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Abstract: Biological principles draw attention to service robotics because of similar concepts when
robots operate various tasks. Bioinspired perception is significant for robotic perception, which is
inspired by animals’ awareness of the environment. This paper reviews the bioinspired perception
and navigation of service robots in indoor environments, which are popular applications of civilian
robotics. The navigation approaches are classified by perception type, including vision-based, remote
sensing, tactile sensor, olfactory, sound-based, inertial, and multimodal navigation. The trend of
state-of-art techniques is moving towards multimodal navigation to combine several approaches. The
challenges in indoor navigation focus on precise localization and dynamic and complex environments
with moving objects and people.

Keywords: robotic perception; navigation; bioinspired robotics

1. Introduction

Service robotics has been popular in indoor environments, such as offices, campuses,
hotels, and homes. Modern robotic techniques promote robots for autonomous operation
in dynamically changing and unstructured environments, and one main technology is to
develop autonomous and intelligent robots inspired by biological systems [1].

Biological principles drawn from animals have the potential to produce new ideas
for the improvement of robotic techniques. Animals usually have excellent navigation
abilities and outstanding robustness, which outperforms current techniques [2]. Animals’
decision-making solutions, action selection, navigation, spatial representation, perception,
and explorations make them capable of foraging, homing, and hunting [3].

Robotics aims to achieve complex goals and perform tasks in an unknown environ-
ment, so the great inspiration of nature has been promoted. The goal-directed navigation of
mobile robots is regarded as animals seeking migration, finding food, and performing simi-
lar tasks [4]. With animal perception, cognition, body architecture, and behavior research,
biorobotics and neurorobotics bring attention to robotics research. Bioinspired robots can
perform several tasks, including transport [5], floor-sweeping [6], security [7], caring [2],
and exploration [8].

A robot needs to process sensory information to obtain relevant environmental data
by extensive computation or active sensors [9]. Robotic perception is significant for robot
navigation to construct an environmental representation with a precise metric map or
sensory snapshots [4]. Perception makes a robot aware of its position and how to deviate
from an unexpected obstacle blocking its path. Moreover, robots should identify the
properties of objects to perform safe and efficient tasks [10].

Reconfigurable robotic systems can respond to the application scenario with their
efficiency and versatility, and many robotic platforms are based on a biomimetic design
from naturally evolving mechanisms [11]. Intelligent robots can maximize extrinsic and
intrinsic rewards and adapt to environmental changes [12]. Robots are created with a
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high degree of autonomy with autonomous training and adaptation, and exploration and
navigation are essential factors.

Several sensors can be used in autonomous vehicles for location and sensing, while
indoor environments and buildings are GNSS-denied environments, and virtual-based
approaches play a crucial role in high-precision sensing [13]. Tactile [14] and olfactory
navigation [15] are also involved in indoor environments. Multimodal navigation is the
trend of bioinspired perception and navigation which incorporates the strength of each
approach to enhance performance.

This review paper aimed to examine robotic perception and navigation techniques in
indoor environments, addressing potential research challenges. The contents are classified
by the sensors involved in the approaches. This paper introduces vision-based navigation,
remote sensing, multimodel navigation, etc., in Sections 2–9, then provides a discussion
and is concluded in Section 10.

2. Vision-Based Navigation
2.1. Optic Flow

Bioinspired vision has the characteristics of an efficient neural processing, a low image
resolution, and a wide field of view [9]. Some vision-based navigation validates biological
hypotheses and promotes efficient navigation models by mimicking the brain’s navigation
system [16]. The main research directions of the visual-based approaches are optic flow and
SLAM. They are used to explore or navigate unknown areas. Vision-based navigation is
popular in an indoor environment to detect the surroundings and obstacles. Sensor fusion
and deep learning improve the performance and provide more reliable decisions.

Roubieu et al. [17] presented a biomimetic miniature hovercraft to travel along various
corridors with the optic flow, which used a minimalistic visual system to measure the
lateral optic flow for controlling robots’ clearance from the walls and forward speed in
challenging environments, as shown in Figure 1. The restricted field of view is the limitation
of the visual perception systems, which may not perform successful navigation in complex
environments, such as challenging corridors.

