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• Explainable artificial intelligence (XAI) is
utilized to interpret the prediction results.

• Cross-validation is used for a more accu-
rate model performance assessment.
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One of the worst environmental catastrophes that endanger the Australian community is wildfire. To lessen potential
fire threats, it is helpful to recognize fire occurrence patterns and identify fire susceptibility in wildfire-prone regions.
The use of machine learning (ML) algorithms is acknowledged as one of the most well-known methods for addressing
non-linear issues like wildfire hazards. It has always been difficult to analyze these multivariate environmental disas-
ters because modeling can be influenced by a variety of sources of uncertainty, including the quantity and quality of
training procedures and input variables. Moreover, althoughML techniques show promise in this field, they are unsta-
ble for a number of reasons, including the usage of irrelevant descriptor characteristics when developing the models.
Explainable AI (XAI) can assist us in acquiring insights into these constraints and, consequently, modifying the model-
ing approach and training data necessary. In this research, we describe how a Shapley additive explanations (SHAP)
model can be utilized to interpret the results of a deep learning (DL) model that is developed for wildfire susceptibility
prediction. Different contributing factors such as topographical, landcover/vegetation, and meteorological factors are
fed into the model and various SHAP plots are used to identify which parameters are impacting the prediction model,
their relative importance, and the reasoning behind specific decisions. The findings drawn from SHAP plots show the
significant contributions made by factors such as humidity, wind speed, rainfall, elevation, slope, and normalized dif-
ference moisture index (NDMI) to the suggested model's output for wildfire susceptibility mapping. We infer that de-
veloping an explainable model would aid in comprehending the model's decision to map wildfire susceptibility,
pinpoint high-contributing components in the prediction model, and consequently control fire hazards effectively.
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1. Introduction

Wildfires have been one of the biggest and most prevalent threats
harming natural ecosystems in recent decades. Globally, fires decimatemil-
lions of hectares of rangelands and forests each year (Zhongming et al.,
2020). Natural fires can occur in rangelands and forests due to a variety
of variables, including friction between dry litter, litter accumulation, light-
ning, insufficient precipitation, global warming, deforestation, hot winds,
climate change, and poor land management (Chuvieco et al., 2003;
Ganteaume et al., 2013). Over time, wildfires have become more frequent,
and the damage caused by wildfires to forests worldwide is estimated at
37 million ha each year (Ajin et al., 2015). In addition to seriously damag-
ing infrastructure and human life, wildfires have caused major destruction
to ecosystems (Sayad et al., 2019). By detecting places that are highly fire
susceptible, applying fire prevention, and taking fire safety precautions,
damage caused by fire can be reduced (Jaiswal et al., 2002). Determining
the elements that influence the incidence of fire, such as human activities,
topographic, climatic, and fuel conditions is necessary in order to identify
fire-susceptible zones (Vasilakos et al., 2009). As a result, it is necessary
to establish the connection between these elements and the likelihood of
fire (Naderpour et al., 2021). To accomplish this, it is required to keep
track of places by establishing good quality fire-inventory where past fires
have happened and then compares those locations to layers of the elements
impacting fire susceptibility to ascertain how they are related (Smith and
Lyon, 2000).

A multi-scaled system of wildfire parameters, including climate
(e.g., rainfall, temperature, wind speed, humidity, etc.), topography
(e.g., elevation, slope, aspect), and landcover and vegetation factors are
used as the predicting variables in the modeling and mapping of wildfire
susceptibility (Iban and Sekertekin, 2022). Globally, wildfire susceptibility
has been mapped by several research (Gholamnia et al., 2020; Pradhan
et al., 2007; Tien Bui et al., 2016). For predicting and simulating the wild-
fire likelihood spatial pattern in various geographical areas, a variety of spa-
tial modeling techniques have been developed with different predicting
variables (Talukdar et al., 2022). Some of these researches combined re-
mote sensing derived data and geographic information systems (GIS) data
with multi-criteria decision analysis (MCDA) to estimate the susceptibility
of wildfires. For example, Nami et al. (2018) applied the evidential belief
function (EBF) method using 1162 wildfire points and 14 predicting vari-
ables for wildfire susceptibility mapping in the Hyrcanian ecoregion, north-
ern Iran. The findings demonstrated the GIS-based EBF model's efficacy in
wildfire probability prediction with the values of 84.14 % for the area
under curve (AUC). In order to assess the significance of each wildfire con-
ditioning element and identify high-risk wildfire zones in Iran's
Mazandaran Province, Eskandari and Miesel (2017) employed a
knowledge-based analytical hierarchical process (AHP) and fuzzy sets.
The findings demonstrated the capability of the fuzzy AHPmethod to iden-
tify high-risk locations for fire in Iran's Hyrcanian forests. The spatial distri-
bution of natural disasters like wildfires has also been widely analyzed and
predicted using machine learning (ML) models such as random forest (RF)
(Kim et al., 2019), neural networks (NNs) (Dutta et al., 2016), logistic re-
gression (Kuter et al., 2011), and support vector machine (SVM) (Al-
Fugara et al., 2021). The development of ML algorithms depends on the
training data availability, and different ML techniques have different ad-
vantages and disadvantages (Tavakkoli Piralilou et al., 2022). In particular,
in the mapping of natural hazards susceptibility, ML models have demon-
strated their ability to effectively handle non-linearity issues in spatial sim-
ulation, modeling, and mapping (Eskandari et al., 2021). Moreover,
compared to traditional methods like MCDA, the key benefit of merging
ML algorithms with GIS approaches is typically a better performance of
the resulting wildfires prediction as well as a faster rate of data processing
(Jaafari et al., 2019). Several statistical and ML models, such as NN, RF,
SVM, decision tree, radial basis function, least angle regression and logistic
regression, were assessed in a comprehensive wildfire susceptibility study
(Gholamnia et al., 2020). The accuracy evaluation of the study showed
that RF represents the wildfire prediction with the best accuracy, with an
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area under the curve (AUC) of 88 %, followed by SVM with a 79 % AUC.
To assess the locations of forest fires in South Korea, Kim et al. (2019)
used two ML models such as RF and maximal entropy. Their research
showed that this wildfire hazard had a significant link with human-
related factors and the highest wildfire probabilities were found in the vi-
cinity of settlement regions. ThreeMLmodels, includingmultivariate adap-
tive regression splines, SVM, and boosted regression tree were applied by
(Kalantar et al., 2020) for the wildfire susceptibility mapping using 14 crit-
ical indicators that influence wildfires. In recent years, the state-of-the art
machine learning technique such as deep learning models (DLs) has also
gained popularity in the remote sensing field, especially in wildfire suscep-
tibility and risk predictions (Naderpour et al., 2021). Bjånes et al. (2021)
implemented an ensemblemethod based on two DLmodels tomapwildfire
susceptibility in two regions in Chile. In order to provide a dataset from
which to extract the samples for the models' training, satellite data for 15
fire-influencing elements in the study area was acquired. The results
showed that the proposed model achieved the highest accuracy with AUC
of 95.3 % in the predicted susceptibility maps. In a recent work,
Naderpour et al. (2021) applied a DL model for wildfire susceptibility and
risk assessment in the Northern Beaches region of Sydney, Australia. As
input to their model, 36 critical key variables influencing the risk of forest
fires were chosen and spatially mapped from a variety of contexts, includ-
ing physical, social, human-induced, climate, morphology, and topography
viewpoints. The final outcomes demonstrated the developed model's high
level of precision in determining forest fire susceptibility.

