≥ π
5 > arctan

(
1√
2

)
. For a graph G of maximum degree 3 and a positive integer k ∈ Z+, let Gk

denote the k-thickening of G, that is, the multigraph formed by replacing each edge of G with k
parallel edges. Note that the maximum degree of Gk is precisely 3k. Now observe that, for any
k ∈ Z+, we have ZIsing(G; iθ) = ZIsing

(
Gk;

iθ
k

)
. Hence, it is #P-hard to approximate ZIsing(G; iθ)

up to a multiplicative ϵ-approximation on multigraphs of maximum degree at most 3k for θ ≥ π
5k .

It follows that it is #P-hard to approximate ZIsing(G; iθ) up to a multiplicative ϵ-approximation on
multigraphs of maximum degree at most ∆ for θ ≥ 3π

5(∆−2) , completing the proof. ■

Remark. The proof of Theorem 9 gives a slightly sharper bound. Further, the proof technique may
be applied to the case of complex β.
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This offers a significant improvement over Ref. [20] when ∆ ≥ 7, which applies when |θ| >
arctan

(
1√
∆−1

)
. In Section IV we shall apply Theorem 3 to establish the hardness of approximation

of several quantum problems. We shall now show that the Ising model partition function ZIsing(G;β)
admits an abstract polymer model representation. This is formalised by the following lemma.

Lemma 10. The Ising model partition function ZIsing(G;β) admits the following abstract polymer
model representation.

ZIsing(G;β) =
∑
Γ∈G

∏
γ∈Γ

wγ ,

where

wγ :=
1

2|γ|

∑
σ∈{−1,+1}V (γ)

∏
{u,v}∈E(γ)

(
e−βϕ({u,v})σuσv − 1

)
.

Proof. By applying Lemma 1 with f(E) = 1
2|G|

∑
σ∈{−1,+1}V

∏
{u,v}∈E e

−βϕ({u,v})σuσv , we have

ZIsing(G;β) =
1

2|G|

∑
σ∈{−1,+1}V

∏
{u,v}∈E

e−βϕ({u,v})σuσv

=
1

2|G|

∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |
∑

σ∈{−1,+1}V

∏
{u,v}∈T

e−βϕ({u,v})σuσv .

For a subset S ⊆ E, let ΓS denote the maximally connected components of S. By factorising over
these components, we have

ZIsing(G;β) =
∑
S⊆E

∏
γ∈ΓS

(−1)∥γ∥
∑

T⊆E(γ)

(−1)|T | 1

2|γ|

∑
σ∈{−1,+1}V (γ)

∏
{u,v}∈T

e−βϕ({u,v})σuσv

=
∑
S⊆E

∏
γ∈ΓS

1

2|γ|

∑
σ∈{−1,+1}V (γ)

∏
{u,v}∈E(γ)

(
e−βϕ({u,v})σuσv − 1

)
=
∑
Γ∈G

∏
γ∈Γ

wγ .

This completes the proof. ■

We note that Lemma 10 can be combined with Theorem 3 to establish an efficient approximation
algorithm for ZIsing(G;β) on graphs of maximum degree at most ∆ when |β| ≤ 1

e4∆
. Efficient

approximation algorithms with significantly sharper bounds have previously been established [20, 21].
In particular, Ref. [20] established an efficient approximation algorithm that applies when |β| <

π
4(∆−1) . In the case when β is real, the exact point of a computational complexity transition is known
under the complexity-theoretic assumption that RP is not equal to NP due to the approximation
algorithm of Ref. [22] and the hardness of approximation results of Refs. [23, 24].

IV. APPLICATIONS

In this section we apply our algorithmic framework to establish efficient approximation algorithms
for classes of quantum problems. This includes probability amplitudes, expectation values, partition
functions, and thermal expectation values. We apply our hardness of approximation framework to
show the optimality of our algorithmic conditions for probability amplitudes and partition functions
under complexity-theoretic assumptions. Further, we show that our algorithmic condition is almost
optimal for expectation values and optimal for thermal expectation values in the sense of zero
freeness.
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A. Probability Amplitudes

In this section we study the problem of approximating probability amplitudes of quantum circuits.
This problem is known to be #P-hard in general [25]; however, we show that, for a class of quantum
circuits close to the identity, this problem admits an efficient approximation algorithm. Further, we
show that this algorithmic condition is optimal under complexity-theoretic assumptions.

