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Abstract: Diabetes Mellitus incidence and its negative outcomes have dramatically increased world-
wide and are expected to further increase in the future due to a combination of environmental and
social factors. Several methods of measuring glucose concentration in various body compartments
have been described in the literature over the years. Continuous advances in technology open the
road to novel measuring methods and innovative measurement sites. The aim of this comprehensive
review is to report all the methods and products for non-invasive glucose measurement described
in the literature over the past five years that have been tested on both human subjects/samples
and tissue models. A literature review was performed in the MDPI database, with 243 articles
reviewed and 124 included in a narrative summary. Different comparisons of techniques focused on
the mechanism of action, measurement site, and machine learning application, outlining the main
advantages and disadvantages described/expected so far. This review represents a comprehensive
guide for clinicians and industrial designers to sum the most recent results in non-invasive glucose
sensing techniques’ research and production to aid the progress in this promising field.

Keywords: glucose sensing; non-invasive; continuous; intermittent; Diabetes Mellitus; product
design and development

1. Introduction

Diabetes Mellitus (DM), defined by WHO as a chronic metabolic disease characterized
by elevated levels of blood glucose, is increasing in incidence worldwide [1]. Currently
ranked as the ninth cause of death, it affects 422 million people globally and 1.3 million
people in Australia [2,3]. The number of people affected by DM is predicted to grow
to 578 million people by 2030 and 700 million people by 2045 [4]. Yet, the diagnosis
and management of Diabetes Mellitus is limited by low acceptability, compliance, and
accuracy [5–7].

Currently, diabetes is diagnosed and monitored by different Invasive Glucose Sensing
Technologies (IGST) depending on the type and age of screening. Type 1 DM, more
common in childhood and early adulthood, is diagnosed with Random Blood Glucose
(RBG) or HbA1c (which gives a picture of the glucose levels over the last 3 months) and
can be confirmed with an Islet Cell Antibody (ICA-Ab) measurement (as against IA-2
(Insulinoma-Associated Protein 2), GAD65 (Glutamic Acid Decarboxylase 65), and ZnT8
(Zinc Transporter)). Its management includes Self Blood Glucose Monitoring (SBGM),
Continuous Glucose Monitoring, and an insulin pump/pen for auto-injection to maintain
blood glucose within the normal threshold.
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Gestational DM, diagnosed with a 75 g Oral Glucose Tolerance Test (OGTT) (as per
International Association of Diabetes and Pregnancy Study Group (IADPSG) guidelines)
or with alternative tests for those women not tolerating the test, is managed by SBGM to
check glucose levels and lifestyle changes (diet composition and physical activity) before
considering the use of insulin and or metformin.

Type 2 DM, more common in late adulthood, can be diagnosed with either Fasting
Blood Glucose (FBG), OGTT (with different criteria for pregnant women), RBG, or Hba1c
and monitored with SBGM/HbA1c [8]. For its management, lifestyle changes are trialed
first before considering oral hypoglycemics (such as metformin and other classes) and
insulin (see Figure 1).
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Figure 1. Diabetes Mellitus diagnosis and management. ICA—Islet Cell Autoantibodies,
IA-2—Insulinoma-Associated Protein 2, GAD65—Glutamic Acid Decarboxylase 65, ZnT8—Zinc
Transporter, CGM—Continuous Glucose Monitoring, SBGM—Self Blood Glucose Monitoring,
FBG—Fasting Blood Glucose. Random Blood Glucose cut-off = 11.1 mmol/L, Glycated haemoglobin
cutoff = 48 mmol/L.

Apart from Continuous Glucose Monitoring (CGM), used for type 1 Diabetes Mellitus,
none of the currently used techniques for Diabetes Mellitus diagnosis and management
have optimal sensitivity/specificity and some have very poor acceptability [9]. The limited
information provided by one-off measurements of blood glucose, either random, fasting,
or after a set glucose load, have been repeatedly underlined in the literature [10]. Sim-
ilar doubts have been described for the Self Blood Glucose Monitoring based on a few
measurements per day [3–7,11].

The aim of this review is to comprehensively assess all the Non-Invasive Glucose
Sensing Technologies (NIGST) reported in the literature (developed or in development),
primarily from healthcare and industrial design perspectives, as well as describing the
processes needed to produce new techniques. This review reports their mechanisms of
action, their advantages and disadvantages, the evidence published regarding their clinical
use, and the approaches used to research and design them.

Recent publications by Shang, Zhang [12], Hwang, Kang [13], Villena Gonzales,
Mobashsher [14], and Chen, Zhao [15] divided glucose sensing techniques into invasive,
minimally invasive, or non-invasive techniques. Minimally invasive techniques, using
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enzymes to detect glucose concentrations, are costly, unstable, and susceptible to factors
such as humidity, temperature, and pH levels, and are not suitable for continuous measure-
ment [16–18]. Our review focuses on NIGST, dividing them into optical, nanotechnology,
electric/electromagnetic, and physiological techniques applied to glucose sensing (see
Figure 2) and appraises all the commercial products under development, being trialed, and
available on the market.
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Figure 2. Classification of non-invasive glucose sensing technique.

This review extends the focus to the machine learning techniques applied to glucose
sensing and highlights the potential of non-invasive glucose sensing techniques offering
increased sensitivity and accuracy while minimizing the impact on users. Combining the
expertise of three postdoctoral researchers in different fields (medicine, industrial design,
and biomedical materials) has resulted in a comprehensive evaluation of NGIST in terms
of acceptability, accuracy, and feasibility. Several new glucose sensing techniques offering
good acceptability and sensitivity are emerging, among which Photoplethysmography
(PPG) and Near Infrared (NIR) Spectroscopy have been identified as the most promising.
Further research is recommended on developing, validating, and commercializing the most
promising techniques.
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2. Materials and Methods

To assess all the Non-Invasive Glucose Sensing Technologies (NIGST) reported in
the literature (developed or in development) comprehending optical, nanotechnological,
electric/electromagnetic, and physiological techniques, an online database search in MDPI
(https://www.mdpi.com/) was run for the 5-year period between January 2018 and June
2023 with the keywords ““non-invasive” AND glucose monitoring OR glucose sensing”
(55 (19 reviews, 36 articles)), “electromagnetic AND glucose monitoring OR “non-invasive”
glucose sensing” (42 (13 reviews, 29 articles)), “optical AND glucose monitoring OR
glucose sensing” (43 (14 reviews, 29 articles)), “nanostructure OR nanotechnology AND
“non-invasive” AND glucose monitoring OR glucose sensing” (13) and “physiological
AND glucose monitoring OR glucose sensing” (63).

Next, a manual search of the references cited in these articles and the list of articles
that have since cited these articles was conducted to identify additional relevant articles
that may have been missed in the initial search. All identified articles were screened for
relevance to non-invasive glucose monitoring before being included in the final analysis.
The findings were categorized and summarized under the following headings: Optical
(including Nanotechnology), Electric and Electromagnetic, and Physiological Techniques.
Although Nanotechnology is considered in most reviews as a standalone category, there
is some overlap with optical techniques. To avoid repetition, Surface-Enhanced Raman
Spectroscopy, Surface Plasmon Resonance (SPR), Plasmon-Enhanced Fluorescence (PEF),
and Carbon Quantum Dot (CQD) fluorescence are hence discussed in Section 4.1.

NIGST techniques were reviewed from healthcare, industrial design, and biomaterial
perspectives, analyzing their mechanism of action, their advantages and disadvantages,
the evidence published regarding their clinical use, and the approach used to research
and design them, also considering all the commercial products under development being
trialed and available on the market for each technique. This review extends the focus to
the machine learning techniques applied to glucose sensing and to the process needed to
develop and commercialize new NIGST.

This process of citation tracking led to the identification of 25 additional articles.
Removing the repeats and out-of-context articles, the total search yielded 124 journal
articles. The breakdown of papers consisted of 37 articles for Electric and Electromagnetic,
54 articles for Optical, 29 articles for Nanotechnology, and 4 articles for Physiological that
included the above keywords in the title and abstract.

3. Skin Layers and Properties

The different NIGST incorporated in this review have unique interactions within the
skin layers. The skin comprises seven layers and three distinct tissue types: the epider-
mis, dermis, and hypodermis, each with unique optical and electromagnetic properties
that affect the penetration depth and the interaction with specific wavelengths and fre-
quencies [19,20]. Such interactions can be analyzed to evaluate the tissue structure and
properties, including the concentration of substances present in it, such as glucose, water,
proteins, fats, electrolytes, etc. The different layers of skin thickness in micromillimeters are
outlined in Figure 3.

NIGST are based on different combinations of band, frequency, and wavelength to
indirectly calculate the glucose concentration in the bloodstream. Table 1 illustrates the
technique’s corresponding band, frequency, and wavelength.

Electromagnetic and optical techniques both utilize wavelengths that are non-ionizing;
however, each frequency range and wavelength offers distinct advantages and limitations
within each technique. Within optical techniques, Terahertz (THz) can penetrate the
skin superficially, primarily interacting with the outermost layer (the epidermis), and
its penetration can be affected by light intensity/polarization, wavelength, and tissue
properties [21]. While electromagnetic millimeter and Radio Frequency (RF) waves have
lower frequencies, they offer high penetration depths to the subcutaneous tissue, providing

https://www.mdpi.com/
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valuable information on glucose distribution, although their accuracy can be impacted by
the various substances encountered within the various skin layers.
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Table 1. Techniques and corresponding band, frequency, and wavelength.