The lack of trust, explainability and transparency when utilizing any
machine learning model in real-world scenarios is a barrier for wildfire
management planners as these algorithms are viewed as being “black
box” models, meaning that it is difficult to understand how they arrive at
their conclusions. This is because these models are trained on massive
amounts of data andmake use of complex algorithms that are difficult to in-
terpret (Abdollahi and Pradhan, 2021; Cheng et al., 2021; Maddy and
Boukabara, 2021). It has been found in the literature that researchers and
decision-makers tend tomostly utilizeML techniques to assess and spatially
map wildfire susceptibility. However, the explanation and interpretation of
the model outcomes are crucial. Explainable artificial intelligence (XAI) re-
fers to the development of artificial intelligence (AI) systems that can be
easily understood and explained by humans (Maddy and Boukabara,
2021). XAI aims to address black box issue by developing AI models that
are more transparent and interpretable (Arrieta et al., 2020; Cilli et al.,
2022). This can involve using simpler algorithms or designing models in
such a way that their internal workings are easier to understand. Addition-
ally, XAI can involve developing tools that allow users to visualize and in-
teract with the model, helping them to understand how it is making
decisions (Arrieta et al., 2020). There are many potential benefits to XAI.
For example, it can help to build trust in AI models and ensure that they
are being used fairly and ethically. It can also help to identify and correct
biases in AI systems andmodels. The introduction of explicable algorithms,
such as SHapley Additive exPlanations (SHAP), can influence perceptions
of utilizing machine learning (ML) based models for decision-making by
making it easier to understand model outputs (Cheng et al., 2021). There-
fore, this work's originality lies in implementing an explainable deep learn-
ing approach to map wildfire susceptibility and determine which
parameters among the meteorological, topographic, and landcover/vegeta-
tion factors are influencing the prediction model and their relative impor-
tance, the relationships between features, and the reasoning behind
specific decisions. This paper attempts to explain how a deep learning
method produces a certain result in wildfire prediction of the Gippsland re-
gion in Victoria, Australia. This has never been undertaken before in the lit-
erature and this is for the first time the proposed model has been
implemented. Hence, the current work additionally attempts to interpret
model outputs using various SHAP plots. In short, the main objectives of
the work are: i) the development of spatial DL framework to map wildfire
susceptibility; ii) understanding the model-predictor relationship for vari-
ous input variables by analyzing the individual predictions using Shapley
outputs; iii) considering cross-validation for a more accurate model
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performance evaluation and iv) investigating the spatial variation of model
results on wildfire susceptibility prediction for the study area. Wildfires
across Australia pose a significant hazard each year. It is crucial to focus
more on Australia's forest fires risk management strategy to confront this
catastrophe due to the rise in the number offires. As a result, it is imperative
to develop an effective and trustworthy framework, such as an explainable
machine learning model, which will help the decision-makers to better
comprehend model outputs and identify which parameters are showing
high contribution and impacting the predictionmodel, and accordingly bet-
ter control fires hazard.

2. Wildfire susceptibility prediction framework

In this work,we established amethodology for producing awildfire sus-
ceptibility map, which is shown in Fig. 1. The framework's initial phase is to
establish 11 contributing elements in relation to the analysis of wildfire sus-
ceptibility. Then, we developed a deep learning (DL) method and fed the
input parameters into the model to train and test the model based on con-
tributing factors and the wildfire inventory dataset. In the next step, we ap-
plied an explainable artificial intelligence (XAI) model to interpret the
output of the DL model and check the contribution of each input factor to
the prediction. To test the outcome's stability, the model runs for five-fold
cross-validation. Finally, the wildfire susceptibility for the study area was
spatially mapped, and the performance of the model was assessed and visu-
alized using receiver operating characteristic (ROC).

2.1. Study area and inventory data

The Gippsland region in the state of Victoria, Australia, is characterized
by various distinctive regions and covers all of southeast Victoria with an
area of 41,556 km2 from 147.46°E to−37.58°S, encompassing bushlands,
lakes, farmlands, mountains, and beaches. The Gippsland region has expe-
rienced several wildfires over the years and is one of the most bushfire-
prone areas. For example, in the 2019–2020 Australian bushfire that is
known as “Black Summer”, there were megafires in most parts of
Australia, and Gippsland had experienced drought conditions for more
than three years by the beginning of the 2019–2020 fire season. The East
Gippsland fires resulted in the deaths of four people and the destruction
of hundreds of houses, and the evacuation of over a thousand people. The
location of the research area in the state of Victoria, Australia, is depicted
in Fig. 2.
Fig. 1. The suggested deep learning based XAI fra
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For obtaining the wildfire inventory map and pinpointing the locations
of wildfires for our investigation, we used the moderate resolution imaging
spectroradiometer (MODIS) fire and thermal anomalies data such as
MCD64A1 and MOD14/MYD14 and historical records (https://datasets.
seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-
1e8b6) from 2019 to 2020. Wildfire ignition is typically influenced by sea-
sonal characteristics. The most likely times for wildfires to occur in
Australia are during the summer and spring seasons, extending from Octo-
ber to May. All Australian states witnessed one of the worst forest fires in
November 2019,whichwas primarily caused by severeweather conditions.
The training samples in this experiment were labelled at 521 wildfire loca-
tions. Using two sets of inventory values of 0 and 1, where 1 indicates the
presence of a fire event and 0 indicates the absence of a fire event, the sus-
ceptibility model was trained.

2.2. Wildfire contributing factors

Several environmental elements, such as man-made features, fuel char-
acteristics, topography, weather and climatic variables, and vegetation
types, are linked to the degree of environmental loss caused by wildfires
(Naderpour et al., 2021). These elements, which are usually referred to as
contributing parameters (Eskandari and Khoshnevis, 2020), have an impact
on the size and intensity of wildfires. In this work, 11 significant parameters
from three categories (e.g., meteorological, topographic, and landcover/
vegetation factors) for the year 2020 are considered to assess their correla-
tion with the wildfire susceptibility prediction in the study area, which is
described in detail below.

