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Reservoir computing (RC) has attracted significant interest as a 

framework for the implementation of novel neuromorphic 

computing architectures. Previously attention has been focussed 

on software-based reservoirs, where it has been demonstrated that 

reservoir topology plays a role in task performance, and functional 

advantage has been attributed to small-world and scale-free 

connectivity. However in hardware systems, such as electronic 

memristor networks, the mechanisms responsible for the reservoir 

dynamics are very different and the role of reservoir topology is 

largely unknown. Here we compare the performance of a range of 

memristive reservoirs in several RC tasks that are chosen to 

highlight different system requirements. We focus on percolating 

networks of nanoparticles (PNNs) which are novel self-assembled 

nanoscale systems that exhibit scale-free and small-world 

properties. We find that the performance of regular arrays of 

uniform memristive elements are limited by their symmetry but 

that this symmetry can be broken either by a heterogeneous 

distribution of memristor properties or a scale-free topology. The 

best perfomance across all tasks is observed for a scale-free 

network with uniform memistor properties. These results provide 

insight into the role of topology in neuromorphic reservoirs as well 

as an overview of the computational performance of scale-free 

networks of memristors in a range of benchmark tasks. 

Introduction 

The essential concept in neuromorphic computing1 is that novel 

hardware systems capable of brain-like information processing 

can be designed and implemented using physical devices. 

Compared with conventional computing hardware, 

neuromorphic systems promise superior performance in tasks at 

which the biological brain excels (e.g. classification and time-

series prediction), while consuming significantly less energy and 

avoiding the imminent scalability issues faced by the von 

Neumann architecture.2 Much effort has been invested in 

developing neuromorphic integrated circuits based on 

complementary metal-oxide semiconductor technologies3,4 but 

additionally several nanoscale systems and components show 

promise, especially spintronic oscillators,5 and self-organised 

networks of memristive devices.6,7 Self organised systems, 

which include carbon nanotube,8,9 nanowire10–14 and 

nanoparticle15–18 networks, are appealing because they have the 

potential to naturally integrate large numbers of memristive 

devices into brain-like structures that are difficult (or practically 

impossible) to attain using top-down processes, with low 

fabrication costs. 

Networks of memristive devices are especially attractive for 

implementation of a brain-inspired computational framework 

called reservoir computing (RC). Exemplified by the echo-state 

network (ESN)19 and the liquid-state machine,20 RC was first 

implemented in software as a solution to the high cost of training 

recurrent artificial neural networks (RNNs).21 In RC, only the 

output connections are adapted while the rest of the network (the 

“reservoir”) has fixed connection weights, both simplifying the 

training process and drastically reducing the associated cost. In 

physical reservoir computing, this simplification translates to the 

ability to utilize the complex nonlinear dynamics of memristive 

elements without requiring precise adaptation of the connections 

between them to facilitate learning. Several hardware reservoirs 

have been realised using nanoscale memristive devices (see refs. 

22,23 for reviews). Among these, percolating networks of 

nanoparticles (PNNs) are particularly interesting due to their 

scale-free and small-world topology and associated long range 

correlations24,25 and critical avalanche dynamics,16,26 each 

thought to be important features of the biological brain.27–29 

“Scale-free networks” are defined by power law degree 

distributions, where the degree of each node is the number of 

connections it has to other nodes. “Small-world networks”, 

which may or may not be scale-free, are characterised by a high 

level of clustering between nodes, coupled with a short mean 

path length. 

It has been demonstrated that information processing is 

optimised in software-based ESNs with scale-free 

topologies,30,31 however relatively little attention has been given 

to exploring the effects of reservoir topology in RC systems 

based on physical substrates, such as networks of memristors. 

Demonstration of RC in real-world physical systems is 

challenging because a number of physical network parameters 

must be optimised. We emphasise that it is therefore  important 

to simulate these systems in order to gain  insight into the correct 

choices of parameters, timescales etc. Here we simulate physical 

RC systems. The reservoir dynamics are a product of the 

reservoir structure coupled with the underlying mechanisms of 

information transfer within the reservoir, which may differ vastly 

between ESNs and various physical reservoir architectures. For 

example, in memristive electronic networks the dynamics are 

produced by the memristors and their interactions are driven by 

the evolution of currents and voltages throughout the network. 

The constraints imposed by Kirchhoff’s laws (e.g. that current 

must be conserved at junctions) are not present in software-based 

ESNs. The relationship between the structure and functionality 

of the reservoir depends crucially on its topology, and so it is 
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important to establish the impact of the topology of specific 

memristive networks32,33 on their performance in RC tasks.  

Our objective is to compare the performance of scale-free 

networks of memristive devices with that of other network 

architectures. We therefore focus on a comparison of PNNs, 

which have been shown to feature scale-free connectivity,25 and 

regular arrays, and consider networks of both uniform and 

heterogeneous memristive devices (see detailed discussion 

below). Importantly, the memristive device properties are 

identical in all cases, allowing the performance of PNNs to be 

benchmarked against that of other memristive networks, i.e. 

square arrays and scale-free networks of uniform memristive 

elements (labelled UPNNs – see discussion below). We use 

physically realistic simulations to investigate the relationship 

between reservoir structure and performance in chaotic time-

series prediction, nonlinear transformation and temporal 

classification tasks. We systematically examine the dependence 

of task performance on (i) the characteristic time scale of the 

memristors, (ii) the input signal amplitude, (iii) the nonlinearity 

of the memristor response, (iv) the diversity of the reservoir 

outputs, and (v) the heterogeneity of the memristors. The best 

RC performance achieved is obtained using scale-free networks 

of uniform memristive elements. 

Modelling 

Networks 

A percolating network of nanoparticles (PNN) comprises 

metallic nanoparticles (Fig. 1) deposited onto an atomically 

smooth insulating substrate (the experimental system is 

described in detail in refs. 15,34). Numerical simulations have 

been used previously to show that the experimental networks of 

nanoparticles are well described by continuum percolation 

models.24,26,35,36 Simulations of both the electrical and 

neuromorphic properties of PNNs have previously been shown 

to be in excellent agreement with experimental results,24,37,38 

confirming that the model of percolation with tunnelling 

provides an accurate description of the real physical system. 

