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ABSTRACT The ability to faithfully represent real social networks is critical from the perspective of testing
various what-if scenarios which are not feasible to be implemented in a real system as the system’s state
would be irreversibly changed. High fidelity simulators allow one to investigate the consequences of different
actions before introducing them to the real system. For example, in the context of social systems, an accurate
social network simulator can be a powerful tool used to guide policy makers, help companies plan their
advertising campaigns or authorities to analyse fake news spread. In this study we explore different Social
Network Simulators (SNSs) and assess to what extent they are able to mimic the real social networks.
We conduct a critical review and assessment of existing Social Network Simulators under the Digital
Twin-Oriented Modelling framework proposed in our previous study. We subsequently extend one of the
most promising simulators from the evaluated ones, to facilitate generation of social networks of varied
structural complexity levels. This extension brings us one step closer to a Digital Twin Oriented SNS (DT
Oriented SNS). We also propose an approach to assess the similarity between real and simulated networks
with the composite performance indexes based on both global and local structural measures, while taking
runtime of the simulator as an indicator of its efficiency. We illustrate various characteristics of the proposed
DT Oriented SNS using a well known Karate Club network as an example. While not considered to be of
sufficient complexity, the simulator is intended as one of the first steps on a journey towards building a
Digital Twin of a social network that perfectly mimics the reality.

INDEX TERMS Social networks, network dynamics, digital twins, complex network systems.

I. INTRODUCTION
Social network simulators (SNSs) aim at faithfully represent-
ing real networked systems and attempt to model the inner
rules of network dynamics. They generate simulation-based
networks (built with simulated data) or hybrid networks
(built with both real and simulated data) to deal with
the unobservability problems resulting from data sparsity,
privacy concerns and lack of ground-truth [1], [2].

As proposed in our previous study [3], Digital Twin (DT)
can be seen as amodelling paradigm that serves as an accurate
reflection of reality, and this means that we can treat it as
an ultimate goal of the representation and modelling of any
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Complex Networked System (CNS). Over the past decades,
to achieve an accurate reflection of reality, variety of SNSs
have been developed to embrace complexity of real world
systems. Those efforts resulted in more and more realistic
and complex social network simulations that, step by step,
approach the desirable characteristics of a Digital Twin.

The complexity of the social network simulations results
from the heterogeneity of the network components (nodes,
edges and their attributes) as well as dynamically changing
behaviour of those elements. Current studies have made
good progress to attain a desired complexity level. They
start from relatively simple simulations which are based on
predetermined network statistics or connection principles
about network topology, including such classical examples
as Barabasi-Albert model for the scale-free network [4] or
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preferential attachment of nodes based on similarity, pop-
ularity or both of them [5]. Complexity of these networks
increases in the structural dimension when node attributes
(e.g. age, gender, geo-space, etc.) or edge attributes (e.g.
direction, weight, relationship, etc.) are introduced. To incor-
porate the impact of structural complexity on network sim-
ulation, social network simulators built on interaction rules
have been employed due to their flexible definitions based
on topology, attributes or both of them, like homophily [6],
[7], triadic structure [7], [8] and geographic proximity [9].
The social network simulations get even more complex

when they enable the network structure to evolve using inner
rules that define how components can change over time.
Studies on SNSs focus mainly on the topology change (e.g.
the instantaneous social contacts [10], [11]). Only a small
number of studies account for both attribute change and
topology change. For example, the SNS proposed by [12]
generates social networks with node attributes including
features (e.g. age, gender, etc.) and preference for each
feature when interacting with others, termed as social DNA
(sDNA). The network topology is formed based on sDNA
and evolves as sDNA changes randomly over time. However,
as an example of one its existing drawbacks, the mechanisms
for attributes and preferences changes need to be further
studied to allow more realistic modelling.

Studies on SNSs typically focus on the social intervention
analysis and conduct an optimisation of inner rules for
achieving the highest possible similarity with the target
network [7], [13]. The consistent network growth enabled by
the iterative application of SNSs unfolds the desired network
complexity at the cost of time and energy [14]. The time
step in these studies is often assumed to have the same
meaning with the iteration, where the networks grow linearly
with time (e.g. predetermined number of added nodes or
rewired edges within one iteration between time step t and
t + 1) [7], [13]. However, the time truly spent on each
iteration of SNS varies with the complexity of networks and
computation resources [12] and the time that measures the
duration of each SNS iteration can serve as an indicator of
model efficiency. Current studies on SNSs take the similarity
between simulated networks and the target networks as the
objective of running an SNS [7], [12], [13], while none of
them considers model efficiency.

In this study, we review and assess the current state-of-
the-art SNSs under (i) the Digital Twin Oriented Modelling
framework encompassing different complexity dimensions
and (ii) the assessment framework based on similarity and
efficiency, as proposed in our previous study [3]. To provide
a possible pathway of extending SNSs towards a Digital
Twin Oriented SNS, we build an inner rule-based SNS that
enables the social network simulation to take into account
structural and dynamic dimensions of complexity that builds
on [12]. Both the similarity and the model efficiency are
used as assessment criteria of the proposed SNS. We evaluate
the similarity between a simulated and a real network using
the composite performance indexes based on both global

and local measures and we consider runtime of SNS as an
indicator of its efficiency. We use Karate Club network as
an example to primarily illustrate but also examine to what
extent the proposed SNS can model the structural complexity
of a real social network. The diverse network patterns
simulated by SNSs and their respective similarity levels to
the real network assessed by the composite performance
index, given different structural complexity levels, reveal the
challenges of SNS performance evaluation for the future DT
Oriented SNSs.

The rest of this paper is structured as follows. Section II
reviews the current state-of-the-art of social network simu-
lations and offers comparison between different SNSs in the
context of modelling framework proposed in [3]. Section III
presents the methodology of building an SNS to generate
desired networks. Following this, section IV introduces the
real data employed in the analysis and presents the results
of the experiments. Finally, conclusions and future work are
given in section V.

II. CURRENT STATE-OF-THE-ART OF SOCIAL NETWORK
SIMULATORS
We review here and discuss the current developments in
the context of SNSs from the following four perspectives:
(i) modelling prerequisite – observability – that determines
the observable information to be modelled and the unob-
servable information to be simulated; (ii) modelling gener-
ations connected with the complexity of modelling SNSs;
(iii) complexity dimensions that describe the complexity of
social network simulations; and (iv) assessment of SNSs
concerned with the distance between the social network
simulations and the target networks.

A. MODELLING PREREQUISTE
Modelling prerequisite – observability, in the context of
SNSs, is concerned with the ability of reconstructing the
desired complexity of networks from a limited set of observed
network components in finite time with an understanding
of their dynamically changing behaviour [3]. The network
components include nodes, edges and attributes of nodes
and edges. To generate networks with desired topology
and attributes, the existing SNSs simulate the unobservable
(represented with a #) and partially observable network
components (represented with a H#) based on the observable
network components (represented with a ) and an inner rule
that directs the network growth (see Table 1).
As is shown in Table 1, the simulated networks are built

with purely simulated topology and attributes, dealing with
the unobservability problem of all network components for
the analysis of the topological features [4], [15], [16], [17],
[19], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[33], [34], [35], [36] and mimicking of real networked
systems [13], [18], [32], [53], [54].