Technique Band Frequency Wavelength

Radio Frequency (RF)

Low Frequency (LF) 30–300 kHz 10–1 km
Medium Frequency (MF) 300–3000 kHz 1 km–100 m
High Frequency (HF) 3–30 MHz 100–10 m
Very High Frequency (VHF) 30–300 MHz 10–1 m
Ultra-High Frequency (UHF) 300–3000 MHz 1 m–1 cm

Microwave (MW) Super-High Frequency (SHF) 3–30 GHz 10–1 cm

Millimeter Wave (mmW) Extremely High Frequency (EHF) 30–300 GHz 1 cm–1 mm

Terahertz (THz) Terahertz Frequency (THF) 300 GHz–10 THz 3 mm–30 µm

Optical Infrared (IR) 3–500 THz 100 µm–600 nm
Visible 500–1000 THz 600–300 nm

When optical or electromagnetic waves travel through biological tissue, there are four
primary interactions that can occur: reflection, scattering, absorption, and transmission [22].
In reflection-based methods, light or waves are directed onto the tissue surface and reflect
off it. The intensity and characteristics of the reflected light or waves are analyzed. Scat-
tering methods involve directing light or waves into the tissue, where it interacts with
tissue structures, scatters, and emerges from different angles. Absorption methods use light
or electromagnetic waves to probe tissue components that absorb specific wavelengths.
The amount of absorbed light or waves provides information about the concentration of
absorbers. Finally, transmission involves the passage of light or waves through tissue. The
light or waves interact with various molecules, where some light or waves are absorbed by
these molecules while the rest are transmitted through the tissue [20].
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By analyzing the behavior of light or electromagnetic waves as they interact within the
tissue, information can be gathered about the tissue and its components, including glucose
concentration. Determining the interaction can depend on the specific wavelength used,
the tissue’s properties, and the technique employed. Table 2 describes the four types of
interactions (with light and glucose), the obtained information, and the techniques based
on each with their challenges.

Table 2. Different interactions of light and electromagnetic waves with tissue and glucose.

Aspect Reflection Scattering Absorption Transmission

Interaction
Mechanism

Directed onto the tissue
surface and reflects
off it.

Directed into the tissue,
emerges at
different angles.

Components absorb
specific wavelengths.

Passage of light or waves
through tissue.

Interaction
with
Glucose

Glucose affects the
reflected light or
radio waves.

Glucose cause changes
in tissue refractive
index and
scattering properties.

Glucose molecules absorb
waves or light at certain
wavelengths, affecting the
tissue light absorption.

Glucose molecules absorbing
light change the vibrational
mode, decreasing the
intensity of transmitted light.

Obtained
Information Angle of reflection. Angle of scattering. Concentration of glucose

in sample.

Absorption patterns, tissue
transparency, and decrease in
transmitted
light/wave intensity.

Techniques

Optical Polarimetry
(OP), Diffuse
Reflectance
Spectroscopy (DRS),
and Ultrasound Waves.

Optical Coherence
Tomography (OCT),
Scattering/Occlusion
Spectroscopy, Raman
Spectroscopy, and
Ultrasound Waves.

Photoplethysmography
(PPG), Near Infrared (NIR)
Spectroscopy, Mid-Infrared
(MID) Spectroscopy,
Far-Infrared (FIR)
Spectroscopy, Photoacoustic
Spectroscopy, Fluorescence,
Radio Frequency (RF)
Spectroscopy, Millimeter
Waves (mmW), Microwaves
(MW), NIR/MID Absorption
Spectroscopy, and
Bio-Impedance Spectroscopy.

Photoplethysmography
(PPG), Near Infrared (NIR)
Spectroscopy, Mid-Infrared
(MID) Spectroscopy,
Far-Infrared (FIR)
Spectroscopy, Radio
Frequency (RF) Spectroscopy,
Millimeter Waves (mmW),
Microwaves (MW), and
Bio-Impedance Spectroscopy.

Challenges

Variability in skin
properties (e.g., skin
color, texture) can affect
measurements, ambient
light interference can
impact accuracy and
signal interference.

Complex scattering
patterns can be difficult
to interpret, and the
depth-dependent
effects of scattering
impact accuracy.

Overlapping absorption by
various tissue components,
variations in tissue
composition, and calibration
challenges can
affect accuracy.

Scattering effects can alter
the light paths/radio waves
and proper sample handling.
Interference can impact
results, rendering it a
complex interaction.

4. Techniques
4.1. Optical and Nanotechnology Techniques

With optical techniques, light interacts with different surfaces, particles, and materials
in various ways and can be either reflected, scattered, or absorbed to directly or indirectly
measure glucose levels. According to the law of reflection, when light is reflected, the light
reflected is proportionate to the angle of the incident light. Scattered light can be explained
by Rayleigh’s law, which describes how shorter wavelengths scatter more than longer
wavelengths, meaning that scattered light is inversely proportionate to its wavelengths.
Absorption and transmission is described by Beer–Lambert’s law, for which the amount of
light absorbed by a sample is directly proportional to the concentration of the absorbing
substance (in this case glucose) present in it [23].

Optical techniques have the potential for continuous and real-time glucose monitor-
ing [18]. The optical techniques discussed include Optical Coherence Tomography (OCT),
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Optical Polarimetry, Photoplethysmography (PPG), and Spectroscopy (NIR, MID, FIR,
NIR/MID, scattering/occlusion, photoacoustic, and diffuse reflectance) techniques.

4.1.1. Optical Coherence Tomography (OCT)

OCT has been historically used for ocular imaging and more recently applied to
skin imaging for glucose detection [14,24,25]. OCT uses the interferometric phenomena
(interference of light) to analyze how the light is backscattered and reflected by tissue
(Figure 4).
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Figure 4. Optical Coherence Tomography (OCT) technique. The color codes in the OCT image (i.e.,
yellow, red, green, etc.) are attributed to the tissues and substances exhibiting different levels of
reflectivity or scattering of light.

The Near-Infrared light reflected is measured and used to create an image of the
tissue to reveal its internal structure considering the optical rotation angle of the glucose
molecule [26]. The technique demonstrates good correlation between changes in the slope
of OCT signals and blood glucose concentration at high resolution [18].

To analyze glucose levels through a fingertip device, Chen, Lo [27] used a differential
Mueller model algorithm to analyze the rotation angle and depolarization index of the
incident light. Miura, Seiyama [28] improved the accuracy of OCT with a low magnification
objective lens of the OCT (LM-OCT) technique by reducing spatial resolution, making it a
promising tool. Despite OCT’s advantages of good Signal-to-Noise Ratio (SNR), which is
unaffected by heartrate, blood pressure, osmolytes, or red blood cell ratio, its disadvantages
of low sensitivity, high sensitivity to movement, and skin temperature have limited progress
in continuous monitoring devices [25,28]. Further research on the accuracy of OCT is
needed to extract precise glucose levels.

4.1.2. Optical Polarimetry (OP)

Glucose molecules have a specific ability to rotate the plane of light in a predictable
way [29,30]. Optical Polarimetry (OP) measures the interaction of reflections and po-
larization of light and involves beaming polarized light at the aqueous humor within
the eye to analyze the rotation and absorption energy of polarized light plane reflected
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from the glucose molecules with a photosensor detector, extracting information about the
glucose concentration.

Figure 5a illustrates a hypothetical continuous wearable product example using OP.
Hwang, Kang [13] developed a noncontact glucometer device that consisted of a light
source, beam splitters, photodetectors, and a processing unit. The researchers directed
a beam of polarized light at a wavelength of 1650 nm and power of 5 mW in the eyes
of four rabbits. Measuring the rotation and absorption energy while analyzing serum
glucose levels of the rabbits, the study found a high correlation between glucose level
measurements, with mean differences of 8 mg/dL and 29.2 mg/dL for the in vitro and
in vivo measurements. Although the aqueous humor demonstrated low protein and red
blood cell count, using a photothermal detector to analyze glucose levels could potentially
cause retinal damage.
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Figure 5. Optical Polarimetry (OP) sensing: (a) hypothetical continuous wearable optical lens;
(b) intermittent prototype of a palm and finger sensor [31].

Li, Bai [31] developed a prototype of a novel, accurate, low-cost (<USD 250), and
compact palm and finger sensor that analyzes weak polarized light optical rotation signals
to estimate glucose concentrations using OP (Figure 5b). Using a generic Boosted Trees
Regression learning model (see Section 4.4 on machine learning) with multiple light inten-
sities and wavelengths to mitigate individual variability, the researchers demonstrated the
plausibility of OP through skin tissue.

Advantages of optical polarimetry is that it is accurate, has high resolution, and can be
relatively small in size [13,14,25]. The disadvantages are that it can be hard to obtain good
optical rotation signals when the blood glucose levels are low. To counteract this, Wen,
Lei [32] developed a fast and accurate spatial polarization modulation system (SPMS) that
assesses a single digital image to identify low glucose levels. With the help of a rotating
polarizer and an optical phase retarder, the weak optical rotation signals are made stronger
and have shown that the SPMS has a resolution of 100 mg/dL.

However, the presence of albumin concentrations in the interstitial fluid can skew
accurate results. Stark, Arrieta [33] developed a broadband polarimeter setup that uses
a Partial Least Squares (PLS) regression algorithm to distinguish between glucose and
albumin based on their optical property characteristics. The method showed improved
accuracy, allowing for more precise prediction of glucose concentration in the presence
of albumin. Nevertheless, to improve optical polarimetry, further research is needed to
increase the lag times and its high sensitivity to motion, temperature, interference with
active compounds, and pH levels [25].