Conducting particles are represented by uniform discs which are 

placed randomly on a plane and allowed to overlap. We focus on 

system sizes of 200×200 particle diameters, which are 

sufficiently large to capture the complex dynamics but small 

enough to limit the computational cost of simulations.24 As 

particles are deposited onto the substrate, they form groups of 

well-connected particles which are separated by nanoscale 

memristive tunnel gaps (MTGs). The charging energy and 

resistance between overlapping particles is assumed to be 

negligible so that the only resistance in the network comes from 

MTGs.35 Particles are deposited until a surface coverage of 65% 

is reached, just short of the percolation threshold (~68% for 

continuum percolation39) so that no single group of particles 

spans the entire plane. The resulting groups of particles have 

fractal geometry and provide a scale-free network structure.25 

Fig. 2a shows the distribution of voltages across a PNN. Fig. 2b 

shows a map of the network in which the nodes are the centroids 

of the groups of particles and the connections between nodes are 

MTGs. As detailed in the caption of Fig. 2, many groups have 

similar potentials (and so have the same colours) and so there are 

many more nodes that have the same colour in Fig. 2b than are 

immediately visible in Fig. 2a. We emphasise that we model the 

MTGs as standard memristors (i.e. ideal voltage-controlled 

variable-resistance memristors40) operating in the low-voltage 

regime. Hence, the MTG networks are completely equivalent to 

networks of standard memristors.10 

In order to examine the relationship between reservoir 

structure and performance, we compare the PNNs with regular 

(square) arrays of MTGs (Fig. 2c). In both PNNs and arrays, 

particle groups which overlap the left-hand (right-hand) edge of 

the network are considered to be input (output) electrodes. In 

PNNs of size 200×200 particle diameters, we find that: (i) the 

number of output electrodes which are electrically coupled to the 

network is most commonly 𝑁𝑜𝑢𝑡 = 12, (ii) mean path length 

across the PNNs is typically 〈𝐿𝑃〉 = 12, and (iii) the number of 

MTGs is 𝑁𝑀𝑇𝐺 ~2000. For the comparison with PNNs we 

consider two different array sizes: 12×12 nodes (𝑁𝑜𝑢𝑡 = 〈𝐿𝑃〉 = 

12, 𝑁𝑀𝑇𝐺 = 242), which has a similar 〈𝐿𝑃〉 to the PNNs and 

36×36 nodes (𝑁𝑜𝑢𝑡 = 〈𝐿𝑃〉 = 36, 𝑁𝑀𝑇𝐺 = 2450), which has a 

similar 𝑁𝑀𝑇𝐺  to the PNNs. For the 36×36 arrays, the 36 outputs 

are grouped such that all networks have 𝑁 = 12 output 

electrodes. See S1 (ESI†) for details on the network statistics and 

choice of array sizes. 

Deposition of the particles which comprise a PNN is an 

inherently stochastic process, as particles land in random 

positions on the substrate. Consequently, the MTGs which form 

as a result of the deposition have a wide range of initial gap sizes 

𝐷 (see S1, ESI† for details on gap size distributions and their 

limits, especially Fig. S1d). As well as investigating the effect of 

reservoir topology by comparing the scale-free PNNs with 

regular array networks, we also consider the effect of 

heterogeneity in the MTG sizes. PNNs, with their naturally 

heterogeneous initial MTG sizes (hereafter referred to as 

HPNNs), are compared with uniform arrays (UAs) where all 

MTG sizes are the same (𝐷uniform = 0.05 particle diameters) and 

heterogeneous arrays (HAs) with MTG sizes randomly 

distributed over the same range as in the HPNNs. For 

completeness, we also compare these results with PNNs which 

have uniform initial MTG sizes (UPNN). Hence the present results 

additionally provide a comprehensive overview of the computational 

performance of scale-free networks of memristors in a range of 

benchmark tasks. 

Fig. 1: Schematic representation of a percolating network of nanoparticles (PNN) with 

multiple gold electrodes. The different particle colours represent individual groups of 

well-connected particles which are separated by memristive tunnel gaps (MTGs).
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Memristive Tunnel Gaps 

When voltage stimuli are applied to the input electrodes of a 

network, tunnel currents flow through the MTGs.24,35,36 Each 

MTG 𝑖 is assigned a tunnelling conductance 𝐺𝑖 based on its 

effective gap size 𝐿𝑖:
24,36 

 
𝐺𝑖 = α𝑒−β𝐿𝑖 , (1) 

where α and β are constants (α = 1 and β = 200).35 A sufficiently 

large applied voltage leads to electric field-driven surface 

diffusion processes37 which cause atoms to migrate within the 

tunnel gaps, accumulating into “hillocks” as shown in Fig. 2d. 

Surface energy effects oppose the growth of the hillock41 such 

that the changes in hillock of height 𝑧𝑖 that result from a local 

potential V𝑖 are governed by:10 

 
𝑑𝑧𝑖

𝑑𝑡
=  

1

𝑇
[

μ𝑉𝑖

𝐷𝑖 − 𝑧𝑖
− κ𝑧𝑖,], (2) 

The effective gap size of the MTG at any time is 𝐿𝑖 = 𝐷𝑖 − 𝑧𝑖 

where 𝐷𝑖 is the initial size of gap 𝑖 and μ and κ are the parameters 

which govern the hillock growth and relaxation respectively. The 

parameter values (μ =0.346 nm2V-1, κ = 0.038 (dimensionless)) 

are chosen to give similar timescales for the growth and 

relaxation, as discussed in more detail in ref. 10. We note that the 

theoretical model described by Eq. (2) is a based on observations 

hillock growth and relaxation in PNNs15 and in similar 

memristive junctions found in other systems.10,41 Further, we 

emphasise again that Eq. (2) describes dynamics that are 

completely equivalent to those of the standard memristor 

reported in ref. 40, in which both volatile and non-volatile 

switching may occur. In the low-voltage tunnelling regime 

considered here, the memristive behaviour is volatile. The results 

obtained here are therefore applicable to a broad range of square 

arrays and scale-free networks composed of standard memristors 

and the range of different 𝐷𝑖 values for the MTGs correspond to 

heterogeneous characteristics of those memristors. 

The characteristic time scale of the MTG (i.e. memristor) 

response, 𝑇 in Eq. (2), is the same for all MTGs in the network. 

This choice was made because of the lack of any clear 

experimental evidence as to the relationship between response 

time and gap size. We expect that the distribution of response 

times in experimental systems will lead to greater richness in the 

network dynamics, and hence to better RC performance than that 

demonstrated here. 𝑇 is a key parameter in the simulations but it 

is worth noting that in experiments this response time is 

controlled by the intrinsic physics, and the input rate is scaled to 

match the intrinsic timescale of the device. 