Figure 1. Feedback loops consisting of a heading−lock system and an optic−flow−based autopilot,
which uses a forward and a side control loop with a dual lateral optic flow regulator [17].
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A collision avoidance model based on correlation-type elementary motion detectors
with the optic flow in simple or cluttered environments was proposed in [18]. It used the
depth information from optic flow as input to the collision avoidance algorithm under
closed-loop conditions, but the optimal path could not be guaranteed. Yadipour et al.
[19] developed an optic-flow enrichment model with visual feedback paths and neural
control circuits, and the feedback car provided the relative position regulation. The visual
feedback model was a bioinspired closed loop, as shown in Figure 2. Dynamics-specialized
optic-flow coefficients would be required as an improvement.

Figure 2. Visual feedback model of an optic−flow enrichment to provide the difference between the
viewer and target insect [19].

A control-theoretic framework was developed for directional motion preferences,
and it processed the optic flow in lobula plate tangential cells [20]. It simplified the
operation of the control architectures and formalized gain synthesis tasks as linear feedback
control problems and tactical state estimation. However, it assumed an infinite tunnel
environment and small perturbations. Resource-efficient visual processing was proposed
in [9] with insect-like walking robots such as the mobile platforms shown in Figure 3a,
which consisted of image preprocessing, optic flow estimation, navigation, and behavioral
control. It supported controlling the collision avoidance behavior by leveraging optimized
parallel processing, serialized computing, and direction communication.

However, the major challenges of these perception approaches are dealing with dy-
namic obstacles. Although the feedback control provides robust operation, dynamic obsta-
cles are not considered or successfully handled. Dynamic environments involve moving
obstacles that significantly decrease performance or cause ineffective operation. Detection
and tracking of dynamic obstacles still remain difficult for bioinspired perception and
navigation. For optic flow, the configurations of the coefficient for a dynamic environment
or combination of other sensors are presented as considerations.

An event-based neuromorphic system senses, computes, and learns via asynchronous
event-based communication, and the communication module is based on the address-event
representation (AER) [21]. Action potentials, known as “spikes,” are treated as digital
events traveling along axons. Neuromorphic systems integrate complex networks of axons,
synapses, and neurons. When a threshold is exceeded, a neuron sends the event to other
neurons and fires an action potential [22]. The advantages of an event-based visual system
include a low power and latency and a high dynamic range and temporal resolution. A
spiking neural network (SNN) is suitable for processing the sparse data generated by
event-based sensors from spike-based and asynchronous neural models [23].

A gradient-based optical flow strategy was applied for neuromorphic motion esti-
mation with GPU-based acceleration, which was suitable for surveillance, security, and
tracking in noisy or complex environments [7]. The GPU parallel computation could exploit
the complex memory hierarchy and distribute the tasks reasonably. Moreover, a single-chip
and integrated solution was presented with wide-field integration methods, which were
incorporated with the on-chip programmable optic flow, elementary motion detectors, and
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mismatch compensation [24]. It achieved real-time feedback with parallel computation in
the analog domain.

Paredes-Valles et al. [23] proposed a hierarchical SNN with the event-based vision
for a high-bandwidth optical flow estimation. The hierarchical SNN performed global
motion perception with unsupervised learning from the raw stimuli. The event camera
was categorized as a dynamic vision sensor and used the AER as a communication pro-
tocol. An adaptive spiking neuron model was used for varying the input statistics with
a novel formulation. Then, the authors used a novel spike-timing-dependent plasticity
implementation and SNN for the hierarchical feature extraction.

Another optical estimation with an event-based camera, such as a dynamic and active-
pixel vision sensor, was proposed by Zhu et al. [25], which presented a self-supervised
neural network called EV-FlowNet. A novel, deep learning pipeline fed the image-based
representation into a self-supervised neural network. The network recorded data from the
camera and was trained without manual labeling. However, the challenging lighting and
high-speed motions remained challenging for the neural network.