We model a quantum circuit by a multihypergraph G = (V,E). At each vertex v of G there is a
d-dimensional Hilbert space Hv with d <∞. The Hilbert space on the multihypergraph is given by
HG :=

⊗
v∈V Hv. An interaction U assigns a unitary operator Ue on He :=

⊗
v∈eHv to each edge

e of G. We shall assume there is an implicit ordering of the unitary operators given by the edge
labels which determines the order in which products of these operators are taken. The quantum
circuit on G is defined by UG :=

∏
e∈E Ue. We are interested in the probability amplitude AUG

,

defined by AUG
:=
〈
0|G|∣∣UG

∣∣0|G|〉. Note that any probability amplitude may be expressed in this
form by a simple modification of the circuit. Our algorithmic result concerning the approximation
of AUG

is as follows.

Theorem 11. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r. Suppose that, for all e ∈ E,

∥Ue − I∥ ≤ 1

e3∆
(
r
2

) .
Then the cluster expansion for log(AUG

) converges absolutely, AUG
̸= 0, and there is a fully

polynomial-time approximation scheme for AUG
.

Remark. Theorem 11 also applies to probability amplitudes of the form ⟨ψ|UG|ψ⟩, where |ψ⟩ is a
product state over qudits, i.e., |ψ⟩ :=

⊗
v∈V |ψv⟩. Further, Theorem 11 applies to unitary operators

of the form Ue = e−iθΦ(e), where θ is a real number such that |θ| ≤ 1
e4∆(r2)

and Φ(e) is a self-adjoint

operator on He with ∥Φ(e)∥ ≤ 1.

We prove Theorem 11 by showing that the conditions required to apply Theorem 3 are satisfied.
That is, we show that (1) the probability amplitude AUG

admits a suitable abstract polymer model
representation, (2) the polymer weights satisfy the desired bound, and (3) the polymer weights can
be computed in the desired time. This is achieved in the following three lemmas.

Lemma 12. The probability amplitude AUG
admits the following abstract polymer model represen-

tation.

AUG
=
∑
Γ∈G

∏
γ∈Γ

wγ ,

where

wγ :=
〈
0|γ|
∣∣∣
 ∏
e∈E(γ)

(Ue − I)

∣∣∣0|γ|〉 .
Proof. By applying Lemma 1 with f(E) =

〈
0|G|∣∣(∏

e∈E Ue

)∣∣0|G|〉, we have

AUG
=
〈
0|G|
∣∣∣UG

∣∣∣0|G|
〉

=
∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |
〈
0|G|
∣∣∣(∏

e∈T
Ue

)∣∣∣0|G|
〉
.
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For a subset S ⊆ E, let ΓS denote the maximally connected components of S. By factorising over
these components, we have

AUG
=
∑
S⊆E

∏
γ∈ΓS

(−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |
〈
0|γ|
∣∣∣(∏

e∈T
Ue

)∣∣∣0|γ|〉

=
∑
S⊆E

∏
γ∈ΓS

〈
0|γ|
∣∣∣
 ∏
e∈E(γ)

(Ue − I)

∣∣∣0|γ|〉
=
∑
Γ∈G

∏
γ∈Γ

wγ .

This completes the proof. ■

Lemma 13. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r. Suppose that, for all e ∈ E,

∥Ue − I∥ ≤ 1

e3∆
(
r
2

) .
Then, for all polymers γ ∈ C, the weight wγ satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.

Proof. Fix a polymer γ. We have

|wγ | ≤
∏

e∈E(γ)

∥Ue − I∥ ≤

(
1

e3∆
(
r
2

))∥γ∥

,

completing the proof. ■

Lemma 14. The weight wγ of a polymer γ can be computed in time exp(O(∥γ∥)).