The hybrid networks are built with the partially observable
and partially simulated network components.The observable
network components refer to the available information
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TABLE 1. Current SNSs and the observability of network components in
their simulations.

related to nodes, edges and attributes, which contributes to
generating realistic networks. When only partial information
is observable, we simulate the unobservable network com-
ponents needed for a faithful network representation. In this
space, such networks, called hybrid networks, are composed
of partially observable and partially simulated information
related to nodes, edges and attributes. Some SNSs incorporate
the observable nodes and node attributes while simulating
the unobservable edges for a desired states of networks [7],
[9], [12], [37], [38], [39], [42]. Some SNSs consider the
partial observable edges and conduct link prediction for the
unobservable edges [5], [47], [48], [49], while some SNSs
incorporate edge attributes in this process [50], [51], [52].
In general, there is limited research that, in the simulation
process, takes into account real-world attributes of both
nodes and edges. There are some works that account for
limited number of real node attributes [7], [9], [12], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [49], [50]
and when it comes to edges only two simulators partially
consider real-world edges [51], [52]. As a result, most of
the hybrid simulators take into account some of the topology
information but not many consider attribute information and
this points to the need for further work on SNSs, especially
in the context of learning from continuously streaming data.
Such advancement would bring current SNSs closer to the
Digital Twin paradigm.

B. MODELLING GENERATIONS
Modelling generations, as proposed in [3], consider three
key elements of modelling complex network dynamics, the
simulation of (i) networks, (ii) processes over networks,
and (iii) the interrelation between the two. There are five
generations of modelling paradigms (G1, G2, G3, G4 and
G5), where SNSs can be built with increasing dynamics
complexity through generations and finally reach the goal of
a DT in G5.

We review and discuss the above mentioned three elements
in the context of the modelling generations while considering
two types of heterogeneity (i) the existence of a given element

TABLE 2. Current SNSs and their generations.

(represented with a �) and in addition to its existence,
(ii) the capability of an element to change over time
(represented with a K) (See Table 2).
Generation 1 (G1) of models focuses on dynamic process

on static networks (see Table 2 and Fig. 1(a)). They simulate
networks that are ‘‘frozen’’ in time, with a dynamic process
taking place on the networks where parameters of this process
do not change during the simulation (e.g. epidemic spreading
process on static social networks with a fixed infection
rate [59], [71]). Most studies focus on SNSs in G1 [4], [5],
[7], [13], [15], [16], [17], [18], [19], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [41], [43], [44], [45], [52], [54], [55], [56],
[57], [58], [59], [72]. Also, many of the simulators generate
static social networks without any consideration of dynamic
processes [4], [5], [7], [13], [15], [16], [17], [18], [19], [22],
[32], [37], [38], [39], [41], [43], [44], [45], [52].

SNSs in Generation 2 (G2) have two variations, one
termed as G2a and the other as G2b. SNSs in G2a focus on
evolving dynamic process on static networks (see Table 2
and Fig. 1(b)). They simulate a static network where dynamic
process changes its parameters over time and gets captured in
snapshots (e.g. epidemic spreading processes on static social
networks with a changeable infection rate [60]). There are
only few studies on SNSs in G2a [60], [61], [73].

SNSs in G2b focus on dynamic process on evolving
networks (see Table 2 and Fig. 1(c)). They simulate network
snapshots that describe the network topology changes over
time, where the dynamic process takes place without
changing its parameters (e.g. epidemic spreading process
with a non-changeable infection rate on social network that
evolves over time [66]). There are many studies on SNSs
that model only the dynamics of network structure in this
space [9], [12], [20], [21], [39], [40], [42], [46], [47], [48],
[49], [50], [51], [62], [63], [64], [65], [66], [74] while few of
them additionally consider the dynamic processes [65], [66].

SNSs in G3 focus on evolving dynamic processes
on evolving networks with interrelations between them
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FIGURE 1. Generations of modelling framework, including (a) G1: dynamic process on static networks, (b) G2a: evolving dynamic process
on static networks, (c) G2b: dynamic process on evolving networks, (d) G3: evolving dynamic processes on evolving networks with
interrelations between them, and (e) G4: temporal dynamic processes on temporal networks with interrelations between them and the
continuous acquisition of real time information.
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FIGURE 2. G5: the temporal dynamic processes on temporal networks,
with interrelations and the real-time acquisition and feedback between
the SNS and reality.

(See Fig. 1(d)). They simulate networks, dynamic pro-
cesses and their changes using snapshot approach (data are
processed in batches), while incorporating the interactions
between a network and a process. For example, the epidemic
spreading across the network can leave some nodes dead
and get them removed [67], while the infection rate of
epidemic spreading process can also vary depending on
nodes’ groups (structural patterns) [68], [69]. Only few
SNSs consider the interrelations between the networks and
the dynamic processes, where they just study the dynamic
processes with non-changeable parameters on evolving net-
works [67] or evolving dynamic processes on static networks
[68], [69], [70]

SNSs in G4 focus on temporal dynamic processes on
temporal networks with interrelations between them and the
continuous acquisition of real time information (see Fig. 1(e).
They simulate networks and the dynamic processes with
instantaneous changes of network topology and parameters,
while incorporating the interactions between a process and
a network. SNSs in G5 further extend the SNSs in G4 by
closing the feedback loop between the SNSs and the real
system and can be identified as an idealised state that can
be named as a Digital Twin. In G5, the temporal dynamic
processes occur on temporal networks with interrelations
and the real-time acquisition and feedback of information
between the SNS and reality (See Fig. 2). More specifically,
compared with G4, G5 is equipped with another real-time
information flow from the reality to the model. This enables
the two-way real-time information feedback between the
SNS and reality. Currently, there are no studies on SNS in
G4 and G5 and further studies are required to model such
high complexity scenarios to approach a DT.

C. COMPLEXITY DIMENSIONS
Complexity dimensions describe the complexity of social
networks resulting from the heterogeneity of their network

components (topology and attributes) and temporal dynamics
of those components and their attributes. As proposed in [3],
there are four complexity dimensions (i.e. structural, spatial,
temporal and dynamics) that need to be considered when
representing and modelling a network. The structural and
the spatial complexities are concerned with the existence
of network attributes and the space where the topology can
be embedded respectively. The temporal and the dynamics
complexities are connected with the changeable network
components and their dynamics, respectively.

We review and discuss the network components and
network dynamics of the social networks generated by the
existing SNSs while considering two types of heterogeneity:
(i) the existence of the components in a static time scale
(represented with a�) and, in addition to its existence, (ii) the
capability of the component to change over time (represented
with a K) (see Table 3).