Two automatic control systems were developed with optical flow and optical scanning
sensors, and they could track a target inspired by insects’ visuomotor control systems [26].
The visuomotor control loop used elementary motion detectors to extract information from
the optical flow. Li et al. [27] characterized an adaptive peripheral visual system based
on the optical-flow spatial information from elementary motion detector responses. The
complementary approach processed and adapted the peripheral information from the
visual motion pathway.

de Croon et al. [28] developed a motion model combined with the optic flow to accom-
modate unobservability for attitude control. Optic flow divergence allowed independent
flight and could improve redundancy, but it would need more sensors to improve observ-
ability. For measuring optical flow, comparative tests of optical flow calculations were
presented in [29] with the contrast of “time of travel”. Two time-of-travel algorithms relied
on cross-correlation or thresholding of adjacent bandpass-filtered visual signals.

Feedback loops were designed to employ the translational optic flow for collision-free
navigation in an unpredictable environment [30]. The optic flow could be generated as the
related motion between the scene and the observer, and the translational optic flow was
for short-range navigation. It used the relative linear speed and the distance as the ratio.
Igual et al. [31] promoted a robust gradient-based optical flow algorithm for robust motion
estimation. It could be implemented for tracking or biomedical assistance in a low-power
platform, and real-time requirements were satisfied by a multicore digital signal processor,
as shown in Figure 4. However, it lacked detailed measurements about power consumption
and real measurements for the system and core levels.

(a) Insect−like walking robot

Figure 3. Cont.
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(b) A service robot (c) Open-loop characterization

Figure 3. (a) Insect−like walking robot with a bottom view and rendered side view of the front
segment. (A) is the hexapod walking robot. (B) is the rendered side view. (C) is the front segment of
the robot. It was inspired by the stick insect and adopted the orientation of its legs’ joint axes and the
relative positions of its legs [9]. (b) A service robot with an omnidirectional vision system and a cube
for flexible and robust acquisition [2]. (c) Open-loop characterization [32].

Figure 4. The multichannel gradient model with temporal and spatial filtering, steering, speed and
velocity, and direction [31].

Zufferey et al. [33] designed an ultralight autonomous microflier for small buildings
or house environments based on the optic flow with two camera modules, rate gyroscopes,
a microcontroller, a Bluetooth radio module, and an anemometer. It could support lateral
collision avoidance and airspeed regulation, but the visual textures could be further en-
hanced. Another vision-based autopilot was later presented with obstacle avoidance and
joint speed control via the optic flow in confined indoor environments [34], which traveled
along corridors by controlling the clearance and speed from walls. The visuomotor control
system was a dual-optic-flow regulator.

Ref. [35] introduced a bioinspired autopilot that combined intersaccadic and body-
saccadic systems, and the saccadic system avoided frontal collisions and triggered yawing
body saccades based on local optic flow measurements. The dual OF regulator controlled
the speed via an intersaccadic system that responded to frontal obstacles, as shown in
Figure 5. Ref. [36] provided guidelines of navigation based on a wide-field integration of
the optic flow, and the wide-field integration enabled motion estimation. The system was
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lightweight and small for micro air vehicles with low computation requirements. A gyro
sensor was combined with the wide-field integration for the estimation.

Figure 5. Description ofthe saccade system [35].

Serres et al. [37] introduced an optic-flow-based autopilot to avoid the corridors
and travel safely with a visuomotor feedback loop named Lateral Optic Flow Regulation
Autopilot, Mark 1. The feedback loop included a lateral optic flow regulator to adjust the
robot’s yaw velocity, and the robot was endowed with natural pitch and roll stabilization
characteristics to be guided in confined indoor environments. Ref. [38] developed an
efficient optical flow algorithm for micro aerial vehicles in indoor environments and used
the stereo-based distance to retrieve the velocity.

From the mentioned navigation approaches, the challenges also include hardware
and logic limitations and the implemented sensor algorithms. For example, the motion
detection architecture [27] and optimal spectral extension [7] should be improved. Obstacle
avoidance logic and control parameters should be investigated more in complex environ-
ments [33,35,38]. The challenging lighting environments should also be considered [25].
The optimal implementation of algorithms is also a limitation, which may not be satisfied
by dynamics models [19]. Sensor fusion would be helpful to improve observability [17,28].

