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Abstract 40 

To control the ongoing COVID-19 pandemic, CoronaVac (Sinovac), an inactivated 41 

vaccine, has been granted emergency use authorization by many countries. However, 42 

the underlying mechanisms of the inactivated COVID-19 vaccine-induced immune 43 

response remain unclear, and little is known about its features compared to SARS-44 

CoV-2 infection. Here, we implemented single-cell RNA sequencing (scRNA-seq) to 45 

profile longitudinally collected PBMCs (peripheral blood mononuclear cells) in six 46 

individuals immunized with CoronaVac and compared these to the profiles of 47 

COVID-19 infected patients from a Single Cell Consortium. Both inactivated 48 

vaccines and SARS-CoV-2 infection drove changes in immune cell type proportions, 49 

caused B cell activation and differentiation, and induced the expression of genes 50 

associated with antibody production in the plasma. The inactivated vaccine and 51 

SARS-COV-2 infection also caused alterations in peripheral immune activity such as 52 

interferon response, inflammatory cytokine expression, innate immune cell apoptosis 53 

and migration, effector T cell exhaustion and cytotoxicity, however, the magnitude of 54 

change was greater in COVID-19 patients, especially those with severe disease, than 55 

in immunized individuals. Further analyses revealed a distinct peripheral immune cell 56 

phenotype associated with CoronaVac immunization (HLA class II upregulation and 57 

IL21R upregulation in naïve B cells) versus SARS-CoV-2 infection (HLA class II 58 

downregulation and IL21R downregulation in naïve B cells severe disease). There 59 

were also differences in the expression of important genes associated with 60 

proinflammatory cytokines and thrombosis. In conclusion, this study provides a 61 

single-cell atlas of the systemic immune response to CoronaVac immunization and 62 

reveals distinct immune responses between inactivated vaccines and SARS-CoV-2 63 

infection.  64 

Keywords: Inactivated vaccine, CoronaVac, COVID-19, SARS-CoV-2, Single-cell 65 

sequencing, Immunological responses 66 
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Introduction 67 

COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute 68 

respiratory syndrome coronavirus 2), is an unprecedented threat to global public 69 

health and has rapidly spread throughout the world (Cevik et al., 2020). COVID-19 70 

has led to high mortality and morbidity worldwide, and as of Aug 24, 2021, 71 

213,752,662 laboratory-confirmed cases of SARS-CoV-2 infection have been 72 

reported, resulting in 4,459,381 deaths (WHO COVID-19 Dashboard). As there are no 73 

effective drugs available at this time against COVID-19, safe and effective COVID-74 

19 vaccines are urgently required to control the pandemic and reduce the global 75 

burden of SARS-CoV-2 (Mehra et al., 2020).  76 

Various candidate vaccines including inactivated viral vaccines, live attenuated 77 

vaccines, nucleic acid vaccines, viral-vectored vaccines, and protein or peptide 78 

subunit vaccines are being rapidly developed, tested, and granted approval for 79 

emergency use (Amanat and Krammer, 2020). Each vaccine has advantages and 80 

disadvantages and these have been reviewed elsewhere (Dong et al., 2020; Poland et 81 

al., 2020). Among these candidate vaccines, the inactivated COVID-19 vaccines are 82 

among one of the most widely used and well developed vaccines due to their ease of 83 

production and scale-up, and relatively low cost. They are produced by growing 84 

SARS-CoV-2 in cell culture (e.g., Vero cells), followed by chemical inactivation of 85 

the virus (Krammer, 2020). Inactivated vaccines present the whole SARS-COV-2 86 

virus for immune recognition, thus the immune responses are likely to target not only 87 

the unique protein (e.g., S protein) of the virus but also matrix, nucleoprotein and 88 

envelope (Krammer, 2020). Moreover, the inactivated vaccines exhibit stable 89 

expression of conformation-dependent antigenic epitopes, and also offer advantages 90 

in a variety of different populations (e.g., those with degrees of immune senescence) 91 

(Iversen and Bavari, 2021b).  92 

CoronaVac (initially known as PiCoVacc) from Sinovac, is a leading Chinese 93 

COVID-19 vaccine and was devised with β-propiolactone as an inactivating agent and 94 

formulated with aluminum hydroxide as an adjuvant (Gao et al., 2020). The 95 
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inactivated CoronaVac vaccine is a whole-virus preparation administered in a two-96 

dose regimen (at day 0 and day>21), and the immunogenicity, safety and tolerability 97 

have been assessed in different populations, including children and adolescent aged 3-98 

17 years old (Han et al., 2021), adults aged 18-59 (Zhang et al., 2021), and adults 99 

aged 60 years and older (Wu et al., 2021). Within the scope of combating the SARS-100 

CoV-2 pandemic, CoronaVac has been granted an emergency use authorization by 101 

Chinese authorities in July, 2020 (Poland et al., 2020), and a host of others countries 102 

such as Turkey, Chile, Brazil, Indonesia, etc. (Bayram et al.; Fortner and Schumacher, 103 

2021; Muena et al., 2021; Shervani et al., 2020).  104 

   Currently, the knowledge about the immunity generated by COVID-19 vaccines 105 

(including the inactivated vaccines) are limited with researchers understanding less 106 

about this than about immunity to natural SARS-CoV-2 infection. Although clinical 107 

trial data have demonstrated that the current COVID-19 vaccines approved (including 108 

CoronaVac) can elicit immunity with a high degree of safety, efficacy and tolerability, 109 

much remains to be learned concerning the genetic drivers of COVID-19 vaccine-110 

elicited humoral and/or cellular immunity, defining detailed targets of the immune 111 

response at the epitope level, and characterizing the B-cell receptor and T-cell 112 

receptor repertoire induced by COVID-19 vaccines (Poland et al., 2020). Inactivated 113 

vaccines (such as CoronaVac) have been shown to keep the immunogenicity of the 114 

SARS-CoV-2 virus, and can elicit an immune response, however whether there is a 115 

distinct immune response landscape between natural SARS-CoV-2 infection and the 116 

inactivated COVID-19 vaccine remains unclear.  117 

Here, we implemented scRNA-seq (single-cell RNA sequencing) to obtain a 118 

comprehensive and unbiased visualization of PBMCs (Peripheral blood mononuclear 119 

cells) from healthy adults immunized with the inactivated COVID-19 vaccine, 120 

CoronaVac, at 3 pivotal time points, including day 0 (before vaccination), day 21 after 121 

the first dose and day 14 after the second dose (Figure 1A). This study provides a 122 

high-resolution transcriptomic landscape of PBMCs during the immune response to 123 

CoronaVac immunization, which will foster a better understanding of the protective 124 
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immune response generated by inactivated COVID-19 vaccines. Then, we compared 125 

this data to the reported profiles from a Single Cell Consortium for COVID-19 (Ren 126 

et al., 2021), revealing the distinct immune features between natural SARS-CoV-2 127 

infection and the inactivated COVID-19 vaccine.  128 

 129 

Results 130 

Single-cell transcription profiling of PBMCs 131 

To identify features of the immunological hallmarks from individuals receiving 132 

inactivated COVID-19 vaccines (CoronaVac), the droplet-based scRNA-seq (10 X 133 

Genomics) was conducted for studying the transcriptomic profiles of PBMCs, which 134 

were longitudinally collected from six individuals at three pivotal time points (Fig 135 

1A). Single-cell B cell receptor (BCR) and T cell receptor (TCR) sequencing were 136 

also performed for each sample. According to the time points, these samples were 137 

classified into three conditions: no injection (NJ, day=0, PMBCs were collected 138 

before vaccination), first injection (FJ, Day=21, PBMCs were collected at day 21 after 139 

the first dose) and second injection (SJ, Day=35 PBMCs were collected at day 14 140 

after second dose). The associated metadata of the six individuals enrolled and the 141 

three conditions are detailed in Supplementary Table S1. After the single-cell 142 

analysis pipeline (Refer to Methods), we obtained ~0.895 billion unique transcripts 143 

belonging to 178268 cells from the PBMCs of vaccinated individuals. Among these 144 

cells, 60783 cells (34.1%) were from the NJ conditions, 47451 cells (26.6%) were 145 

from the FJ condition, and 70034 cells (39.3%) from the SJ condition. Next, we 146 

integrated all high-quality cells into an unbatched and comparable dataset, which was 147 

subjected to principal component analysis after correction for read depth and 148 

mitochondrial read counts (Fig S1A-B) 149 

To reveal immune cell populations in individuals administered with inactivated 150 

COVID-19 vaccines, the graph-based clustering of UMAP (uniform manifold 151 

approximation and projection) was performed. According to the expression of 152 

canonical cell-type markers, we identified 10 major cell types (Fig 1B (left), C-D; 153 
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S1A-B): B cells (CD79A+CD79B+MS4A+), plasma cells (XBP1+MZB1+), γδ T cells 154 

(TRDV1+TRDV9+), natural killer (NK) cells (CD11b+NKG7+KLRD1+NKG2A+), 155 

CD4+ T cells (CD3D+CD3E+CD40LG+), CD8+ T cells (CD3D+CD3E+CD8A+CD8B+), 156 

mucosal-associated invariant T (MAIT) cells (CD3D+CD3E+SLC4A10+), monocytes 157 

(CST3+LYZ+CD68+), dendritic cells (CST3+LYZ+CD163+) and megakaryocytes 158 

(CST3+LYZ+PPBP+). At the more granular level, we identified 27 different cell 159 

subtypes (Fig 1B (right), S1A-B). Likewise, we also successfully identified 10 major 160 

cell types (Fig 1E (Left)) and 27 cell subtypes (Fig 1E (Right)) for the PBMCs 161 

samples reported by a Single Cell Consortium for COVID-19 (Ren et al., 2021) (Fig 162 

S1C-F). As such, the composition of cell subpopulations in peripheral blood from 163 

individuals with COVID-19 vaccine and COVID-19 patients were clearly defined 164 

(Fig 1B, E; S1G). 165 

 166 

Differences in major cell type compositions across conditions 167 

We firstly uncovered the differences in cell composition (10 major cell types) across 168 

two conditions (FJ and SJ) and then compared that with NJ. According to scRNA-seq 169 

data (Fig 2A-D), we calculated the relative percentage of 10 major cell types in the 170 