As is shown in Table 3, most SNSs focus on static
networks with no attributes, which are categorised as G1/G2a
models and characterised with the lowest level of complexity
in each dimension. They generate networks based on
predetermined network statistics and connection principles
about topology [4], [5], [13], [15], [16], [17], [18], [19],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [41], [53], [54], [55], [56], [57]. Some other
SNSs, with higher level of structural complexity, incorporate
node attributes [7], [37], [38], [39], edge attributes [22], [52]
or both of them [43], [44], [45] into the generation process
of static networks. The SNSs in G2b/G3 have higher level
of temporal complexity as network components are allowed
to change over time, and they generally just consider the
topology change [9], [12], [20], [40], [42], [47], [49], [50].
Few SNSs focus on changeable network dynamics, where
the existing ones just consider topology and its changes over
time, with a higher level of dynamics complexity but the
lowest level of structural complexity [21], [48], [63]. To the
best of our knowledge, there are no other SNSs in G4/G5
that would enable to model the desired level of complexity
of network structure and its dynamics.

D. ASSESSMENT OF SNSs
Assessment of SNSs is concerned with investigating how
close the generated networks are to the real systems that they
attempt to model.

For SNSs, which generate simulated or hybrid networks
to deal with the unobservable information, their assessment
involves network statistics like density, degree distribution,
shortest path, assortativity, modularity, clustering coefficient
and betweenness [77]. Most SNSs employ network statistics
concerned with the global network structures like degree
centrality, betweenness centrality, and PageRank coeffi-
cient [13] to measure the similarity between the social
network simulations and the target network. As an example,
SNS proposed by [13] simulates the unobservable edges
to achieve the desired betweenness centrality, PageRank,
local clustering coefficient and degree distribution of the
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TABLE 3. Current SNS and the components of their simulations.

networks. There are also SNSs that simulate the missing
edges for networkswith partially observable edges, which can
be treated as a link prediction task and evaluated considering
the prediction performance with precision [49], [78], Micro
Precision [79], Area Under the ROC (AUC) [78], Error
Rate [80], etc. However, the above mentioned measures just
focus on the states of static networks, whereas further studies
are required for the measures considering network changes
over time.

As an indicator of the SNSs’ efficiency, the runtime of the
simulation is considered by few studies [12], [62], which is
proved to be influenced by the network components such as
the number of simulated features and the network size.

To summarise, SNSs in the current studies can not capture
enough complexity from the real world for an idealised
DT modelling due to observability reasons. Though some
SNSs consider real information, such as node attributes, there
remains an undeveloped research space concerning how to
gradually craft the increase of complexity for an improved
SNS performance in one or several aspects. By increasing
structural complexity, we aim to provide one of the possible
pathways for extending the existing SNSs towards a DT
Oriented SNS discussed in Section III. Through experiments
in Section IV, we also reveal the challenges of DT Oriented
modelling by presenting the complex network patterns and,
thus, the difficulties they pose to the SNS performance
evaluation and SNS extension towards a DT.

III. TOWARDS DIGITAL TWIN ORIENTED SOCIAL
NETWORK SIMULATOR
After reviewing and evaluating current state-of-the-art SNSs
in Section II, we select one of the most promising SNSs

from the evaluated ones to facilitate the generations of social
networks at different complexity levels based on real and
simulated data. We build an inner rule-based SNS referring
to and extending work in [12]. The inner rule-based SNS
generate social networks based on the interaction rules that
characterise nodes’ preferences for connecting with others.
We decide to extend this SNS various complexity levels
through changes in interaction rules. We also provide an
example of developing an extensible SNS towards a Digital
Twin-Oriented SNS for our future study. The two steps
of building such an SNS that mimics the target network
include: (i) the proposal of an inner rule-based SNS with
extensible complexity in section III-A and (ii) an optimised
iterative application of this SNS for similarity and efficiency
in section III-B considering the observability and complexity.
We have included some SNSs in the Appendix A, while
employing the extensible SNS initially proposed by [12] as
an example in the following part of this study.

A. AN EXTENSIBLE SOCIAL NETWORK SIMULATOR
The inner rule-based SNS framework proposed by [12]
models people as nodes, with the node attributes including
features (i.e. such as age, gender, etc.) and individual
preferences towards particular features termed as social-
DNA (sDNA). The edges between these nodes represent
relationships between people, which are connected according
to preferential attachment rule based on topological and
non-topological (attributes) characteristics. The edges can be
directed or undirected and they are time-stamped with the
iterative application of the SNS.

Based on this framework, we treat each node attribute as
a tuple defined with a feature and sDNA (preference for
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this feature and weight of preference), while allowing their
variations among individuals and changes over time. This
enables the social network simulations with an extensible
complexity in structural, spatial, temporal and dynamics
dimensions. To implement this complexity, the detailed
settings about network components and network dynamics
are proposed and presented below.

1) NETWORK COMPONENTS
Network components include: (i) nodes (e.g. people),
(ii) edges (e.g. social contact or relations), (iii) attributes
including node attributes (e.g. age, gender, geo-space, etc.)
and edge attributes (e.g. direction, weight, relationship, etc.).
They vary in diversity and their capability to change over
time.

We assume that the SNS simulates an undirected network
Ĝ with N attributed nodes within M iterations, the network
formed in the kth iteration is represented as

Gk = (V ,Ek ,Ak ) k ∈ [1,M ] (1)

which is composed of a fixed node set V = {v1, · · · , vN },
an edge set that grows through iterations: Ek =

{(vi, vj)k |, vi, vj ∈ V , i ̸= j} and a node attribute set Ak =

{ak (v1), · · · , ak (vN )} that can vary with nodes and change
for each iteration.

Especially, referring to [12], the set of attributes ak (vi) for
node vi is defined as

ak (vi) = {fk (vi), pk (vi),wk (vi)} vi ∈ V (2)

which includes a feature vector fk (vi) and the social-DNA
(sDNA) defined with two vectors of the same length as f (vi).
Any attribute, in this context, can be represented with a
three-value tuple that is composed of feature, preference for
this feature and weight of preference.
pk (vi) determines whether to prefer similar feature with

a binary value of 1 (prefer) or −1 (not prefer), and wk (vi)
represents the weight of preference for the feature with the
range of [0, 1].

The sDNA can be set at the level of individual nodes,
groups or the whole populations in a static manner or can
mutate over time. This variability of node attributes forms
another source of structural complexity and requires further
study.

2) NETWORK DYNAMICS
Network dynamics drives the network growth based on the
current network topology and attributes. Referring to the
previous study by [12], the edges of the undirected network
are created without removal according to the ranking scores
sk (vi, vj) of each node pair based on the two-way evaluation
between node vi and vj:

sk (vi, vj) = qk8k (vi, vj) + rk1k (vi, vj)

+ cτk5k (vi, vj) vi, vj ∈ V , i ̸= j (3)

where 8k (vi, vj), 1k (vi, vj) and 5k (vi, vj) each represents
the feature-based, popularity-based and shortest-path score

with the weights of qk , rk and ck respectively. τ denotes the
transposition of vector ck in the equation.