Proof. The result follows by sparse matrix-vector multiplication. ■

Combining Theorem 3 with Lemma 12, Lemma 13, and Lemma 14 proves Theorem 11. We now
show that the algorithmic condition of Theorem 11 is optimal in the case of multigraphs under
complexity-theoretic assumptions. This is achieved by establishing a hardness of approximation
result for the probability amplitude AUG

. For convenience, we shall consider unitary operators of
the form Ue = e−iθΦ(e), where θ is a real number and Φ(e) is a self-adjoint operator on He with
∥Φ(e)∥ ≤ 1. Our hardness result concerning the approximation of AUG

(θ) is as follows.

Theorem 15. Fix ϵ > 0, ∆ ∈ Z≥3, and θ ∈ R such that |θ| ≥ 3π
5(∆−2) . It is #P-hard to approximate

the probability amplitude AUG
(θ) up to a multiplicative ϵ-approximation on multigraphs of maximum

degree at most ∆.

Proof. Our proof is based on a reduction from the Ising model partition function. We consider
quantum circuits on multigraphs with a 2-dimensional Hilbert space at each vertex and unitary
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operators of the form Ue = e−iθϕ(e)
⊗

v∈e Xv , where ϕ(e) is a real number satisfying |ϕ(e)| ≤ 1. We
have

AUG
(θ) =

〈
0|G|
∣∣∣(∏

e∈E
e−iθϕ(e)

⊗
v∈e Xv

)∣∣∣0|G|
〉

=
1

2|G|

∑
σ∈{−1,+1}V

∏
{u,v}∈E

e−iθϕ({u,v})σuσv

=
1

2|G|ZIsing(G; iθ).

The proof then follows from Theorem 9. ■

Our results establish a computational complexity transition from P to #P-hard for the problem of
approximating probability amplitudes. A similar transition may be established from P to BQP-hard
for additive-error approximations.

B. Expectation Values

In this section we study the problem of approximating expectation values of quantum circuits.
This problem is known to be #P-hard in general [25]; in particular, it is a special case of computing
output probabilities of quantum circuits. We show that, for a class of quantum circuits with
operators close to the identity, this problem admits an efficient approximation algorithm. This
setting was studied in Ref. [7], which established an efficient approximation algorithm for this
problem. Our approach offers a simpler and sharper analysis in a more slightly general setting.
Further, we show that this algorithmic condition is almost optimal in the sense of zero freeness.

We model a quantum circuit by a multihypergraph G = (V,E) as in Section IVA and assume
that the size of G is at most a polynomial in the order of G. An operator O assigns a self-adjoint
operator Ov on Hv to each vertex v of G. The operator OG on G is defined by OG :=

∏
v∈V Ov.

We are interested in the expectation value ⟨O⟩UG
, defined by ⟨O⟩UG

:=
〈
0|G|∣∣UG

†OGUG

∣∣0|G|〉.
We now introduce some further definitions that will be useful for our analysis. Let SE := (e)e∈E

denote the sequence of edges from G sorted in increasing order with respect to the edge labels.
For a vertex v of G, let Sv denote the longest increasing subsequence of SE such that every prefix
induces a connected subgraph of G containing v. We define the causal subgraph Cv of v to be the
subgraph of G induced by the sequence Sv. For a subset U of vertices of G, we define the causal
subgraph CU of U to be the subgraph of G induced by the set

⋃
v∈U E(Cv). We define the causal

intersection hypergraph C(G) of G to be the hypergraph with vertex set V and edge set {V (Cv)}v∈V .
We identify the edges of C(G) with the vertices of G. Note that the connected components of a
subgraph S of C(G) are in one-to-one correspondence with the connected components of CE(S). We
shall consider polymers that are connected subgraphs of C(G). Our algorithmic result concerning
the approximation of ⟨O⟩UG

is as follows.