PBMCs of each participant at 3 conditions.  The relative abundance of CD4+ T cells, 171 

CD8+ T cells, γδ T cells, NK cells and MAIT cells at FJ and SJ conditions remained 172 

similar when compared with the NJ condition (Fig 2D). The relative percentage of B 173 

cells appeared to increase in FJ and SJ conditions in comparison with NJ condition, 174 

implying that the change in B cells may be related with the humoral immune response 175 

after vaccination (Fig 2D). The proportions of dendritic cells (DCs), monocytes 176 

(Mono) and megakaryocytes (Mega) increased after vaccination (Fig 2D). Increased 177 

DCs may be involved in antigen presentation to stimulate the immune response to 178 

CoronaVac, while increased Mono and Mega may be involved with the potential 179 

inflammatory response after vaccination. Of note, the percentage of plasma cells did 180 

not significantly increase in the FJ and SJ conditions (Fig 2D). This may be due to 181 

plasma cells requiring a strong level of continuous antigen stimulation, or that the 182 
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plasma cell level had decreased or was restored when the PBMC samples were 183 

collected at the FJ (at day 21 after first dose) and SJ (at day 14 after first dose) 184 

conditions.  185 

Next, we compared the cell composition between vaccine and natural SARS-186 

CoV-2 infection. Patients with COVID-19 (n=64) were classified into four conditions: 187 

control (Cont; n=15), mild (mild; n=12), severe (seve; n=4) and convalescent (conv; 188 

n=33) (Fig 2E-G, Fig S2A). After SARS-CoV-2 infection, the proportion of innate 189 

immune cells, including NK cells, γδ T cells, MAIT cells and DCs, decreased with 190 

disease severity (Fig 2E-G). This trend was different to what was observed with 191 

vaccines (Fig 2D, G; S2B-D). Similar with vaccination, the relative abundance of 192 

monocytes and megakaryocytes in COVID-19 patients increased with disease severity, 193 

and the relative percentage of these cells later declined in Conv conditions (Fig 2G). 194 

Unlike the inactivated COVID-19 vaccine, a decrease in CD4+ T and CD8+ T cells 195 

were observed in COVID-19 infected patients, and this was related with disease 196 

severity (Fig 2D, G; S2D). A slight increase in B and plasma cell levels were 197 

observed after SARS-CoV-2 mild infection, whereas a massive increase in plasma 198 

cells was observed in the Seve condition (Fig G; S2D). These data suggested that 199 

both vaccination with CoranaVac and natural SARS-CoV-2 infection can cause 200 

changes in the cell compositions of PBMC. 201 

 202 

Features of B cell subsets across samples 203 

To reveal the dynamic changes in different B cell subtypes in immunized (Figure 3A-204 

E, Fig S3A) and infected individuals (Fig 3F-G, S3B-E), we classified B cells into 6 205 

subsets according to the distribution and expression of classical subtype markers. We 206 

successfully identified one naïve B subcluster (MS4A1+IGHD+), one memory B 207 

subcluster (MS4A1+CD27+), one germinal center B subcluster (MS4A1+NEIL1+), one 208 

intermediated transition memory B subcluster (Intermediate memory B, 209 

MS4A1+IGHD+CD27+), one plasma B subcluster (MZB+CD38+) and one 210 

proliferating plasma B subsets (MZB+CD38+MKI67+).  211 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.21262863doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

8

The general patterns of B/plasma cells were compared across conditions. The 212 

relative percentages of an active state B subtype (germinal center B) significantly 213 

increased after vaccination, suggesting that B cells may be activated after vaccination 214 

(Fig 3E), Other B cell subsets, including naïve B cells, memory B cells and 215 

intermediate memory B cells, remained similar across the three vaccination conditions 216 

(NJ, FJ and SJ) (Fig 3E), suggesting that the inactivated COVID-19 vaccine has a 217 

relatively low impact on the composition of these B cell subsets. Likewise, SARS-218 

CoV-2 infection also had relatively low impact on the composition of these B cell 219 

subsets, with only the memory B subtype decreased in severe COVID-19 patients 220 

(Fig 3G). Increased plasma and dividing plasma cells were observed in COVID-19 221 

patients with the percentage of plasma cells in severe COVID-19 patients reaching 15% 222 

while mild COVID-19 patients only reached 3% (Fig 3G) (Ren et al., 2021), 223 

suggesting that antibody production may be stronger in severe COVID-19 patients, 224 

reminiscent of previous findings that higher antibody titers are related with worse 225 

clinical outcomes (Long et al., 2020; Okba et al., 2020). Although the levels of plasma 226 

cells and dividing plasma cells did not significantly increase after vaccination, the 227 

levels of neutralizing antibodies (anti-S-RDB-specific antibody) did significantly 228 

increase after the second injection for all 6 individuals (Fig 3H, Fig S3G, Table S2). 229 

Interestingly, the levels of neutralizing antibody did not significantly increase after the 230 

first dose of CoronaVac (Fig 3H, Fig S3G, Table S2) and significant production of 231 

neutralizing antibody was only obtained after the second dose. This implies that two 232 

doses of CoronaVac are required for efficient seroconversion. 233 

After vaccination, the plasma cells in PBMCs had highly expressed genes which 234 

encode the constant regions of immunoglobulin G1 (Ig G1), IgG2, IgA1 or IgA2. This 235 

correlates with their function in secreting antigen-specific antibodies and implies that 236 

the serum of immunized individuals may have had high titers of SARS-CoV-2-237 

specific antibodies (Fig 3H-I, S3G). These findings were also observed in COVID-19 238 

patients (Fig 3J), and is consistent with previous studies showing high titers of 239 

antigen-specific antibodies in the serum of COVID-19 patients (Ni et al., 2020; Ren et 240 
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al., 2021).  Similar to natural SARS-CoV-2 infection, genes encoding IgA1 and IgA2 241 

were activated by CoronaVac, and this finding has also been observed in influenza 242 

vaccines (Neu et al., 2019). 243 

 244 

Transcriptomic changes in B cells after vaccination and SARS-CoV-2 infection 245 

To investigate differential transcriptomic changes in B/plasma cells after vaccination, 246 

we compared the expression profiles of B/plasma cells in FJ or SJ conditions with the 247 

NJ condition. As expected, genes involved in B cell activation, adaptive immune 248 

response, response to interferon, and antigen processing and presentation were 249 

specifically enriched in B cells after vaccination (Fig 4A). This suggests that the B 250 

cells were responding to the inactivated COVID-19 vaccine. For SARS-CoV-2 251 

infection, genes involved in defense response to virus and interferon signaling 252 

pathways were the most highly upregulated in the B cell subset (Fig S4A). Notably, 253 

we observed that genes associated with the “IFN response” were enriched in both 254 

post-vaccination samples and COVID-19 patients (Fig 4A and Fig S4A).  255 

Next, we further examined the expression of important genes (e.g., PRDM1, T-256 

bet) that are involved in B/plasma-cell-activation-related processes after vaccination 257 

and SARS-CoV-2 infection. Two GO pathways (GO:0002312 and GO:0042113) that 258 

were related to the activation of B cells were significantly enriched after vaccination 259 

(Fig 4B). Several genes (e.g., PTPRC, HMCES and SWAP70) involved in the B cell 260 

activation GO pathways (GO:0002312 and GO:0042113), were highly upregulated in 261 

the naïve B cell subtype, implying activation of naïve B cells after vaccination (Fig 262 

4C). In contrast, these three genes (PTPRC, HMCES and SWAP70) were down-263 

regulated in severe COVID-19 patients, suggesting that activation of naïve B cells in 264 

these individuals may be impaired (Fig S4B). Naïve B cells in vaccinated samples 265 

also highly expressed IL4R and IL21R (Fig 4D), but these genes were downregulated 266 

in activated and memory B cells (Fig 4E). This indicates that naïve B subsets were 267 

more responsive than activated and memory B cells to IL-4 (interleukin 4) and IL-21, 268 

which regulate class switching to IgG, including IgG1, IgG3 or IgG4 (Horns et al., 269 
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2020; Pène et al., 2004). Similar findings for IL4R and IL21R expression were also 270 

observed in SARS-CoV-2 mild infection, while IL4R and IL21R were significantly 271 

downregulated in severe COVID-19 patients (Fig S4C-D). 272 

Six transcription factors (TBX21, ZEB2, TFEC, ZBTB32 and YBX3) associated 273 

with the activation of memory B cells were highly expressed in intermediate transition 274 

memory B cell (also referred to as activated memory B cells) compared to memory B 275 

cells (Fig 4F and Fig S4E) (Horns et al., 2020). TBX21 (also known as T-bet) has 276 

been hypothesized to play a key regulatory role in activation and is required for class 277 

switching to IgG2 (Wang et al., 2012). This transcription factor showed higher 278 

expression in activated memory B cells than memory B cells (Fig 4F and Fig S4E). A 279 

triad of transcription factors, including PRDM1, XBP1 and IRF4, also had increased 280 

expression in activated B cells (which encompasses: germinal center B cell, 281 

intermediate transition memory B cell, dividing plasma and plasma) from COVID-19 282 

patients and immunized individuals than non-activated B cell (including naïve B cell 283 

and memory B cell) (Fig 4G and Fig S4F). These transcription factors are associated 284 

with B-cell-differentiation-related pathways and are required for activating the ASC 285 

(antibody-secreting cell) program (Shi et al., 2015). PRDM1 plays a core role in 286 

determining and shaping the secretory arm of B cell differentiation and in promoting 287 

Ig synthesis. XBP1 is a positively acting transcription factor of the CREB-ATF family 288 

that is highly express in plasma cells and is important for increasing protein synthesis 289 

in plasma cells (Shaffer et al., 2004). IRF4 is crucial for regulating Ig class-switch 290 

recombination, and a previous study has found that sustained and increased 291 

concentration of this transcription factor promotes the generation of plasma cells 292 

(Ochiai et al., 2013). Finally, three B cell-promoting transcription factors: BACH2, 293 

BCL6 and PAX5, showed increased expression in B cells after vaccination (Fig 4H) 294 

while in severe COVID-19 patients (Fig S4G), these transcription factors decreased. 295 