The feature-based score is based on the nodes’ preferences
sDNA(vi) and sDNA(vj) for their features f (vi) and f (vj). ⊙

is the Hadamard product, a binary operation that multiplies
the corresponding elements of two matrices with the same
dimension.

8k (vi, vj) = |f (vi) − f (vj)|τ (wk (vi) ⊙ lk (vi))

+ |f (vi) − f (vj)|τ (wk (vj) ⊙ lk (vj)) (4)

The popularity-based score incorporates the preference
for nodes with higher degrees, with mk representing the
preferential attachment parameter and dk represents the
calculation of node degrees in the kth iteration:

1k (vi, vj) = mkdk (vi) + mkdk (vj) (5)

The shortest path-based score is calculated based on the
preference for the shortest path-length l within the range
[1, q] between the node pair:

5k (vi, vj) =

q∑
l=1

γ (vi)lI l(vi, vj)

+

q∑
l=1

γ (vj)lI l(vi, vj) l ∈ [1, q] (6)

where γ (vi)l represents node vi’s weight of preference for
the path-length l and I l(vi, vj) represents the existence of the
path-length l between node pair vi and vj with a binary value
of 0 or 1.

sk (vi, vj) = q8k (vi, vj) + r1k (vi, vj) + c5k (vi, vj) (7)

where 8k (vi, vj), 1k (vi, vj) and 5k (vi, vj) each represents the
feature-based, popularity-based and shortest-path score with
the weights of q, r and c.

B. OPTIMISATION TOWARDS A DIGITAL TWIN
A high quality SNS, in order to approach an idealised
Digital Twin status, needs the optimised simulation of
network components and network dynamics considering
the three elements reviewed in section II: (i) observability,
(ii) complexity, and (iii) assessment of social network
simulators.

1) DEVELOPMENT PATH
Development path of the SNS towards a DT can be divided
into small steps, where with each step the complexity of
a simulated social network gradually increases. Under the
assumption of a fixed node set and non-attributed edges,
we define a development of SNS towards a DT with
increasing structural complexity and temporal complexity
(see Table 4).

In G1, the structural complexity increases when more
features are considered with a longer feature vector fk (vi)
as part of a node attribute ak (vi). The sDNA, pk and
wk , represent the corresponding preference and weight of
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TABLE 4. Small steps of building up the complexity.

preference for respective similar features in the feature vector,
composing another parts of node attribute ak (vi). The sDNA
also increases the structural complexity when more vari-
ability of the nodes’ preferences (ranging from population-
based, group-based to individual-based) is incorporated.
Feature selection and the sDNA simulation is the neces-
sary step required for an appropriate structural complexity
level.

In G2, the temporal complexity increases when edges
Ek and the node attributes Ak start to change with every
simulation step, creating snapshots of evolving networks
(with overall number of iterations k). This requires further
study on what changes, how it changes, which network state
the change leads to. In G3, the network dynamics can change
with the changeable weighting factor qk , rk and ck for the
ranking scores of node pairs, as well as the changeable
mechanism that generates sDNA through various stochastic
distributions.

We can simulate the unobservable networked information
and remove the unnecessary steps if the increased complexity
depreciates the performance of an SNS measured using
criteria of similarity and efficiency. For each step ahead,
we optimise the unobservable sDNA, pk and wk and the other
parameters with the SNS proposed in section III-A to achieve
the maximised similarity (between the Gk and the desired Ĝ)
and the minimised runtime for its simulation with efficiency
(See equation 8).

min ||Gk − Ĝ||

min
k∑
z=1

tz

s.t. pk ∈ {−1, 1}

qk , rk , ck ∈ (0, 1]

wk ,mk , γ lk ∈ (0, 1] (8)

The efficiency of SNS is measured with the runtime
k∑
z=1

tz

spent on the k iterations of running the SNS. tz, denoted
with the index z, represents the zth iteration of social network
simulation. We propose the composite performance indexes
to measure the similarity of social network simulations and
the target network.

2) COMPOSITE PERFORMANCE INDEXES
Composite performance indexes measure the distance
||Gk − Ĝ|| between the simulated social network Gk and
the target network Ĝ based on their similarity from both
the global and the local perspectives [77]. As shown in
equation 9, the composite performance index is calculated
as the average distance between the simulated and the real
networks in terms of each network measure ηi.

||Gk − Ĝ|| =
1
n

n∑
i=1

||ηi(Gk ) − ηi(Ĝ)|| (9)

The network measures (node degree distribution, shortest
path length distribution, modularity, assortativity, clustering
coefficient distribution and the triad significance profile),
each denoted by ηi, evaluate the networks from different
perspectives concerning the topological characteristics. The
global perspective, concerned with the high level outcomes of
interactions between the number of actors, includes measures
such as node degree distribution, shortest path length distri-
bution and the values of modularity and assortativity [77].
The local perspective, connected with interpersonal relations
within subgraphs, includes measures such as the clustering
coefficient distribution and the triad significance profile [77],
[81], [82], [83].

We employ the Jensen–Shannon divergence (JS diver-
gence) [84] to quantify their differences in distribution
and the Manhattan distance to measure the differences of
normalised values. Their missing values are replaced with
1 to indicate the large gaps between the network simulations
and the target network. Overall, the composite performance
index of each network simulation, with values ranging from
0 to 1, is calculated as the weighted average of these values.
A lower value of this quality indicator means a more similar
simulation compared with the target network.

3) MULTI-OBJECTIVE OPTIMISATION
Multi-objective optimisation, towards an optimal similarity
and efficiency, is required for the iterative application of
DT Oriented SNS. To figure out an optimised sDNA in this
process, we employ the fast elitist Non-dominated Sorting
Genetic Algorithm (NSGA-2) proposed by [85] for three
reasons.

First, NSGA-2 is a multi-objective evolutionary algorithm,
which enables a Pareto-optimal solution set with alternative
solutions in or on Pareto-optimal front [85]. Second, NSGA-2
is characterised with low computational requirements, elitist
approach, and parameter-less sharing approach [85]. Third
and also the most important, NSGA-2, as a type of
genetic algorithm, works best in the search of multiple
parameters [86] while enabling the optimisation of sDNA
based on genetics selection principles. Finally, we employ
the Augmented Scalarization Function (ASF) method [87]
to find the best solution from the solution set obtained by
NSGA-2 algorithm. It requires the definition of weights
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TABLE 5. The complexity of the extended SNSs.

to characterise the importance of respective performance
concerning similarity and efficiency, which enables the
generation of an optimal solution.

IV. RESULTS AND ASSESSMENT
The social network simulations, which are generated using
the extended SNS, vary with the node attributes. These
node attributes include the feature fk (vi) and the feature’s
preference: pk (vi) and wk (vi). Specifically, we assume a
population-based preference, where all nodes share the same
preference vector pk (vi) ≡ p and wk (vi) ≡ w, without
any change across iterations, which are calculated for an
optimal level of similarity and efficiency based on a target
network. Therefore, the extended SNSs in our experiment
fall in G1 and generate static networks that are composed of
fixed nodes and edges (See Table 5). The Zachary’s Karate
Club network [88], composed of 34 nodes with one binary
attribute, is used as an illustrative example in this experiment.
The nodes and edges each represent club members and
their ties. Each member has a binary attribute, denoting
whether they belong to the ‘‘Mr. Hi’’ club or the ‘‘Officer’’
club. For each iteration, 4% of edges are added without
removal. Ten network statistics are used in the assessment
stage, including the density, assortativity, modularity, shortest
path length and degree distribution in the global perspective,
and the clustering coefficient and the significance profile of
four types of triadic closures considering the binary node
attributes.