Theorem 16. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph such that the causal intersection
hypergraph C(G) of G has maximum degree at most ∆ and rank at most r. Suppose that, for all
v ∈ V ,

∥Ov − I∥ ≤ 1

e3∆
(
r
2

) .
Then the cluster expansion for log

(
⟨O⟩UG

)
converges absolutely, ⟨O⟩UG

̸= 0, and there is a fully

polynomial-time approximation scheme for ⟨O⟩UG
.
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Remark. Theorem 16 may be extended to a slightly more general class of product operators.

In the case when G corresponds to a quantum circuit UG of depth at most d with each gate
acting on at most k qudits, the causal intersection hypergraph C(G) has maximum degree at
most kd and rank at most kd. Further, when G is restricted to edges on the lattice graph Zν ,
the causal intersection hypergraph C(G) has maximum degree at most (2d)ν and rank at most
(2d)ν . This implies that our algorithm may be applied to these classes of quantum circuits when
∥Ov − I∥ ≤ 2

e3k3d
and ∥Ov − I∥ ≤ 2

e3(2d)3ν
for all v ∈ V , respectively. A more refined analysis in the

latter case shows that our algorithm may be applied when ∥Ov − I∥ ≤ 2
e323νd2ν

for all v ∈ V . This
offers a significant improvement over Ref. [7], which applies to these classes when ∥Ov − I∥ < 1

60k5d

and ∥Ov − I∥ < 1
60(16d)2ν

for all v ∈ V , respectively.

We prove Theorem 16 by showing that the conditions required to apply Theorem 3 are satisfied.
That is, we show that (1) the expectation value ⟨O⟩UG

admits a suitable abstract polymer model
representation, (2) the polymer weights satisfy the desired bound, and (3) the polymer weights can
be computed in the desired time. This is achieved in the following three lemmas.

Lemma 17. The expectation value ⟨O⟩UG
admits the following abstract polymer model representa-

tion.

⟨O⟩UG
=
∑
Γ∈G

∏
γ∈Γ

wγ ,

where

wγ :=
〈
0|γ|
∣∣∣UCE(γ)

†

 ∏
e∈E(γ)

(Oe − I)

UCE(γ)

∣∣∣0|γ|〉 .
Proof. By applying Lemma 1 with f(V ) =

〈
0|G|∣∣UG

† (∏
v∈V Ov

)
UG

∣∣0|G|〉, we have

⟨O⟩UG
=
〈
0|G|
∣∣∣UG

†OGUG

∣∣∣0|G|
〉

=
∑
S⊆V

(−1)|S|
∑
T⊆S

(−1)|T |
〈
0|G|
∣∣∣UG

†

(∏
v∈T

Ov

)
UG

∣∣∣0|G|
〉

=
∑

S⊆E(C(G))

(−1)|S|
∑
T⊆S

(−1)|T |
〈
0|G|
∣∣∣UG

†

(∏
e∈T

Oe

)
UG

∣∣∣0|G|
〉
.

For a subset S ⊆ E(C(G))), let ΓS denote the maximally connected components of S. By factorising
over these components, we have

⟨O⟩UG
=
∑
S⊆E

∏
γ∈ΓS

(−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |
〈
0|γ|
∣∣∣UG

†

(∏
e∈T

Oe

)
UG

∣∣∣0|γ|〉

=
∑
S⊆E

∏
γ∈ΓS

(−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |
〈
0|γ|
∣∣∣UCE(γ)

†

(∏
e∈T

Oe

)
UCE(γ)

∣∣∣0|γ|〉

=
∑
S⊆E

∏
γ∈ΓS

〈
0|γ|
∣∣∣UCE(γ)

†

 ∏
e∈E(γ)

(Oe − I)

UCE(γ)

∣∣∣0|γ|〉
=
∑
Γ∈G

∏
γ∈Γ

wγ .

This completes the proof. ■
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Lemma 18. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph such that the causal intersection
hypergraph C(G) of G has maximum degree at most ∆ and rank at most r. Suppose that, for all
v ∈ V ,

∥Ov − I∥ ≤ 1

e3∆
(
r
2

) .
Then, for all polymers γ ∈ C, the weight wγ satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.