4.1.3. Photoplethysmography (PPG)

PPG is a low-cost technique that consists of an infrared emission of LED light onto the
skin surface and measuring of the amount of light that is either transmitted or reflected
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back using a photodetector [34–36]. The amount of light absorbed or reflected by the tissue
varies with changes in blood volume and flow, regulated by the autonomic nervous system
and indirectly by changes in blood glucose levels [37]. When glucose levels rise, blood
vessels dilate and blood flow increases, resulting in an increase in blood volume and an
increase in light absorbed or reflected (Figure 6). Conversely, when glucose levels fall,
blood vessels constrict and blood flow decreases, resulting in a decrease in blood volume
and a decrease in light absorption or reflection. However, it is highly sensitive to motion or
movement, hindering its accuracy of measurement [38]. Despite this limitation, PPG has
been investigated as an NIGST for a continuous glucose monitoring device on the wrist or
forearm by VitalSpex Pro & Bioptx Band, WristTee, LIFELEAF, and Glutrac (see Section 4.6
on product classification).
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Figure 6. The presence of glucose within the circulatory system in individuals with (a) hypoglycemia,
(b) normal glucose levels, and (c) hyperglycemia.

More recently, proof-of-concepts measuring glucose levels using PPG have been
studied through the ear canal (Figure 7a) and fingertip (Figure 7b) [35,36,39]. Hammour
and Mandic [39] developed a proof-of-concept in-ear device equipped with a low-cost
pulse oximeter that enables continuous and non-invasive blood glucose measurement
(Sanmina by Sanmina Corp., San Jose, CA, USA)).The device utilizes an infrared LED and
a PPG chip (connected to a data acquisition board with Bluetooth capability) to collect and
process real-time data for blood glucose estimation. While capturing glucose levels with
a commercially available glucometer, the proof-of-concept device achieved 82% accuracy
within the clinically acceptable range. Due to its stable temperature, constant pressure,
consistent positioning, and universal fit, the ear canal makes it a promising, cost-effective,
and scalable solution for continuous and non-invasive blood glucose monitoring [39].
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Figure 7. Photoplethysmography (PPG) technique illustrated as: (a) a continuous proof-of-concept
ear device developed by Hammour and Mandic (2023); (b) an intermittent prototype of a finger
sensor device NBM-200G (in development by OrSense, Raleigh, NC, USA).

Using a smartphone video-based technique, Islam, Ahmed [36] converted videos of
the fingertip into PPG signals while removing noise and interference (i.e., peaks, time
differences, and derivatives) using different regression models for improved accuracy of
glucose level prediction. Among the models, the Partial Least Square Regression (PLS) (see
Section 4.4 on machine learning) showed the lowest Standard Error of Prediction (SEP) at
17.02 mg/dL when tested on an unbiased dataset.

PPG absorbance and reflectance signal can vary depending on blood circulation, blood
viscosity, peripheral vascular resistance, vascular elasticity, and movement [37]. To increase
the accuracy of this technique, machine learning or other paired sensor techniques would
be needed to adjust for these variables [40].

Yen, Chen [41] found that combining dual-wavelength PPG with another method,
such as Bioelectrical Impedance (BI), delivered quantitative results. Although BI does
not directly measure glucose levels, it can provide information about body composition
and fluid distribution (i.e., body fat, mass, and water). It was suggested that further
testing would be needed; however, the proposed method performed better than only using
PPG to detect glucose levels. Additionally, Haque, Hossain [35] optimized a fingertip
model design and accuracy by using a Monte Carlo photon simulation-based model and
machine-learning model (XGBoost) (see Section 4.4 on machine learning) for estimating
a blood-glucose concentration model, which showed better performance compared with
previous models. Wei, Ling [42] described the analysis of Photoplethysmography (PPG)
data from a wearable device based on a technique called joint averaging in the feature
domain and piecewise feature selection method to improve the accuracy of the computer
program. To remove any noise or interference from the measurements, a bit plane Singular
Spectrum Analysis (SSA) was implemented. This assisted in eliminating errors caused by
environmental factors and found that it was more accurate than a simple Random Forest
regression model. They also found that 87.06% of the data fell on zone A of the Clarke
Error Grid, and there was a Mean Absolute Relative Difference (MARD) of 12.19% (see
Section 4.6 on product classification for detailed explanation of accuracy assessment).

4.1.4. Spectroscopy

Spectroscopy is a technique that measures the interaction with light (absorption and
transmittance) [26]. By measuring the absorption, reflection, or scattering of light at specific
wavelengths, the concentration of glucose in the body can be determined without the
need for invasive methods. Spectroscopy is suitable for glucose monitoring as it enables
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real-time and non-invasive measurement of glucose levels, providing valuable information
for diabetes detection and management.

The techniques discussed include Near-Infrared Spectroscopy (NIRS), Mid-Infrared
Spectroscopy (MIRS), Far-Infrared Spectroscopy (FARS; including Thermal Emission Spec-
troscopy and Terahertz-Time Domain Spectroscopy [THz-TDS]), Scattering/Occlusion
Spectroscopy, Diffuse Reflectance Spectroscopy (DRS), Photoacoustic Spectroscopy (PAS),
and Raman Spectroscopy.

4.1.5. Near-Infrared (NIR) Spectroscopy

Considered one of the most effective techniques, NIR Spectroscopy shines light in the
range of 750 nm to 2.5 µm onto the skin, such as the fingerprint, and the reflected light
is measured [43–47], with accurate in vivo measurements demonstrated at 1550 nm for
this particular technique [48]. Glucose molecules can absorb light, resulting in changes
in the intensity of the reflected light at specific wavelengths, which are used to estimate
the glucose concentration. Because of its low cost, compact nature, and high penetration
level, it is a highly promising technique and has been the technique of choice for numerous
devices, such as WizmiTM by Wear2b Ltd. (Rosh Pina, Israel), Glucose Tracker Clip by
AnnNIGM (Moscow, Russia), Brolis Sensor Technology by BROLIS (Vilnius, Lithuania),
GluControl GC300 by ArithMed GmbH and Samsung Fine Chemicals Co., Ltd. (Seoul,
Republic of Korea), HELO Extense by WOR(I)D World Global Network Corp. (Miami, FL,
USA), GlucoStation by GlucoStation (Wroclaw, Poland), Sensys GTS by Sensys Medical Inc.
(Chandler, AZ, USA), TouchTrackPro (Chandler, AZ, USA), and DioMonTech’s range of
devices, D-Sensor, D-Pocket, and D-Base (Berlin, Germany) [19,26,49] (see Section 4.6 on
product classification).

NIR uses the dispersive spectrometer and can be measured by reflectance (reflecting
light on the tissue at an angle; Figure 8a), interactance (a compromise between the two,
where light is separated by a seal; Figure 8b), and transmittance (going through the tis-
sue from one end to the other, such as through the finger; Figure 8c) [14,45]. A current
research focus is on reflectance spectra for glucose measurement of the inner lip using NIR
Spectroscopy [43]. To predict glucose concentration, Heise, Delbeck [43] employed a cali-
bration method, which provides direct measurements of glucose concentration in the tissue
independent of dynamic glucose transport processes. Further research on NIR is needed
to account for the diffusion processes of different substances within the tissue that may
impact glucose levels’ measurement. Another limitation of NIR impacting accuracy and
reproducibility is its sensitivity to physiological parameters and environment factors, such
as tissue thickness, temperature (skin and ambient), skin (tone and melanin), substances in
the tissue (fat, protein, and water), and ambient light intensity [14,50,51].

To accurately measure glucose levels, the technique requires a multivariant analysis
to adequately detect these varying attributes [51]. In one study, higher accuracy was
found when using NIR Spectroscopy alongside SpO2 and heartrate in a compact fingertip
sensor [49]. In addition, skin and tissue variations have been investigated to increase
the accuracy of measurements [19,23]. Using the Monte Carlo simulation method (see
Section 4.4 on machine learning), one study employed a dual-channel measurement for
glucose and noise signal for different skin colors [19]. The study investigated different
melanin concentrations in the skin, considering optical properties such as absorption
coefficient, scattering coefficient, and refractive index. The study determined that longer
wavelengths with longer source-detector separations yielded better signal-to-noise ratios in
darker skin, while optimal wavelength and separations varied for light and medium skin,
requiring shorter separations and specific wavelengths for the short and long channels.
Further research is needed to verify this in vivo.
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4.1.6. Mid-Infrared (MIR) Spectroscopy

Like NIR Spectroscopy, MIR works on the principle that different molecules, including
glucose, absorb/transmit light at specific wavelengths, resulting in unique spectral finger-
prints. However, unlike NIR, MIR is a high-cost technique [26]. MIR involves emitting the
narrowband light source Quantum Cascade Laser (QCL) onto the skin surface, causing glu-
cose molecules in the interstitial fluid to vibrate, and measuring the amount of light that is
either transmitted or reflected. MIR Spectroscopy uses light in the range of 2.5 to 25 µm and
penetration depths can go up to 100 µm without causing irritation or discomfort [44,45,52].
The absorption spectra of glucose in this range are more distinct and easily distinguishable
from other compounds in the skin, which makes it an ideal method for glucose monitoring.

Combining MID with Photoacoustic Spectroscopy has great potential for non-invasive
glucose monitoring [53]. Specifically, Lubinski, Plotka [52] are currently working towards
the development of a handheld device, D-Base by DioMonTech AG(Berlin, Germany), for
diabetic patients. The novel device combines Photothermal and Photoacoustic Spectroscopy
with low-power MIR Spectroscopy in wavelength depths of 8 to 11 µm directing onto the
skin, such as the finger, thumb, hand, or wrist, to detect the dissipated heat energy produced
by the vibrated glucose molecule. The heat energy produced is detected by a photoacoustic
and photothermal deflection sensor and analyzed by an algorithm and machine learning
model (XGBoost algorithm) to determine glucose levels. The results from 100 diabetic
and healthy volunteers showed that the non-invasive method was very accurate, with
less than 1% of the data falling outside of the highest accuracy zones (see Section 4.6 on
product classification).