Topographical factors: These factors influence the climatic conditions,
notably the rainfall and temperature spatial distribution, which regulate
the life cycles of fauna and flora (Tavakkoli Piralilou et al., 2022). The
main topographical factors used in this study are aspect, slope, and eleva-
tion. The digital elevation model (DEM) serves as the reference map for
extracting topographical elements, which was generated from the shuttle
radar topography mission (SRTM) with an approximate resolution of
30 m (USGS/SRTMGL1_003).

Landcover/vegetation factors: Fire incidence is significantly influenced
by land cover and vegetation types (Ljubomir et al., 2019). We generated
some vegetation indices such as green normalized difference vegetation
index (GNDVI), normalized differencemoisture index (NDMI), and normal-
ized difference vegetation index (NDVI) using Sentinel-2 data with 20 m
spatial resolution. With the exception of measuring the green spectrum
mework for wildfire susceptibility mapping.

https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6
https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6
https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6


Fig. 2. The location of research area, Gippsland in Victoria state, Australia.
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rather than the red spectrum, GNDVI is comparable to NDVI. It measures
the photosynthetic activity of the vegetation cover and is frequently used
to determine the nitrogen concentration and moisture content of plant
4

leaves (Navarro et al., 2017). NDMI uses a combination of short-wave infra-
red (SWIR) and near-infrared (NIR) spectral bands to identify the moisture
content of vegetation, which has a profound effect on fire occurrence (Adab
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et al., 2013). For the landcover map, we also used ESRI 2020 global land
cover from Sentinel-2 product with ten different classes (https://gee-
community-catalog.org/projects/esrilc2020/) and resampled it to the
same as that of Sentinel-2 vegetation indices.

Meteorological factors: These factors include rainfall, temperature, hu-
midity, and wind speed. Wind not only blows sparks and flames into fresh
fuel but also dries out the soil and surface moisture (Naderpour et al.,
2021). The forest surface fuels may be more susceptible to fire ignition in
the presence of lower rainfall and relative humidity, and warmer tempera-
tures. Fires can start and spread quickly whenwindy, dry, and hot conditions
are present at the same time (Naderpour et al., 2021). The wind speed factor
was obtained from the wind global atlas dataset (https://gee-community-
catalog.org/projects/gwa/), while the other meteorological parameters
were collected from Australian climate datasets (https://www.
longpaddock.qld.gov.au/silo/point-data/). All the factors were resampled
to the same resolution as Sentinel-2 vegetation indices. Table 1 summarizes
the list of contributing factors for wildfire susceptibility mapping, and Fig. 3
depicts these layers, which are spatially mapped for the study area.

2.3. The architecture of the presented model

As depicted in Fig. 4, the applied deep learning (DL) approach com-
prises a number of fully connected layers that categorize each contributing
factor as an input layer to produce the wildfire susceptibility prediction
map. When the input parameters are fed into the DL, the output values
are computed sequentially along with the network layers. The input vector,
which also contains each unit's output values from the previous layer, is
multiplied by the weight vector for each unit in the current hidden layer
to create the weighted sum at each layer. The fundamental DL architecture
is created by an input layer Lx, an output layer Ly , and dense layers H be-
tween the input and output layers Lh h ∈ 1, 2, . . . ,Hf gð Þ. Each dense layer
Lh comprises a group of units that can be organized into a vector
ah ∈ R Lhj j, with Lhj j signifying the number of units in Lh. Then, each dense
layer Lh can be parameterized using an activation function f ðÞ, a weightma-
trixWh ∈ R Lh1j j∗ Lhj j, and a bias vector bh ∈ R Lhj j. ah ¼ f WT

h ah � 1 þ bh
� �

can
be used to compute the units in Lh, where h ¼ 1, 2, . . . ,H, L0 denotes a
compound's features vector, and a0 denotes the units in the input layer.
After performing calculations aH for the last dense layer, the Sigmoid func-
tion was applied to the output layer Ly to estimate class probabilities. Addi-
tionally, we employed an activation function called the rectified linear unit
(ReLU) due to the back-propagation training's sparsity property, lack of gra-
dient vanishing influence, and high processing efficiency (Abdollahi et al.,
2022; Glorot et al., 2011), which can be derived as:

f xð Þ ¼ max 0, xð Þ (1)
Table 1
An overview of the chosen conditioning elements and their significance in predicting w

Contributing
factor

Source Importance

Rainfall Meteorological
data

This element regulates the vegetation moisture and patter

Wind speed Wind global atlas This factor usually causes the fire to spread faster and mor
Temperature Meteorological

data
Radiant heat.

Humidity Meteorological
data

It has an impact on the fuel moisture content, which then

Landcover ESRI land cover The distribution and risk of wildfires are impacted differe
NDVI Sentinel-2 It gauges the area's greenness and enables visualization of
GNDVI Sentinel-2 It serves as a measure of photosynthetic activity and is fre

and moisture.
NDMI Sentinel-2 This factor identifies the moisture content of vegetation.
Elevation SRTM It is a crucial component in regional climate variability.

Slope SRTM Both biodiversity and the distribution of vegetation are in
Aspect SRTM In mountainous places, wildfire spreads more quickly on s
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The presented method's structure is built on a multilayer feed-forward
neural network with the following layer structure: i) the input layer, includ-
ing the contributing factors fed to the model; ii) there are five dense layers
with 100 neurons in each with activation function and dropout between
them to avoid saturation and over-fitting problems during the learning pro-
cess; and iii) Sigmoid classifier was added in the final layer to predict the
proper class based on the collection of obtained features from the prior
layers.We implemented the full procedure of themodel for wildfire suscep-
tibility prediction using Keras with Tensorflow as a backend.