The growth and relaxation of hillocks (Eq. (2)) modulate the 

effective size of tunnel gaps, both altering the local electric fields 

and tunnelling currents at each MTG (Eq. (1)). If the electric field 

within a MTG exceeds some threshold, its hillock grows across 

the gap to form a conducting filament, resulting in a sharp 

Fig. 2: Network topologies and hillock growth/relaxation. (a) Schematic particle representation of a percolating network of nanoparticles (PNN) of size 200×200 particle diameters, 

with bias applied on the left side of the network and the right side held at ground potential. Particles are represented by overlapping discs which form groups, the co lour of which 

represents the potential on that group (relative to ground). (b) Vertex graph representation of the percolating network shown in (a). Nodes represent the geometric centres of the 

individual groups while edges represent tunnel gaps between group boundaries. Note that there are many more groups than apparent in (a) due to groups with similar potentials 

falling into the same colour bin. (c) Graph representation of a heterogeneous 36x36 array network where each edge represents a memristive tunnel gap of varying size 𝐷. Note that 

in (a-c), the colours correspond to bins of potentials and so there is greater variation in node potential than is apparent. (d) A schematic showing the growth and relaxation of a 

hillock in a memristive tunnel gap (MTG). Left: MTG with no bias applied to the network. Middle: A hillock of height z forms in response to bias applied to the left side of the network. 

𝐹𝐸  represents the electric force driving hillock growth while 𝐹𝑅 represents the restorative force induced by surface tension. Right: Under reduced bias the hillock relaxes to a smaller 

height 𝑧, and both 𝐹𝐸  and 𝐹𝑅 decrease proportionately. Note that these schematics show the hillock at dynamical equilibrium, i.e. once all gaps in the network have responded fully 

to a constant bias.
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conductance change  (i.e. switching).15,37 In the present work, we 

focus on the low input voltage regime in which hillocks modulate 

the size of the tunnel gaps, but do not form complete filaments, 

so as to maintain the equivalence with standard memristors40 and 

avoid complications that result from avalanching effects.11 

The response of an individual MTG varies strongly with the 

local potential 𝑉𝑖,𝑡.10 In a scale-free network where there are 

many MTGs interconnected in both series and parallel 

configurations, there is a wide range of local potentials, 

especially when the MTG sizes are widely distributed as they are 

in HPNNs. The range of local potentials and gap sizes therefore 

result in varied MTG responses and we emphasise that these lead 

to rich network dynamics and diverse reservoir outputs.  

A schematic of a generalized reservoir computing (RC) 

scheme is shown in Fig. 3a and the physical implementation of 

RC using a PNN is shown in Fig. 3b. As described above the 

reservoir comprises a network of non-linear memristive elements 

(i.e. MTGs). We feed input signals into the system as sequences 

of voltages 𝑢(𝑘) applied to electrodes on one side of the network 

while electrodes at the opposite side are held at ground potential. 

The ensemble of currents 𝑋(𝑘) flowing through 𝑁 = 12 output 

electrodes constitutes the reservoir output, which is an 𝑁-

dimensional nonlinear representation of the (1-D) input sequence 

of applied voltages. 𝑋(𝑘) is then augmented with a constant bias 

signal resulting in a set of 𝑁 + 1 predictor variables which are 

used to train the output layer weights 𝑤. The final output �̂�(𝑘) is 

a linear sum of weighted predictor variables which should 

approximate some target function 𝑦(𝑘) as closely as possible 

(see Methods for details on training). The index 𝑘 is an integer 

which measures progression of time in ‘time steps’ which are 

defined to be the time between discrete input signals. Thus, the 

MTG response time 𝑇 is also expressed in time steps.  In practical 

implementations the input timing is chosen in accordance with 

the timescale of the memristor response.  

 

 

Fig. 3: Reservoir Computing Schematics. (a) A schematic representation of a conventional RC scheme. Input and reservoir connections have fixed random weights and only the output 

connections are trained. (b)   A schematic showing how a PNN (or array network) can be used as a physical reservoir to perform the NARMA-10 task. Input voltages are applied to 

all left-hand edge groups of the reservoir network. Output signals are taken from all right-hand edge groups (held at ground potential) which transmit non-zero currents. A bias 

signal can be attained by measuring the current through a parallel resistor under DC bias. Output signals are each weighted and summed to produce the final output which should 

approximate the chaotic NARMA-10 time series.
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Results and Discussion 

We performed five RC tasks (NARMA-2, NARMA-10, Memory 

Capacity (MC), Nonlinear Transformation (NLT) and 

Waveform Discrimination (WD), see Methods for task details) 

using three different input amplitudes (maximum voltages 

Vmax = 0.2 V, 0.5 V and 1.5 V, minimum voltage Vmin = 0.1 V). 

Larger input amplitudes cause the hillocks which form inside the 

MTGs to grow to larger heights 𝑧 thereby modulating the 

effective gap size 𝐿 more strongly, thus producing more 

nonlinear responses from the reservoirs. This range of Vmax 

allows for the exploration of the effects of nonlinearity while 

avoiding the complete filament formation within MTGs which 

occurs at higher voltages. The relation between Vmax and 

nonlinearity is illustrated in Fig. 4, which shows examples of the 

normalized total output current Itot
∗  (Itot

∗ = Itot/max(Itot) where 

Itot is the sum of all output electrode currents) from each type of 

network in response to slow voltage sweeps 𝑉app (I-V 

characteristics are plotted against the normalized applied voltage 

V∗ = Vapp/Vmax, see Fig. 4 caption). These I-V characteristics 

represent the effective transfer function of the networks for three 

different sweep amplitudes: Vmax = 0.2 V (blue), 0.5 V (green) 

and 1.5 V (red). It is clear that for larger Vmax, the nonlinearity 

increases. This effect is less obvious in the 36×36 UA because 

the mean path length is ~3 times longer than that of the other 

reservoirs and the applied voltage is distributed over a larger 

number of MTGs (see S1, ESI†). 

The I-V characteristics in Fig. 4 are for the total sum of output 

currents and yield a single curve for each case. However, there 

are in fact 𝑁 output currents for each network and in principle 

each output has its own unique effective transfer function. This 

is demonstrated in Fig. S2 (ESI†), which shows the individual 

normalized output currents 𝐼𝑖
∗ from each output electrode 𝑖 when 

subjected to much faster voltage sweeps. As Vmax increases from 

0.2 V to 1.5 V the level of both nonlinearity and hysteresis 

increases for all of the reservoir types. Furthermore, as Vmax 

increases, the output currents from each reservoir become more 

diverse, reflecting an increase in the richness of the reservoir 

dynamics (except for the UAs, as discussed further below).   