4.1.7. NIR/MID Absorption Spectroscopy

NIR/MID Absorption Spectroscopy combines and uses aspects from both Near-
Infrared (NIR) and Mid-Infrared (MID) light to capture a more comprehensive spectrum of
absorption by glucose molecules in body tissues, including the most abundant substance,
water [54]. By analyzing the amount of light absorbed at these specific wavelengths, the
concentration of glucose in the tissues can be determined (Figure 9).
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Shokrekhodaei, Cistola [29] employed a multiwavelength measurement in the Visible
(VIS) and NIR range with machine learning to increase sensitivity and selectivity using
four wavelengths (485, 645, 860, and 940 nm) that correlated with the predictability and
accuracy of in vitro sensing of glucose concentrations in water (albumin PBS solutions).
Mandal and Manasreh [55] found a higher accuracy with two peak wavelengths of 535 nm
and 593 nm based on molar absorption coefficients alongside a photodiode (to measure the
transmitted intensity) and a microcontroller to estimate the HbA1c percentage based on
changes in absorbance at different wavelengths.

4.1.8. Far-Infrared (FIR) Spectroscopy, Terahertz-Time Domain Spectroscopy (Thz-TDS),
Time of Flight (TOF), and Thermal Emission Spectroscopy (TES)

Also known as Terahertz Spectroscopy, FIR uses light between Far-Infrared (FIR) and
Microwaves (MW) in the range of 0.3 to 30 THz that penetrate from 25 to 1000 µm to analyze
how glucose molecules absorb specific frequencies of FIR radiation, which corresponds
to their vibrational and rotational transitions [26,46]. The technique is susceptible to
strong light absorbance from water, thus skewing accurate glucose results. In comparison,
Terahertz-Time Domain Spectroscopy (Thz-TDS) has excellent water sensitivity and non-
ionizing photon energy [56].

Thz-TDS and Time Of Flight (TOF) are techniques that use short pulses from a Fem-
tosecond (FS) laser directed into the tissue and measure the time delay and magnitude of
the reflected or transmitted light as it interacts with glucose molecules in the body [26]. The
magnitude of the delay and the proportion of energy absorbed by the glucose molecules
are measured to analyze the concentration of glucose in the body (Figure 10).

The difference between TOF and Thz-TDS is that THz-TDS has an additional capa-
bility to sweep through a wide range of frequencies, allowing it to gather more detailed
information about the material’s properties [14]. THz-TDS can measure the refractive
index and the spectrum of material interaction with light at different frequencies. Kau-
rav, Koul [57] developed a sub-THz glucose sensor using a waveguide probe sensor unit
to analyze glucose levels of a phantom model. While analyzing time-domain responses
using a Levenberg–Marquardt algorithmic Back Propagation Neural Network (BPNN),
the glucose sensor provided a low-cost, accurate, and highly sensitive to 2 decibels (dB)
glucose measurement system compared with Infrared, Microwave (MW), or Millimeter
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Wave (mmW) sensors found in the literature, and has the potential to be implemented as
an earlobe device.
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However, there is a significant obstacle in developing Terahertz (THz) sensors that
can detect analytes with high sensitivity due to the substantial difference between the THz
wavelength and analyte thickness or quantity within the tissue [58]. Al-Naib [58] addressed
this obstacle by developing a Terahertz meta-surface based on s-shaped complementary
resonators to investigate glucose concentration levels associated with different diabetes
conditions. The research showed significant resonance frequency redshifts of 110.6 GHz and
improved wavelength sensitivity compared with previous studies, making it a potential
tool for detecting hypoglycemia and hyperglycemia.

Finally, Thermal Emission Spectroscopy (TES) involves measuring the infrared radia-
tion emitted by the body (8–14 µm) to analyze the glucose levels at 9.4 µm [59]. TES relies
on the principle that glucose levels affect the body’s heat distribution, which in turn affects
the emitted thermal radiation (Figure 11).

Therefore, no penetration of light or wavelengths is needed for this measurement
technique and it does not require calibration [60]. To explain further, glucose molecules have
specific absorption characteristics in the infrared region, and, by detecting and analyzing
the emitted thermal radiation, it is possible to indirectly estimate glucose concentrations.
By studying the spectral properties of the emitted infrared radiation, TES can provide
information about glucose variations in a non-invasive manner. However, its sensitivity to
temperature and movement, measurement variability when it comes to tissue thickness,
and real-time capability need further investigation to be suitable for non-invasive glucose
monitoring [14].
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Figure 11. Thermal Emission Spectroscopy (TES).

4.1.9. Scattering/Occlusion Spectroscopy

Scattering/Occlusion Spectroscopy measures the interaction (scattering) of light waves
through matter. In this technique, the red or NIR light interacts with a sample, and the
resulting signal is analyzed to obtain information about the sample’s composition [30]. For
Scattering Spectroscopy, the higher the glucose levels in the blood, the more scattering, and
vice versa.

On the other hand, Occlusion Spectroscopy applies pressure on the tissue of measure-
ment. For example, the device NBM 200 by OrSense Ltd. (Raleigh, NC, USA) uses a probe
and finger placement, such as the thumb, through a device where Red/NIR light sources,
detectors, and pneumatic cuffs temporary restrict (occlude) blood flow and generate a
dynamic optical signal for accurate monitoring [61,62]. The method leverages transmission
modes, dynamic signal generations, multispectral data, and sophisticated algorithms to
enhance sensitivity, specificity, and accuracy in glucose measurement (see Figure 12).
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The advantage of Occlusion/Scattering Spectroscopy is that it is highly sensitive, safe,
convenient, allows for real-time monitoring, and has minimal interference. Conversely,
variations in tissue protein, fat, red blood cell aggregation (erythrocytes), blood osmolality,
skin between sex, age, and oxygen saturation all affect glucose measurements and need
further testing. These variations can be counteracted with the use of multiwavelength anal-
ysis, sensing the variations as well as a multivariant analysis machine learning algorithm
enabling to filter the variations related to these features [30].

4.1.10. Photoacoustic Spectroscopy (PAS)

PAS uses light to measure the amount of glucose by shining an NIR and/or MIR laser
beam on the skin (Figure 13). Glucose in the tissue, as well as other substances, absorbs
the light emitting heat energy, creating a sound (acoustic) wave that can be detected
by a microphone, which is then analyzed to determine glucose concentration [30]. PAS
has a rapid response time, high sensitivity and selectivity, and is very precise [63]. One
disadvantage of PAS is that other substances within the tissue, including water, fat, and
proteins (albumin and hemoglobin), can increase light permeability (absorption), causing
the sensitivity to be much higher, thus skewing the results of glucose concentration [64].
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Figure 13. Photoacoustic Spectroscopy (PAS) finger sensor illustrating heat waves emitted from
glucose molecules.

The region of the body for measurement needs careful consideration, as sensitivity
increases with other substances present in the tissue. To enhance the detection sensitiv-
ity, Aloraynan, Rassel [65] developed a single-wavelength MIR QCL light source with
frequency modulation wavelengths of 10 to 30 kHz, and scanned phantoms to generate
acoustic waves that were detected and analyzed with machine learning classification. The
experimental results showed the feasibility of the system for non-invasive glucose detection,
serving as an initial step before further development for in vivo measurements.

Another disadvantage of PAS is the weak acoustic signal detection of thermal waves.
By optimizing a T-type opened resonator cell with frequencies of approximately 25 to
52 kHz, the detection of Photoacoustic (PA) signals can also be enhanced [63]. Although
further testing is needed, with this enhancement, Tang, Ni [63] demonstrated higher
resonance peaks, increased PA signal gain, and improved detection sensitivity compared
with conventional cells, where this optimization method could guide the development of
PAS by maximizing signal gain for non-invasive glucose monitoring.

4.1.11. Diffuse Reflectance Spectroscopy (DRS)

In DRS, light is directed onto the tissue surface, and the reflected light is measured to
analyze the absorbance coefficient parameters of the underlying tissue (Figure 14) [66,67].
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The diffuse reflection technique is preferred for evaluating skin samples in cases where
spectral ranges encompassing data-rich attributes, such as first overtone and combination
band vibrations, are being examined [43]. Using NIR wavelengths of 900–1300 nm on
phantom tissue models, Hepriyadi and Nasution [66] found accurate readings of glucose
concentration. As glucose has specific absorption characteristics in the near-infrared region,
blood glucose levels change as a result, affecting the scattering and absorption of light in
the tissue.
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DRS offers several advantages, such as real-time monitoring capability, potential for
continuous glucose monitoring, and applicability to different tissue thicknesses [67], and is
a promising technique currently undergoing testing in a wrist watch device by BioMKR
(Prediktor Medical, Fredrikstad, Norway) and an early-stage continuous multisensory arm-
band by Biovotion AG (Zürich, Switzerland; see Section 4.6 on product classification) [68].
Furthermore, Pozhar, Mikhailov [67] were able to measure small changes in glucose levels
with an NIR DRS prototype (with a laser with two detector photodiodes), demonstrating
DRS’s potential for non-invasive glucose sensing. DRS poses challenges due to interfer-
ence from other tissue components and temperature drifts causing a delay and instability.
Further research is needed on accurate calibration models to enhance the sensitivity and
accuracy of this technique.