Proof. Fix a polymer γ. We have

|wγ | ≤
∏

e∈E(γ)

∥Oe − I∥ ≤

(
1

e3∆
(
r
2

))∥γ∥

,

completing the proof. ■

Lemma 19. The weight wγ of a polymer γ can be computed in time exp(O(∥γ∥)).

Proof. The proof follows similarly to that of Lemma 14. ■

Combining Theorem 3 with Lemma 17, Lemma 18 and Lemma 19 proves Theorem 16. We now
show that the algorithmic condition of Theorem 16 is almost optimal in the sense of the zero freeness
of the expectation value. This is achieved by a constructive argument based on an observation of
Ref. [7] and is formalised by the following theorem.

Theorem 20. Fix d ∈ Z+ and k ∈ Z≥2. There exists a hypergraph G = (V,E), a quantum circuit
UG of depth d with each gate acting on at most k qubits, and an operator O satisfying ∥Ov − I∥ ≤ 2

kd

for all v ∈ V , such that ⟨O⟩UG
= 0.

Proof. Let |ψn⟩ denote the state |ψn⟩ := 1√
2
(|0n⟩+ |1n⟩). Note that there is a hypergraph G and a

quantum circuit UG of depth d with each gate acting on at most k qubits such that |ψkd⟩ = UG

∣∣0|G|〉.
We consider the operator O with Ov = I+ i tan

(
π

2kd

)
Zv for all v ∈ V . Then, we have

⟨O⟩UG
=
〈
0|G|
∣∣∣UG

†OGUG

∣∣∣0|G|
〉

= ⟨ψkd |

[∏
v∈V

(
I+ i tan

( π

2kd

)
Zv

)]
|ψkd⟩

= ⟨ψkd |

∑
S⊆V

∏
v∈S

i tan
( π

2kd

)
Zv

|ψkd⟩

=
1

2

∑
S⊆V

[
i tan

( π

2kd

)]|S| [
1 + (−1)|S|

]
=

1

2

[(
1 + i tan

( π

2kd

))kd
+
(
1− i tan

( π

2kd

))kd]
= 0.
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Further, for all v ∈ V , we have

∥Ov − I∥ =
∣∣∣tan( π

2kd

)∣∣∣ ≤ 2

kd
.

This completes the proof. ■

Remark. The operator in the proof of Theorem 20 is not self-adjoint.

C. Partition Functions

In this section we study the problem of approximating partition functions of quantum spin
systems. This problem is known to be #P-hard in general [25]; however, we show that, for a class
of quantum spin systems at high temperature, this problem admits an efficient approximation
algorithm. Efficient approximation algorithms have previously been established for approximating
partition functions of quantum spin systems at high temperature [8, 26, 27] and for restricted
classes at low temperature [28]. Our analysis closely follows that of Ref. [27] and can be viewed
as a straightforward generalisation from the setting of bounded-degree graphs to bounded-degree
bounded-rank multihypergraphs. This offers a simpler and slightly sharper analysis than Refs. [8, 26].
Further, we show that this algorithmic condition is optimal under complexity-theoretic assumptions.

We model a quantum spin system by a multihypergraph G = (V,E). At each vertex v of G there
is a d-dimensional Hilbert space Hv with d < ∞. The Hilbert space on the multihypergraph is
given by HG :=

⊗
v∈V Hv. An interaction Φ assigns a self-adjoint operator Φ(e) on He :=

⊗
v∈eHv

to each edge e of G. The Hamiltonian on G is defined by HG :=
∑

e∈E Φ(e). We are interested
in the partition function ZG(β) at inverse temperature β, defined by ZG(β) := Tr

[
e−βHG

]
. We

shall assume that the trace is normalised so that Tr(I) = 1, which is equivalent to a rescaling the
partition function by a multiplicative factor. Further, we shall assume that ∥Φ(e)∥ ≤ 1 for all e ∈ E,
which is always possible by a rescaling of β. Our algorithmic result concerning the approximation
of ZG(β) is as follows.