2.4. SHapley Additive exPlanations (SHAP) method

A game-theoretic method for assessing the effectiveness of the predic-
tion algorithm is called SHAP (Chen, 2021). In order to provide an under-
standable method, SHAP uses an additive feature imputation
methodology, in which the model's output is stated as a linear addition of
input variables. In supervised settings, SHAP's robust theoretical foundation
is advantageous. It describes a specific prediction using Shapley values by
assigning a SHAP value to any factor that satisfies the following
requirements (Mangalathu et al., 2020): 1) local accuracy - the explanation
approachmust at leastmatch the results of themainmodel; 2)missingness -
features that are absent in the main input need to be disregarded; 3) consis-
tency - the significance of a variable should not drop if we alter a model to
make it more dependent on that variable, regardless of how relevant other
variables are. As a result, SHAP can effectively describe both global and
local procedures. A local model uses the most basic background informa-
tion from the data to create an interpretable method that considers the
proximity to the instance (Ribeiro et al., 2016). The SHAP structure com-
piles explanation strategies like LIME (Ribeiro et al., 2016) and DeepLIFT
(Shrikumar et al., 2017) into the area of additive feature attribution proce-
dures. For the main approach f xð Þwith input variables x ¼ x1, x2, . . . , xp

� �

that p is the number of input variables, the explanation method g x′ð Þ with
streamlined input x′ can be calculated as:

f xð Þ ¼ g x′ð Þ ¼ ϕ0 þ ∑
M

i¼1
ϕix

′
i (2)

where,M is the number of input features, and ϕ0 is the consistent value.
To approximate SHAP values, there are several methods, including Ker-

nel SHAP, Deep SHAP, and Tree SHAP (Lundberg and Lee, 2017). Using
Shapley values and linear LIME, kernel SHAP, a model-agnostic estimator,
creates a local explanatory method (Ribeiro et al., 2016). Kernel SHAP was
employed in this work because, when compared to other sampling-based
estimates, it provides more accurate estimations with lower model evalua-
tions (Abdollahi and Pradhan, 2021).
ildfire susceptibility.
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Fig. 3. Contributing variables in the modeling of forest fire susceptibility: (a) NDVI, (b) NDMI, (c) GNDVI, (d) elevation, (e) slope, (f) aspect, (g) rainfall, (h) temperature,
(i) humidity, (j) wind speed, and (k) land cover.
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Fig. 3 (continued).

Fig. 4. The suggested DNN network's architecture for wildfire susceptibility mapping.
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Fig. 5. Five-fold cross-validation (CV) for a more trustworthy model performance
assessment. A randomly chosen fold of the inventory wildfire data is represented
by each segment. The blue regions were used for training the model, whereas the
orange portions were utilized for testing.
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2.5. Training and testing datasets

Machine learning (ML) methods usually follow a typical methodology
that involves training the model on a training dataset and then applying
the trained method to the unseen test data to predict phenomena like wild-
fires. Thus, when the training and test datasets are inappropriate, ML
methods produce random results that have no scientific value. A single
hold-out dataset and cross-validation (CV) method is one potential strategy
for a more trustworthy model performance assessment. In the optimization
stage, the CV technique eliminates dataset biases and prevents the ML algo-
rithm from being under or overfit (Tonini et al., 2020). The dataset was pre-
pared using this process for the proposed DL models' training and testing.
Table 2
The linguistic explanation of the area under the curve (AUC)
values.

AUC values Linguistic explanation

0.50–0.60 Fail
0.60–0.70 Poor
0.70–0.80 Fair
0.80–0.90 Good
0.90–1.00 Excellent

Fig. 6. The proposed method's SHAP dependence plots on (a) rainfa
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Thus, the wildfire inventory dataset d was randomly divided into five
folds (e.g., d1, d2, d3, d4, d5) that weremutually exclusive, and then the pro-
posed method ran five times. One fold was set aside for validation at any
time and was not used for training. Hence, the model was trained using
80 % of the wildfire inventory data at each time, and its performance was
verified using the remaining 20 % of the data. The five-fold cross-
validation (CV) for our wildfire inventory dataset is shown in Fig. 5.

2.6. Accuracy assessment

To verify the accuracy of the suggested wildfire susceptibility model,
four commonly used metrics (Naderpour et al., 2021), such as receiver op-
erating characteristic (ROC), precision, recall, overall accuracy, and F1
score, were applied in this work. As previously noted, we employed a
five-fold CV approach for a more uniform assessment of the effectiveness
of the utilized DL model. In order to assess the model's performance, we
looked at the consistency between the validation folds of the inventory
dataset and the outputs of the utilized technique using the ROC curve ap-
proach, a popular accuracy evaluation tool. The plotted ROC curves demon-
strate the trade-off between the false positive rate (FPR) on the X axis and
the true positive rate (TPR) on the Y axis, where the area under the curve
(AUC) can be determined by Eq. (3).

AUC ¼
Xn

i¼1

xiþ1 þ 1−xi½ � � yi þ yiþ1−yi
� �

=2
� � ð3Þ

where, n is the total number of pixels, yi is the percentage of correctly pre-
dicted pixels, and xi is the percentage of incorrectly predicted pixels
(Schneider and Pontius Jr, 2001). The resulting values are explained lin-
guistically in Table 2. AUC values close to 0 demonstrate that the prediction
is random,whereas AUC values close to 1 imply high accuracy for awildfire
susceptibility map.

3. Results of SHAP method

We illustrated the explanations provided by the SHAP technique in this
section. Typically, the influence of the features in amodel is shown in a par-
tial dependence plot, which highlights the effects of changing a single char-
acteristic, or by a bar plot, which highlights the features' global significance
(García and Aznarte, 2020). However, as SHAP values are the results of
unique features that are particular to each prediction, additional types of vi-
sualizations are feasible. The expected results of a technique are displayed
in the SHAP dependence graphs when the value of the characteristics is sta-
ble. Partial dependence plots can be replaced by SHAP dependence graphs
since they better depict the effects of feature relationships. We can demon-
strate in the dependence plots how themodel is dependent on a specific fea-
ture by demonstrating how the model outputs vary as the features change.
ll and NDMI, and (b) NDVI and GNDVI for wildfire prediction.



Fig. 7. A global view of contribution to prediction using: (a) decision plot; and (b) a bar graph.
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For instance, to better understand factors relationships, we presented the
interactions between them for the wildfire prediction based on SHAP
values in Fig. 6. This is demonstrated in Fig. 6a for rainfall and NDMI,
and Fig. 6b for NDVI and GNDVI, where the colors correspond to the
SHAP values assigned to each variable, and the X and Y axes show their
magnitudes. The influence of rainfall is shown for NDMI change from
−0.2 to 0.4, and the influence of NDVI is shown for GNDVI change from
0.4 to 0.75. Red and blue are used to show the high and low values of the
variable NDMI and GNDVI, respectively. In Fig. 6a, when rainfall is less
than 150 mm, the SHAP values for rainfall are less than 0; low rainfall
and NDMI cause the SHAP values to be incredibly low, which increases
the likelihood of wildfire prediction.