4.1.12. Fluorescence

When excited by light, fluorophores emit fluorescence in proportion to the concentra-
tion of the glucose molecules bound to it [46]. This emitted fluorescence is then measured
and analyzed and may represent a promising technique to determine the glucose concentra-
tion [17]. However, fluorescence is limited by photobleaching, where the fluorophore loses
its ability to fluoresce over time due to continuous exposure to excitation light, and (cur-
rently) low accuracy [69]. Nonetheless, with further research, fluorescence has the potential
to be a cost-effective non-invasive alternative to glucose monitoring. As discussed in the
next paragraphs, fluorescence has been trialed within Nanotechnology for the development
of NIGST.

4.1.13. Plasmon-Enhanced Fluorescence (PEF)

PEF combines the principles of Fluorescence Spectroscopy with Nanotechnology
(nanoplasmonics) to enhance the sensitivity and accuracy of glucose detection. Nanotech-
nology holds the promise of revolutionizing non-invasive glucose monitoring techniques,
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offering a new frontier of possibilities in diabetes management [70]. One of the key ad-
vantages of Nanotechnology lies in its capacity to create ultra-small and precise devices,
with dimensions less than 100 nm, capable of interacting with glucose molecules. This
breakthrough enables the development of significantly smaller glucose sensors compared
with conventional ones, enhancing their ability to detect even minor changes in glucose
levels with high accuracy through the use of nanomaterials [71,72].

Nanomaterials have gained significant attention due to their unique properties and po-
tential applications, as these materials offer several advantages for glucose sensing, exhibit-
ing unique optical, electrical, or electrochemical properties that can enhance sensitivity, se-
lectivity, and compatibility with wearable devices. Although research in nanomaterials has
progressed in enzymatic techniques (classified in this paper as minimally invasive [12–14]),
Plasmon-Enhanced Fluorescence (PEF) is categorized as an optical nanoplasmonics tech-
nique for glucose sensing.

Nanoplasmonics involves the oscillating field in the optical phenomena that studies
the interaction of light with free electrons (plasmons) in nanoscale metallic structures [73,74].
Nanoplasmonics are highly sensitive, detecting glucose at low concentrations, and can be
miniaturized for handheld/wearable devices.

The principle behind Plasmon-Enhanced Fluorescence (PEF) for glucose monitoring
involves functionalizing the surface of gold or silver plasmonic nanoparticles with glucose-
specific receptors, such as a nanoantenna, that enhance the fluorescence signal emitted by
fluorescent probes or molecules that are sensitive to glucose concentration [73]. It involves
the interaction between plasmonic nanoparticles and fluorophores’ electromagnetic fields,
resulting in increased fluorescence intensity. This technique offers the potential for real-time
and label-free glucose monitoring; however, further research is needed on the technique.

4.1.14. Carbon Quantum Dot (CQD) Fluorescence

Carbon-based nanomaterials, such as Carbon Nanotubes (CNTs), Graphene Oxide
(GO), and Carbon Quantum Dots (CNDs), have a growing interest in the literature due to
their potential catalytic properties and non-toxic application compared with alternative
metal-, oxide-, or other-based nanomaterials [75,76]. In particular, NIR-emitting CQDs,
also known as Carbon Nanodots (CNDs), have superior properties, such as high resistance
to photobleaching, excellent frequency/water dispersion and surface charge, and distinct
chemical, fluorescent, and electronic properties [77].

CQDs rely on the fusion of carbon nanoparticles made of semiconducting nanomate-
rials, known as Quantum Dots (QDs) [78,79]. Using a combination of hydrothermal and
microwave methods with a size of less than 10 nm that can be easily modified, CQDs
are proving further to be cost effective, mobile, and versatile, while also displaying high
stability, eco-friendliness, and biocompatibility [79–83].

CQDs can be deposited on nanosheets and a variety of different substrates, including
nanoparticles, nanowires, and thin nanostructured films, to deliver a disposable patch for
glucose sensing (Figure 15). Nanosheets are extremely thin two-dimensional materials
made up of layers that are only a few atoms thick and are used as a sensing platform that can
be attached to the skin like a temporary tattoo (i.e., sensing patch). Recent advancements
in the fabrication and biomimetic surface of nanostructures [84] have yielded promising
results, propelling the future of wearable patch devices. These cutting-edge technologies
hold the potential to provide diabetic patients with more comfortable and convenient
monitoring solutions while delivering superior accuracy, sensitivity, and reliability for
glucose sensing.
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Figure 15. Carbon Quantum Dot (CQD) fluorescence tattoo-like sensor patch. CQDs exhibit fluo-
rescence intensity changes in response to different glucose concentrations, allowing for sensitivity
detection through spectral shifts and intensity alterations in emitted light.

Cho and Park [85] used an excitation wavelength of 360 nm to examine changes in
fluorescence emission from blue to green CDs that corresponded to glucose concentration.
More recently, Li, Luo [86] developed a novel hydrogel optical fiber fluorescence sensor with
segmental functionalization QDs, which allowed for simultaneous continuous monitoring
of pH and glucose levels in real-time, offering multiparameter detection, integration of
transmission and detection, and good biocompatibility. However, research on CQDs for
imaging is in the very early stages. Further research is needed to extend the lifetime of
the QDs. CQDs also use harmful UV light to excite the fluorescence, which needs further
research to be used as a safe wearable glucose monitoring device [17,78,80].

4.1.15. Raman Spectroscopy

Considered one of the most promising techniques, Raman Spectroscopy is an optical
vibrational mode technique that can measure glucose through the skin and tissue using an
NIR or visible laser beam (monochromatic light) range that excites the glucose molecules,
scattering the light [25]. The light scattered is then collected and analyzed (Figure 16). The
two types of scattered light are Rayleigh scattering and Raman scattering. Rayleigh scatters
the light at the same frequency, whereas Raman scatters the light at different frequencies [14].
The difference between the scatterings of light from the excited molecules is known as
Raman shift, and is the technique of choice by numerous devices, such as KnowU & Uband,
Optical Glucose Monitoring System (OGMS), OptiScanner 5000, GlucoBeam, and Gluco
Sense Diagnostics (see Section 4.6 on product classification).

The scattered light contains information about the molecular vibration/rotation in
the sample, sending a signal to the receptors. The intensity of the glucose-specific Raman
peaks is proportional to the concentration of glucose in the sample. Kang, Park [87] showed
promising results in a novel non-contact fingerprint glucose detection device. While shining
the light on an off-axis system and using a custom-made optical fiber bundle, the researchers
were able to minimize probe instability, filter out specular Rayleigh reflection, and enable
stable long-term measurements without tissue distortion.
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4.1.16. Surface-Enhanced Raman Scattering (SERS)

SERS is a variation of Raman Spectroscopy classified under nanoplasmonics that
enhances the Raman light signal by several orders of magnitude [25,88], measuring the
interaction of light scattered and absorbed by plasmons and molecules on the nanostruc-
ture [74]. There are two methods to enhance the signal in SERS: Chemical Enhancement
(CE) and Electromagnetic Enhancement (EM) [73]. The CE mechanism is based on the
chemical interaction between the analyte molecules and the surface of the metallic nanos-
tructures used in SERS, while the EM mechanism is achieved through the interaction of
light with plasmonic nanostructures, such as gold or silver nanoparticles, leading to a
charge transfer providing a significant boost to the Raman signal intensity. Combining the
two together, SERS provides exceptional sensitivity and selectivity for molecular detection.

Pham, Seong [89] developed a SERS nanoprobe (SiO2@Au@Ag@4-MPBA) that in-
creases the sensitivity of the detection of glucose. The researchers demonstrated that the
4-MPBA fraction of the nanoprobe reacts with the H2O2 generated in the presence of
glucose by the GOx enzyme creating 4-MPheOH on the surface of probe, resulting in a
variation of the SERS signal, which allows extrapolation to the concentration of glucose in
solution with high accuracy, even at low concentrations. However, it is quite limited and in
the early stages of research. Further research is needed on the nanostructure surface, optics,
and advance machine learning processing to optimize SERS for a non-invasive glucose
monitoring device [88].

Corcione, Pfezer [90] reported the application of an early-stage Surface-Enhanced
Infrared Absorption (SEIRA) spectroscopy sensor combining the sensitivity of plasmonic
systems and the specificity of standard infrared spectroscopy to glucose sensing analyzed
with a Gaussian process regression machine learning model. The study suggested that this
approach has the potential for glucose sensing and sensor calibration and warrants further
research on Bayesian neural network analysis.

4.1.17. Surface Plasmon Resonance (SPR)

Similar to SERS, Surface Plasmon Resonance (SPR) is a plasmonic phenomenon. Yet,
SPR occurs when an electromagnetic field interacts with a thin layer of metallic nanoparti-
cles (Figure 17). The technique is based on the oscillation of electrons and involves shining
light in the visible spectrum through a prism onto the metal layer, such as gold, and observ-
ing the reflected light to determine the resonance angle, which provides information on the
glucose concentration [17]. The interaction with light creates a sensitive electric field that
can detect changes in the surrounding material’s properties, such as its refractive index.
By measuring the changes in the refractive index, including those caused by variations
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in glucose levels, researchers can track and analyze the shifts in location of resonance
peaks. Plasmon resonance typically occurs at specific (visible or infrared) electromagnetic
wavelengths of light and depends on the properties, size, shape, and composition of the
metal nanostructures and surrounding medium [91]. Although research on SPR for glucose
sensing has been focused on minimally invasive techniques that require external bodily
fluids, such as urine [92], it can also be classified as a non-invasive alternative [17].
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Kandwal, Nie [93] developed highly efficient and compact slow-wave Spoof Surface
Plasmon Polariton (SSPP) end-fire antenna. The engineered phenomena, with high field
confinement frequencies between 8 and 12 GHz and a sensitivity of 150 MHz resonance
frequency shifts, were tested in vivo on five volunteers, demonstrating suitability for
glucose sensing. Daher, Jaroszewicz [91] developed a novel Binary Photonic Crystal (BPhC)
sensor with Infrared (IR) light, utilizing the refractive index changes in a defect cavity to
shift the resonant peak, offering high sensitivity and a low detection limit for diagnosing
diabetes. However, SPR’s limitations is that it is a very complicated technique; it is bulky,
costly, has a long calibration time, and is highly sensitivity to motion, temperature, and
sweat [25,69].