Under the above assumptions and settings, the impact of
feature selection for feature vector f (vi), concerned with
the structural complexity, over the iterations is studied. This
involves the benchmark SNS for networks without attributes
(zero feature–based SNS), SNS for networks with one real
node attribute (real feature–based SNS), SNS for networks
with one unobservable node attribute that is randomly
simulated as 0 or 1 (simulated feature–based SNS) and SNS
for networks that are built with both the real and the simulated
attributes (hybrid feature–based SNS). The complexity of
the generated social network and the performance of the
social network simulator are each presented and analysed
in section IV-B and section IV-A respectively. We also
characterise the complexity of the extended SNSs in Table 5.
Please note that all of these analyses are intended to provide
insights into a discussion of how feasible and challenging the
possible pathways to the development of more realistic DT
oriented SNSs are likely to be and what one can expect along
such a journey.

FIGURE 3. The performance of optimised SNSs based on similarity and
efficiency, including zero feature–based SNS (a), real feature–based SNS
(b), simulate feature–based SNS (c) and hybrid feature–based SNS (d).

A. PERFORMANCE OF THE PROPOSED SOCIAL NETWORK
SIMULATOR
We measure the similarity between the simulated social
networks and the target network with the composite perfor-
mance indexes based on a variety of measures from both
the global and the local perspectives and take the runtime
of each simulation as an indicator for efficiency. Rather
than proposing a performance measure or reaching final
conclusions to be universally employed for SNSs, we aim
to reveal the challenges of SNS performance evaluation
for the future DT Oriented SNSs by discussing the diverse
network patterns and the respective varying similarity levels
that contribute to the composite performance index. The
performance of the optimised SNSs considering multiple
objectives, including similarity and efficiency, are shown in
Fig. 3.

Fig. 3 presents the model performance related to similarity
and efficiency for the non-discriminated solutions of SNS
optimisation. For each solution, the similarity level decreases
with the increase in efficiency. To find the best solution set,
we employ the Augmented Scalarization Function (ASF) and
attribute higher importance to the similarity objective than the
efficiency objective by setting their respective weights as 0.8
(for similarity) and 0.2 (for efficiency). The best solutions,
composed of the optimised parameters for the SNSs, are
presented in Appendix B. Given the best solution, the
performance obtained based on the similarity and efficiency
is shown in Fig. 4.

As we can see in Fig. 4(a), the distance between the
simulated social networks and the target network topology
fluctuates over the iterations. All generated networks share a
similar trend of composite performance index, which firstly
decreases in the first two or three iterations and then gradually
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FIGURE 4. The performance of SNS based on the comprehensive
composite performance index (a) and the efficiency (b).

increases. All the SNSs achieve the lower values of composite
performance index around the second iteration. After that,
the increase in composite performance index is caused by
the increasing number of edges simulated in each iteration
that deviates from number of edges in target network. The
composite performance index first decreases and reach the
lower value when network simulations approach the target
with a similar number of edges. It increases when more edges
are simulated, leading to deviated network patterns from the
target. The real feature–based SNS, with the introduction
of one feature, achieves the lowest composite performance
index among all the SNSs since the second iteration,
within the shortest time. The simulated feature-based SNS
introduces a simulated feature to the zero feature-based SNS,
which, compared with the zero feature-based and the hybrid
feature-based SNSs, produces a generally higher composite
performance index over the iterations.

For each SNS, the time spent on each iteration increases
as more edges are added and more topological informa-
tion is considered in the network growth, which, given
the similar computation load of feature-based score with
the non-changeable feature set, can be attributed to the
calculation of popularity-based and shortest path score. There
is little difference in runtime among the benchmark: zero
feature–based SNS and other SNSs considering the small
feature set that varies little.

Overall speaking, the introduction of the real feature to
the SNS, with an increased structural complexity, improves
the model performance in terms of similarity. In addition
to the real feature, the consideration of the unobservable fea-
ture and its random simulation with the hybrid feature–based
SNS do not bridge its distance with the target. Based on
the SNS modelled with one real feature and an optimised
population–based preference (the real feature-based SNS),
we are able to approach the state of the target network while
having the network growth captured in snapshots.

To better understand the contributions of the global
measures and the local measures to the composite perfor-
mance index, we respectively calculate the global composite
performance index (Fig. 5(a)) and the local composite
performance index (Fig. 5(b)), which each covers the five
global measures and the five local measures of networks

FIGURE 5. The performance of SNS respectively based on the global and
the local composite performance indexes.

that respectively contribute to the 50% of the composite
performance index employed in the optimisation process.

Fig. 5(a) shows the values of composite performance index
from the global perspective (composite performance index
(g)) based on the average differences between simulations
and target networks in density, modularity, assortativity,
shortest path length distribution and degree distribution.
For value-based measures, including density, modularity
and assortativity, we use Manhattan distance to calculate
their respective difference from the target. In contrast,
the differences of distribution-based measures including
the shortest path length and the degree distributions are
measured with the JS divergence. The values of the global
composite performance index (g) range from 0.17 (for real
feature–based SNS) to 0.34 (for simulated feature–based
SNS), and share a similar decreasing trend in the first two
or three iterations with the composite performance index
calculated from both the global and the local perspective
(see Fig. 4). Generally all the SNS reach the lowest global
composite performance index (g) around the second iteration
and then deviate from the target with an increasing global
composite performance index (g). The real feature-based
SNS, compared with the other SNSs, achieves a lower value
starting from the third iteration, similar to the trend of
composite performance index calculated from both the global
and the local perspective (see Fig. 4 and Fig. 5(a)).
Fig. 5(b) shows the composite performance index from the

local perspective (composite performance index (l)) based
on the differences between simulations and target network
in the significance profiles and the clustering coefficient.
Similarly, the differences in the value-based measures
including the significance profiles, and the distribution-based
measures including the clustering coefficient, are respectively
measured with the Manhattan distance and the JS divergence.
The trend of local composite performance index (l) for each
SNS is similar, with a larger value range from 0.10 (for
real feature–based SNS) to 0.53 (for simulated feature–based
SNS), which decreases sharply in the first two iterations and
then fluctuates around 0.35. Generally all the SNSs reach
their lowest composite performance index (l) around 0.2,
except for the real feature-based SNS, which achieves the
lowest value of 0.10. The real feature-based SNS keeps a

97512 VOLUME 11, 2023



J. Wen et al.: Review and Assessment of Digital Twin–Oriented Social Network Simulators

TABLE 6. The number of nodes and edges, as well as the density of the
target network.

lower composite performance index (l) than the other SNSs
over the second, third, fourth and fifth iterations.