Theorem 21. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r, and let β be a complex number such that

|β| ≤ 1

e4∆
(
r
2

) .
Then the cluster expansion for log(ZG(β)) converges absolutely, ZG(β) ̸= 0, and there is a fully
polynomial-time approximation scheme for ZG(β).

Remark. Theorem 21 applies when β is complex, which includes the case of time evolution.

This offers a modest improvement over Ref. [26], which established a quasi-polynomial time
algorithm when |β| ≤ 1

10e2∆(r2)
and over Ref. [8], which established a polynomial-time algorithm

when |β| ≤ 1
16e4∆(r2)

. In the case when G is a bounded-degree graph, we recover the results of

Ref. [27].

We prove Theorem 21 by showing that the conditions required to apply Theorem 3 are satisfied.
That is, we show that (1) the partition function ZG(β) admits a suitable abstract polymer model
representation, (2) the polymer weights satisfy the desired bound, and (3) the polymer weights can
be computed in the desired time. This is achieved in the following three lemmas.
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Lemma 22. The partition function ZG(β) admits the following abstract polymer model representa-
tion.

ZG(β) =
∑
Γ∈G

∏
γ∈Γ

wγ ,

where

wγ := (−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |Tr
[
e−β

∑
e∈T Φ(e)

]
.

Proof. By applying Lemma 1 with f(E) = Tr
[
e−β

∑
e∈E Φ(e)

]
, we have

ZG(β) = Tr
[
e−βHG

]
=
∑
S⊆E

(−1)|S|
∑
T⊆S

(−1)|T |Tr
[
e−β

∑
e∈T Φ(e)

]
.

For a subset S ⊆ E, let ΓS denote the maximally connected components of S. By factorising over
these components, we have

ZG(β) =
∑
S⊆E

∏
γ∈ΓS

(−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |Tr
[
e−β

∑
e∈T Φ(e)

]
=
∑
S⊆E

∏
γ∈ΓS

wγ

=
∑
Γ∈G

∏
γ∈Γ

wγ .

This completes the proof. ■

Lemma 23. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r, and let β be a complex number such that

|β| ≤ 1

e4∆
(
r
2

) .
Then, for all polymers γ ∈ C, the weight wγ satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.

Proof. Fix a polymer γ. Let P denote the set of all sequences of edges in γ. By the Taylor series,

|wγ | ≤

∥∥∥∥∥∥
∑

T⊆E(γ)

(−1)|T |e−β
∑

e∈T Φ(e)

∥∥∥∥∥∥ ≤
∑
ρ∈P

supp(ρ)=γ

|β||ρ|

|ρ|!
∏
e∈ρ

∥Φ(e)∥ ≤
∑
ρ∈P

supp(ρ)=γ

|β||ρ|

|ρ|!
.

There are precisely
{

n
∥γ∥
}
∥γ∥! sequences ρ of length n whose support is γ, where

{
n

∥γ∥
}
denotes the

Stirling number of the second kind. Hence, we may write

|wγ | ≤
∞∑

n=∥γ∥

{
n

∥γ∥

}
∥γ∥!
n!

|β|n = (e|β| − 1)∥γ∥,
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where we have used the identity
∑∞

n=k

{
n
k

}
xn

n! =
(ex−1)k

k!
. By taking |β| ≤

(
e4∆

(
r
2

))−1
, we have

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

,

completing the proof. ■

Lemma 24. The weight wγ of a polymer γ can be computed in time exp(O(∥γ∥)).

Proof. The sum is over all subsets T of E(γ), of which there are 2∥γ∥. For each of these subsets T ,
the trace may be evaluated in time exp(O(∥γ∥)) by diagonalising the sum of interactions. ■

Combining Theorem 3 with Lemma 22, Lemma 23, and Lemma 24 proves Theorem 21. We now
show that the algorithmic condition of Theorem 21 is optimal in the case of multigraphs under
complexity-theoretic assumptions. This is achieved by establishing a hardness of approximation
result for the partition function ZG(β) at imaginary temperature, i.e., β = iθ for θ ∈ R. Our
hardness result concerning the approximation of ZG(iθ) is as follows.