4.2. Electromagnetic and Electric Techniques

The substances within a tissue have different electrical properties and can act as either
dielectrics, insulators, or conductors [94]. Glucose, when dispersed in water, acts as an
insulator, and its levels can be indirectly detected by measuring the changes in the tissue’s
electrical properties. The electromagnetic NIGST discussed are: Dielectric/Microwave Spec-
troscopy, Millimeter-Wave/Microwave (mmW/MW), Radio Frequency (RF) Spectroscopy,
Bio-Impedance Spectroscopy, and Ultrasound Waves.

At low frequencies, such as below 100 MHz (radio frequency), electromagnetic waves
can penetrate deeper into the layers of skin, fat, and muscle because they have longer
wavelengths. However, as the frequency increases beyond 10 GHz (microwaves), the
ability of the waves to penetrate muscle decreases significantly, while the penetration
depths for skin and fat become shallower, which is an important limitation to consider for
NIGST [95].
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4.2.1. Dielectric Spectroscopy or Impedance Spectroscopy

Often interchangeable with Impedance or Microwave (MW) Spectroscopy, Dielec-
tric Spectroscopy is used for analyzing the complex magnetic permittivity of the skin or
other relevant tissues by subjecting them to an electric field across a range of frequencies
to determine variations in glucose concentration and analyzing information about their
composition, structure, and changes in properties [95,96]. Glucose, being a polar molecule,
can affect the dielectric properties of the surrounding medium. By analyzing the dielectric
properties of a sample at different frequencies within the microwave range, it becomes
possible to correlate the observed changes with glucose levels.

Despite unsuccessful devices from the past (e.g., PENDRA by Company: Pendragon
Medical AG), DeepGluco™ by Alertgy (Melbourne, FL, USA) is currently developing a
continuous wearable wrist device that uses Dielectric Spectroscopy to penetrate deeper
into the tissue (see Section 4.6 on product classification) [95].

Omer, Shaker [97] developed a low-cost microwave sensor with a frequency range of
2.4–2.5 GHz, demonstrating promising results with high sensitivity in detecting glucose-level
variations and the potential for personalized and accurate continuous glucose monitoring.

Dielectric Spectroscopy can be affected by sweat and movement, as well as ambient,
humidity, skin temperatures, and conductance, so it is important to measure these envi-
ronmental and physiological parameters to improve its accuracy [98]. The technique can
also be affected by water content, electrolyte concentration, and other factors associated
with glucose levels. Combining personalized multisensor quasi-antenna arrays and ma-
chine learning-based signal processing, Hanna, Tawk [98] developed a novel wearable
electromagnetic embedded holistic sensor system within sock garments, enabling wireless
and continuous monitoring of glucose variations in the bloodstream with high accuracy.
This multisensor monitored motion, Skin Conductance Response (SCR), skin temperature,
external temperature, and humidity.

4.2.2. Millimeter Waves and Microwaves (mmW/MWs)

While using regions of the electromagnetic spectrum, Millimeter Wave (mmW) and
Microwaves (MWs) use specific frequency ranges that can be used in Dielectric Spectroscopy
to penetrate deep tissue levels and accurately detect glucose molecules without the obstacles
that are encountered with optical methods. Glucose molecules have characteristics that
reflect, transmit, vibrate (in resonant systems), and bounce back (radar) depending on the
frequency waves used, and correspond to the energy levels of the glucose for accurate
measurement. The four methods of interactions of reflection (wide frequency range),
transmittance (an advanced version of reflection in the wide frequency range), resonant
perturbation (very narrow frequency range), and radar (far field range) spectrum can be
used to infer the concentration of glucose in the sample [14].

The advantages of using mmW or MW sensing techniques is that they are highly
sensitive with a fast response in real-time, are flexible, consume low power, are easy to
manufacture, are robust, small in size, portable, and cost-effective, and measurements
can be taken without precise alignment [99–101]. Spectral mmW occur between 30 and
300 GHz (or 1 and 10 mm), where, in particular, a W-band spectrometer (75–110 GHz) in the
mmW spectrum has been shown to be an effective technique for in vivo glucose monitoring
through skin tissue [102–104]. However, it is important to note that mmW and MW are
not safe for continuous glucose monitoring, as repeat exposure could cause damage to the
tissue due to their penetration depth [25].

Research has shown promise for glucose monitoring handheld devices for in vivo
mmW measurements through the earlobe or finger web between 3 and 5 mm thick using
silicon-loaded probes [105], through a compact finger slot reader or fingertip [40,96], and
through the forearm [using bioheat transfer models;] [106], [using a near-field probe;] [107].
The studies reported that skin, fat, and blood have the most significant impact on the
reflected signal, while muscle and bone have a negligible effect [107].
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Similarly, Yang, Xiao [108] applied a Diffusion Limited Aggregation (DLA) fractal
method to simulate soft tissue blood vessels and capillaries in a 3D earlobe, which was
tested to reveal the frequencies of electromagnetic waves required to detect blood glucose
levels. An ultra-wideband frequency range of 8–10 GHz with a sensitivity of 0.0198 dB per
mg/dL was found to detect glucose level concentrations.

To go further in-depth within the interactions, the reflection method has been observed
using a near-field coaxial conic probe to investigate its potential use in near-field diagnostics
of blood glucose in a wide frequency range [109]. This study demonstrated that the probe
could effectively monitor glucose concentration in phantoms of biological tissues with a
resolution of 1 mmol/L (18 mg/dL) in the frequency range of 1.4–1.7 GHz with a signal-
to-noise ratio of approximately 30 dB, confirming the feasibility of using this design for
non-invasive glucose monitoring.

The vibration method uses resonant frequencies to exhibit a peak response when
interacting with glucose molecules and is influenced by changes in the tissues’ dielectric
properties. Resonant frequency refers to the specific frequency at which a resonator is more
stimulated, and changes in the material placed inside the resonator can alter this frequency
and its characteristics, where minimum frequencies transmit and maximum frequencies
reflect a resonator response [95]. A Split-Ring Resonator (SRR) and an active feedback
loop has demonstrated high resolution and reliability in studies conducted by [110,111].
An SRR is a ring-shaped metal structure that exhibits resonant behavior when exposed to
electromagnetic waves, causing it to absorb and re-radiate energy at certain frequencies,
where the shift in resonant frequencies indirectly determines changes in glucose concen-
trations. However, various physiological and environmental factors can impact accurate
and reliable measurements; one of which is temperature and movement. Jang, Park [101]
used a temperature correction function (fluidic system) placed on the collarbone along
with a complimentary SRR and found an increase in stability. By employing a single
asymmetric SRR resonating at 7 GHz to create stability with the glucose measurement,
Saleh, Ateeq [112] found high sensitivity. High sensitivity was also found with an advanced
micro-fabrication technology and a mediator-free resonator [99]. More importantly, Yu,
Rhee [113] displayed stability, consistency, and reliability with five microstrip antennas
and a high resonant frequency band. The accuracy of resonator measurements can also be
obtained with a single-step machine learning algorithm [114].

In a simulation study, Shaker, Smith [115] tested a retrofitted 60 GHz mm-W Soli alpha
kit radar system (Google and Infineon based in Neubiberg, Germany) that detected changes
in dielectric properties with promising results. They found that placing the transmit and
receive antennas on opposite sides of the sample and adjusting the dielectric slab properties
allowed for the detection and identification of glucose level changes, which has the potential
of being implemented in a finger pulse oximeter wearable device. However, physiological
variations in blood impacted the radar results and further research is needed to establish
individual variation scaling methods and improve the mapping between the radar data
and the actual glucose levels.

4.2.3. Radio Frequency (RF) Spectroscopy

Similar to Dielectric Spectroscopy, mmW, and MW, Radio Frequency (RF) Spectroscopy
involves analyzing the interaction between electromagnetic waves and tissue to extract
glucose concentration [25]. However, RF Spectroscopy also uses MW in the regions of
0.1–20 GHz to measure the shifts in resonant frequencies using resonator sensors, such
as Interdigital Transducers (IDT) or Stepped Impedance Resonators (SIR) [95,116]. Yunos,
Manczak [116] used an RF sensor with IDT and SIR to remotely sense different glucose
concentrations, showing a linear relationship between resonance frequency changes and
glucose levels, indicating its potential for continuous non-invasive monitoring of diabetic
and prediabetic patients. The concentration of glucose in the body affects the dielectric
properties of the tissue, which in turn affects the RF signal, demonstrating a fast response
time with a cost-effective technique [25].