PNNs and Uniform MTG Arrays 

As described above, our objective is to elucidate the roles of 

topology and MTG heterogeneity in reservoir computing 

performance for scale-free PNNs and regular square arrays. To 

set a baseline for comparison, we begin by comparing 

performance of the PNNs, which naturally have heterogeneous 

MTG sizes (HPNN), with that of simple uniform arrays (UAs) in 

which each MTG in the array has the same initial gap size 

𝐷uniform = 0.05 particle diameters. Note that the UAs are 

perfectly-ordered ideal systems which serve as a useful starting 

point for investigating the roles of reservoir structure and MTG 

heterogeneity. We expect these networks to perform poorly in 

RC tasks (see discussion on symmetry below). Performance is 

shown in Fig. 5 for all five tasks using a range of characteristic 

time scales 𝑇: NARMA-2 (Fig. 5a), NARMA-10 (Fig. 5b), MC 

(Fig. 5c) NLT (Fig. 5e), WD (Fig. 5f and g). Each point in Fig. 5 

is an average obtained from a number of different network 

instances and input sequences (see captions for details), and the 

shaded bands show the standard error. Fig. 5d and h show the 

rank of the predictor matrix 𝑋 for the NARMA/MC and WD 

tasks respectively. Note that the input data and the network 

responses are identical for NARMA-2, NARMA-10 and MC – 

the only thing that changes is the target function. Therefore, 

rank(X) is the same for all three tasks. The three columns from 

left to right correspond to Vmax = 0.2 V, 0.5 V and 1.5 V, and 

the three colours used in each panel represent the 12×12 UA 

(purple), 36×36 UA (light green) and HPNN (red). S3 (ESI†) 

contains examples of target function 𝑦(𝑘) overlaid with the final 

output �̂�(𝑘) for each type of network and for each task. “Optimal 

performance” is defined as the smallest NMSE (Normalized 

Mean-Square Error, see Methods) value as a function of 𝑇 for 

the NARMA, NLT and WD tasks and the largest MC and 

SCORE values for the MC and WD tasks. Better performance is 

indicated by the arrows to the right of each panel. 

We begin by considering the optimal performance of HPNNs 

and influence of the MTG response time (𝑇) for each task. 

HPNNs perform well in time-series prediction and recall tasks 

(i.e. NARMA and MC). They achieve average NMSE values as 

low as 0.17 for NARMA-2 (Fig. 5a) and 0.45 for NARMA-10 

(Fig. 5b), with the larger NMSE for the NARMA-10 task 

reflecting the fact that it is more challenging because it requires 

more memory. This requirement is also reflected in the 

dependence of NMSE on 𝑇, with the best performance arising 

from very short MTG response times for NARMA-2 (𝑇 = 1), 

and longer response times for NARMA-10 (𝑇~5; the longer 

response time allows the reservoir to retain information about 

inputs from the more distant past). For the HPNNs, the MC is as 

high as 3.75 (Fig. 5c), which reflects their ability to effectively 

recall past information. Curiously, MC does not depend strongly 

on 𝑇 which suggests that the reservoir’s memory results from the 

Fig. 4: Network nonlinearity at different applied voltages. Normalized I-V characteristics 

of representative networks showing how the effective nonlinearity of the different 

reservoir transfer functions increase with input amplitude. Itot
∗ = Itot/max(Itot) where 

Itot is the sum of all output electrode currents. V∗ = Vapp/Vmax where Vapp is the 

applied voltage and Vmax = max(Vapp). The voltage sweep was applied slowly with 

respect to the network response times (period = 300 time steps, 𝑇 = 1 time step) such 

that the network response is saturated at each discrete voltage and no hysteresis is 

observed. Dashed lines with slope 1 are shown for reference. 



6  

interaction of many MTGs (i.e. network dynamics) rather than 

the response time of individual MTGs.  

HPNNs also perform well at temporal classification and 

transformation tasks (i.e. WD and NLT). For the NLT task (Fig. 

5e), HPNNs achieve a mean NMSE as low as 0.09. Smaller 𝑇 

gives slightly better performance than larger 𝑇 since the NLT 

task does not require a significant amount of memory. For the 

WD task, the lowest NMSE ~0.38 (Fig. 5f) and highest 

classification score of 100% (Fig. 5g) are again obtained for 

small 𝑇. This is because the reservoir state must capture memory 

of at least one previous input value (waveforms each have eight 

values) in order to successfully separate the sine and square 

waveforms.42 However, separability suffers at larger 𝑇 as the 

reservoir state depends too strongly on previous elements of the 

randomised sequence of sine/square waveforms.  Thus, it is clear 

that the optimal characteristic time scale of the MTG response 𝑇 

is highly dependent on the memory requirements of the task. 

We now consider how the optimal performance for each task 

relates to the amplitude of the input signal (i.e. Vmax). The 

optimal performance for NARMA and MC becomes poorer with 

increasing Vmax (NMSE for the NARMA tasks increases in Fig. 

5a and b, while the MCs decrease in Fig. 5c). On the other hand, 

the NLT performance improves with increasing Vmax (NMSE 

decreases in Fig. 5e), and the WD performance is optimized at 

the intermediate Vmax = 0.5 V (Fig. 5f and g, though these results 

appear somewhat less sensitive to Vmax). The dependence of 

performance on Vmax for the various tasks can be understood as 

a consequence of the “memory-nonlinearity trade-off” 

previously observed in echo-state networks.43,44 As the 

nonlinearity of the input transformation increases with Vmax 

(Fig. 4, bottom right panel), information about past inputs that is 

retained within the reservoir is further perturbed. This makes it 

more difficult to faithfully recall past inputs, as illustrated by the 

decreasing MC (from left to right) in the panels in Fig. 5c. MC 

is a linear measure of memory and it is therefore expected that 

more nonlinear reservoirs have lower MC. However, the 

NARMA tasks require both memory and nonlinearity in order to 

emulate the dynamical systems described by Eq. (5) and (6). In 

this case, the trade-off favours memory over nonlinearity as 

noted in ref. 43, and consequently the task performance is 

Fig. 5: Task performance for PNNs and Uniform Arrays. For both (a-d) and (e-h), the three columns correspond to three different input amplitudes (Vmax = 0.2 V, 0.5 V, 1.5 V with 

Vmin = 0.1 V for all Vmax). The arrows indicate the direction of better performance for each panel. All results are the mean of five network realizations and five input sequences (25 

trials total) except for NLT (e) which has only one input sequence. Shaded areas correspond to the standard error. All results are presented as a function of the network response 

time, 𝑇. (a) NARMA-2 and (b) NARMA-10 task performance expressed as the NMSE. (c) Linear memory capacity. (d) The rank of the predictor matrix 𝑋 corresponding to (a-d). (e) 

NLT and (f) waveform discrimination task performance expressed as the NMSE. (g) Waveform discrimination task performance expressed as the % of correctly classified waveforms. 