For each SNS, with its iterative application, the global
composite performance index (g) is smaller than the local
composite performance index (l) in the first iteration. This
indicates that the similarity between real and simulated
networks, with small number of edges added, is higher when
comparing networks from the global perspective than from
the local perspective. Additionally, the real feature-based
SNS achieves the smallest composite performance index
(best performance) with the highest level of efficiency and
similarity when looking at the local and global perspectives
separately as well as when they are combined.

B. COMPLEXITY OF THE SOCIAL NETWORK SIMULATION
We conduct a comparative analysis of the structural com-
plexity built up through the iterative application of zero
feature–based SNS, real feature–based SNS, simulated
feature–based SNS and the hybrid feature–based SNS. The
network states of social network simulations and their
changes across iterations are assessed based on the global and
the local measures involved in the composite performance
index of the optimisation process in section III-B.

1) GLOBAL PERSPECTIVE
To have a better understanding of the network states and
their changes across iterations from the global perspective
connected with interactions over large number of actors,
we conduct a comparative analysis of social network
simulations from each SNS based on density, modularity,
assortativity, degree distribution and shortest path length
distribution.

2) DENSITY
Density of networks is calculated as a fraction of existing
edges to all possible connections between all node pairs [77].
The density of networks increases with more edges added
over the iterations. As is shown in Table 6, there are 78 edges
in the target network, with a network density of 0.1390.
In Fig. 6, all the simulated social networks share the same
values of the edge number and density within each iteration
under the assumed 4% edges (22 edges) to be added. The
number of edges and the density of networks approach the
values of the target network in the 4th iteration.

3) MODULARITY
Modularity measures the extent to which the network is clus-
tered and how strong those clusters are. Its value is between
0 and 1, where a larger value represents a strong community
structure. As is shown in Fig. 7(a), the modularity of each

FIGURE 6. The number of edges and the density of social network
simulations over the iterations.

FIGURE 7. The modularity and the assortivity of social network
simulations.

simulated network decreases over iterations, approaching the
target modularity 0.4156 (See Table 6) in the second or
third iteration. The real feature–based SNS generally has the
largest modularity over the iterations, indicating the strongest
community structure for all the simulated networks. This
can be caused by the binary feature, as nodes with the
same feature and the same preference tend to have similar
behaviours, increasing the number of connections within a
community. The social network simulated by the simulated
feature-based SNS gets nearest to the target modularity in the
second iteration.

4) ASSORTATIVITY
Assortativity measures whether the linked nodes have a simi-
lar degree (number of connections). Its value ranges between
−1 and 1. With a larger positive value of assortativity, nodes
tend to link to other nodes with the same or similar degree,
indicating a stronger assortative mixing pattern [77]. As is
shown in Fig. 7(b), throughout the iterations, the assortativity
of simulated networks is negative and fluctuates around−0.5.
This can be caused by the weak preference for higher degrees
and the strong preference for dissimilar features and shortest
path lengths. The zero feature-based SNS is closest to the
target assortativity of −0.4762 (see Table 6) in the third
iteration, while the other simulated networks approach the
target in the second, third or fourth iteration.

5) DEGREE DISTRIBUTION
Degree distribution is a distribution of node degrees in a
given network [77]. As shown in Table 7, the node degree
of the target network fluctuates around the average value of

VOLUME 11, 2023 97513



J. Wen et al.: Review and Assessment of Digital Twin–Oriented Social Network Simulators

FIGURE 8. The degree distribution of networks.

4.59 with a standard deviation of 3.82, ranging from 1.00 to
17.00. Fig. 8 shows node degree distributions of the target
network and the simulated social networks over iterations.
For each SNS, the range of the degree distribution generally
gets larger with more edges added over the iterations. This
indicates that the node degrees vary within the network and
change over time, implying the diversity of network topology.
The average values of the degree distribution fluctuates
around 5 with a small increase over time, which firstly
approach the average node degree of the network and then
deviates through iterations. The degree distributions of zero
feature-based SNS (see Fig. 8(a)) and the real feature-based
SNS (see Fig. 8(b)) have patterns more similar to the target
network than the simulated feature-based SNS (see Fig. 8(c))
and the hybrid feature-based SNS (see Fig. 8(d)). And to
quantify the level of similarity, we calculate the JS divergence
based on the target degree distribution (see Fig. 9(a)).
As is shown in Fig. 9(a), all the simulated social networks

have the same average node degree value, which increases
systematically from 1 to 13 with the same number of edges
added over the iterations. The average degree approaches the
average degree of the target network in the third iteration and
then deviates to higher values.

In Fig. 9(b), all the simulated networks have similar trend
of JS divergence in terms of degree distribution, which firstly
decreases to the lowest point at around third iteration and
then increases. The hybrid feature-based SNS, in the third
iteration, reaches the lowest JS divergence among all the
SNS and across all iterations. Correspondingly, the degree
distribution of the simulated social network obtained using
the hybrid feature-based SNS in the fourth iteration (see
Fig. 8(c)) has similar average values and quantiles as the
target network, with few nodes having larger degree than
nodes in the target network.

6) SHORTEST PATH LENGTH
Shortest path length between two nodes is defined as the
number of edges along the shortest path between a pair of

FIGURE 9. The average value and the JS divergence of degree distribution.

FIGURE 10. The shortest path length distribution of networks, where the
path lengths value between 1 and 34 as we assume no self-links and
replace the unavailable (infinite) paths with the lengths of 34.

nodes [77]. As shown in Table 8, the shortest path length
in the target network fluctuates around an average value of
2.41 with a standard deviation of 1, ranging from 1.00 to
5.00. Fig. 10 shows the shortest path length distributions
of the target network and the simulated social networks
over iterations when different SNSs were used. The shortest
path lengths of simulated networks value between 1 and
33 as we assume no self-links exist. The shortest path length
between connected nodes can not approach an upper limit
at 34 given 33 nodes. In contrast, the shortest path length
between the unconnected nodes is infinite, which is hard
to be measured and visualised in a distribution. Therefore,
to describe the unavailable paths between unconnected node
pairs, we additionally assign these node pairs with the upper
limit for shortest path length 34. For real feature–based SNS
and hybrid feature–based SNS, the shortest path length is
distributed around the average value over 20 in the first
iteration and then converges to 2. This can be caused by
the unavailability of paths between node pairs given a small
number of edges in the first iteration. For zero feature–based
SNS and simulated feature–based SNS, the shortest path
length is generally distributed around the average value over
20 over the iterations. This indicates the unavailability of
paths between node pairs in the simulation process.

As is shown in Fig. 10(a), the average values of the
shortest path length for all for all the social network
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TABLE 7. The degree distribution of the target network.

TABLE 8. The shortest path length distribution of the target network.

FIGURE 11. The average value and the JS divergence of shortest path
length distribution.

simulations decrease with addition of edges, approach the
target 2.4 and then fluctuate around 2, indicating small-world
properties [77]. The hybrid feature–based SNS hits the target
in the third iteration within the shortest time.