Sensors 2023, 23, 9130 24 of 36

Recently, GWave by HAGAR Tech (Hagar, Israel), a non-invasive smartwatch-based
sensor, was presented as part of clinical trials with promising preliminary accuracy re-
sults (Zone A of the Clarke Error Grid (70–140 mg/dL range) with MARD of 7.1 (see
Section 4.5 on developmental process). The GWave smartwatch uses RF waves and ma-
chine learning algorithms to analyze glucose levels, and sends readings via Bluetooth to a
smartphone app, allowing for non-invasive continuous glucose monitoring (see Section 4.6
on product classification).

Multiwavelength sensing using two modalities such as RF mmW with NIR trans-
mission has also been found to significantly increase accuracy and sensitivity, while also
supporting the capacity to be a wearable continuous monitoring device [68,117,118]. How-
ever, when combining sensors, this can increase the circuit space and comes with a risk
of either error or interference. Nevertheless, the introduction of metamaterial-based sen-
sors has shown promise for small-scale cell structures, demonstrating higher sensitivity
to changes in glucose concentration compared with standard microstrip transmission
line-based sensors that can be used for diagnosing hyperglycemia [112,119,120]. To over-
come sensitivity limitations, Omer, Shaker [97] developed a portable fingertip prototype
in a cost effective 2.45 GHz radar band, using an enhanced microstrip with an improved
Complimentary Split-Ring Resonator (CSRR) configuration in a honey-cell structure.

4.2.4. Bio-Impedance Spectroscopy (BIS)

Typically used for measuring body composition, Bio-Impedance Spectroscopy (BIS)
involves applying an alternating electrical current to the skin and measuring the resulting
voltage or conductivity. Where the current encounters resistance as it passes through
different tissues and fluids, specifically at low frequencies of <5 kHz, the impedance
(combination of resistance and reactance) can be measured [121].

BIS does not accurately predict the electrical impedance in the cells due to the cell-
membrane capacitance [122]. Instead, BIS detects changes in the electrical properties of
blood volume or Red Blood Cells (RBCs) in response to glucose variations, depending on
the frequency setting (see Figure 18).
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Using Bio-Electromagnetic Resonance (BEMR), GlucoBand by Calisto Medical (Plano,
TX, USA) has previously undergone trials for a continuous wristwatch connected to an
armband; however, it has disappeared from the market [12]. Pedro, Marcôndes [122]
used frequency ranges between 50 and 70 kHz alongside Effective Medium Theory (EMT)
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machine learning and found the estimated changes in glucose levels. However, the re-
searchers stated that further research is needed to understand the ideal frequency range for
measuring glucose levels. Similarly, Yen, Chen [41] demonstrated improved accuracy with
the proposed combination of dual-wavelength PPG and BIS in the frequency range of 50
and 100 kHz placed between the index and middle fingers as well as under the wrists while
using a Back Propagation Neural Network algorithm. However, it is important to consider
the wrist circumference and wrist temperature, as well as body weight, as physiological
parameters that can impact the accuracy of non-invasive glucose measurements [50].

BIS has been proven as a favorable technique for non-invasive glucose monitoring,
being described as inexpensive, safe, small in size, reliable, and fast acting [121]. The
main disadvantages of this technique are the sensor’s complexity and its instability with
either sweat or movement [122]. A recent study developed a custom-fit biocompatible
wearable ring and wrist device that collects bio-impedance data, while also monitoring skin
temperature and movement to counteract the instabilities [121]. The novel prototype shows
promise for an accurate, real-time, non-invasive, and continuous glucose monitoring device.

4.2.5. Ultrasound

This technology evaluates the propagation time (acoustic impedance) of ultrasound
waves through a medium correlated with the glucose concentration in the body [14]. The
speed of propagation is influenced by the glucose concentration, with higher concentrations
resulting in faster propagation times.

Despite its limitations of high cost and sensitivity to temperature and pressure, the
ultrasound’s ability to penetrate long distances into the tissue, its high sensitivity, and its
indifference to skin color variations makes it ideal for combining with other techniques,
in particular NIR Spectroscopy [25]. Kitazaki, Kawashima [123] proposed an ultrasonic-
assisted MIR spectroscopic imaging method that creates an ultrasonic standing wave to
generate a reflection plane at a depth of 100 µm from the sample surface, enabling non-
invasive monitoring of glucose while overcoming the limitations of water absorption and
high ultrasonic wave attenuation. However, ambient temperature can impact accuracy and
needs consideration [14].

GlucoTrack’s by Integrety Applications Ltd. (Ashdod, MA, USA) and egm1000™’s by
Evia Medical Technologies Ltd. (Weybridge, UK) earlobe devices for the intermittent esti-
mation of glucose levels in type 2 diabetics use a combination of three different techniques,
including ultrasonic waves, electromagnetic RF waves, and thermal spectroscopy (see
Section 4.6 on product classification). Specifically, egm1000™ has Conformité Européene-
mark approval and is currently available for purchase [124]. Combining techniques can
significantly improve accuracy by either decreasing chances of errors or identifying and
implementing correction for environmental or physiological parameters that affect ac-
curacy [25], both of which benefit greatly from the advancements in machine learning
techniques to improve accuracy.

4.3. Physiological Techniques

Some physiological parameters are directly or indirectly correlated with glucose levels.
In a recent study, Wang, Mu [125] reported a 5 s 12-lead Electrocardiogram (ECG) with an
IGRNet deep learning model analysis as effective in detecting and diagnosing prediabetes
non-invasively. The study was based on the findings of previous studies reporting an
impaired parasympathetic activity of the cardiac autonomic nerve function, observable
as higher Resting Heart Rate (RHR) and longer P waves. Compared with blood glucose,
ECG offers the advantage of not being influenced by other blood components, although is
affected by other factors (such as BMI and gender).

Other techniques, based on physiological measurements such as blood pressure,
humidity, skin temperature, ambient temperature, and galvanic skin response (not being
a strong independent indicator of glycemic levels), are mostly described as trialed in
combination with other techniques.



Sensors 2023, 23, 9130 26 of 36

In a study by Bogue-Jimenez, Huang [126], a glucose-based smartwatch for continuous
non-invasive glucose monitoring examined the use of multiple sensors, including optical,
electromagnetic, and thermal techniques to measure up to 14 features, all measurable in a
smartwatch-like wearable device and demonstrated to be related to blood glucose levels,
including Heart Rate (HR), Skin Temperature (sTEM), Heat Flux (HF), Electrodermal Activ-
ity (EDA, also known as Galvanic Skin Response (GSR), Pulse Oximetry (SpO2), Systolic
(SYS) and Diastolic (DIAS) blood pressures, Ambient Temperature (aTEM), and Ambient
Humidity (aHUM). In a clinical trial in 2022, Hanna, Tawk [98] reported a continuous
multimodality sensing system comprising humidity, skin temp, ambient temp, GSR, and
EM hand and leg sensors, with a resulting 99.01% prediction rate of blood glucose levels.

In 2010, Australia-based company AiMedics Pty. Ltd. (Sydney, Australia), released
HypoMon® [127] for overnight monitoring of hypoglycemia in type 1 diabetics between
the ages of 10 and 25 years. The system, made of a chest belt that non-invasively monitors
electrocardiogram and skin impedance features, allowed to identify specific patterns of
physiological responses to hypoglycemia, with a receiver containing interpretation algo-
rithms. The system was then recalled in 2013 due to post-market rates of detection of
hypoglycemic episodes lower than expected. Currently, the products NYSE:HIT by Hitachi
Ltd. (Tokyo, Japan), GlucoGenius by ESERdigital (Hong Kong, China), and Gluco Quantum
by Genki Vantage Limited (Hong Kong, China) are under development (see Section 4.6 on
product classification).

A schematic output of all the articles presenting in vitro/in vivo data (n = 48) can be
found in Supplementary Materials. The articles are divided by technique, highlighting ad-
vantages/disadvantages, machine learning application, sensor type, study phase (in vitro
vs. in vivo), results, and future perspectives (A = in vitro, B = in vivo, C = larger cohort,
D = machine learning application/expansion).

Among the 48 articles included in the Supplementary Materials, the NIGST techniques
explored the most were Millimeter Wave (mmw) and Microwaves (MW) (8 studies), fol-
lowed by PPG (5 studies). A total of 21 studies were performed in vivo, with cohorts from 1
to 100, prospectively, [52] and 2914 cases, retrospectively [125]. The remaining studies were
still in the in vitro phase. Thirteen articles have completed the in vitro/in vivo phase and
warrant larger cohorts for the next phase of research: three for PPG, two for NIR, two for
Dielectric Microwave, and one each for Millimeter/Microwave, MIR, BIS, SPR, and OCT.

4.4. Machine Learning

Machine Learning (ML), the core domain of Artificial Intelligence, is based on the use
of software algorithms to identify patterns in large datasets. ML algorithms can be divided
based on the level of human supervision into supervised, unsupervised, semi-supervised,
and with reinforcement learning. Supervised ML algorithms can identify discrete output
variables as categories or labels (classification analysis) or predict continuous values based
on the input variables (regression analysis), although the two analyses can have some
overlap. The several different techniques of machine learning are not the object of this
paper and have been thoroughly discussed by Zhang and Zhang [128], Shokrekhodaei,
Cistola [29], and Masson, Biggins [129].

To test the performance of machine learning models, internal and external validation
can be used, respectively, validating the models with part of the original study or a new
population [130]. The performance of each classification model can be expressed with
the Jaccard Index, defined as the number of labels predicted correctly among the total
predictions or AUC (Area Under the Curve), ROC curve (Receiver Operator Characteristic
curve) generating probability values, where 0.8 identifies a strong classifier and 1 is a
perfect classifier [29].