(h) The rank of the predictor matrix 𝑋 (during waveform discrimination), corresponding to the number of linearly independent outputs from the reservoir. The maximum possible 

rank is 13, corresponding to 12 electrode outputs and one constant bias term.
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optimized by a lower input amplitude. Nonlinearity and memory 

are both required for WD, but the memory requirements are 

relatively small as compared with the NARMA tasks and so an 

intermediate Vmax is optimal. In the NLT task, where 

nonlinearity requirements are dominant over memory 

requirements, the performance is optimized at larger Vmax. Thus, 

it is clear that the input amplitude which produces optimal 

performance is dependent on the particular task.  

We now focus on a comparison of the performance of the 

HPNNs and UAs. The data presented in Fig. 5 directly compares 

the performance of the HPNNs with that of the 12×12 and 

36×36 UAs: the UAs perform poorly at all five tasks, for all 𝑇. 

They achieve NMSE ~ 1 for both NARMA tasks, which means 

that they entirely fail to predict the required outputs (see Fig. S4 

and Fig. S5, ESI†). Additionally, UAs exhibit MC ~ 1, meaning 

that the RC system cannot reproduce the delayed input signal 

(𝜏 > 0, as shown in Fig. S6, ESI†). The NMSE ~0.2 for the NLT 

task is about twice as large as the NMSE obtained for the HPNNs 

and corresponds to the NMSE when a sine and square wave of 

equal amplitude and period are compared (see Fig. S7, ESI†). 

The UAs fail at the WD task with NMSE ~1 and 0% of 

waveforms correctly classified.  

The stark difference in performance between UAs and 

HPNNs is perhaps somewhat surprising given that the MTGs in 

both types of system have the same properties (same response 

time 𝑇 (Eq. (2)) and nonlinearity (Eq. (1)). However, Fig. 5d and 

h show that the reservoir dynamics of the UAs lack the richness 

that is required for RC. The rank of the predictor matrix 𝑋 

indicates the number of linearly independent output currents 

from the reservoirs and reflects the (lack of) diversity of the 

outputs. The outputs of the 12×12 and 36×36 UAs both have 

rank(𝑋) = 2 for the NARMA, MC (Fig. 5d) and WD (Fig. 5h) 

tasks. As the bias (constant offset in �̂�(𝑘)) is included in 𝑋, this 

indicates that all of the output currents are collinear. By 

comparison, HPNNs produce reservoir outputs with mean 

rank(𝑋) values as high as 9, indicating significantly more 

diversity among the output current dynamics. This diversity can 

be seen in Fig. S2f (ESI†), where the different electrode currents 

exhibit different levels of nonlinearity and hysteresis. Because 

HPNNs have both asymmetric (scale-free) connectivity and 

heterogeneous initial MTG sizes, there is a wide distribution of 

Fig. 6: Task performance for PNNs and Heterogeneous Arrays. For both (a-d) and (e-h), the three columns correspond to three different input amplitudes (Vmax = 0.2 V, 0.5 V, 1.5 V 

with Vmin = 0.1 V for all Vmax). The arrows indicate the direction of better performance for each panel. All results are the mean of five network realizations and five input sequences 

(25 trials total) except for NLT (e) which has only one input sequence. Shaded areas correspond to the standard error. All results are presented as a function of the network response 

time, 𝑇. (a) NARMA-2 and (b) NARMA-10 task performance expressed as the NMSE. (c) Linear memory capacity. (d) The rank of the predictor matrix 𝑋 corresponding to (a-d). (e) 

NLT and (f) waveform discrimination task performance expressed as the NMSE. (g) Waveform discrimination task performance expressed as the % of correctly classified waveforms. 

(h) The rank of the predictor matrix 𝑋 (during waveform discrimination), corresponding to the number of linearly independent outputs from the reservoir. The maximum possible 

rank is 13, corresponding to 12 electrode outputs and one constant bias term.
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the local potential differences across the MTGs at any given 

time, which produce a broad range of responses from the 

individual MTGs. The resulting reservoir dynamics become 

more diverse as the range of applied voltages (i.e. Vmax) 

increases (e.g. Fig. S2f, ESI†), thus explaining the observed 

increase in rank(𝑋) for the HPNNs in Fig. 5d and h.  

The diversity of the outputs is related to the effective 

dimensionality of the nonlinear transformation of the input 

signals. When an input signal is transformed into an 𝑁-

dimensional reservoir output, this transformation is only truly 𝑁-

dimensional when each of the 𝑁 reservoir outputs are linearly 

independent of the others. Collinear outputs do not improve the 

transformed representation of the input. Furthermore, training 

may be impeded by redundant predictors as the linear regression 

problem becomes increasingly ill-conditioned the more 

collinearity exists among predictor variables.  

PNNs and Heterogeneous MTG Arrays 

It is clear from the results presented so far that the HPNNs have 

greater information processing capability than the UAs. 

However, it is unclear whether it is the HPNN’s scale-free 

topology, or the heterogeneity of the MTG sizes (or a 

combination of the two) which bestow this computational 

advantage. To investigate these possibilities, we inverted the 

relationship between topology and MTG heterogeneity to create 

two variants of the systems studied so far. Arrays were assigned 

heterogeneous initial MTG sizes (HAs, see above) and PNNs 

were forced to have uniform initial MTG sizes 𝐷uniform = 0.05 

particle diameters (UPNNs, note that the natural scale-free 

connectivity structure was not perturbed). The same set of tasks, 

using the same voltage ranges and characteristic time scales, 

were repeated using the HAs and UPNNs. 

Fig. 6 shows the task performance for the HAs (12×12, blue; 

36×36, green) and UPNNs (amber) using the same layout as Fig. 

5: NARMA-2 (Fig. 6a), NARMA-10 (Fig. 6b), MC (Fig. 6c) 

NLT (Fig. 6e), WD (Fig. 6f and g). Fig. 6d and h show the rank 

of the predictor matrix 𝑋 corresponding to the NARMA and WD 

tasks respectively. The performance of the HPNNs shown in Fig. 

5 is reproduced in Fig. 6 for reference (red); note that the 𝑦-axis 

scales in Fig. 6 have been reduced relative to Fig. 5 to allow 

visualisation of more detail. S3 (ESI†) contains examples of 

target function 𝑦(𝑘) overlaid with the final output �̂�(𝑘) for each 

type of network and for each task.  

It is immediately obvious in Fig. 6 that the performance of 

the arrays improves significantly when endowed with 

heterogeneous MTG sizes (compare purple (light green) in Fig. 