2.2. SLAM

A simultaneous localization and mapping system (SLAM) can construct a map and
calculate the pose simultaneously, so it is implemented with different sensors for local-
ization [39]. A heterogeneous architecture was introduced for a bioinspired SLAM for
embedded applications to achieve workload partitioning in [39], as demonstrated in Fig-
ure 6. It used local view cells and pose cell networks for the image processing to improve
time performance, although it could not achieve processing on the fly.

Vidal et al. [40] presented a state estimation pipeline for visual-based navigation to
combine standard frames, coupled manner events, and inertial measurements for SLAM.
The hybrid pipeline provided an accurate and robust state estimation and included standard
frames for real-time application in challenging situations. Refocused events fusion was
proposed with multiple event cameras for outlier rejection and depth estimation to fuse
disparity space images [41], and it performed a stereo 3D reconstruction of SLAM and
visual odometry. The limitation of that research was the camera tracking algorithm; if the
proposed method was integrated with a tracking algorithm, a full event-based stereo SLAM
could be achieved.
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Figure 6. Schematic representation of functional blocks in the bioinspired SLAM, and ∗.bag repre-
sented bag file [39].

Another framework based on an event camera was proposed in [42] with CNNs. Its
solution only relied on event-based camera data and used the neural network for the
relative camera depth and pose. The event data were more sensitive to the pose when
involving rotations. However, the SLAM solution was limited to an offline implementation,
and the used dataset was under a static environment. The proposed networks also had the
challenges of parameter size.

Pathmakumar et al. [43] described a dirty sample-gathering strategy for cleaning
robots with swarm algorithms and a geometrical feature extraction. The approach cov-
ered identified dirt locations for cleaning and used geometric signatures to identify dirt-
accumulated locations. It used SLAM to get the 2D occupancy grid and ant colony opti-
mization (ACO) for the best cleaning auditing path. Machine-learning-based or olfactory
sensing techniques were the next step. An efficient decentralized approach, an immunized
token-based approach [44], was proposed for an autonomous deployment in burnt or
unknown environments to estimate the severity of damage or support rescue efforts. It
used SLAM to detect the environment, and the robots carried wireless devices to create
communication and sensing coverage.

Jacobson et al. [45] introduced a movement-based autonomous calibration technique
inspired by rats based on Open RatSLAM, which performed self-motion and place recogni-
tion for multisensory configurations. It used a laser, an RGB and range sensor, cameras and
sonar sensors for online sensor fusion, and weighting based on the types of environments,
including an office and a campus. RatSLAM was improved to enhance its environmental
adaptability based on the hue, saturation, and intensity (HSI) color space that handles im-
age saturation and brightness from a biological visual model [46]. The algorithm converted
the raw RGB data to the HSI color space via a geometry derivation method, then used a
homomorphic filter and guided filtering to improve the significance of details.

A hierarchical look-ahead trajectory model (HiLAM) was developed by combining
RatSLAM and HiLAM, which incorporated media entorhinal grid cells and a hippocampus
and prefrontal cortex. It employed RatSLAM for real-time processing and developed the
hybrid model based on a serialized batch-processing method [47]. Figure 7 shows an
indoor place cell map. A slow feature analysis network was applied to perform visual self-
localization with a single unsupervised learning rule in [2], and it used an omnidirectional
mirror and simulated rotational movement to manipulate the image statistics as shown in
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Figure 3b. It enhanced the self-localization accuracies with LSD-SLAM and ORB-SLAM,
but it could have difficulties handling the appearance changes.

The limitations of the proposed SLAM approaches include a lack of support of real-
time image processing [39] or image detection [46] and difficulties in handling environmen-
tal changes [2]. These make such systems respond slowly or not respond to environmental
changes. Moreover, they can cause failures in navigation or make incorrect decisions if
visual disturbances exist. More powerful strategies, such as machine learning or neural
networks, could be combined to overcome these issues, but they require a comprehensive
dataset generation [43]. Parallel processing could also be used as a solution [39].