BACH2, BCL6 and PAX5 play a key role in determining the fate of B cells during 296 

differentiation (Shi et al., 2015).  297 

Interestingly in COVID-19 infected samples, expression of important chemokine 298 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.21262863doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

11

receptors such as CXCR5 were significantly decreased, especially for severe samples 299 

(Fig S4H). However, this loss of chemokine receptors was not observed in 300 

immunized samples (Fig 4I). Decreased chemokine receptors can impair germinal 301 

center reactions and ultimately cause dysregulated humoral immunity responses 302 

(Mathew et al., 2020; Okada et al., 2002; Reimer et al., 2017). Our data also observed 303 

significant upregulation of HLA class II genes after immunization (Fig 4J), implying 304 

that there is an enhancement of immune cell crosstalk between the adaptive immune 305 

cell classes. However in COVID-19 patients, several HLA class II genes were 306 

significantly downregulated, especially for severe COVID-19 patients (Fig S4I). This 307 

suggests a dysregulation of immune cell crosstalk between the adaptive immune cell 308 

classes during infection. Together, these data define the transcriptional hallmarks of 309 

CoronaVac-induced B cell activation and clonal expansion and revealed underlying 310 

differences in the B cell transcriptome between vaccine-induced immunity and SARS-311 

CoV-2 infection.  312 

 313 

V(D)J gene usage and clonal expansion in B cells after vaccination and SARS-314 

CoV-2 infection 315 

BCR information was detected in all B/plasma subsets and in >80% of cells while 316 

clonal expansion (clonal size >10) was observed in memory B cells, intermediate 317 

transition memory B cells, dividing plasma cells, and plasma cells (Fig 5A, Fig S5A-318 

B). The largest proportion of BCR in B cells was the IGHM subtype and the largest 319 

proportion of BCR in plasma cells were IGHA1 and IGHG1 (Fig 5B). After 320 

vaccination, the percentage of IGHM significantly increased in B cells (Fig 5C, Fig 321 

S5A) while the percentage of IGHA1 decreased in plasma cells (Fig 5C, S5C, S5D). 322 

The light chain type, IGK and IGL, did not change in B and plasma cells (Fig 5D).  323 

We compared the clonal expansion of B cell subtypes under different conditions 324 

in the vaccine cohort (Fig 5E). BCR clonal expansion of plasma cells increased from 325 

NJ to FJ to SJ, suggesting that two-doses of CoronaVac induced plasma proliferation 326 

of specific BCR clonotypes. In COVID-19 patients, increased clonal expansion in 327 
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CD8+ T was also observed in severe COVID-19 patients (Fig 5E), in agreement with 328 

Zhang et al. (Zhang et al., 2020). 329 

BCR diversity, as measured by alpha diversity, showed no change after 330 

vaccination but was significantly decreased in severe COVID-19 infections (Fig 5H). 331 

The length distribution of the CDR3 region was similar for all conditions except 332 

COVID-19 severe condition (Fig5I). These results suggest that vaccine induced 333 

immune protection in very gentle way.  334 

The usage of IGH V(D)J genes across vaccination and infection conditions were 335 

compared (Fig 5F). The combinations of the 6 IGHJ and >40 IGHV genes 336 

demonstrated that CoronaVac induced many changes in the IGH V(D)J genes (Fig 5F 337 

left panel). The V(D)J pair pattern were significantly altered after two doses of 338 

CoronaVac. For example, the most prevalent pair in NJ was IGHJ2/IGHV3-23 which 339 

shifted to IGHJ2/IGHV4-59 and IGHJ1/IGHV3-23 following vaccination. The 340 

percentage of IGHJ1/IGHV3-43 and IGHJ1/IGHV3-15 also increased after 341 

vaccination. In addition, we also analyzed the usage of IGK/L V(D)J genes (Fig 5F 342 

right panel) and observed that the V(D)J pair pattern were also altered after two doses 343 

of CoronaVac. For example, IGKJ5/IGKV3-11, IGLJ1/IGKV2-14 and IGLJ7/IGKV1-344 

51 were all increased after vaccination. Interestingly, IGLJ1/IGKV2-14 and 345 

IGLJ7/IGKV1-51 were also increased in COVID-19 Mild and Conv conditions 346 

compared to Cont. These results suggest a similarity in B-cell protective responses 347 

between vaccine and Mild/Conv conditions.  348 

 349 

Characterization of innate immune cells   350 

To investigate vaccine (Fig 6A-D, S6A) and infection-driven (Fig 6F, S6B-E) 351 

changes in innate immune cells, the distribution and expression of classical subtype 352 

markers were used to classify innate cell types. We identified 6 innate cell types 353 

including NK cells, γδ T cells, MAIT cells, DC cells, monocytes and megakaryocytes 354 

(Fig 6A-B, 6F, S6A-E). The dendritic cells were further classified into 2 subtypes 355 

including pDCs, (plasmacytoid dendritic cells) and mDC (monocyte-derived dendritic 356 
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cells), while monocytes were classified into 3 subtypes including CD16+ monocytes, 357 

CD14+ monocytes and CD14+CD16+ monocytes (Fig 6A-B, 6F, S6A-E).  358 

To obtain further insights into the features of innate cells, we examined the 359 

distribution of each subset across three conditions (NJ, FJ and SJ). The proportions of 360 

γδ T cells, NK cells, MAIT cells, CD16+ Mono, CD14+CD16+ Mono were similar 361 

across the three conditions (NJ, FJ and SJ) (Fig 6E, 6H, S6F), while the relative 362 

percentages of γδ T cells, NK cells and MAIT cells decreased after SARS-CoV-2 363 

infection, especially in severe patients (Fig 6G, 6H, S6F). The innate cell subsets 364 

mDC, pDC, megakaryocytes and CD14+ monocytes increased after vaccination (Fig 365 

6E, 6H, S6F). For COVID-19 patients, the percentages of mDC and pDC 366 

significantly decreased in severe patients but were restored in convalescent samples 367 

(Fig 6G, 6H, S6F). In contrast, the proportions of megakaryocytes and 368 

CD14+monocytes were significantly increased in severe patients and were also 369 

increased in convalescent samples (Fig 6G, 6H). These findings of changes to innate 370 

cell subsets in COVID-19 patients are consistent with previous reports and flow-371 

cytometry-based results (Jouan et al., 2020; Wilk et al., 2020). These data also 372 

indicate that both vaccines and SARS-CoV-2 infection alter components of the innate 373 

cells in PBMCs and reveals distinct differences in innate cells between vaccine-374 

induced immunity and natural SARS-CoV-2 infection.  375 

 376 

Transcriptomic changes in innate immune cells after vaccination and SARS-377 

CoV-2 infection 378 

Next, we investigated the transcriptomic changes in innate immune cells after 379 

vaccination. GO (Gene Ontology) analyses were conducted to obtain functional 380 

insights into innate cell subtypes between FJ/SJ conditions with NJ condition (Fig 381 

7A). Genes associated with the adaptive immune response (such as “T cell activation”, 382 

“immune response-activating signal transduction” and “antigen processing and 383 

presentation”) were enriched after vaccination (Fig 7A), while for COVID-19 384 

infection, other pathways (such as “response to virus” and “defense response to virus”) 385 
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were enriched (Fig S7A). Genes associated with “Response to IFN signaling” were 386 

enriched in both vaccination and SARS-CoV-2 infection (Fig 7A-B, S7B-7C). INF 387 

response is an essential pathway for innate cells to respond to viral infections, and our 388 

data indicates that CoronaVac successfully induces the INF response in innate cells 389 

(Fig 7B, S7B). The “INF response” of innate immune cells was stronger in SARS-390 

CoV-2 infection (especially for severe COVID-19 patients) compared to vaccination 391 

(Fig 7B). We observed that four innate immune cell types (monocytes, γδ T, MAIT 392 

and NK cells) exhibited significantly upregulated IFN after vaccination (Figure S7B), 393 

while all 6 innate cell types had higher IFN in COVID-19 patients (Fig S7C).   394 

Our data showed that levels of cellular apoptosis and migration were 395 

significantly upregulated in innate cells at the bulk level after vaccination and SARS-396 

CoV-2 infection (Fig 7C, S7D-E). The expression of HLA-II genes at FJ and SJ 397 

conditions was higher compared to NJ, suggesting the enhancement of crosstalk 398 

across cells after vaccination (Fig 7E). However, some HLA-II genes (e.g., HLA-399 

DRB5, HLA-DPB1 and HLA-DPA1) were downregulated after SARS-CoV-2 infection, 400 

especially in severe COVID-19 patients (Fig 7F), implying possible impairment of 401 

crosstalk across cells. Genes which encoded HLA class I molecules (such as HLA-A, 402 

HLA-B and HLA-E) were upregulated in innate cells from immunized samples 403 

relative to NJ condition (Fig S8). Similar results were also seen in COVID-19 patients 404 

(Fig S9). The underlying mechanism and effect of changes in HLA-I molecules 405 

requires further investigation. In addition, we also investigated the expression of 406 

several critical genes related with platelet aggregation (P2RX1, P2RY1 and TBXA2R) 407 

in megakaryocytes (Sangkuhl et al., 2011). P2RX1, P2RY1 and TBXA2R were not 408 

significantly upregulated after immunization which suggests a low risk of thrombosis 409 

following CoronaVac immunization (Fig 7G). P2RX1, P2RY1 and TBXA2R were 410 

significantly upregulated in mild COVID-19 patients (Fig 7G), which may imply a 411 

higher risk of thrombosis for mild COVID-19 patients than severe COVID-19 patients.  412 

We further analyzed monocytes, as previous reports suggested that this cell 413 

subset appeared to be the source of inflammation in COVID-19 patients (Ren et al., 414 
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2021). We evaluated the expression of genes reported to encode inflammatory 415 

cytokines (Table S3) (Ren et al., 2021; Wilk et al., 2020). We found elevated 416 

expression of inflammatory genes in COVID-19 patients compared to healthy controls 417 

at the bulk level, indicating that peripheral monocytes are potential contributors to the 418 

inflammatory cytokine storm observed in COVID-19 patients. However, severe 419 

COVID-19 patients did not show higher expression of inflammatory cytokines 420 

compared to mild patients (Fig I). We also identified increased expression of 421 

inflammatory response genes in vaccinated individuals (FJ and NJ conditions) 422 

compared to NJ condition at the bulk level, especially after the second dose (Fig 7J). 423 