In Fig. 7a, we showed the influential features in deriving the proposed
model's outputwildfire score prediction using a decision plot. The proposed
model factors are listed on the Y axis in order of decreasing influence, while
the X axis reflects the output value of the model. A line is used to depict the
Fig. 8. The SHAP summary visualization of the proposed model. The hi
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prediction for each observation. At the anticipated value for the pertinent
observation at the top of the figure, each line crosses the X axis. The
SHAP values of each parameter are added to the base value of the model
as wemove from the bottom of the plot to the top. The additive values illus-
trate how each model factor affects the final forecast. The wildfire score is
favorably influenced by variables with moving rightward lines, while it is
adversely affected by variables with lines that move to the left of the plot.
Additionally, we used a normal bar graph (Fig. 7b), which brings the
whole data to a single plot to calculate the average absolute value of
SHAP values for each feature. The magnitude of the difference in log-
odds is shown by the SHAP values on the X axis. In this case, all features
are continuous, and their average impact on categorization is organized
vertically in the rank order, with the lowest feature contributing the least
to the predictions and the top feature contributing the most. The decision
plot provides a broad overview of the contribution to prediction as the
bar graph. According to the decision plot and bar graph, one can see that
gher SHAP value of a feature corresponds to the higher prediction.



Fig. 9. Local interpretation of the proposed model's prediction using a SHAP force plot. Red feature attributions push the results higher than the “base value,”whereas blue
feature attributions push the outcome lower.

Fig. 10. Showing explanations for individual predictions using a waterfall plot. The expected value of the model output is shown at the bottom, and each row illustrates how
the contribution of each feature, whether negative (blue) or positive (red), shifts the value from the expected model output to the prediction.

Table 3
Quantitative results of the proposed model for different applied folds on training
and validation datasets.

Folds Recall (%) Precision (%) F1 score (%) Accuracy (%)

Training scores
Fold 1 96.35 94.06 95.19 94.62
Fold 2 94.52 91.20 92.83 91.93
Fold 3 94.84 95.71 95.28 94.78
Fold 4 97.27 90.42 93.72 92.77
Fold 5 93.03 93.88 93.45 92.78
Average 95.20 93.05 94.09 93.38

Validation scores
Fold 1 92.77 87.50 90.05 88.59
Fold 2 92.77 86.51 89.53 87.91
Fold 3 81.70 88.15 84.81 83.89
Fold 4 91.46 85.22 88.23 86.57
Fold 5 91.46 88.23 89.82 88.51
Average 90.03 87.12 88.49 87.09
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humidity, wind speed, rainfall, elevation, slope, and NDMI have the stron-
gest influence on wildfire prediction.

In order to merge the importance of the feature with its effects, we also
created a summary plot. Each point on the summary plot represents a
Shapley value for a feature and a sample. The summary plot for the various
features of the wildfire prediction is shown in Fig. 8. The features are
displayed on the Y axis, and the Shapley value is determined by the X
axis. The color denotes each feature's value, which ranges from low to
high. The X axis indicates a positive, and the red color denotes a high
value. The features are vertically ordered by their average importance on
the predictions (Ribeiro et al., 2016). According to the overlapping points
that are jittered in the Y axis direction, we can determine how much
Shapley values dispensation there is for each feature. We can see how hu-
midity has the greatest influence on prediction, with high values of humid-
ity correlatedwith adverse effects on prediction, while the target factor and
the wind speed have a positive relationship.

We utilized a force plot to show an explanation of a prediction made by
the proposed model in Fig. 9. In the explanation, it is shown how several
features interact to push the model's output from the “base” value to the
“predicted” value. Red represents features that lead to a high prediction rat-
ing, whereas blue denotes features that lead to a lower result. For instance,
the sample's forecast for the wildfire is 1.00, while the baseline value is
0.5215. The final output prediction can be enhanced by the relatively
high NDVI, temperature and elevation, and low NDMI and rainfall, while
the forecast can be diminished by the relatively high humidity. Fig. 10
also depicts a waterfall plot, which is designed to show explanations for in-
dividual predictions. Negative values reflect an indirect association with
wildfire susceptibility, whereas positive values reflect a direct relationship
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according to the model's calculations. For instance, the likelihood of fire in-
creased when the rainfall value was lower. The magnitude weight of the
variables (whether positive or negative) reveals their strong correlation
with wildfire. Thus, elevation was influential to wildfire, followed by
NDMI and rainfall as +0.23, +0.13, and+0.09, respectively. To put it an-
other way, changes in the values of the aforementioned factors are highly
correlated with the absence or occurrence of wildfire initiation. Slope,
land cover, and aspect obtained the lowest degree of contribution, while
NDVI, temperature, GNDVI, and humidity demonstrated a moderate corre-
lation.



Fig. 11. Different metric's results obtained by the proposed model for different implemented folds on training and validation datasets.
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4. Wildfire susceptibility prediction

As previously noted, we employed a five-fold CV procedure for a more
uniformassessment of the effectiveness of the utilizedDLmodel forwildfire
susceptibility mapping. The quantitative results of different metrics
(e.g., precision, recall, accuracy, and F1 score) achieved by the proposed
model for all implemented folds and the average of all for training and
Fig. 12. The resulting ROC curve according to t
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validation sets are shown in Table 3 and Fig. 11. We also plotted the results
of ROC curves based on a five-fold CV for the test data, which is shown in
Fig. 12. According to the results, the suggested technique achieved more
than 93 %, and 87 % average accuracy for various metrics for all applied
folds on training, and validation datasets, respectively, and mean AUC of
91 % for test dataset, which is quite substantial in this field based on the
AUC values explained in Section 2.6. Additionally, the wildfire
he five-fold cross validation on test dataset.
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susceptibility map was produced based on the proposed DL approach for
the study area. The resulting wildfire susceptibility prediction was di-
vided into five classes of very-high, high, moderate, low, and very-low
by the natural break algorithm, which is a standard method and de-
signed to best groups similar values together (Febrianto et al., 2016).
Fig. 13a displays the outcomes of the classification. Compared to other
climate variables, the area's low rainfall and humidity rate increased
the susceptibility to wildfire ignition. Due to the prevalence of forests
and shrubs, suburbs such as East Gippsland and Wellington were classi-
fied as very-high/high and high/moderate wildfire susceptible zones to
Fig. 13. (a) The wildfire susceptibility map using the propose
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as shown in Fig. 13a. This result is consistent with the results of the
burned area map achieved from fire history data, which shows that
most of the burned areas, including wildfire and prescribed burning,
are in the East Gippsland and Wellington suburbs, as represented in
Fig. 13b. The area of wildfire susceptibility prediction for each class is
presented in Table 4. Generally, very low to low susceptible zones
cover around 57 % of the research area, while around 33 % of the region
is designated as high or very-high susceptible zones for wildfire. Ap-
proximately 9 % of the research's study region is in a moderately
susceptible zone.
d model; and (b) map showing the fire history burnt area.