5 with blue (green) in Fig. 6). The performance of the HAs in 

each task shows a strong dependence on 𝑇 just like the HPNNs, 

albeit with slightly different optimal 𝑇 values in some cases. The 

optimal values of 𝑇 and Vmax depend on the task, as for the 

HPNNs discussed above. These results indicate that the 

heterogeneity of MTGs plays a crucial role in breaking the 

symmetry of the UAs, leading to richer reservoir dynamics and 

more diverse outputs, and consequential improved task 

performance.  This effect is illustrated by the diversity among the 

electrode outputs in Fig. S2d and e (ESI†) which is not present 

for the UAs in Fig. S2a and b. This increase in output diversity 

is also reflected in the larger rank(𝑋) for the HAs than for the 

UAs (compare Fig. 6d and h with Fig. 5d and h). There is clearly 

a direct relationship between output diversity, as represented by 

rank(𝑋), and the corresponding task performance in Fig. 6.  

The 36×36 HAs generally outperform the 12×12 HAs and it 

is clear that this is due to their greater output diversity (larger 

rank(𝑋)). This indicates that some network properties play a 

greater role in producing diverse output signals (and greater 

computational performance) than others. For example, since the 

number of MTGs (𝑁𝑀𝑇𝐺 ) in the 36x36 HAs is similar in that of 

the PNNs, while the mean path length (〈𝐿𝑃〉) of the 12×12 HAs 

is similar to the PNNs, this suggests that 𝑁𝑀𝑇𝐺  is more 

computationally relevant than 〈𝐿𝑃〉 (see network modelling 

section and S1, ESI†). Making a similar consideration of network 

topology, both rank(𝑋) and task performance for the 36×36 

HAs is very similar to those of the HPNNs at Vmax = 1.5 V. This 

would seem to suggest that, when MTG sizes are heterogeneous, 

the computational performance of memristive electronic 

reservoirs is not strongly affected by reservoir topology.   

The roles of MTG heterogeneity and reservoir topology are 

further elucidated by results for the UPNN, shown in Fig. 6. 

Perhaps counterintuitively, forcing the PNNs to have uniform 

MTG sizes results in an improvement in performance over those 

with heterogenous MTG sizes, opposite to the trend observed for 

the arrays. This indicates that there is interplay between the roles 

of MTG heterogeneity and reservoir topology, which is now 

discussed. In the case of UAs, the structure is regular and the 

MTG sizes are uniform, resulting in spatially symmetrical and 

temporally synchronized local potentials and tunnelling currents 

within the reservoir, leading to low diversity among the reservoir 

outputs. By either adding heterogeneity to the MTG sizes (HAs) 

or by replacing the regular connectivity with a scale-free 

topology (UPNNs), that symmetry is broken, resulting in widely 

distributed local potentials and tunnelling currents throughout 

the reservoir. This variation contributes richness to the reservoir 

dynamics and leads to diverse reservoir outputs, thus facilitating 

greater computational performance. In S4 (ESI†) we show that 

the symmetry of UA dynamics can also be broken by randomly 

weighting the inputs (so that each of the left-hand electrodes 

receives a different signal amplitude), or by applying the input to 

a single left-hand electrode. Fig. S10 (ESI†) shows task 

performance for the 12×12 and 36×36 UAs using both randomly 

weighted inputs to all input electrodes, and using a single input 

electrode. The performance of the 12×12 UAs with these input 

configurations lies between the HPNN and UPNN performance 

for all five tasks, and the performance of the 36× 36 UA 

becomes similar to that of the HPNNs. Hence approximately the 

same level of performance gain can be attained using either a 

scale-free topology or input configurations that break the 

symmetry of the uniform arrays. 

The better performance of UPNNs compared to HPNNs can 

be explained by the presence of “choke-points” in the HPNNs. 

The scale-free structure means that there are few current paths 

through the network in parallel with some key MTGs; if those 

MTGs happen to have large sizes (and therefore high resistance), 

the output currents measured at electrodes beyond that point in 

the network may then be relatively small and well-synchronized, 

resulting in reduced richness. In the UPNNs, choke points do not 

exist because all of the MTGs have identical initial sizes. This 
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fact is reflected by a wider range of results (denoted by larger 

error bands in Fig. 6) for the HPNNs as compared with the 

UPNNs. We expect that the difference in performance between 

HPNNs and UPNNs will be significantly reduced in much larger 

PNNs, such as those produced experimentally, but further studies 

are needed to confirm that hypothesis. It is worth noting that 

nanowire networks have irregular topologies that are small-

world but not scale-free.45 They also have a high degree of MTG 

uniformity due to the controlled thickness of the insulating 

coatings surrounding the nanowires (which forms the memristive 

junction). Thus, choke points are less likely and it would be 

interesting to compare RC performance of NWNs to that of the 

UPNNs.  

Conclusions 

We have demonstrated the effects of both network topology and 

memristor heterogeneity on computational capability by 

comparing the performance of scale-free and regular arrays of 

memristors, and have considered both uniform and 

heterogeneous memristor properties. The results from a range of 

benchmark tasks lead us to the following conclusions: (i) In the 

presence of rich (or at least non-trivial) dynamics, the optimal 

response time scale and input amplitudes depend on the memory 

and nonlinearity requirements for each particular task, due to the 

so-called “memory-nonlinearity trade-off”. (ii) The best RC 

performance is achieved using scale-free networks of uniform 

memristive elements, while the worst performance is observed 

from uniform arrays. (iii) The performance of the arrays 

improves significantly when the memristors are heterogeneous, 

and approaches that of the HPNNs. (iv) HPNN performance is 

limited (compared to UPNNs) by “choke points” which restrict 

information flow. (iv) The most important factor contributing to 

computational performance is the diversity of the reservoir 

outputs. (v) Scale-free topologies result in rich dynamics and 

diverse outputs even for uniform MTGs and symmetrical input 

configurations, whereas arrays can only produce diverse outputs 

if their symmetry is broken (by heterogeneity in the memristors, 

or by restricting the number of input nodes).  