Of note, expression of inflammatory response genes in vaccinated individuals was 424 

much lower than COVID-19 patients (Fig K). This implies that post-vaccination may 425 

not cause an increase in inflammatory cytokines in peripheral blood or causes a lower 426 

increase in inflammatory cytokines. To validate this result, we investigated the levels 427 

of 11 cytokines (including pro-inflammatory cytokines: TNF-α, IL-1B and IL-6) in the 428 

sera of the 18 samples using a bead-based flow-cytometry assay on the BD 429 

LSRFortessa X-20 platform. No obvious post-vaccination elevation in most cytokines 430 

were observed (Fig S10), which further suggests that post-vaccination does not lead 431 

to significant increases in inflammatory cytokines in peripheral blood. Interestingly, 432 

CD14+monocytes contributed to the highest proportion of cell composition (Fig 7L) 433 

and inflammatory scores (Fig 7M) after vaccination or SARS-CoV-2 infection, 434 

suggesting that CD14+ monocytes may be the major source of inflammation (Ren et 435 

al., 2021; Zhou et al., 2020). 436 

 437 

Features of T cell subsets in individuals after vaccination and SARS-CoV-2 438 

infection 439 

To investigate changes in individual T cell subclusters, the T cells from PBMCs of 440 

vaccinated individuals across three conditions (NJ, FJ and SJ) (Fig 8A-B, S11A) and 441 

in COVID-19 patients (Fig S11B-D) were subclustered into 12 subtypes according to 442 

the distribution and expression of classical T cell markers. These include 7 CD4+T 443 
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cell subtypes (CD3D+ CD3E+ CD40LG) and 5 CD8+T cell subtypes (CD3D+ CD3E+ 444 

CD8A+CD8B+).  445 

For CD4+T cells, we defined one naïve CD4+ T cell subset (CCR7+SELL+), one 446 

memory CD4+ T cell subset (S100A4+GPR183+), one effector memory CD4+ T cell 447 

subset (S100A4+GPR183+GZMA+), one regulatory CD4+ T cell subset (Treg; 448 

FOXP3+IL2RA+), one follicular T helper (Tfh) cell subset (CXCR5+, ICOS+, 449 

SLAMF1+) and two effector CD4+ T cell subsets (CD4+ effector-GZMK and CD4+ 450 

effector-GNLY). Notably, the CD4+ effector-GNLY cell subtype was characterised 451 

with high expression of genes related with cytotoxicity, such as GNLY, GZMB, NKG7 452 

and KLRD1, whereas the CD4+ effector-GZMK cell subtype displayed high 453 

expression of GZMK and low expression of other cytotoxic genes (Fig 8A-B, S11A, 454 

Table S5). The CD4+ effector-GNLY subtype also had highly expressed TBX-21 (T-455 

bet), suggesting that this subcluster were Th-1 (Type 1 helper)-like cells (Table S5). 456 

For CD8+ T cells, we defined one naïve CD8+ T cell subset (CCR7+SELL+), one 457 

cycling CD8+ T cell subset (MKI67+), one effector memory CD8+ T cell subset 458 

(S100A4+GPR183+GZMA+), two effector CD8+ T cell subsets (CD8+ effector-GNLY 459 

and CD8+ effector-GZMK) (Fig 8A-B, S11A, Table S5).  460 

To gain further insights into the characteristics of the T cell subclusters, we 461 

examined the distribution of each subtype across three vaccine timepoints (Fig 8C-E) 462 

and compared these profiles with data collected from COVID-19 patients (Fig 8F, 463 

S11E-G). Three T cell subsets were significantly altered after vaccination (Fig 8E) in 464 

comparison to NJ with CD4+ effector-GNLY and Tfh cell subsets decreasing while 465 

Treg cells increased. For SARS-CoV-2 infection, the relative percentage of naïve 466 

CD8+ T cells significantly decreased in severe COVID-19 patients whereas no 467 

significant changes were observed in naïve CD4+ T cell subsets (Fig 8F). The 468 

proportion of CD4+ effector memory decreased in COVID-19 patients compared to 469 

controls (Fig 8F) and in the convalescence stage, the CD4+ effector memory cells 470 

remained low and were not restored to the levels observed in the controls. In contrast, 471 

two cytotoxic subsets, including CD4+ effector-GNLY and CD4+ effector-GZMK, 472 
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were present in higher percentages for convalescence patients (Fig 8F). Of particular 473 

note, the cycling CD8+ subset was almost absent in controls but were highly enriched 474 

in COVID-19 patients, especially for severe patients (Fig 8F). Besides naïve CD8+, 475 

CD4+ effector-GNLY, CD4+ effector-GZMK, CD4+ effector memory and cycling 476 

CD8+ subsets, others T cell subsets were not significantly altered (Fig 8F, S11F-G).    477 

 478 

Transcriptomic changes in T cells after vaccine and SARS-CoV-2 infection 479 

We investigated transcriptomic changes in the T cell subsets of vaccinated participants 480 

and identified differences between vaccine and natural infection induced responses. 481 

GO analyses found that genes associated with “T cell activation”, “antigen processing 482 

and presentation” and “response to interferon” were enriched in T cell subsets after 483 

vaccination, implying an ongoing adaptive immune response to vaccination (Fig 9A). 484 

For SARS-CoV-2 infection, “Interferon signaling pathway”, “response to virus” and 485 

“defense response to virus” were specifically enriched in T cell subsets, suggesting an 486 

ongoing response against the virus (Fig S12A). IFN response is essential to the 487 

immune response triggered by vaccines or viral infections and consistently, we found 488 

that T cell subsets exhibited significant upregulation of IFN after vaccination and 489 

SARS-CoV-2 infection (Fig 9B, S12B). Four activated state T cell subsets, including 490 

CD4+ effector memory, CD4+ effector-GZMK, CD8+ effector-GNLY and CD8+ 491 

effector memory, showed significantly upregulated IFN after vaccination, whereas in 492 

SARS-CoV-2 infection, all activated state T cell subsets had IFN significantly 493 

upregulated (Fig 9C, S12B). COVID-19 patients had stronger expression of IFN than 494 

vaccinated individuals (Fig 9D). 495 

We then evaluated the cytotoxicity scores of different effector T cell subsets after 496 

vaccination. Our data showed that effector T cell subsets had lower cytotoxicity 497 

scores after vaccination than NJ condition at the bulk level (Fig 9E), and only two 498 

effector T cell subsets (CD8+ effector-GNLY and CD8+ effector memory) showed 499 

higher cytotoxicity scores after vaccination (Fig 9F). In contrast, the effector T cell 500 

subsets exhibited higher cytotoxicity scores in COVID-19 patients than controls at the 501 
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bulk level, and all effector T cell subsets showed higher cytotoxicity scores in 502 

COVID-19 patients (Fig S12C). COVID-19 patients also exhibited higher 503 

cytotoxicity scores than vaccinated individuals (Fig 9G). Interestingly, we did not 504 

observe significant elevation in exhaustion scores for effector T cell subsets after 505 

vaccination at the bulk level (Fig 9H) however only CD4+ effector-GNLY and CD8+ 506 

effector-GZMK showed an increase in exhaustion scores after vaccination (Fig 9I). 507 

For SARS-CoV-2 infection, effector T cell subsets did show higher exhaustion scores 508 

at the bulk level (Fig S12D). All effector T cell clusters in mild and severe COVID-19 509 

patients had higher exhaustion scores than controls, with severe patients having the 510 

highest exhausted score (Fig 9J, S12D). COVID-19 infection did not displayed a 511 

stronger exhaustion score in comparison to vaccinated individuals (Fig 9J).  512 

We also investigated the apoptosis and migration scores of different T cell subsets. 513 

Our data indicated that both vaccination and SARS-CoV-2 infection showed a high 514 

level of apoptosis and migration in T cell subsets at the bulk level (Fig 9K-P, S12E-515 

F), however stronger apoptosis and migration of T cell subsets were observed in 516 

COVID-19 patients, especially in the severe group (Fig 9K-P, S12E-F). These results 517 

suggest that significant activation of cell apoptosis and migration pathways in the 518 

PBMCs of severe disease may be associated with lymphopenia, consistent with 519 

previous studies (Chen et al., 2020; Tan et al., 2020).   520 

In addition, we observed that the expression of CD2AP significantly upregulated on 521 

activated CD4+ T cells after vaccination and SARS-CoV-2 infection (Fig 9Q). 522 

CD2AP, as an adaptor protein in CD4+ T cell, can modulate the differentiation of Tfh 523 

cells and promote protective antibody responses in viral infection (Raju et al., 2018). 524 

The expression of CD258 (TNFSF14) also significantly upregulated on activated 525 

CD4+ T cells (Fig 9R) and cytotoxic CD8+ T cells (Fig 9T) after vaccination and 526 

SARS-CoV-2 infection. TNFSF14 serves as a key component for T cell recruitment to 527 

tissues from peripheral blood as well as promote T cell activation. The expression of 528 

KDM5A significantly elevated in cytotoxic CD8+ T cells after vaccination and 529 

SARS-CoV-2 infection (Fig 9S). KDM5A encodes a demethylase-H3K4me3, which 530 
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is needed for T cell activation. These data suggested that increased activation of T 531 

cells in vaccinated individuals and COVID-19 patients may contribute to defense 532 

against the vaccine and SARS-CoV-2 virus.  533 

 534 

V(D)J gene usage and clonal expansion in T cells after vaccination and SARS-535 

CoV-2 infection 536 

TCR information was detected in all subsets and in ~60% of T cells. Clonal expansion 537 

of CD8+ effector T cells was larger (clonal size >100) than CD8+ cycling T cells and 538 