Table 4
The area of each wildfire susceptibility class in the study area.

Susceptibility class Area (km2) Area (%)

Very low 19,196.02 45.93
Low 4902.36 11.73
Moderate 3778.29 9.04
High 5876.48 14.06
Very high 8040.21 19.23
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5. Discussion

It's critical to recognize wildfire hazards in order to gain a better knowl-
edge of the dynamics of wildfires inwildfire-prone locations. Because of the
inherent variability of the contributing factors, creating the ideal approach
for wildfire susceptibility mapping is a challenge. A literature review
showed that the common machine learning (ML) algorithms such as NN,
SVM, and RF or state-of-the-art DL models are suitable for modeling wild-
fire susceptibility (Bjånes et al., 2021; Kalantar et al., 2020; Verde and
Zêzere, 2010). Studies demonstrate that ML or DL models outperform sta-
tistical techniques and knowledge-based multi-criteria decision-making
for wildfire susceptibility predictions and mapping (Mohajane et al.,
2021). Additionally, these techniques can be used as decision-support
tools to simulate wildfires and learn more about managing their risk
(Talukdar et al., 2022). However, these approaches perform differently as
they cope with various input data. The performance of the ML or DL
models, which is greatly influenced by the characteristics of the different
input data, is directly related to the accuracy of wildfire susceptibility
maps. Hence, various wildfire susceptibility maps can be produced because
of the variability of each model's structure as well as conditioning factors
used as input to the models. This could be a concern because these maps
will be utilized by decision-makers and managers of natural resources to
help them carry out corresponding environmental plans. Therefore, it is
critical to assess and interpret these attributes with reference to their use
in the training and testing of the models. Aside from aiming for high accu-
racy, understanding the reasoning behind each prediction is crucial when
creating a model for wildfire susceptibility prediction.

In this work,with the use of an explainablemachine learning technique,
we demonstrated how to interpret the results of the developed model for
wildfire susceptibility prediction and identify the variables influencing
the prediction model for the Gippsland region in Victoria, Australia. Each
characteristic of every data point is given a SHAP value by the approach,
which serves as a contribution value for the model's result. Using these
SHAP values, we encoded and arranged the features according to their rel-
evance using every feature's contribution information. In this case, selecting
a group of features based on the SHAP values necessitates sorting the fea-
tures according to how much they contribute to the output of the model.
Using the SHAP values assigned to each feature and the interpretation of
how the features affect the prediction in Section 3, we found that contribut-
ing factors such humidity, wind speed and rainfall frommeteorological fac-
tors, elevation and slope from topographical factors, and NDMI from land
cover/vegetation factors demonstrated a significant impact and high con-
tribution on the suggested model's output for wildfire susceptibility predic-
tion. Wind not only carries fire flames and sparks into fresh vegetation, but
also removes soil/surface moisture. The surface fuels can also be more sus-
ceptible to fire ignition in the presence of lower rainfall, humidity, and
warmer temperatures. Elevation and slope control the climate, especially
how temperature and rainfall are distributed spatially. Additionally, the
NDMI employs short-wave infrared (SWIR) bands, where a low value of it
will significantly impact the occurrence of wildfires due to its sensitivity
to vegetation density, moisture, and forest structure (Schroeder et al.,
2011). The development of an efficient and reliable framework, such as
the explainable artificial intelligence model (XAI) used in this study,
along with the interpretation of different SHAP plots, will assist decision-
makers in better understanding the model's outputs and identifying which
parameters are showing high contributions and having an impact on the
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wildfire prediction model, and as a result, will help them better control
the risk of fires. While Explainable AI (XAI) has the potential to address
many of the limitations of traditional black-box AI models, it also has its
own set of limitations such as complexity. Developing an XAI model that
is both accurate and interpretable can be challenging. As a result, many
XAI models may sacrifice accuracy in order to improve interpretability, or
vice versa. Also, XAI models rely on the availability of high-quality data
in order to be effective. If there is limited or low-quality data available,
XAI models may be less accurate or less interpretable.

6. Conclusion

An essential component of land emergency management, reducing the
effects of natural disasters, and facilitating the response and recovery of
firefighters is the spatial evaluation of wildfire hazards in wildfire-prone
areas, which poses a threat to property and human life. Based on the capa-
bilities of the explainable machine learning model, this paper developed a
framework for wildfire susceptibility assessment in the Gippsland region in
Victoria, Australia. Several contributing factors from three categories
(e.g., meteorological, topographic, and land cover/vegetation factors) were
fed into the model to assess their correlation with the wildfire susceptibility
prediction in the study area. An explanation model called SHAP was applied
to analyze the feature importance and interpret the results of the proposed
model created for wildfire susceptibility prediction. We applied the SHAP
technique to better understand why a data-driven approach makes any pre-
diction on the basis of certain input data. By assigning SHAP values to each
feature that contributes to the model's output, we used the SHAP technique
to choose the best features influencing the prediction model. We discovered
that contributing factors such as elevation and slope from topographical fac-
tors, NDMI from land cover/vegetation factors, and humidity, wind speed,
and rainfall frommeteorological factors indicatedmajor effects and high con-
tributions towildfire susceptibility prediction. This was based on interpreting
the proposed model's output using different SHAP plots. The results of this
study demonstrated the applicability of the SHAP approach for interpreting
themachine learning technique and its predictions. To sumup, SHAP enables
thorough data analysis and guides us in choosing the proper conditioning fac-
tors and AI models for wildfire susceptibility mapping.

Funding

This research is supported by the Fenner School of Environment& Soci-
ety, College of Science, Australian National University (ANU), and the Cen-
tre for AdvancedModelling and Geospatial Information Systems (CAMGIS),
Faculty of Engineering and IT, the University of Technology Sydney (UTS).

CRediT authorship contribution statement

Abolfazl Abdollahi: Conceptualization, Methodology, Formal analysis,
Data curation, Writing – original draft. Biswajeet Pradhan: Writing – re-
view & editing, Supervision, Funding acquisition.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare no conflict of interest.

References

Abdollahi, A., Liu, Y., Pradhan, B., Huete, A., Dikshit, A., Tran, N.N., 2022. Short-time-series
grasslandmapping using Sentinel-2 imagery and deep learning-based architecture. Egypt.
J. Remote Sens. Space Sci. 25, 673–685.

Abdollahi, A., Pradhan, B., 2021. Urban vegetation mapping from aerial imagery using ex-
plainable AI (XAI). Sensors 21, 4738.

http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230000357671
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230000357671
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230000357671
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019293263
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019293263


A. Abdollahi, B. Pradhan Science of the Total Environment 879 (2023) 163004
Adab, H., Kanniah, K.D., Solaimani, K., 2013. Modeling forest fire risk in the northeast of Iran
using remote sensing and GIS techniques. Nat. Hazards 65, 1723–1743.