Figure 7. Indoor place cell map, and the red circles are place cell firing fields [47].

2.3. Landmark

Sadeghi Amjadi et al. [48] put forward a self-adaptive landmark-based navigation
inspired by bees and ants, and robots located the cue by their relative position. The land-
mark of this navigation method used a QR code to identify the environment and employed
a camera for the relative distance by perspective-n-point algorithms. It was adaptive to
environmental changes but lacked any consideration of the presence of stationary and mov-
ing objects. Ref. [49] compared landmark-based approaches, including average landmark
vector, average correctional vector, and distance estimated landmark vector approaches,
and proposed a landmark vector algorithm using retinal images. The results showed
that the distance estimated landmark vector algorithm performed more robust homing
navigation with occluded or missing landmarks than others.

Maravall et al. [5] designed an autonomous navigation and self-semantic location
algorithm for indoor drones based on visual topological maps and entropy-based vision.
It supported robot homing and searching and had online capabilities because of metric
maps and a conventional bug algorithm. The implementation of other situations should
be analyzed further. Ref. [50] introduced a pan–tilt-based visual system as a low-altitude
reconnaissance strategy based on a perception-motion dynamics loop and a scheme of
active perception. The dynamics loop based on chaotic evolution could converge the
periodic orbits and implement continuous navigation. The computational performance
was not analyzed. A new data structure for landmarks was developed as a landmark-tree
map with an omnidirectional camera, and it presented a novel mapping strategy with a
hierarchic and nonmetric nature to overcome memory limitations [51]. However, its feature
tracker could not support long distances.

Although some self-adaptive frameworks were proposed, dynamic obstacles were
not considered [48,49,51]. Object tracking is also a bottleneck for the landmark-based
approach if the landmark is moving over large distances. Some papers’ implementations
or experiments are difficult to conduct due to the situations under certain environments or
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hardware limitations [5,48]. The computational performance of the system should develop
a measurement strategy.

2.4. Others

Proper vergence control reduces the search space and simplifies the related algorithms,
and a bioinspired vergence control for a binocular active vision system was introduced in [8]. It
controlled the binocular coordination of camera movements to offer real-world operation and
allow an exploration of the environment. Salih et al. [52] developed a vision-based approach
for security robots with wireless cameras, and the approach used a principal component
analysis algorithm for image processing, a particle filter for images, and a contour model. The
system could recognize objects independently in all light conditions for frame tracking.

A camera-based autonomous navigation system was conceptualized for floor-sweeping
robots in [6], including inspection, targeting, environment perception, local path planning,
and directional calibration, as demonstrated in Figure 8. It achieved image processing and
map planning by a superpixel image segment algorithm, but it could interfere with light.
Cheng et al. [53] designed a distributed approach with networked wireless vision sensors
and mosaic eyes. It performed localization, image processing, and robot navigation with
multiple modules and obtained real-time obstacle coordinates and robot locations. The
limitation of the work was the coordination of multiple cameras; the framework could be
further improved for mapping the images to a workspace.

Figure 8. Visual−based navigation for floor−sweeping [6].

Li et al. [54] developed a parallel-mechanism-based docking system with the onboard
visual perception of active infrared signals or passive markers. The modules performed
docking based on relative positioning, and the self-assembly robot could react to different
environments, such as stairs, gaps, or obstacles. However, the applications of the docking
system were limited without a positioning system. Ref. [55] conceptualized a lightweight
signal processing and control architecture with visual tools and used a custom OpenGL
application for real-time processing. The novel visual tool was inspired by a vector field
design for exploiting the dynamics and aiding behavioral primitives with signal processing.
The control law and schemes could be improved in that framework.

Boudra et al. [56] introduced a mobile robot’s cooperation and navigation based on
visual servoing, which controlled the angular and linear velocities of the multiple robots.
The interaction matrix was developed to combine the images with velocities and estimate
the depth of the target and each robot, although it could not be applied to 3D parameters.
Ahmad et al. [57] developed a probabilistic depth perception with an artificial potential field
(APF) and a particle filter (PF), formulating the repulsive action as a partially observable
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Markov decision process. It supported 3D solutions in real time with raw sensor data and
directly used depth images to track scene objects with the PF. The model could not address
the problem of dynamic obstacles or dynamic prediction.