CD4+ T cells (Fig10A-B). >70% of T cells in the vaccine cohort and 53%~61% of T 539 

cells in COVID-19 cohorts had unique TCR clonotypes (FigS13A-B). A negative 540 

correlation between clone size and clonotype number was observed, consistent with 541 

previous report (Zhang et al., 2020) and suggests that large clonal expansion is a rare 542 

event (Fig 10C). Next, we compared the expression of T cell receptor β-chain 543 

constant domains 1 and 2 (TRBC1 and TRBC2). The percentage of TRBC1 increased 544 

after vaccination, while in COVID-19 patients, the percentage of TRBC1 was highest 545 

in severe disease and lowest in controls (Fig 10D, H, S13C). This suggests that 546 

immune activation by vaccination and infection are able to modulate T cell receptor β-547 

chain ratios. 548 

We compared T cell clonal expansion after vaccination and observed a 549 

significant decrease in clonal expansion of CD8+ T cells, especially CD8+T effector-550 

GNLY cells, from NJ to FJ to SJ. This suggests that two-doses of CoronaVac induced 551 

immunogenic proliferation leading to many new unique TCR clonotypes (Fig 10E, 552 

S13D). For COVID-19 infection, decreased CD8+ T cell clonal expansion was also 553 

observed in infected patients compared to Cont and Conv (Fig 10E), in agreement 554 

with previous report (Tanriover et al., 2021). Clonal expansion in CD4+ T cells was 555 

also decreased from NJ to SJ but was higher in severe than controls, suggesting that 556 

CD4+ T cells may play different roles in vaccine and infection immune responses 557 

(Fig 10E).  558 

The length distribution of the CDR3 region were similar for all conditions 559 
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(Fig10G). COVID-19 infected patients tended to have lower TCR diversity while 560 

vaccinated patients had higher diversity (Fig 10I) which may suggest a protective role 561 

for TCR diversity. The usage of TRB V(D)J genes across vaccine and infection 562 

conditions were compared (Fig 10F). The combination of the most prevalent 11 TRBJ 563 

and 22 TRBV genes indicates that vaccination induced greater diversity in TRB 564 

V(D)J genes (Fig10F top panel). Mild COVID-19 infection also induced greater 565 

diversity however no new V(D)J pair patterns were observed. In contrast, severe 566 

COVID-19 infection induced new prominent V(D)J pairs, including TRBJ1-6/TRBV9, 567 

TRBJ1-4/TRBV27 and TRBJ1-5/TRBV4-1. The change in pattern for TRAJ and 568 

TRAV pairs showed similar trends to TRB V(D)J (Fig10F bottom panel). In addition, 569 

the CDR3 peptides sequences showed large individual differences however we did not 570 

observe any interesting patterns across conditions (Fig S14). 571 

 572 

Discussion  573 

As an emerging virus, SARS-CoV-2 is highly pathogenic and is responsible for the 574 

COVID-19 pandemic. Currently, there are no effective drugs or optimal treatments for 575 

SARS-CoV-2 infection, thus considerable effort has been put into developing safe and 576 

effective vaccines against COVID-19. Inactivated SARS-CoV-2-based vaccines are 577 

one of the most-widely used COVID-19 vaccines due to its low cost, ease of scale-up 578 

and production (Iversen and Bavari, 2021a). CoronaVac is an inactivated COVID-19 579 

vaccine candidate which has had its safety and potency validated in both animal 580 

models and clinical trials (Tanriover et al., 2021; Zhang et al., 2021). However, 581 

current knowledge of the host immune response to the inactivated COVID-19 vaccine 582 

is still limited, making it difficult to inform and improve the design of new 583 

generations of COVID-19 vaccines. In addition, little is known about how this 584 

immune response compares to natural SARS-CoV-2 infection.  585 

In this report, we performed single-cell RNA sequencing in PBMCs of six 586 

individuals immunized with CoronaVac and compared these to the single-cell profiles 587 

in COVID-19 patients. Overall, both inactivated SARS-CoV-2 vaccine and natural 588 
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SARS-CoV-2 infection affect the composition of peripheral immune cells, with 589 

greater changes observed in COVID-19 patients, especially for severe disease. After 590 

CoronaVac injection, the inactivated SARS-CoV-2 virus initially encounters antigen 591 

presenting cells (APCs) in the innate immune system which then triggers the adaptive 592 

immune response. Our data confirmed that the proportion of DCs, one of the main 593 

APCs, are significantly elevated after vaccination (Fig 2), thus suggesting that 594 

CoronaVac is able to successfully initiate the adaptive immune response. However in 595 

severe COVID-19 patients, the relative percentage of DCs significantly decreased, 596 

implying a possible subversion of the adaptive immune response in severe disease. 597 

Monocytes are the major source of inflammatory cytokines in SARS-CoV-2 infection 598 

(Ren et al., 2021; Zhou et al., 2020), and were elevated after immunization with 599 

CoronaVac and SARS-CoV-2 infection (Fig S2). However, the level of monocytes 600 

was significantly greater in COVID-19 patients (especially for severe disease) 601 

compared to immunization. This implies that CoronaVac immunization causes a 602 

weaker inflammatory response than natural SARS-CoV-2 infection. The relative 603 

abundance of γδ T, MAIT, NK, CD4+ effector memory, and naïve CD8+ T cells 604 

decreased with disease severity while the proportion of cycling CD8+ T cells 605 

increased with disease severity, suggesting that these subsets may be associated with 606 

disease severity. We did not observe significant changes to these subsets after 607 

immunization with CoronaVac (Fig 2, 6, 9, S2, S6 and S11).  608 

IFNs are produced during viral infection and has an antiviral role. However 609 

when produced excessively, IFNs can cause immunopathological damages. 610 

Interestingly, ‘IFN response’ was enriched by GO analysis in different cell subclusters 611 

after vaccination in our study (Fig 4, 7 and 9). Compared to pre-vaccination samples, 612 

the response to IFN-α (type I IFN) pathway was also significantly elevated in most 613 

PBMC cell types in post-vaccination samples. Together, this suggests CoronaVac 614 

induces IFNs as part of the antiviral response. Similarly, ‘IFN response’ was also 615 

enriched by GO analysis after SARS-CoV-2 infection (Fig S4, S7 and S12). The 616 

expression level of IFN-α was also significantly upregulated in COVID-19 patients 617 
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(Fig S4, S7 and S12), suggesting an antiviral role triggered by IFNs. Notably, 618 

COVID-19 patients showed higher response to IFN-α than immunized individuals 619 

with the strongest response to IFN-α found in severe disease (Fig 7, 9).This indicates 620 

that the stronger response to IFNs in COVID-19 patients may be involved in immune 621 

pathology (e.g., lung injury) (Liu et al., 2020).  622 

In this report, we observed broad immune activation after immunization with 623 

CoronaVac. First, the levels of neutralizing antibodies (anti-S-RDB-specific antibody) 624 

significantly increased after the second injection (Fig 3, S3, Table S2). Second, B cell 625 

activation in PBMCs post-vaccination is supported by our data and evidenced by: (i) 626 

enrichment of genes involving in ‘B cell activation’, ‘adaptive immune response’ and 627 

‘antigen processing and presentation’; (ii) significant upregulation of two important B 628 

cell activation pathways (GO:0002312 and GO:0042113); (iii) the activation of naïve 629 

B and memory B cell subsets; (iv) significant expression of key genes (e.g., PRDM1, 630 

XBP1, IFR4, PAX5, IL4R and IL21R). Third, the activation of innate immune cells 631 

was observed in our study as genes associated with ‘antigen processing and 632 

presentation’, ‘IFNs response’, ‘T cell activation’ and ‘immune response-activating 633 

signal transduction’ were enriched by GO analysis (Fig 7). Fourth, the activation of T 634 

cell subsets was also supported by our data as genes involved in ‘T cell activation’, ‘T 635 

cell mediated immunity’, ‘antigen processing and presentation’, and ‘IFNs response’ 636 

were also enriched by GO analysis (Fig 9). Similarly, broad immune activation was 637 

also observed after SARS-CoV-2 infection (Fig S4, S7, S12). However, we observed 638 

significant downregulation of some HLA class II genes in B, T and innate cells in 639 

COVID-19 patients, especially for severe disease, implying a dysregulation in 640 

crosstalk between adaptive immune cell classes. Furthermore, some key chemokine 641 

receptor genes (e.g., CXCR5) were also significantly downregulated in the PBMCs of 642 

severe COVID-19 patients (Fig S4), which may impair germinal center reaction, 643 

resulting in a dysregulated humoral immune response (Mathew et al., 2020).  644 

We analyzed the apoptosis, migration, cytotoxicity and exhaustion scores in 645 

different immune cell subsets from immunized individuals and compared their 646 
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expression levels with COVID-19 patients. Overall, innate immune and T cell subsets 647 

showed higher apoptosis and migration scores after immunization with CoranaVac or 648 

SARS-CoV-2 infection (Fig 7, 9, Fig S7 and S12). However, compared to post-649 

vaccination, SARS-CoV-2 infection exhibited higher apoptosis and migration scores, 650 

with severe disease having the highest score. This suggests that severe patients likely 651 

had increased lymphocyte apoptosis and migration which may be associated with 652 

lymphopenia, a clinical predictor for severe COVID-19 disease (Tan et al., 2020). At 653 

the bulk level, post-vaccination effector T cell subsets did not display higher 654 

exhaustion scores compared to pre-vaccination samples. However for COVID-19 655 

patients, all samples had higher exhaustion scores compared to controls, and those 656 

with severe disease displayed the highest exhaustion scores. It is possible that the high 657 

exhaustion status of effector T cell subsets may be associated with functional 658 

impairment (Zheng et al., 2020). Interestingly, the effector T cell subset from post-659 

vaccination showed lower cytotoxicity scores at the bulk level than those of pre-660 

vaccination. In contrast, the cytotoxicity scores of the effector T cell subset from 661 

COVID-19 patients were higher than the controls with severe disease having the 662 

highest cytotoxic score. Similarly, we observed that the cytotoxicity scores in each 663 

subset of effector T cells were also significant elevated after SARS-CoV-2 infection. 664 