In Fig. 11(b), the JS divergence of shortest path length
distribution firstly decreases to the lowest values in the
third iteration and then fluctuates around 0.40 for real
feature–based SNS and hybrid feature–based SNS. The real
feature–based SNS and hybrid feature–based SNS gradually
get all the nodes connected and finally result in the same
shortest path length distributions, between the value 1 and 2,
given the same number of edges (see Fig. 10). In contrast,
the JS divergence of shortest path length distribution for
zero feature–based SNS and simulated feature–based SNS
fluctuates around 0.60. There are unavailable paths between
the node paris over iterations for zero feature–based SNS
and simulated feature–based SNS. The hybrid feature-based
SNS achieves the lowest JS divergence in the third iteration,
compared with the other SNSs across iterations.

7) LOCAL PERSPECTIVE
To have a better understanding of the network states and their
changes in between, we conduct a comparative analysis of the
social networks obtained from running each SNS focusing
on the local perspective. We focus here on the clustering
coefficient distribution and the significance profiles of the
four types of triads.

8) CLUSTERING COEFFICIENT
Clustering coefficient describes the probability of a node’s
neighbours to be connected. Its value is between 0 and
1 [77]. As shown in Table 9, in the target network, clustering
coefficient fluctuates around an average value of 0.57 with

FIGURE 12. The clustering coefficient distribution of network simulations.

a standard deviation of 0.34, ranging from 0.00 to 1.00.
Fig. 12 shows, for each SNS and each iteration, the clustering
coefficient distribution of the simulated social networks. For
all the networks, the values of the clustering coefficient start
with 0 in the first iteration and then increase over iterations,
with its distribution getting closer to that of the target and then
converging to the value 1. The clustering coefficient values of
the feature-based SNSs converge faster than that of the zero
feature-based SNS. The real feature–based SNS gets closest
to the target in the second iteration within the shortest time.

As is shown in Fig. 13(a), the average values of the
clustering coefficient increase over iterations, indicating
a larger probability of neighbours of one node to be
connected [77]. The average clustering coefficient of the
hybrid feature-based SNS converges to the higher bound
1 faster than in other SNSs and keeps steady at around
0.9 starting from the fourth iteration.

In Fig. 13(b), the JS divergences of the real feature-based
SNSs firstly decrease to the lowest values at around 0.38 and
then gradually increase to around 0.70. Compared with the
other SNSs, the real feature-based SNS achieves the lowest
JS divergence in the second generation, getting closest to the
target network within the shortest time.

9) SUBGRAPHS SIGNIFICANCE PROFILE
Subgraphs significance profile describes the similarity of
subgraphs and their numbers in a given network when
compared to random networks of the same size and number
of edges [81]. AssumingM types of subgraphs, the statistical
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TABLE 9. The clustering coefficient distribution of the target network.

FIGURE 13. The average value and the JS divergence of clustering
coefficient distribution.

FIGURE 14. The four types of triadic closure in the network simulations.

significance of subgraph i (i ∈ {1, · · · ,M}) is defined by its
Z-score [81], [89]:

Zi =
ni− < nrandi >

σ randi

i ∈ {1, · · · ,M} (10)

where ni, < nrandi > and σ randi represent the number of
subgraph i in the studied network, the mean number of its
occurrences in the random network ensemble and the cor-
responding standard deviation respectively. The significance
profile SPi after normalisation is defined in equation 11,
where a positive value indicates a more often occurrence of
subgraph i in a network than that in a set of random network
ensembles.

SPi =
Zi

(
∑
Z2
i )

1/2
(11)

We focus on the significance profile of a social structure,
triadic closure, which is an interconnected three-node sub-
graph and can be categorised into four types considering the
binary node attributes of the target network (See Fig. 14 and
Table 10). The binary attribute determines whether a node
(individual) belongs to the ‘‘Mr. Hi’’ club or the ‘‘Officer’’
club, while the edges represent the relations between the
nodes. We respectively identify the triadic closures as triadic
closure 1, triadic closure 2, triadic closure 3 and triadic
closure 4 based on their node diversity considering the binary
attribute (See Fig. 14).
In Table 10, four types of triadic closures are identified

with i ∈ {1, 2, 3, 4} based on a binary node attribute that
decides the number of nodes attributed with the ‘‘Mr Hi’’ club
or the ‘‘Officer’’ club. There are 15 observations for tragic
closure 1 and 26 observations for triadic closure 4, more

TABLE 10. The definition, numbers and significance profiles of triadic
closure of the target network.

FIGURE 15. The number of the four types of triadic closure in the network
simulations.

than the numbers of the other two triadic closures, which
means that nodes within the same club are more likely to
be connected and form a triadic closure. The significance
profile of triadic closure 1 and triadic closure 4 is positive,
contrasting with the negative values of triadic closure 2 and
triadic closure 3. The triadic closure 1 and triadic 4 appear in
the target network more often than in a set of random network
ensembles.

Fig. 15 shows the number of the four triadic closures
in the simulated networks, which increases with addition
of edges. There are more observations of triadic closure 1,
2 and 3 than triadic closure 4. All the SNSs share a similar
increasing trend for triadic closure 1 and 2 over iterations,
with the target number reached in around the second iteration
(see Fig. 15(a) and Fig. 15(b)). The zero feature–based, the
simulated feature–based and the hybrid feature–based SNSs
firstly reach the target occurrences of triadic closure 3 in
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FIGURE 16. Z–score values of triads in the social network simulations.

the first iteration and then simulate more of them, compared
with the other SNSs (see Fig. 15(c)). The zero feature-based
SNS tends to have more triadic closure 4 simulated and hits
the target number in the third iteration within the shortest
time (see Fig. 15(d)). To better understand the signifi-
cance of these triadic closures, we calculate their Z–scores
(see Fig. 16).

As shown in Fig. 16, the positive/negative Z–score indi-
cates a more/less frequent occurrence of triadic closures in
comparison to random networks. There are missing Z–scores
for the networks simulated by the hybrid feature-based SNS
in the first two iterations. This is caused by the unavailability
of triadic closures when only small number of edges are
added.

The zero feature–based, the real feature–based and the
simulated feature-based SNSs achieve a generally positive
Z–score for triadic closure 1 over the iterations, while the
hybrid feature–based SNS produces negative ones (close to
zero) (see Fig. 16(a)). The SNSs achieve a positive Z–score
for triadic closure 2 starting from the second iteration and
afterwards deviate from the negative target (see Fig. 16(b)).
All the SNSs generally enable a positive Z–score for triadic
closures over iterations, except for the first iteration, where
SNSs produce negative values ((see Fig. 16(a), Fig. 16(b),
Fig. 16(c) and Fig. 16(d)).
The real feature–based SNS, compared with the other

SNSs, attains a higher value of Z–score for the triadic
closure 1, and a generally lower Z–score for the triadic
closure 2, the triadic closure 3 and the triadic closure 4. The
real feature–based SNS generally gets closest to the target
Z–scores, which, for triadic closure 1, 2, 3 and 4, is reached
in the fourth, second, second and third iteration respectively
(See Fig. 16).