Methods 

Reservoir Training 

Training is performed by calculating 𝑁 + 1 linear coefficients 

𝑤𝑖, such that the final output �̂�(𝑘) approximates the desired 

target output  𝑦(𝑘):  

 

�̂�(𝑘) = ∑ 𝑤𝑖

𝑁+1

𝑖=1

𝑥𝑖(𝑘) ≈ 𝑦(𝑘). (3) 

The vector of linear coefficients 𝑤 is found using linear 

regression via the Moore-Penrose pseudo-inverse †: 

 
𝑤 = (𝑋†𝑦). (4) 

Reservoir Computing Tasks 

Nonlinear auto-regressive moving average (NARMA) tasks46 are 

a set of challenging time series prediction benchmarks 

commonly used to quantify the computational capabilities of 

brain-like information processing systems. The aim of these 

tasks is to emulate a particular nonlinear dynamical system by 

learning the association between a discrete white noise signal 

𝑢(𝑘) and the resulting chaotic time series produced by that 

dynamical system when driven by 𝑢(𝑘). Here we consider two 

NARMA tasks: NARMA-2 and NARMA-10. 

The NARMA-2 time series is produced by the dynamical 

system: 

 𝑦𝑘+1 = α𝑦𝑘 + β𝑦𝑘𝑦𝑘−1 + γ𝑢𝑘
3 + δ, (5) 

where the constants [𝛼, 𝛽, 𝛾, 𝛿] = [0.4, 0.4, 0.6, 0.1].46 Each 

point 𝑦𝑘+1depends nonlinearly on both the present input 𝑢𝑘 and 

the previous two output values 𝑦𝑘 and 𝑦𝑘−1; hence the name 

NARMA-2. The NARMA10 time series is produced by the 

dynamical system: 

 𝑦𝑘+1 = α𝑦𝑘 + β𝑦𝑘 [∑ 𝑦𝑘−𝑖

9

𝑖=0

] + γ𝑢𝑘𝑢𝑘−9 + δ, (6) 

where the constants [𝛼, 𝛽, 𝛾, 𝛿] = [0.3, 0.05, 1.5, 0.1].46 The 

NARMA-10 task is significantly more challenging than the 

NARMA-2 task because each point 𝑦𝑘+1 now depends on the ten 

previous values of both 𝑢(𝑘) and 𝑦(𝑘). For both NARMA tasks 

we use input signals 𝑢(𝑘) in the range [0, 0.5] with length 𝐾 = 

4000, where the first half of the sequence is used for training and 

the second half is used to test the trained RC system. 

The performance of the RC systems on the NARMA tasks is 

quantified by the error between the RC system output �̂�(𝑘)  and 

the target output 𝑦(𝑘), with smaller error corresponding to better 

performance. Several error metrics can be used, among which 

there is little consistency in the literature, often making direct 

comparison of results difficult. We use the normalized mean-

square error (NMSE), where the sum of squared residuals is 

normalized by the variance of the target function σ2(𝑦𝑘): 

 

𝑁𝑀𝑆𝐸 =  
1

𝐾

∑ (�̂�𝑘 − 𝑦𝑘)2𝐾
𝑘=1

𝜎2(𝑦𝑘)
. (7) 

The third task that we consider is the short-term memory 

capacity (MC) task.47 The MC task measures the ability of an RC 

system to faithfully reproduce delayed copies of a white noise 

input signal 𝑢(𝑘). The memory capacity for a delay 𝜏 is given 

by: 

 

𝑀𝐶𝜏 =
𝑐𝑜𝑣(𝑢(𝑘 − 𝜏), �̂�𝜏)2

𝜎2(𝑢(𝑘 − 𝜏))𝜎2(�̂�𝜏)
, (8) 

where 𝜎2 and 𝑐𝑜𝑣 represent the variance and covariance 

respectively and �̂�𝜏 is the reservoir output trained to approximate 

the delayed input. The total memory capacity of the RC system 

is then the sum of 𝑀𝐶𝜏 over all possible delays: 

 

𝑀𝐶 = ∑ 𝑀𝐶𝜏

∞

𝜏=0

. (9) 

In practice we limit the sum in Eq. (9) to 𝜏 = 100, which is more 

than sufficient for the reservoirs considered here. 

The fourth task considered is waveform discrimination 

(WD)48 where randomized sequences of complete sine and 
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square waveforms are to be classified as either ‘sine’ or ‘square’ 

by outputting a different binary value (one and minus one 

respectively) for each waveform. As we consider input 

waveforms of period 𝑃 = 8, the resulting binary target function 

𝑦(𝑘) (and reservoir output �̂�(𝑘)) has eight values for each input 

waveform.42 In order to make a classification, the mean of these 

eight output values 〈�̂�(𝑘)〉wf is compared with the decision 

boundary at 𝑦 = 0, i.e. positive (negative) 〈�̂�(𝑘)〉wf indicates a 

‘sine’ (‘square’) classification. The performance can be 

measured both by the NMSE between �̂�(𝑘) and 𝑦(𝑘) (Eq. (7)) 

and by the percentage of correctly classified waveforms. 

Compared with the NARMA and MC tasks which require strong 

memory from the reservoir, WD requires less memory and more 

nonlinearity. 

The final task that we consider is nonlinear transformation 

(NLT)49 in which an input sine wave of period 𝑃 = 100 must be 

transformed (nonlinearly) into a square wave of the same period. 

The performance is measured using the NMSE ((Eq. (7)). 

Compared with the other tasks, NLT utilizes a high degree of 

nonlinearity without requiring much memory.  

Conflicts of interest 

There are no conflicts to declare. 

Acknowledgements 

This project was financially supported by The MacDiarmid 

Institute for Advanced Materials and Nanotechnology and the 

Marsden Fund. 

References 

1 D. Marković, A. Mizrahi, D. Querlioz and J. Grollier, Nat. Rev. 

Phys., 2020, 2, 499–510. 

2 P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. 

Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, 

B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. 

D. Flickner, W. P. Risk, R. Manohar and D. S. Modha, Science, 

2014, 345, 668–673. 

3 M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, 

G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. 

Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, 

Y.-H. Weng, A. Wild, Y. Yang and H. Wang, IEEE Micro, 2018, 38, 

82–99. 

4 S. Furber, J. Neural Eng., 2016, 13, 051001. 

5 J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. 

Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. 

Kubota, S. Yuasa, M. D. Stiles and J. Grollier, Nature, 2017, 547, 

428–431. 

6 Y. Li, Z. Wang, R. Midya, Q. Xia and J. J. Yang, J. Phys. D. Appl. 

Phys., 2018, 51, 503002. 

7 Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, 

N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. 

S. Williams, Q. Xia and J. J. Yang, Nat. Mater., 2017, 16, 101–108. 

8 M. Dale, J. F. Miller, S. Stepney and M. A. Trefzer, in 

Unconventional Computation and Natural Computation. UCNC 

2016. Lecture Notes in Computer Science, eds. M. Amos and A. 

CONDON, Springer, Cham., 2016, pp. 49–61. 

9 M. Akai-Kasaya, Y. Takeshima, S. Kan, K. Nakajima, T. Oya and T. 

Asai, Neuromorphic Comput. Eng., 2022, 2, 014003. 