Ajin, R., Ciobotaru, A.-M., Vinod, P., Jacob, M.K., 2015. Forest and wildland fire risk assess-
ment using geospatial techniques: a case study of Nemmara forest division, Kerala,
India. J. Wetl. Biodivers. 5, 29–37.

Al-Fugara, A.K., Mabdeh, A.N., Ahmadlou, M., Pourghasemi, H.R., Al-Adamat, R., Pradhan,
B., et al., 2021. Wildland fire susceptibility mapping using support vector regression
and adaptive neuro-fuzzy inference system-based whale optimization algorithm and sim-
ulated annealing. ISPRS Int. J. Geo Inf. 10, 382.

Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al., 2020.
Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Inf. Fusion 58, 82–115.

Bjånes, A., De La Fuente, R., Mena, P., 2021. A deep learning ensemble model for wildfire sus-
ceptibility mapping. Eco. Inform. 65, 101397.

Chen, S., 2021. Interpretation of Multi-label Classification Models Using Shapley Values ,
pp. 1–12.. https://arxiv.org/abs/2104.10505.

Cheng, X., Wang, J., Li, H., Zhang, Y., Wu, L., Liu, Y., 2021. A method to evaluate task-specific
importance of spatio-temporal units based on explainable artificial intelligence. Int.
J. Geogr. Inf. Sci. 35, 2002–2025.

Chuvieco, E., Allgöwer, B., Salas, J., 2003. Integration of physical and human factors in fire
danger assessment. Wildland fire danger estimation and mapping: The role of remote
sensing data. World Scientific, pp. 197–218.

Cilli, R., Elia, M., D’Este, M., Giannico, V., Amoroso, N., Lombardi, A., et al., 2022. Explainable
artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of
southern Europe. Sci. Rep. 12, 16349.

Dutta, R., Das, A., Aryal, J., 2016. Big data integration shows australian bush-fire frequency is
increasing significantly. R. Soc. Open Sci. 3, 150241.

Eskandari, S., Khoshnevis, M., 2020. Evaluating and mapping the fire risk in the forests and
rangelands of sirachal using fuzzy analytic hierarchy process and GIS. For. Res. Dev. 6,
219–245.

Eskandari, S., Miesel, J.R., 2017. Comparison of the fuzzy AHPmethod, the spatial correlation
method, and the dong model to predict the fire high-risk areas in hyrcanian forests of
Iran. Geomat. Nat. Haz. Risk 8, 933–949.

Eskandari, S., Pourghasemi, H.R., Tiefenbacher, J.P., 2021. Fire-susceptibility mapping in the
natural areas of Iran using new and ensemble data-mining models. Environ. Sci. Pollut.
Res. 28, 47395–47406.

Febrianto, H., Fariza, A., Hasim, J.A.N., 2016. Urban flood risk mapping using analytic hier-
archy process and natural break classification (Case study: Surabaya, East Java,
Indonesia). 2016 International Conference on Knowledge Creation and Intelligent Com-
puting (KCIC). IEEE, pp. 148–154.

Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., Lampin, C.,
2013. A review of the main driving factors of forest fire ignition over Europe. Environ.
Manag. 51, 651–662.

García, M.V., Aznarte, J.L., 2020. Shapley additive explanations for NO2 forecasting. Eco. In-
form. 56, 101039.

Gholamnia, K., Gudiyangada Nachappa, T., Ghorbanzadeh, O., Blaschke, T., 2020. Compari-
sons of diverse machine learning approaches for wildfire susceptibility mapping. Symme-
try 12, 604.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. Proceedings of
the fourteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, pp. 315–323.

González, C., Castillo, M., García-Chevesich, P., Barrios, J., 2018. Dempster-Shafer theory of
evidence: a new approach to spatially model wildfire risk potential in Central Chile.
Sci. Total Environ. 613, 1024–1030.

Iban, M.C., Sekertekin, A., 2022. Machine learning based wildfire susceptibility mapping
using remotely sensed fire data and GIS: a case study of Adana and Mersin provinces,
Turkey. Eco. Inform. 69, 101647.

Jaafari, A., Pourghasemi, H.R., 2019. Factors influencing regional-scale wildfire probability in
Iran: an application of random forest and support vector machine. Spatial modeling in
GIS and R for Earth and Environmental Sciences. Elsevier, pp. 607–619.

Jaafari, A., Zenner, E.K., Panahi, M., Shahabi, H., 2019. Hybrid artificial intelligence models
based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial pre-
diction of wildfire probability. Agric. For. Meteorol. 266, 198–207.

Jaiswal, R.K., Mukherjee, S., Raju, K.D., Saxena, R., 2002. Forest fire risk zone mapping from
satellite imagery and GIS. Int. J. Appl. Earth Obs. Geoinf. 4, 1–10.

Kalantar, B., Ueda, N., Idrees, M.O., Janizadeh, S., Ahmadi, K., Shabani, F., 2020. Forest fire
susceptibility prediction based on machine learning models with resampling algorithms
on remote sensing data. Remote Sens. 12, 3682.

Kim, S.J., Lim, C.-H., Kim, G.S., Lee, J., Geiger, T., Rahmati, O., et al., 2019. Multi-temporal
analysis of forest fire probability using socio-economic and environmental variables. Re-
mote Sens. 11, 86.

Kuter, N., Yenilmez, F., Kuter, S., 2011. Forest fire risk mapping by kernel density estimation.
Croat. J. For. Eng. 32, 599–610.
14
Ljubomir, G., Pamučar, D., Drobnjak, S., Pourghasemi, H.R., 2019. Modeling the spatial vari-
ability of forest fire susceptibility using geographical information systems and the analyt-
ical hierarchy process. Spatial modeling in GIS and R for Earth and Environmental
Sciences. Elsevier, pp. 337–369.

Lundberg, S., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions ,
pp. 1–10.. https://arxiv.org/abs/1705.07874.

Maddy, E.S., Boukabara, S.A., 2021. MIIDAPS-AI: an explainable machine-learning algorithm
for infrared and microwave remote sensing and data assimilation preprocessing-
application to LEO and GEO sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
14, 8566–8576.

Mangalathu, S., Hwang, S.-H., Jeon, J.-S., 2020. Failure mode and effects analysis of RCmem-
bers based on machine-learning-based SHapley additive exPlanations (SHAP) approach.
Eng. Struct. 219, 110927.