An ocular visual system was designed for a visual simulation environment based on
electrophysiological, behavioral, and anatomical data with a fully analog-printed circuit
board sensor [32]. The model used a Monte Carlo simulation for linear measurements,
an open-loop sensor characterization, and close-loop stabilizing feedback, as displayed in
Figure 3c. Nguyen et al. [58] described an appearance-based visual-teach-and-repeat model
to follow a desired route in a GPS-denied environment. The repeated phases made the
robot navigate along the route with reference images and determine the current segment by
self-localization by sped-up robust features to match images. An effective fusion of sensors
could be further required.

A probabilistic framework was presented with a server–client mechanism using
monocular vision for terrain perception by a reconfigurable biomimetic robot [59]. GPGPU
coding performed real-time image processing, and it supported the unsupervised terrain
classification. The perception module could be extended with an IMU sensor. Montiel-Ross
et al. [60] proposed a stereoscopic vision approach without depth estimation, which used
an adaptive candidate matching window for block matching to improve accuracy and effi-
ciency. The global planning was achieved through simple ACO with distance optimization
and memory capability, and the obstacle and surface ground detection were achieved by
hue and luminance.

Aznar et al. [61] modeled a multi-UAV swam deployment with a fully decentralized
visual system to cover an unknown area. It had a low computing load and provided more
adaptable behaviors in complex indoor environments. An ad hoc communication network
established communications within the zone. A V-shaped formation control approach
with binoculars was applied to the robotic swarms for unknown region exploration in [62]
with a leader–follower structure. The formation control applied a finite-state machine
with a behavior-based formation-forming approach, considering obstacle avoidance and
anticollision. However, the physical application was a challenge due to the devices, such as
the physical emitter or sensor [32,59,62]. The indirect communication between a swarm of
robots or a sensor-based communication protocol is hard to achieve [61,62].

3. Remote Sensing Navigation

Besides visual sensors, remote sensing techniques also play a crucial role in robot
perception in the indoor environment. The primary research of remote sensing approaches
is focused on laser, infrared sensors, and radar. Some papers implement metaheuristic
algorithms or machine-learning-based methods for dynamic systems. Sensor fusion is also
an effective way for remote sensing techniques to improve accuracy.

Efficient sensorimotor convergence approaches are developed by animals, which al-
low a fast processing of huge, spatially distributed measurements into signals. Ref. [63]
proposed a bioinspired wide-field integration framework based on sensorimotor conver-
gence with a LiDAR sensor. Its advantage was its computational simplicity and robustness
against additive Gaussian sensor noise or occlusions in the measurements. However, it had
limitations when working with unfiltered points and unknown spatial distributions. The
data quality could not be guaranteed and it could not work with unstructured data.

A bioinspired reconfigurable robot was developed for navigation and exploration to
work with laser-induced sensors [64]. Its control system was hierarchical and consisted
of body-level and low-level controllers to generate control directives and paths for each
component, then it generated reference points. It achieved awareness and sensing by
production sensors to merge data in real time [64]. Jiang et al. [65] proposed a local path
planning algorithm based on 2D LiDAR for reactive navigation in corridor-like environ-
ments. The LiDAR data were converted to a binary image first to extract the skeleton via a
thinning algorithm; then, the center line was extracted to smooth the obtained roadway.
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However, the navigation approach was only conducted in a limited simulation. It could
not realize reactive navigation, so integrated sensors would be needed.

Romeh and Mirjalili [66] described a combined metaheuristic salp swarm algorithm
for multirobot exploration to reduce uncertainties and search for a space with a laser range
scanner. The coordinated multirobot exploration determined adjacent cells with a utility
and cost, then optimized the path using the salp swarm algorithm. The limitation was
that the robot would visit an explored area more than once; a multiobjective algorithm
should overcome this problem when searching for a new space. Ref. [67] provided a robot
localization technique using a nonlinear evolutive filter, named evolutive localization
filter, via the Markov chain behavior, with a robot equipped with a laser range finder. It
could deal with non-Gaussian noise, sensor characteristics, and arbitrary nonlinear system
dynamics.