10) A BRIEF SUMMARY
To conclude the analysis, from a global perspective, the
density, the modularity and the average node degrees increase
with more edges added over the iterations for each SNS.
This indicates a denser network and a stronger community
structure and it is the expected result as the number of
nodes remains static and only number of edges increases
over the iterations. The average shortest path lengths decrease
when more nodes get connected, and stabilise at a value
that is smaller than 3, showing small-world properties. From
a local perspective, the average clustering coefficient and
number of triadic closures increase with edge addition over
iterations, indicating more interpersonal connections within
the subgraphs of the simulated networks.

Among all the SNSs and across iterations, the real
feature–based SNS gets closest to the target when considering
shortest path length distribution, clustering coefficient dis-
tribution and subgraph significance profiles. The simulated
feature–based SNS gets closest to the target modularity. The
zero feature–based SNS gets closest to the target assortativity.
The hybrid feature–baseed SNS gets closest to the degree
distribution. Generally all the network measures for all the
social network simulators approach their target values and
then deviate from them as the number of edges exceeds
the number of edges of the target network. The SNS that
achieves the closest distance to the target networkmeasure (as
measured through JS divergence) varies from case to case and
requires different numbers of iterations. Real feature-based
SNS can generally achieve a higher level of similarity with
the target value of each measure through a smaller number
of iterations within a shorter time and this indicates that
including different features in the simulation process leads
to different network patterns, which may respectively deviate
from that of the real networks to a different extent. The
trade-offs between the similarity levels considering multiple
network measures pose a challenge to the performance
evaluation of SNSs and their extension towards a DT.
Current studies on network simulators generally employ a
single network measure or combine a few to evaluate the
similarity between the simulated and real social networks.
The selection and combination of various features in the
SNS extension and the selection and combination of multiple
network measures for SNS performance evaluation in a
systemic way remains a research gap and requires further
study.

V. CONCLUSION
In this paper, we firstly review the current state-of-the-art
of the Social Network Simulators under the modelling and
assessment framework proposed in our previous study [3]
and identify research gaps in the space of social network
modelling. To progress the field further and achieve a
simulator that can better model real networks, we extend one
of the promising SNS proposed by [12] towards a Digital
Twin Oriented SNS by proposing one possible pathway
of increasing structural complexity, which is to include
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TABLE 11. SNSs in the current studies.

informative features that are simulated or observed in the
real world. With this SNS, each node attribute is composed
of a node feature and a social DNA (the node’s preference
for a similar feature and the corresponding weight of
preference).

We test different settings of sDNA in DT Oriented SNS to
see which one results in social network that is closest to the
target network. We propose to assess the similarity between
target and simulated networks using metrics calculated at
both global and local levels while taking the runtime of
SNS as an indicator of efficiency. This DT Oriented SNS
also serves as a tool to analyse the complexity of social
network simulations built up over iterations. As an illustrative
example, we conduct experiments and assessments of this DT
Oriented SNS with the Karate Club network, which results
show the possibility of optimisation and assessment of DT
Oriented SNS towards a Digital Twin.

Literature review revealed that the majority of existing
SNSs focus on generating purely simulated networks, while
only a small proportion of SNSs aim to model real nodes and
node attributes with/without observable information about
edges. Under this constraint, we review and discuss the
modelling social networks through generations towards the
ultimate goal of a DT. Current SNSs generally focus on
static networks or dynamic networks. Few SNSs consider
networks, the dynamic process on the network and their
interrelations. The interrelated social networks and dynamic
processes, with the continuous acquisition of real-time
information and feedback, also remain a research gap and

require further study.We also discuss the complexity of social
network simulations from the perspective of four dimensions
and review the current ways of assessing SNSs. Most SNSs
simulate social networks composed of fixed nodes and edges,
while some SNSs incorporate network attributes and slow
changes in network topologies. Current SNSs consider the
global level similarity between the social network simulation
and the target network as an indicator of its performance,
where neither the local level similarity nor the efficiency is
incorporated.

In the experiment, we extend an SNS towards a DT
Oriented SNS to help illustrate the possible pathways and the
challenges of developing a DT Oriented SNS. The extension
of an SNS towards a DT Oriented SNS incorporates different
levels of structural complexity and involves experiments on
the benchmark, zero feature-based SNS, and its extensions,
including simulated feature-based SNS, real feature-based
SNS and the hybrid feature-based SNS concerned about
both the real and the simulated features. We calculate
the composite performance index of different networks by
combining the results of various network measures. For a
deeper understanding of the composite performance index
that changes over iterations, we also conduct a comparative
analysis of these SNSs to see the complexity of their social
network simulations over iterations. The experimental results
show that among all the SNSs, the real feature-based SNS,
with an appropriately increased structural complexity, has the
best performance in the efficiency and similarity from both
the local and the global perspective. To be more specific with
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TABLE 12. Best solution for the optimisation of zero feature–based SNS considering similarity and efficiency.

each measure, real feature-based SNS can also get closer
to the target value through a smaller number of iterations.
However, this conclusion holds for the experiments presented
in this study, considering the pathway of SNS extension, the
information employed in network simulation and the way
we calculate the composite performance index. We need
to develop a more systematic approach to developing DT
Oriented SNS and propose referable SNS evaluation metrics
for further study. And as SNSs add more edges over the
iterations, the runtime of SNSs increases, and a stronger
community structure and an assortative mixing pattern
emerge, with more triadic closures as more neighbouring
nodes get connected. Overall, all the measures involved
in the composite performance index approach their target
values and then deviate from them as the simulated network
exceeds the target network’s density. However, different
similarity levels achieved by SNSs considering different
network measures reveal the challenge of an accurate SNS
performance evaluation given the specific requirements of
social network simulations. This is a research gap to be
addressed in our future study.

The DT Oriented SNSs can be extended with structural
variations and temporal changes to approach a DT of the
real systems. There is a requirement for a future study on
the sDNA that varies across groups or individuals. Further
research is also required on the network topology that
changes over time and the process dimension that simulta-
neously interacts with the network dimension. Specific SNS
performance evaluation criteria, considering various SNS
complexity levels, also require further study. More generally,
this study serves as a starting point of our future work on
exploring the complexities of the real systems.

APPENDIX A
EXTENDABLE SOCIAL NETWORK SIMULATORS
In this appendix, we list some extendable social net-
work simulators found through the review of litera-
ture and websites (http://caagt.ugent.be/CaGe/index.html;
https://hog.grinvin.org/). The Table 11 below includes the
names, references and links to the code for these SNSs while
briefly describing their functions.

APPENDIX B
OPTIMISED PARAMETERS
In this appendix, we list the best solution for zero
feature–based SNS, real feature–based SNS, simulated
feature–based SNS and hybrid feature–based SNS. Table 12
below includes the names and values of the optimised
parameters for SNSs.
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