In the continuously evolving scenario of glucose sensing, machine learning represents
a promising avenue for the improvement of detection and accuracy. The extensive and
impenetrable load of data generated by glucose sensing techniques represents an opti-



Sensors 2023, 23, 9130 27 of 36

mal ground for machine learning application, with the potential of improving detection
sensitivity [65].

Supplementary Materials Table S1 highlights the combination of machine learning tech-
niques with glucose sensors encountered in this review. ML was applied to 25/48 studies,
with a range of one (Chen, Lo [27] and Wang, Mu [125]) to eight techniques (Bogue-Jimenez,
Huang [126]) trialed. PPG was the NIGST to which ML was most applied. All five arti-
cles on PPG had ML applied, compared with RF, CQD, and DRS, for which no ML was
described by any article. The most used ML techniques were Partial Least Squares (PLS)
regression (adopted in four articles), followed by Montecarlo simulation and Back Prop-
agation Neural Network, adopted in three articles, and Support Vector Machine and XG
boosts described in two articles.

To briefly explain these ML techniques, PLS is a regression method that creates new
predictor variables (components) as linear combinations of the original variables, while
considering the observed response values. MCS is based on random sampling of an
actual amount to generate different scenarios of considered factors. BPNN is a multilayer
feedforward network trained on an error back propagation algorithm [131]. XG boost
is a supervised ML regression model based on a subsequential tree algorithm working
in the presence of both categorical and numerical features with increased load capacity.
Finally, SVM is an algorithm that learns by example to classify assigning labels to the study
object [132].

The overall most promising results above the articles included in Supplementary
Materials Table S1 were for studies investigating the use of PPG with the aid of ML: 100%
of the measured values fell within CEG A–B, the lowest Standard Error of Prediction (SEP)
was at 17.02 mg/dL, the MARD was between 4.4321 and 12/.19%, and the Pearson’s r was
A 0.91 (see Supplementary Materials Table S1).

4.5. Developmental Process

As with most medical equipment, the development of a glucose sensor encompasses
two phases (Figure 19).
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Figure 19. Glucose sensing production.

Phase one concerns production and early testing. Once the glucose sensing technique
to use is identified/ideated, a prototype of the device is designed and produced before
testing it on models and/or in vitro. The device needs to be demonstrated as safe, suitable,
accurate, and feasible for human use to meet the standards of the International Organization
for Standardization (ISO)—namely, ISO 15197/2013 [133] for in vitro glucose monitoring
instruments and self-monitoring glucometers—and be approved by the local authority
(TGA (Therapeutic Good Administration in Australia), FDA (Food and Drug Administra-
tion in U.S.A.), and/or EMA (European Medicine Agency in EU)) before proceeding to
phase two of validation.

These standards provide guidance on minimum accuracy requirements on the device,
as well as on labeling, user manuals, and training materials. In terms of accuracy, at least
95% of the results must fall within ±15 mg/dL of the reference method for blood glucose
concentrations below 100 mg/dL and within ±15% for concentrations greater than or equal
to 100 mg/dL.
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During the clinical trial, the system’s accuracy in measuring blood glucose levels
is confirmed in vivo with either MARD, CEG (Clarke Error Grid), or PEG (Parkes Error
Grid) [46]. MARD is a percentage of errors from the measured value compared to a
reference value. The error grids, instead, measure the accuracy of non-invasive glucose
monitors, qualitatively comparing the result of the sensor versus the reference method.
The main difference between CEG and PEG is that the latter differentiates between type 1
diabetes and type 2 diabetes (Table 3).

Table 3. Accuracy of glucose sensing techniques. Adapted from Alsunaidi, Althobaiti [46].

Risk Zones CEG Analysis PEG Analysis

Zone A Clinically valid treatment No effect on clinical treatment
Zone B Clinically uncritical treatment Mild effect on clinical treatment
Zone C Unnecessary treatment Possible effect on clinical treatment
Zone D Dangerous: fails to diagnose and treat Serious medical risks
Zone E Extremely dangerous: leads to wrong treatment Dangerous consequences

Once the sensor is released to the market, its performance continues to be surveyed in
the post-market analysis.

4.6. Product Classification

Based on the information provided in the literature and Google searches, the glucose
sensing products reviewed in this paper were classified as either continuous (Figure 20a) or in-
termittent (Figure 20b) based on the sensor site (for more information, please review [12,14,94]).
A more schematic representation of all the products can be found in Supplementary Mate-
rials Table S2.

Among the CGM devices, PPG was the technique most used (3); however, among the
intermittent glucose monitoring techniques, the one most frequently adopted was NIR
spectroscopy (10), followed by Raman spectroscopy (5). Despite various attempts and de-
velopments in non-invasive glucose monitoring devices, challenges with accuracy, sample
collection, and environmental and physiological variability have led to the withdrawal
or ruling out of certain technologies, such as GlucoWatch and Pendra [14]. Specifically,
Pendra was found in a post-market analysis to not accurately estimate blood glucose levels
for all users and required a complex calibration procedure [126].

Of the 47 products found for non-invasive glucose monitoring, there are currently
no FDA-approved products on the market. Four products have received the Conformité
Européene (CE) mark of approval that meets European safety, health, and environmental
standard requirements and are currently being sold in Europe, including GlucoTrack (Com-
pany: Integrity Applications, Ltd., Rutherford, NJ, USA), GWave by HAGAR Tech (Hagar,
Israel), Glutrac by Add Care, Ltd. (Edmonton, AB, Canada), and Egm1000 by Evia Medical
Technologies, Ltd. (Weybridge, UK). Glutrac also meets the National Medical Products
Administration (NMPA) standards, now known as China Food and Drug Administration,
and is simultaneously sold in China.

Consistent with other products in development, Glutrac and GWave are classified as
continuous wearable devices monitoring glucose levels on the wrist.

The wrist, arm, ankle, and chest are optimal body locations for continuous wearable
devices, whereas the fingertip, palm, and earlobe can provide intermittent point-of-care
glucose sensing. The search for a truly non-invasive and reliable glucose monitoring
solution continues.
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5. Discussion

To the best of our knowledge, this is the most recent comprehensive review on non-
invasive glucose sensing techniques written from healthcare and industrial design perspec-
tives. The additional novelty of this study includes the exploration of a machine learning
application for each technique, as well as of products in the development/validation phase.

The classification of glucose sensing techniques is not uniform in the literature. Within
different reviews, some techniques that use saliva, sweat, and tears are reported as either
non-invasive or minimally invasive. Our classification is based on non-invasiveness in
optical, electromagnetic, and physiological techniques.

Of the techniques included in this review, PPG was the most investigated in vitro
within the past five years (from 2018 to 2023) and resulted in having the most extensive
application of machine learning. Of the developed products, none have been approved in
all markets (EMA, ETG, etc).

To identify the most promising techniques, we considered the WHO REASSURED
criteria, which consider real-time connectivity and ease of specimen collection, but also if
the test is affordable, sensitive, specific, user-friendly, rapid and robust, equipment free or
simple, environmentally friendly, and deliverable to end-users [134]. The REASSURED
criteria represent an optimal tool to identify NIGST worthy of further development in the
context of the diabetes epidemic [135]. As the diabetes trend is currently rising, particularly
in Low- and Middle-Income Countries (LMIC) due to a sudden increase in availability of
food after years of malnutrition and starvation, the need of a cost-effective and user-friendly
glucose sensing technique is becoming critical [136].

Based on the REASSURED criteria, the studies and products that resulted warranting
further research and testing were based on PPG and NIR. Both techniques are described
as low cost, offering high accuracy with minimal occupied space and potential for con-
tinuous NIGST. While PPG is sensitive to motion and movement [38], NIR is sensitive
to tissue thickness, temperature, skin tone/melanin, tissue substances, and ambient light
intensity [14]. Further research is needed on a multisensory approach to counteract these
limitations, Zhang, Liu [26].

NIGST development can be considered expensive, and this may seem to be in contrast
with the need to prioritize the diagnostic coverage in LMIC. If considering the additional
cost of each DM diagnosis, which could be avoided with refined diagnosis and management
of the different types of diabetes, the investment in NIGST may be appropriate and shows
promise in reducing the burden of DM in the healthcare system [137]. A cost analysis of all
the techniques and devices is not included in this review due to the paucity of information
in the literature, and is warranted for the most promising techniques identified within it.

Our study identifies novel promising techniques and underlines how machine learning
can boost accuracy and reliability. Machine learning is reported to be a precious tool
in augmenting the sensitivity and accuracy of PPG and NIR techniques. Furthermore,
ML could be considered to stratify personal risk for the disease and develop a tailored
management plan. This is particularly important for diabetes, as it is considered more
than ever a dynamic condition based on personal predisposition, lifestyle, and daily
environment [138]. Given the long training time for complex validation, further research is
needed to verify the role of machine learning in optimizing NIGST [37,139].

6. Conclusions

NIGST could represent the key to contain the diabetes epidemic by addressing the
low acceptability and sensitivity of the current DM diagnostic and management methods.
Applying machine learning to NIGST could be the key to optimizing glucose sensing for
Diabetes Mellitus diagnosis and management.

Considering the WHO REASSURED criteria, the NIGST was the most explored, with
a higher application of ML techniques, product development, and optimal accuracy, where
PPG was among the continuous and NIR/Raman Spectroscopy was among the intermittent
techniques. Further research is warranted to validate their use in the different subgroups of
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diabetic patients with larger in vivo research, machine learning application, costs analysis,
and acceptability surveys.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23229130/s1, Table S1: studies in vitro/in vivo; Table S2: Con-
tinuous and Intermittent non invasive glucose sensing products. Reference [139] is cited in the
supplementary materials.
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