Theorem 25. Fix ϵ > 0, ∆ ∈ Z≥3, and θ ∈ R such that |θ| ≥ 3π
5(∆−2) . It is #P-hard to approximate

the partition function ZG(iθ) up to a multiplicative ϵ-approximation on multigraphs of maximum
degree at most ∆.

Proof. Our proof is based on a reduction from the Ising model partition function. We consider
quantum spin systems on multigraphs with a 2-dimensional Hilbert space at each vertex and
self-adjoint operators of the form Φ(e) = ϕ(e)

⊗
v∈e Zv, where ϕ(e) is a real number satisfying

|ϕ(e)| ≤ 1. We have

ZG(iθ) = Tr

[∏
e∈E

e−iθϕ(e)
⊗

v∈e Zv

]

=
1

2|G|

∑
σ∈{−1,+1}V

∏
{u,v}∈E

e−iθϕ({u,v})σuσv

=
1

2|G|ZIsing(G; iθ).

The proof then follows from Theorem 9. ■

We note that a hardness of approximation result with similar bounds may be obtained for real
temperature under the assumption that RP is not equal to NP via the results of Refs. [23, 24].
Our results establish a computational complexity transition from P to #P-hard for the problem of
approximating partition functions. A similar transition may be established from P to BQP-hard for
additive-error approximations.

D. Thermal Expectation Values

In this section we study the problem of approximating thermal expectation values of quantum
spin systems. This problem is known to be #P-hard in general [29]; however, we show that, for
a class of quantum spin systems at high temperature with positive-semidefinite operators, this
problem admits an efficient approximation algorithm. This setting was studied in Ref. [9], which
established an efficient approximation algorithm for this problem. Our approach offers a similar
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but slightly sharper analysis. Further, we show that this algorithmic condition is optimal in the
sense of zero freeness.

We model a quantum spin system by a multihypergraph G = (V,E) as in Section IVC. An
operator Ψ assigns a positive-semidefinite operator Ψ(v) on Hv to each vertex v of G. The operator
ΨG on G is defined by ΨG :=

∏
v∈V Ψ(v). We are interested in the thermal expectation value

⟨Ψ⟩G (β) at inverse temperature β, defined by ⟨Ψ⟩G (β) :=
ZΨ
G(β)

ZG(β) , where Z
Ψ
G(β) := Tr

[
ΨGe

−βHG
]
.

We shall assume that the positive-semidefinite operators are normalised so that Tr(Ψv) = 1 for all
v ∈ V , which is equivalent to a rescaling of the thermal expectation value by a multiplicative factor.
Our algorithmic result concerning the approximation of ⟨Ψ⟩G (β) is as follows.

Theorem 26. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r, and let β be a complex number such that

|β| ≤ 1

e4∆
(
r
2

) .
Then the cluster expansion for log(⟨Ψ⟩G (β)) converges absolutely, ⟨Ψ⟩G (β) ̸= 0, and there is a fully
polynomial-time approximation scheme for ⟨Ψ⟩G (β).

Remark. Theorem 26 applies when β is complex, which includes the case of time evolution.

This offers a modest improvement over Ref. [9] when ∆ ≥ 4, which established a polynomial-
time algorithm when |β| ≤ 1

2e2(∆−1)r(∆r−r+1)
. By using the slightly sharper bound given in the

remark subsequent to Lemma 4, we obtain an improvement when ∆ ≥ 3. We note that efficient
approximations algorithms may be established when the observable appears in the Hamiltonian
under different assumptions.

We prove Theorem 26 by showing that the conditions required to apply Theorem 3 are satisfied
and then combining this with Theorem 21. That is, we show that (1) ZΨ

G(β) admits a suitable
abstract polymer model representation, (2) the polymer weights satisfy the desired bound, and (3)
the polymer weights can be computed in the desired time. This is achieved in the following three
lemmas.

Lemma 27. ZΨ
G(β) admits the following abstract polymer model representation.