Although increased expression of pro-inflammatory cytokine genes was 665 

observed in monocytes post-vaccination, this upregulation may not be adequate to 666 

cause a significant increase in systemic levels of pro-inflammatory cytokines. This is 667 

supported by our immunoassay results which showed no obvious increase in several 668 

key pro-inflammatory cytokines (e.g., IL-6 and TNF) post-vaccination (Fig S10). In 669 

addition, the expression level of pro-inflammatory cytokine genes after vaccination 670 

was significantly lower than SARS-CoV-2 infection. These evidences suggest that 671 

CoronaVac may not contribute to acute inflammation or the cytokine storm commonly 672 

observed in severe COVID-19 patients (Zhou et al., 2020). Among the monocyte 673 

subsets, CD14+ monocytes were identified as the major contributor to inflammation 674 

for both immunization and SARS-CoV-2 infection. This is evidenced by: (i) a large 675 
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increase in CD14+ monocytes observed after vaccination and SARS-CoV-2 infection 676 

(Fig 3 and Fig S3) (Zhou et al., 2020) and  (ii) CD14+ monocytes was the largest 677 

contributor to the inflammatory scores (Fig 7). In addition, due to rising concerns 678 

about the bloodclotting side effect observed in several vaccine types, we also 679 

examined several key genes (e.g., 2RX1, P2RY1 and TBXA2R) involved in platelet 680 

aggregation in megakaryocytes (Sangkuhl et al., 2011).  Unlike SARS-CoV-2 681 

infection, our data demonstrated that the expression level of platelet aggregation-682 

associated genes were not significantly upregulated after immunization with 683 

CoronaVac. This may explain the fewer number of thrombus-related adverse events 684 

reported CoronaVac.  685 

 686 

Methods 687 

Volunteer cohort 688 

Three male and three female healthy adults (n = 6) were admitted at the Sanya People’s Hospital 689 

and enrolled in the study. Peripheral blood samples were collected at 3 key timepoints (Fig. 1A): 690 

pre-vaccine baseline (timepoint 1, day 0), 3 weeks following the first dose (timepoint 2, day 21), 691 

which was also the same day they received the second dose, and finally, 2 weeks following the 692 

second dose (timepoint 3, day 35). All six volunteers had matching samples at 3 time points. This 693 

study design allowed us to investigate the kinetics of the immune responses following both 694 

primary and secondary immunizations. 695 

Sample collection 696 

Supplementary Table 1 summarizes the characteristics of individuals assessed in each assay. Full 697 

cohort information is described in figure 1. The fresh blood samples for each timepoint 698 

immediately underwent peripheral blood mononuclear cells (PBMCs) isolation using standard 699 

density gradient centrifugation. PBMCs are typically employed to assess immune-regulatory 700 

effects at the single-cell level. PBMCs were isolated using HISTOPAQUE-1077 (Sigma-Aldrich, 701 

10771) solution according to the manufacturer’s instructions. Briefly, 3 mL of fresh peripheral 702 

blood was collected in EDTA anticoagulant tubes and subsequently layered onto HISTOPAQUE-703 

1077. After centrifugation, PBMCs remained at the plasma-HISTOPAQUE-1077 interface and 704 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.21262863doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

25

were carefully transferred to a new tube. Erythrocytes were removed using Red Blood Cell Lysis 705 

Solution (10×) (Miltenyi, 130-094-183) and washed twice with 1× PBS (Gibco, 10010023). The 706 

cell pellets were re-suspended in sorting buffer (PBS supplemented with 2% fetal bovine serum 707 

(FBS, Gibco, 10099141)). Cell viability of PBMCs were assessed using the Countstar cell 708 

viability detection kit and showed greater than 90% viability. PBMCs were then used in 709 

immunological analysis and cell encapsulation. The 10x Genomics single-cell transcriptome 710 

platform was used to generate the 5’ gene expression profiles, T cell receptor (TCR) and B cell 711 

receptor (BCR) data. This approach employs a commercial emulsion-based microfluidic platform 712 

(Chromium 10x) that enables the generation of amplified cDNA used for both the preparation of 713 

single cell RNA-seq libraries and TCR/BCR target enrichment and sequencing. 714 

Single cell RNA library preparation and sequencing 715 

Cell suspensions were barcoded through the 10x Chromium Single Cell platform using Chromium 716 

Single Cell 5’ Library, Gel Bead and Multiplex Kit, and Chip Kit (10x Genomics). Single-cell 717 

RNA libraries were prepared using the Chromium Single Cell 5' Kit v2 (10x Genomics; PN- 718 

1000263), Chromium Single Cell V(D)J Reagent kits (10x Genomics, PN-1000252(TCR), PN-719 

1000253(BCR)) according to the manufacturer’s instructions. Each sequencing library was 720 

generated with a unique sample index. The libraries were sequenced on the Illumina Novaseq6000 721 

sequencer with a paired-end 150-bp (PE150) reading strategy. With the provided sample sheet, the 722 

CellRanger (v.5.0.0) mkfastq command was used to demultiplex the flow cells’ raw base call files 723 

into fastq files. 724 

 725 

SARS-CoV-2-specific IgM/IgG ELISA and plasma cytokine detection 726 

The S-specific IgG/IgM and  plasma cytokine detection were detected according to our previous 727 

study (Wang et al., 2021).   728 

 729 

Quantification and Statistical analysis 730 

Single-cell RNA-seq and data processing 731 

The human reference (v.GRCh38-3.0.0) was downloaded from the 10x Genomics official website 732 

in Mar-2021. Raw and filtered gene expression matrices were generated for each sample using the 733 
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kallisto/bustools (kb v0.24.4) pipeline coupled with human GRCh38. The kb count command was 734 

called to generate single cell feature counts for each sample by specifying the library name in the 735 

argument. Then the filtered feature, barcode and matrix files were analyzed in python (v3.8.10) 736 

using the anndata (ad) (v0.7.6) and scanpy (sc) (v1.7.2) packages. Data files of all 18 samples and 737 

the largest dataset of Chinese PBMC COVID-19 infection (64 fresh PBMC samples from Cell 738 

2021 Zhangzemin) were merged together by the ad.concat function. Cells and genes were filtered 739 

by the sc.pp.filter_cells and sc.pp.filter_genes function for further analyses. First, genes expressed 740 

at a proportion >0.1% of the cells were selected. Second, to minimize technical artifacts from low-741 

quality cells and potential doublets, cells meeting the following criteria were filtered out: (1) < 742 

1000 or > 25000 unique molecular identifiers (UMIs, representing unique mRNA transcripts); (2) 743 

<500 or > 5000 genes; or (3) > 10% UMIs derived from the mitochondrial genes. The scanpy’s 744 

external module Scrublet (Wolock et al., 2019) was called using the sc.external.pp.scrublet 745 

function to identify potential doublets using default parameters. An automatically set threshold 746 

labelled 299 cells with a doubletScore > 0.25 as “predicted_doublets” and were filtered out. After 747 

quality control, a total of 585860 cells remained. The violin distribution and scatter plot for 748 

computed quality measures including gene counts per cell, UMI counts per cell and mitochondrial 749 

gene percentage are shown in Supplementary Fig 1. The gene expression matrix were normalized 750 

by library size to 10,000 reads per cell by sc.pp.normalize_total function, so that all cells were 751 

comparable in UMI counts. Next, the normalized counts were natural log transformed (X = log(X 752 

+ 1)) by sc.pp.log1p function. The log transformed expression values were used for downstream 753 

analysis.  754 

Batch effect correction and dataset integration 755 

Gene features with high cell-to-cell variation in the data were prioritized using the 756 

sc.pp.highly_variable_genes function (supplemental Fig 1). Briefly, the informative highly-757 

variable genes (HVGs) were selected within each sample separately and merged to select the 758 

consensus set of 1,500 top-HVGs. All ribosomal and mitochondrial genes were removed from 759 

HVGs as described (Cell 2021 Zhangzemin). The HVGs subset matrix extracted from the full 760 

expression matrix was used for downstream integration steps. Then each gene was scaled to unit 761 

variance and zero mean and clipped when values exceeded 10.  762 
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Integration of different datasets was conducted in the order of dimension reduction by principal 763 

component analysis (PCA), batch effect correction using Harmony algorithm (Korunsky et al. 764 

(2019), Fast, sensitive and accurate integration of single-cell data with Harmony) and 765 

unsupervised clustering using Louvain algorithm (Traag et al., 2019). Specifically, the main axes 766 

of variation was identified using the sc.tl.pca function with parameter svd_solver='arpack'. 767 

Dimensionality of the datasets was reduced to 50 PCA components and fed into 768 

sc.external.pp.harmony_integrate function implemented in the python package harmonypy. The 769 

parameter theta was set as 2.5 for sample for technical covariate correction. Nearest neighbor 770 

graph of cells was built using the sc.pp.neighbors function with batch-corrected matrix.  771 

Cell clustering and annotations 772 

Unsupervised clustering of cells was then computed by sc.tl.louvain at different resolutions using 773 

the neighborhood relations of cells. Cluster-specific signature genes were identified using the 774 

sc.tl.rank_genes_groups function. Cluster annotation was done manually by matching canonical 775 

cell marker genes with Cluster-specific signature genes.  776 

Clustering analysis of cell types consisted of two rounds. The first round (Louvain resolution = 1.2) 777 

was performed on all cells and identified 10 major cell types (Fig 1, S1). The second round (with 778 

Louvain resolution ranging from 0.3 to 1.8) was performed on CD4+/CD8+ T cells, B cells, 779 

monocyte and DC cells separately to subdivide each cell type into sub-clusters. These sub-clusters 780 

represented distinct immune cell lineages within each major cell type. Each sub-cluster was 781 

manually analyzed by domain experts and considered as distinctive enough when they had at least 782 

one highly expressed signature gene compared to other cells. The complete list of canonical 783 

marker genes and cluster-specific highly expressed signatures are provided in Fig 3, 6, 8, S3, S6 784 

and S11. 785 

Cell state score of cell subtypes  786 

After cluster annotation were completed, several gene sets from important immune processes were 787 

used to compare overall activation level or physiological activity of cell clusters. Gene sets related 788 

to cytokine storm and immune exhaustion were collected from previous literature (Nature Immun 789 

2020, Cell 2021 zhangzemin ) and gene sets about Response To Interferon Alpha (GO:0035455), 790 