Le et al. [68] developed a modified A-star zigzag global planner with an integrated
laser sensor for a cleaning robot. The algorithm covered the narrow spaces by waypoints,
aiming to maximize the coverage area. The adaptative Monte Carlo localization used
particle filters to filter out the odometry’s noise and get the real-time position from the
visual sensor data. A simple chemical signal model was proposed to find the recharging
stations for robots, reducing the exploration times [69]. It adopted the ant foraging swarm
algorithm and a perturbed Markov chain for processing dynamics with infrared sensors,
but the applied situation was only limited to one charging point.

Saez-Pons et al. [70] introduced a social potential field framework with a LiDAR range
finder for search and rescue or fire services in a warehouse, which supported human–robot
or multirobot teams with potential functions. The control model could exercise collision
avoidance, formation generation and keeping, and obstacle avoidance behaviors. Martinez
et al. [71] explored an unknown polygonal and connected environment by a motion policy
based on a complete exploration strategy and simple sensor feedback with the shape of a
disc. It directly mapped to the control from the observation with omnidirectional sensors
such as two laser range finders. The robot dynamics was dealt with by a practical hybrid
control scheme to maintain the linear and angular velocities. However, these approaches
were applied under specific conditions. The robots’ visibility domains and arbitrary sizes
were limited. The formation of the environment and the execution based on feedback were
restricted.

Additionally, Arvin et al. [72] presented a low-cost and adaptable robotic platform
for teaching and education with infrared proximity sensors. The hardware functionality
included communication, actuation, power management, and characterized sensory sys-
tems, and the motion control used the encoders’ data as the input to the closed-loop motion
control. The next stage focused on pheromone communication and fault-tolerant control.

A generic fault-detection system was presented with infrared proximity sensors,
range-and-bearing sensors, and actuators to detect faults with a low false positive rate,
and it achieved long-term autonomy for multirobot systems [73]. The homogeneous and
heterogeneous swarm behaviors were considered for the robot swarm, which detected
injected faults, although the real experiment was not conducted, and the fault-detection
system was limited to a small swarm of robots.

A swarm behavior algorithm was described based on influence, attraction, and re-
pulsion with a pack of robots and sensory limitations in [74]. The robots used ultrasonic,
infrared sensors, and light-dependent resistance. Gia Luan and Truong Thinh [75] imple-
mented a wave-based communication mechanism inspired by slime mold aggregation
to measure the cluster size for a swarm of robots with infrared sensors. The robot could
grasp the cluster size and detect a desired cluster, then approach the cluster by the average
origin of wave method. It was hard to adapt these approaches’ control parameters to the
swarm behavior, which may result in some blind spots or dead zones. The robustness of the
models could not be assessed, and the experiments were only for the simple environment
under simulation.
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A cognitive, dynamic sensing system based on radar and sonar perception for tar-
get recognition and classification was designed in [76]. It exploited a memory-driven
perception to interact and navigate with man-made echoic sensors for control problems.
However, the sensing system’s performance was low and could not categorize information
in challenging scenarios. Ordaz-Rivas et al. [77] proposed a form of steering robot based
on local behavior rules, including attraction orientation, repulsion, and influence. The
influence emphasized the principal task, the behavior rules determined the formation of
the swarm, and a specific signal or perception was associated with a specific task. It used
proximity sensors, light-dependent resistors, and ultrasonic sensors for detecting obstacles.
Influence parameters and repulsion–attraction–orientation could be future considerations.

Bouraine and Azouaoui [78] demonstrated a tree expansion algorithm based on parti-
cle swarm optimization (PSO) dubbed PASSPMP-PSO, which supported objects moving
at high speed with an arbitrary path and dealt with sensors’ field-of-view limitations. It
was based on the execution of regular updates of the environment and a periodic process
that interleaved planning. Its safety issues could be considered further. Ref. [79] designed a
robot’s control mechanism based on PSO and a proportional–integral–derivative controller
with distance sensors for service robot navigation in complex environments. The ESP32
microcontroller performed the motion planning and had execution capabilities. The per-
ception capabilities were limited, and the motion planning algorithm could be improved.
Additional sensors may be required for higher adaptability and performance.