ZΨ
G(β) =

∑
Γ∈G

∏
γ∈Γ

wγ ,

where

wγ := (−1)∥γ∥
∑

T⊆E(γ)

(−1)|T |Tr
[
Ψγe

−β
∑

e∈T Φ(e)
]
.

Proof. The proof follows similarly to that of Lemma 22. ■

Lemma 28. Fix ∆, r ∈ Z≥2. Let G = (V,E) be a multihypergraph of maximum degree at most ∆
and rank at most r, and let β be a complex number such that

|β| ≤ 1

e4∆
(
r
2

) .
Then, for all polymers γ ∈ C, the weight wγ satisfies

|wγ | ≤

(
1

e3∆
(
r
2

))∥γ∥

.
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Proof. The proof follows similarly to that of Lemma 23. ■

Lemma 29. The weight wγ of a polymer γ can be computed in time exp(O(∥γ∥)).

Proof. The sum is over all subsets T of E(γ), of which there are 2∥γ∥. For each of these subsets
T , the trace may be evaluated in time exp(O(∥γ∥)) by diagonalising the sum of interactions and
matrix multiplication. ■

Combining Theorem 3 with Lemma 27, Lemma 28, Lemma 29, and Theorem 21 proves The-
orem 26. We now show that the algorithmic condition of Theorem 26 is optimal in the case of
multigraphs in the sense of the zero freeness of the thermal expectation value. This is achieved by
a straightforward constructive argument and is formalised by the following theorem.

Theorem 30. Fix ∆ ∈ Z+. There exists a multigraph G = (V,E) of maximum degree ∆, an
operator O, and a self-adjoint operator Φ, such that ⟨Ψ⟩G (β) = 0 with β = iπ

∆ .

Proof. We consider a quantum spin system on a multigraph comprising a single multiedge with a
2-dimensional Hilbert space at each vertex. Further, we consider the operator Ψ with Ψ(v) = |0⟩⟨0|v
for all v ∈ V and the self-adjoint operator Φ with Φ(e) = 1

4

(⊗
v∈eXv −

⊗
v∈e Yv −

⊗
v∈e Zv

)
for

all e ∈ E. Then, we have

⟨Ψ⟩G (β) =
Tr
[
ΨGe

−βHG
]

Tr [e−βHG ]

=
⟨00|e−

iπ
4
(X⊗X−Y⊗Y−Z⊗Z)|00⟩

Tr
[
e−

iπ
4
(X⊗X−Y⊗Y−Z⊗Z)

]
= 0.

This completes the proof. ■

V. CONCLUSION & OUTLOOK

We have established a general framework for developing approximation algorithms and hardness
of approximation results for a class of counting problems. We applied this framework to obtain
efficient approximation algorithms and hardness of approximation results for several quantum
problems under certain algorithmic conditions.

In particular, we obtained efficient approximation algorithms for (1) approximating probability
amplitudes of a class of quantum circuits close to the identity, (2) approximating expectation values
of a class of quantum circuits with operators close to the identity, (3) approximating partition
functions of a class of quantum spin systems at high temperature, and (4) approximating thermal
expectation values of a class of quantum spin systems at high temperature with positive-semidefinite
operators. Further, we obtained hardness of approximation results for approximating probability
amplitudes of quantum circuits and partition functions of quantum spin systems.

Our results established a computational complexity transition for the problems of approximating
probability amplitudes of quantum circuits and partition functions of quantum spin systems and
showed that our algorithmic conditions for these problems are optimal under complexity-theoretic
assumptions. Finally, we showed that our algorithmic condition is almost optimal for expectation
values and optimal for thermal expectation values in the sense of zero freeness.

It would be interesting to identify other quantum problems to which our framework applies.
Further, it is an intriguing open problem to identify the exact points of a computational complexity
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transition for these problems, as is known for the Ising model at real temperature [22–24]. Finally,
it would be interesting to obtain algorithms with an improved runtime, for example, via the Markov
chain polymer approach of Ref. [30].
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