Response To Interferon Beta (GO:0035456), Acute Inflammatory Response (GO:0002526), 791 
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Apoptotic Signaling Pathway (GO:0097190), Leukocyte Migration (GO:0050900) were collected 792 

from the MsigDB database. Cell state scores were calculated using the sc tl.score_genes function 793 

available in Scanpy.  794 

The cell scores of the cell were defined as the average expression of the genes from the 795 

predefined gene set with respect to reference genes. Comparison of the cell state score of one 796 

condition versus another condition was statistically assessed using the Mann-Whitney rank test 797 

(two-tail, p-value < 0.01, adjusted using the Benjamini–Hochberg method). 798 

TCR and BCR V(D)J immune repertoire sequencing and analysis 799 

From one aliquot of the gene expression 5′ libraries, full-length TCR/BCR V(D)J segments were 800 

enriched from transcriptome cDNA via PCR amplification using the Chromium Single-Cell V(D)J 801 

Enrichment kit according to the manufacturer’s protocol. Similar to the gene expression pipeline, 802 

immune repertoire preprocessing was performed using Cell Ranger (v.6.0.0) vdj command with 803 

human vdj reference vGRCh38-alts-ensembl-5.0.0. This pipeline includes demultiplexing by 804 

index and barcodes, TCR/BCR V(D)J sequence discovery and TCR/BCR clonotype assignment to 805 

each cell. V(D)J immune repertoire was analyzed by the python-toolkit, Scirpy. In brief, the 806 

productive chains of each cell were identified and connected with the cell’s barcode information. 807 

Each unique TRA(s)-TRB(s) pair was defined as a TCR clonotype and each unique IGH(s)-808 

IGK/IGL(s) pair was defined as a BCR clonotype. If one clonotype was present in at least two 809 

cells, cells harboring this clonotype were considered to be clonal and the number of cells with 810 

such pairs indicated the degree of clonality of the clonotype. Only cells with at least one 811 

productive clonotype was used in the following analysis. The TCR/BCR downstream analysis 812 

were similar for the most part. TCR/BCR data table of cells loaded by Scirpy was matched 813 

together with gene expression profiles already prepared by Scanpy in the AnnData data structure. 814 

Clonotypes were then clustered based on the similarity of their CDR3 amino acid sequences. 815 

TCR/BCR diversity metric, containing clonotype frequency and clonotype composition, was 816 

obtained using scirpy.pl.alpha_diversity function based on ‘normalized_shannon_entropy’. 817 

Statistics 818 

The statistical analysis, visualization and method details described in this study were performed in 819 

python and R and are provided with the results of the main text, in the figure legends or in the 820 
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above Methods sections. In all figures with significance marks, the following convention for 821 

symbols indicating statistical significance were used:  822 

ns: p > 0.05 823 

*: p <= 0.05 824 

**: p <= 0.01 825 

***: p <= 0.001 826 

****: p <= 0.0001 827 

 828 

Code availability 829 

Experimental protocols and the data analysis pipeline used in our work follow the 10X Genomics 830 

and Seurat official websites. The analysis steps, functions and parameters used are described in 831 

detail in the Methods section. Custom scripts for analyzing data are available upon reasonable 832 

request. The software and algorithms used in this report are presented in Table S8.  833 
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Figure legends 986 
Fig 1. Study design and overall results of single-cell transcriptomic profiling of PBMCs 987 
isolated from vaccine recipients without COVID-19 infection.  988 

A, A schematic diagram of the overall study design. The PBMCs from six recipients, 3 male and 3 989 
female adults, and across three conditions were subjected to scRNA-seq gene expression profiling, 990 
TCR and BCR profiling analyses. The data set was integrated with a published COVID-19 991 

scRNA-seq data set comprised of 64 fresh PBMC samples.  992 

B. Cell populations identified and 2-D visualization. The UMAP projection of 180k single cell 993 
transcriptomes from NJ (n = 6), FJ (n = 6) and SJ (n = 6) samples, showing the presence of 10 994 
major clusters and 27 smaller clusters with their respective colors. Each dot corresponds to a 995 

single cell, colored according to the annotated major cell type ( left panel) or subcelltype ( right 996 

panel). C. Canonical single cell RNA markers were used to label major clusters by cell identity as 997 
expression level on the UMAP plot. Cells are colored according to log transformed and 998 

normalized expression levels of twelve genes (CD3D, CD8A, CD40LG, etc.).  999 
D. Expression distribution of cell identity specific RNA markers of vaccine cohort samples. The 1000 
rows represent 10 cell clusters labeled with different colors and the columns represent log 1001 

transformed gene expression of the RNAs. The distribution of a gene in a cluster is shown as one 1002 
small violin plot.  1003 

E. Similar to Fig 1B, Cell populations identified and 2-D visualization of 410k single cell 1004 
transcriptomes from Cont (Control), Conv (Convalescence), Mild (Mild), and Seve (Severe) 1005 
samples from Ren et al..  1006 

 1007 

Fig 2. Comparison of cell composition across sample groups. 1008 
A. UMAP projection of the single cells from NJ, FJ and SJ conditions. Each dot corresponds to a 1009 
single cell, colored by its major cell type.  1010 

B. Average proportion of each major cell type derived from NJ, FJ and SJ groups.  1011 
C. Proportion of each major cell type derived from each NJ, FJ and SJ individual sample.  1012 

D. The box plot shows cell compositions of NJ, FJ and SJ conditions at a single sample level. 1013 
Condition preference of each cluster compared side by side. y axis, percentage of cell types. Boxes 1014 
are colored by conditions. Each plot panel represents one cell type. 1015 

E. Average proportion of each major cell type derived from Cont, Conv, Mild, and Seve conditions 1016 
from the COVID-19 infection cohort.  1017 

F. Proportion of each major cell type derived from individual samples of Cont, Conv, Mild, and 1018 
Seve groups from the COVID-19 infection cohort 1019 

G. The box plot shows cell compositions of Cont, Conv, Mild, and Seve conditions from the 1020 
COVID-19 infection cohort at a single sample level. 1021 

In 2D and 2G, all pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-1022 

test are marked to show significance levels. 1023 

 1024 
Fig 3. Characterization of B cell composition differences in individuals across vaccination 1025 

and infection conditions  1026 
A. UMAP projection of all B cells from NJ, FJ and SJ conditions. Each dot corresponds to a single 1027 
cell, colored by its cell subtype. 1028 

B. Expression levels of canonical B cell RNA markers were used to identify and label major cell 1029 
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clusters on the UMAP plot. Cells are colored according to log transformed and normalized 1030 

expression levels of eight genes. Cells are from NJ, FJ and SJ conditions 1031 

C. Average proportion of each B cell subtype derived from NJ, FJ and SJ groups.  1032 

D. Proportion of each B cell subtype derived from NJ, FJ and SJ individual samples.  1033 
E. The box plot shows the composition of B cells before (NJ) and after vaccination (FJ, SJ) at a 1034 
single sample level.  1035 

F. UMAP projection of all B cells from Cont, Conv, Mild and Seve conditions. Each dot 1036 
corresponds to a single cell, colored by its cell subtype. 1037 

G. Proportion of each B cell subtype derived from Cont, Conv, Mild and Seve individual samples. 1038 
H. Antibody levels of IgM and IgG at NJ, FJ and SJ conditions in serum. 1039 

I. The composition of Ig classes in the vaccine cohort identified by BCR single cell sequencing. 1040 
J. The composition of Ig classes in the COVID-19 infected cohort identified by BCR single cell 1041 
sequencing. 1042 

All pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-test are marked 1043 
to show significance levels. 1044 

 1045 

Fig 4. Characterization of gene expression differences in B cells in individuals across 1046 
vaccination and infection conditions. 1047 

A. GO enrichment analysis of DEGs identified by comparing before- and after- vaccination 1048 
conditions. DEGs refer to genes with Benjamini–Hochberg adjusted P value (two-sided unpaired 1049 
Mann–Whitney U-test) ≤0.01 and average log2 fold change ≥1 in both FJ/NJ and SJ/NJ 1050 

comparisons. 1051 

B. Violin plots of B cell expression activities in three vaccine conditions. Cells are grouped and 1052 
colored by conditions. Y axis represents the normalized expression score of gene sets related to 1053 
B_CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE (GO:0002312) and  1054 

B_CELL_ACTIVATION (GO:0042113) 1055 

C. Dot plots of the gene expression level of naïve B cells in three vaccine conditions. Rows 1056 
represent conditions; columns represent genes. Dots are colored by mean expression levels in each 1057 

condition. 1058 
D. (Left) Dot plots of IL4R and IL21R expression level of naïve B cells between pre-vaccination 1059 
and post-vaccination. Rows represent conditions; columns represent genes. Dots are colored by 1060 

mean expression levels in each condition. (Right) Violin plots show the expression level of the 1061 
two genes in before- and after- vaccination conditions. 1062 

E. Violin plots of the expression level of IL4R and IL21R genes in naïve B cells, activated B cells 1063 
and memory B cells.  1064 

F. Dot plots of gene expression level of memory B and intermediate transition memory B cells in 1065 
vaccine cohort. Rows represent genes (TBX21, ZEB2, TFEC, ZBTB32, YBX3); columns represent 1066 

B cell subtypes. Dots are colored by mean expression levels in each group. 1067 

G. PRDM1, XBP1, IRF4 gene expression level of activated B cells and other B cells in the vaccine 1068 
cohort. Dot plots (Left) and violin plots (Right) are used for visualization. 1069 

H. PAX5, BCL6 and BACH2 gene expression level of B cells in before- and after-vaccination 1070 
conditions. Dot plots (Left) and violin plots (Right) are used for visualization. 1071 

I. CXCR5, CXCR4 and CCR6 gene expression level of B cells in before- and after-vaccination 1072 
conditions. Dot plots (Left) and violin plots (Right) are used for visualization. 1073 
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J. Gene expression level of HLA-II genes in B cells in before- and after-vaccination conditions. 1074 
Dot plots (Left) show individual genes and violin plots (Right) show normalized average 1075 
expression of the HLA-II gene set. 1076 

K. Gene expression level of HLA-II genes in B cells in Cont, Conv, Mild and Seve conditions. 1077 
Dot plots (Left) show individual genes and violin plots (Right) show normalized average 1078 
expression of the HLA-II gene set. 1079 

All pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-test are marked 1080 

to show significance levels. 1081 

 1082 
Fig 5. Changes in BCR clones and selective usage of V(D)J genes.  1083 

A. UMAP projection of B cells derived from PBMCs. Cells are colored by conditions (Panel 1), B 1084 
cell subtypes (Panel 2), if BCR detection was successful (Panel 3) and clone-type expansion size 1085 

(panel 4) 1086 

B. Pie graph showing the distribution of IGHA, IGHD, IGHG and IGHM in B cells and plasma 1087 
cells.  1088 

C. Box plot showing the percentages IGHA, IGHD, IGHG and IGHM in B cells and plasma cells 1089 
under each condition. 1090 

D. Pie graph showing the distribution of light chain IGK and IGL in B cells and plasma cells 1091 
under each condition. 1092 

E. Stacked bar plots showing the clone state of each B cell subtype in each condition.  1093 
F. Heat maps showing differential IGH/K/L rearrangement. Prevalent IGHV-IGHJ combination 1094 
pairs (left) and IGKV-IGKJ combination pairs (right) are compared across conditions. Usage 1095 

percentage are sum normalized by column.  1096 

H. Box plot showing the alpha diversity of clonotypes in each PBMC sample. Data points are 1097 
colored by condition.  1098 

I. Density curve plots showing the distribution shift of IGK/L and IGH chain CDR3 region length 1099 
in BCR clone types for each condition. 1100 

 1101 

Fig 6. Characterization of innate cell composition differences in individuals across 1102 
vaccination and infection conditions.  1103 

A. UMAP projection of all innate cells from NJ, FJ and SJ conditions. Each dot corresponds to a 1104 
single cell, colored by its cell subtype. 1105 

B. Expression levels of canonical innate cell RNA markers were used to identify and label major 1106 
cell clusters on the UMAP plot. Cells are colored according to log transformed and normalized 1107 
expression levels of eight genes. Cells are from NJ, FJ and SJ conditions. 1108 

C. Average proportion of each innate cell subtype derived from NJ, FJ and SJ groups.  1109 

D. Proportion of each innate cell subtype derived from NJ, FJ and SJ individual samples.  1110 

E. The box plot shows the composition of innate cells in NJ, FJ and SJ conditions at a single 1111 
sample level.  1112 

F. UMAP projection of all innate cells from Cont, Conv, Mild, and Seve conditions. Each dot 1113 
corresponds to a single cell, colored by its cell subtype. 1114 

G. Proportion of each innate cell subtype derived from Cont, Conv, Mild and Seve individual 1115 
samples. 1116 

H. Proportion of each innate cell subtype derived from ContNJ(NJ), Vacc(FJ+SJ), Conv, MiSe 1117 
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(Mild and Seve) individual samples. 1118 

All pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-test are marked 1119 
to show significance levels. 1120 

 1121 

Fig 7. Characterization of gene expression differences in innate immune cells from vaccine 1122 
and COVID-19 infected cohort samples. 1123 

A, GO enrichment analysis of DEGs identified by comparing the before and after vaccination 1124 
conditions. DEGs refer to genes with Benjamini–Hochberg adjusted P value (two-sided unpaired 1125 
Mann–Whitney U-test) ≤0.01 and average log2 fold change ≥1 in both  1126 
FJ/NJ and SJ/NJ comparisons. 1127 

B, C and D, Expression activity of IFN-alpha, apoptosis and migration pathways in innate 1128 
immune cells of NJ, FJ, SJ, Cont, Conv, Mild and Seve conditions shown as violin plots and 1129 

colored by sample conditions. 1130 

E, Heatmap dot plot of HLA-II gene expression in innate immune cells of NJ, FJ, and SJ 1131 
conditions 1132 

F, Heatmap dot plot of HLA-II gene expression in innate immune cells of Cont, Conv, Mild and 1133 
Seve conditions 1134 

G, Violin plot showing normalized expression levels of P2RX1, TBXA2R and P2RY1 in 1135 
megakaryocytes (Mega) from NJ and Vaccine (FJ+SJ) conditions 1136 

H, Violin plot of normalized expression of P2RX1, TBXA2R and P2RY1 in megakaryocytes (Mega) 1137 
from Cont, Mild and Seve conditions 1138 

I, Expression activity of inflammatory pathways in monocytes from NJ, FJ and SJ conditions 1139 
shown as box plots. Boxes are colored by sample conditions. 1140 

J, Expression activity of inflammatory pathways in monocytes from Cont, Conv, Mild and Seve 1141 
conditions shown as box plots. Boxes are colored by sample conditions. 1142 

K, Expression activity of inflammatory pathways in monocytes from NJ, Vacc, Cont, Conv, Mild 1143 
and Seve conditions shown as violin plots. Violins are colored by sample conditions. 1144 

L, Pie graph of relative percentage for CD14+monocytes, CD16+monocytes, 1145 
CD14+CD16+monocytes in the vaccine and COVID-19 cohort. 1146 
 1147 

M, Pie graph of inflammatory scores from CD14+monocytes, CD16+monocytes, 1148 
CD14+CD16+monocytes in the vaccine and COVID-19 cohort. 1149 
 1150 

Fig 8. Characterization of T cell composition differences in individuals across vaccination 1151 
and infection conditions.  1152 
A, UMAP projection of all T cells from NJ, FJ and SJ conditions. Each dot corresponds to a single 1153 
cell, colored by its cell subtype. 1154 

B, Expression levels of canonical T cell RNA markers were used to identify and label major cell 1155 
clusters on the UMAP plot. Cells are colored according to log transformed and normalized 1156 
expression levels of eight genes. Cells are from NJ, FJ and SJ conditions 1157 

C, Average proportion of each T cell subtype derived from NJ, FJ and SJ groups.  1158 
D, Proportion of each T cell subtype derived from NJ, FJ and SJ individual samples.  1159 

E, The box plot shows the composition of T cells from NJ, FJ and SJ conditions at a single sample 1160 
level.  1161 
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F, The box plot shows the composition of T cells from Cont, Conv, Mild and Seve conditions at a 1162 
single sample level. 1163 
All pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-test are marked 1164 

to show significance levels. 1165 
 1166 

Fig 9, Characterization of gene expression differences in activated T cells from vaccine and 1167 

COVID-19 infected cohort samples. 1168 

A, GO enrichment analysis of DEGs identified by comparing the before and after vaccination 1169 
conditions. DEGs refer to genes with Benjamini–Hochberg adjusted P value (two-sided unpaired 1170 
Mann–Whitney U-test) ≤0.01 and average log2 fold change ≥1 in both  1171 

FJ/NJ and SJ/NJ comparisons. 1172 

B and C, Expression activity of IFN-alpha pathways in activated T cells (B) and subtypes (C) of 1173 
NJ and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. 1174 

D, Expression activity of IFN-alpha in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild and Seve 1175 
conditions shown as violin plots and colored by sample conditions. 1176 

E and F, Expression activity of cytotoxicity pathways in activated T cells (E) and subtypes (F) of 1177 
NJ and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. 1178 

G, Expression activity of cytotoxicity pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, 1179 
Mild and Seve conditions shown as violin plots and colored by sample conditions. 1180 

H and I, Expression activity of exhaustion genes in activated T cells (H) and subtypes (I) of NJ 1181 
and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. 1182 

J, Expression activity of exhaustion genes in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild and 1183 
Seve conditions shown as violin plots and colored by sample conditions. 1184 

K and L, Expression activity of apoptosis pathways in T cells (K) and subtypes (L) of NJ and 1185 
Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. 1186 

M, Expression activity of apoptosis pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild 1187 
and Seve conditions shown as violin plots and colored by sample conditions. 1188 

N and O, Expression activity of migration pathways in activated T cells (N) and subtypes (O) of 1189 
NJ and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. 1190 
P, Expression activity of migration pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild 1191 
and Seve conditions shown as violin plots and colored by sample conditions. 1192 

Q and R, Gene expression level of CD2AP (Q) and TNFSF14 (R) in activated CD4+T cells in NJ, 1193 
FJ, SJ, Cont, Conv, Mild and Seve conditions. Violin plots showed normalized average expression 1194 

of CD2AP (Q) and TNFSF14 (R). 1195 
S and T, Gene expression level of KDM5A (S) and TNFSF14 (T) in cytotoxic CD8+T cells in NJ, 1196 
FJ, SJ, Cont, Conv, Mild and Seve conditions. Violin plots showed normalized average expression 1197 

of KDM5A (S) and TNFSF14 (T). 1198 
All pairwise differences with P < 0.05 using two-sided unpaired Mann–Whitney U-test are marked 1199 
to show significance levels. 1200 
 1201 

Fig 10. Changes in TCR clones and selective usage of V(D)J genes.  1202 
A, UMAP projection of T cells derived from PBMCs. Cells are colored by conditions (Panel 1), T 1203 
cell subtypes (Panel 2), if TCR detection was successful (Panel 3) and clonotype expansion size 1204 

(panel 4). 1205 
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B, Stacked bar plot shows the TCR detection success rate for each T cell subtype.  1206 

C, Histogram shows the negative correlation between the number of T cell clones and the number 1207 
of cells per clonotype. Y axis is log10 scaled.  1208 

D, Pie graph showing the distribution of TRBC1 and TRBC2 in T cells under each condition. 1209 
E, Stacked bar plots showing the clone state of each T cell subtype in each condition.  1210 
F, Heat maps showing differential TRBV-J and TRAV-J rearrangement. Prevalent TRBV-J 1211 
combination pairs (top) and TRAV-J combination pairs (bottom) are compared across conditions. 1212 

Usage percentage are sum normalized by column.  1213 

G, Density curve plots showing the distribution shift of TRA and TRB chain CDR3 region length 1214 
in TCR clone types from each condition.  1215 

H, Box plot showing TRBC1 and TRBC2 percentages in NJ, FJ, SJ, Cont, Conv, Mild and Seve 1216 
conditions 1217 

I, Box plot showing the alpha diversity of TCR clonotypes in each PBMC sample. Data points are 1218 
colored by condition. 1219 
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