Mohajane, M., Costache, R., Karimi, F., Pham, Q.B., Essahlaoui, A., Nguyen, H., et al., 2021.
Application of remote sensing and machine learning algorithms for forest fire mapping
in a Mediterranean area. Ecol. Indic. 129, 107869.

Molina, J.R., González-Cabán, A., y Silva, F.R., 2019. Wildfires impact on the economic sus-
ceptibility of recreation activities: application in a Mediterranean protected area.
J. Environ. Manag. 245, 454–463.

Naderpour, M., Rizeei, H.M., Ramezani, F., 2021. Forest fire risk prediction: a spatial deep
neural network-based framework. Remote Sens. 13, 2513.

Nami, M., Jaafari, A., Fallah, M., Nabiuni, S., 2018. Spatial prediction of wildfire probability
in the hyrcanian ecoregion using evidential belief function model and GIS. Int. J. Environ.
Sci. Technol. 15, 373–384.

Navarro, G., Caballero, I., Silva, G., Parra, P.-C., Vázquez, Á., Caldeira, R., 2017. Evaluation of
forest fire on Madeira Island using sentinel-2A MSI imagery. Int. J. Appl. Earth Obs.
Geoinf. 58, 97–106.

Pradhan, B., Suliman, M.D.H.B., Awang, M.A.B., 2007. Forest fire susceptibility and risk map-
ping using remote sensing and geographical information systems (GIS). Disaster Prev
Manag 16 (3), 344–352.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. " Why should i trust you?" Explaining the predic-
tions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1135–1144.

Sayad, Y.O., Mousannif, H., Al Moatassime, H., 2019. Predictive modeling of wildfires: a new
dataset and machine learning approach. Fire Saf. J. 104, 130–146.

Schneider, L.C., Pontius Jr., R.G., 2001. Modeling land-use change in the Ipswich watershed,
Massachusetts, USA. Agric. Ecosyst. Environ. 85, 83–94.

Schroeder, T.A., Wulder, M.A., Healey, S.P., Moisen, G.G., 2011. Mapping wildfire and
clearcut harvest disturbances in boreal forests with landsat time series data. Remote
Sens. Environ. 115, 1421–1433.

Shakesby, R., 2011. Post-wildfire soil erosion in the Mediterranean: review and future re-
search directions. Earth Sci. Rev. 105, 71–100.

Shrikumar, A., Greenside, P., Kundaje, A., 2017. Learning important features through propa-
gating activation differences. International Conference on Machine Learning. PMLR,
pp. 3145–3153.

Smith, J.K., Lyon, L.J., 2000. Wildland Fire in Ecosystems: Effects of Fire on Fauna. Vol 2. US
Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Talukdar, S., Das, T., Naikoo, M.W., Rihan, M., Rahman, A., 2022. Forest fire susceptibility
mapping by integrating remote sensing and machine learning algorithms. Adv. Remote
Sens. For. Monit. 179–195.

Tavakkoli Piralilou, S., Einali, G., Ghorbanzadeh, O., Nachappa, T.G., Gholamnia, K.,
Blaschke, T., et al., 2022. A Google earth engine approach for wildfire susceptibility pre-
diction fusion with remote sensing data of different spatial resolutions. Remote Sens. 14,
672.

Tien Bui, D., Le, K.-T.T., Nguyen, V.C., Le, H.D., Revhaug, I., 2016. Tropical forest fire suscep-
tibility mapping at the cat Ba National Park Area, hai Phong City, Vietnam, using GIS-
based kernel logistic regression. Remote Sens. 8, 347.

Tonini, M., D’Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A., Fiorucci, P., 2020. A ma-
chine learning-based approach for wildfire susceptibility mapping. The case study of the
Liguria region in Italy. Geosciences 10, 105.

Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., Matsinos, I., 2009. Identifying wildland fire ig-
nition factors through sensitivity analysis of a neural network. Nat. Hazards 50, 125–143.

Verde, J., Zêzere, J., 2010. Assessment and validation of wildfire susceptibility and hazard in
Portugal. Nat. Hazards Earth Syst. Sci. 10, 485–497.

Won, M.-S., Koo, K.-S., Lee, M.-B., 2006. An analysis of forest fire occurrence hazards by
changing temperature and humidity of ten-day intervals for 30 years in spring. Korean
J. Agric. For. Meteorol. 8, 250–259.

Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., Wei, L., 2020. The State of the World’s
Forests: Forests, Biodiversity and People. FAO, Rome, Italy.

http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019300513
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019300513
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001279451
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001279451
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001279451
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001462581
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001462581
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230001462581
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230006057001
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230006057001
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019389343
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019389343
https://arxiv.org/abs/2104.10505
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019401643
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019401643
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019401643
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230006445371
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230006445371
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230006445371
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019407283
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019407283
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019407283
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019412344
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019412344
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230007484711
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230007484711
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230007484711
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019529623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019529623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019529623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019536593
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019536593
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019536593
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230008101251
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230008101251
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230008101251
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230008101251
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019542853
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019542853
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009086590
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009086590
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019548833
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019548833
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019548833
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018425653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018425653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018425653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009095050
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009095050
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009095050
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009567522
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009567522
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230009567522
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010089623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010089623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010089623
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010165173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010165173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010165173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019554863
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019554863
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019562563
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019562563
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019562563
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019573653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019573653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019573653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010402743
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010402743
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010538173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010538173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010538173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230010538173
https://arxiv.org/abs/1705.07874
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020158173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020158173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020158173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020158173
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020171943
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020171943
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020171943
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013057603
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013057603
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019178423
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019178423
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019178423
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020183883
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020183883
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013064613
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013064613
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013064613
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020211653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020211653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020211653
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013347773
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013347773
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230013347773
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019280503
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019280503
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230019280503
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014088243
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014088243
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014100573
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014100573
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020221113
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020221113
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020221113
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014109483
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014109483
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014167703
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014167703
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014167703
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014493573
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230014493573
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017499814
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017499814
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017499814
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020228863
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020228863
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020228863
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017505784
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017505784
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017505784
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020235313
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020235313
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020235313
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020241293
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230020241293
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017512894
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230017512894
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018143583
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018143583
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018143583
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018300043
http://refhub.elsevier.com/S0048-9697(23)01622-4/rf202303230018300043

	Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility p...
	1. Introduction
	2. Wildfire susceptibility prediction framework
	2.1. Study area and inventory data
	2.2. Wildfire contributing factors
	2.3. The architecture of the presented model
	2.4. SHapley Additive exPlanations (SHAP) method
	2.5. Training and testing datasets
	2.6. Accuracy assessment

	3. Results of SHAP method
	4. Wildfire susceptibility prediction
	5. Discussion
	6. Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References