10 R. K. Daniels, J. B. Mallinson, Z. E. Heywood, P. J. Bones, M. D. 

Arnold and S. A. Brown, Neural Networks, 2022, 154, 122–130. 

11 J. Hochstetter, R. Zhu, A. Loeffler, A. Diaz-Alvarez, T. Nakayama 

and Z. Kuncic, Nat. Commun., 2021, 12, 4008. 

12 H. O. Sillin, R. Aguilera, H. H. Shieh, A. V. Avizienis, M. Aono, A. Z. 

Stieg and J. K. Gimzewski, Nanotechnology, 2013, 24, 384004. 

13 G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani, L. 

Boarino, D. Ielmini and C. Ricciardi, Nat. Mater., 2022, 21, 195–

202. 

14 H. Tanaka, S. Azhari, Y. Usami, D. Banerjee, T. Kotooka, O. 

Srikimkaew, T.-T. Dang, S. Murazoe, R. Oyabu, K. Kimizuka and 

M. Hakoshima, Neuromorphic Comput. Eng., 2022, 2, 022002. 

15 S. K. Bose, J. B. Mallinson, R. M. Gazoni and S. A. Brown, IEEE 

Trans. Electron Devices, 2017, 64, 5194–5201. 

16 J. B. Mallinson, S. Shirai, S. K. Acharya, S. K. Bose, E. Galli and S. 

A. Brown, Sci. Adv., 2019, 5, eaaw8438. 

17 C. Minnai, A. Bellacicca, S. A. Brown and P. Milani, Sci. Rep., 2017, 

7, 7955. 

18 N. Carstens, B. Adejube, T. Strunskus, F. Faupel, S. Brown and A. 

Vahl, Nanoscale Adv., 2022, 4, 3149–3160. 

19 H. Jaeger, The “ echo state ” approach to analysing and training 

recurrent neural networks – with an Erratum note., 2001. 

20 W. Maass, T. Natschläger and H. Markram, Neural Comput., 

2002, 14, 2531–2560. 

21 M. Lukoševičius and H. Jaeger, Comput. Sci. Rev., 2009, 3, 127–

149. 

22 G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. 

Takeda, H. Numata, D. Nakano and A. Hirose, Neural Networks, 

2019, 115, 100–123. 

23 K. Nakajima, Jpn. J. Appl. Phys., 2020, 59, 060501. 

24 M. D. Pike, S. K. Bose, J. B. Mallinson, S. K. Acharya, S. Shirai, E. 

Galli, S. J. Weddell, P. J. Bones, M. D. Arnold and S. A. Brown, 

Nano Lett., 2020, 20, 3935–3942. 

25 S. Shirai, S. K. Acharya, S. K. Bose, J. B. Mallinson, E. Galli, M. D. 

Pike, M. D. Arnold and S. A. Brown, Netw. Neurosci., 2020, 4, 

432–447. 

26 Z. Heywood, J. Mallinson, E. Galli, S. Acharya, S. Bose, M. Arnold, 

P. Bones and S. Brown, Neuromorphic Comput. Eng., 2022, 2, 

024009. 

27 E. Bullmore and O. Sporns, Nat. Rev. Neurosci., 2009, 10, 186–

198. 

28 E. Bullmore and O. Sporns, Nat. Rev. Neurosci., 2012, 13, 336–

349. 

29 H.-J. Park and K. Friston, Science, 2013, 342, 1238411–1238411. 

30 Z. Deng and Y. Zhang, IEEE Trans. Neural Networks, 2007, 18, 

1364–1375. 

31 Y. Kawai, J. Park and M. Asada, Neural Networks, 2019, 112, 15–

23. 

32 M. Dale, S. O’Keefe, A. Sebald, S. Stepney and M. A. Trefzer, Nat. 

Comput., 2021, 20, 205–216. 

33 M. Dale, J. Dewhirst, S. O’Keefe, A. Sebald, S. Stepney and M. A. 

Trefzer, in Unconventional Computation and Natural 

Computation. UCNC 2019. Lecture Notes in Computer Science, ed. 

S. McQuillan, I., Seki, Springer, Cham, 2019, vol. 11493, pp. 52–



 11 

64. 

34 S. Bose, S. Shirai, J. Mallinson, S. Acharya, E. Galli and S. Brown, 

in 2018 IEEE 18th International Conference on Nanotechnology 

(IEEE-NANO), IEEE, 2018, pp. 1–2. 

35 S. Fostner, R. Brown, J. Carr and S. A. Brown, Phys. Rev. B, 2014, 

89, 075402. 

36 S. Fostner and S. A. Brown, Phys. Rev. E, 2015, 92, 052134. 

37 A. Sattar, S. Fostner and S. A. Brown, Phys. Rev. Lett., 2013, 111, 

136808. 

38 A. D. F. Dunbar, J. G. Partridge, M. Schulze and S. A. Brown, Eur. 

Phys. J. D, 2006, 39, 415–422. 

39 D. Stauffer and A. Aharony, Introduction To Percolation Theory, 

Taylor & Francis, 2018. 

40 D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, 

Nature, 2008, 453, 80–83. 

41 W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Z. Sun, X. 

Chen and D. Ielmini, Nat. Commun., 2019, 10, 81. 

42 M. Riou, J. Torrejon, B. Garitaine, F. Abreu Araujo, P. Bortolotti, 

V. Cros, S. Tsunegi, K. Yakushiji, A. Fukushima, H. Kubota, S. 

Yuasa, D. Querlioz, M. D. Stiles and J. Grollier, Phys. Rev. Appl., 

2019, 12, 024049. 

43 D. Verstraeten, J. Dambre, X. Dutoit and B. Schrauwen, in The 

2010 International Joint Conference on Neural Networks (IJCNN), 

IEEE, 2010, pp. 1–8. 

44 M. Inubushi and K. Yoshimura, Sci. Rep., 2017, 7, 10199. 

45 R. K. Daniels and S. A. Brown, Nanoscale Horizons, 2021, 6, 482–

488. 

46 A. F. Atiya and A. G. Parlos, IEEE Trans. Neural Networks, 2000, 

11, 697–709. 

47 H. Jaeger, Short Term Memory in Echo State Networks, GMD 

Forschungszentrum Informationstechnik, Sankt Augustin, 2001. 

48 Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. 

Haelterman and S. Massar, Sci. Rep., 2012, 2, 287. 

49 E. C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A. Z. Stieg and 

J. K. Gimzewski, Jpn. J. Appl. Phys., 2016, 55, 1102B2. 
 