4. Tactile-Sensor-Based Navigation

Insects or animals sense the environment by touching their surroundings, and they
have skin covering their arms, legs, bodies, or antennas. A tactile sensor is usually used
for terrain identification and navigation. It is a typical approach to a design bioinspired
by skins or whiskers. It can determine the properties of terrain and avoid obstacles. A
multimodal approach is usually implemented for tactile sensors.

A hybrid tactile-sensor-based method was proposed with a generative recurrent neural
network for obstacle overcoming, and it aimed to provide solutions for multilegged service
robots [14]. The robot could move in an unstructured and uncertain environment by
touching the obstacle and calculating the new leg path parameters, as shown in Figure 9.
A new architecture based on spiking neurons was proposed for motor-skill learning for
insectlike walking robots [80]. It involved the mushroom bodies of the insect brain, modeled
as a nonlinear recurrent SNN. It could memorize the time evolutions of the controller to
improve the existing motor primitives.

Figure 9. Diagram of a tactile−based obstacle overcoming method [14].

Xu et al. [81] designed a triboelectric palmlike tactile sensor with a granular texture
in the palms, and it maintained stable performance in real time via the triboelectric nano-
generator technology and palm structure. Its inner neural architecture offered clues about
tactile information and was used for tactile perception. Ref. [82] proposed a whisker-based
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feedback control for a bioinspired deformable robot to perform shape adjustment to tra-
verse spaces smaller than its body, as in Figure 10. Its shape adjustment could provide
proprioceptive feedback for real-time estimation to balance stability, locomotion, and
mobility.

Figure 10. Design of a deformable robot with sensors [82].

Another whisker-based system was designed for terrain-recognition-based navigation
with real-time performance, which used a tapered whisker-based reservoir computing
system [83]. The system provided a nonlinear dynamic response and directly identified
frequency signals; the workflow is demonstrated in Figure 11. The limitation of the whisker-
based approach was the classification accuracy of the terrain; the whisker sensors could be
further improved.

Figure 11. Workflow of whisker−based reservoir computing systems [83].
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5. Olfactory Navigation

Animals employ the sense of smell for mating, inspection, hunting, and recognition,
even though smell is not the principal perception mechanism. Odor molecules through
olfaction can be used for strategies with a robot to find the direction of odor trails to
locate the origin of a fire or a toxic gas leak [15]. The main research directions of olfactory
navigation include odor source localization and tracking, odor recognition, and search.
The olfactory sensors are usually combined with other sensors or AI techniques for odor
mapping and navigation.

An odor tracking algorithm was employed with genetic programming for tracking the
odor plume, and the genetic programming was used as a learning technique platform for the
odor source localization algorithm. However, it lacked obstacle-avoidance techniques [15].
A search-based algorithm to detect a gas source localization based on the silkworm moth
integrated a repulsion function and worked in surface obstacle regions [84]. It used gas
sensors for odor stimuli and a distance sensor for object detection. The approach was
limited to searching in a two-dimensional environment; an active searching algorithm
should be integrated.

Ojeda et al. [85] introduced a framework for integrating gas dispersal and sensing and
computer vision, which modeled the visual representation of a gas plume. It defined the
environment, simulated wind and gas dispersion data, and then integrated the results in
Unity for plume rendering, sensor simulation, and environment visuals. The improvement
could be new functionalities and optimization of the online rendering. Another olfactory
navigation based on multisensory integration inspired by the adult silk moth was intro-
duced in [86], which acquired odor and wind direction information and the employees’
virtual reality system. It improved the search success rate compared to the conventional
odor search algorithm. Figure 12 provides the odor-source search fields.

Martinez et al. [87] designed an odor recognition system with an SNN; it was based
on a bilateral comparison between spatially separated gas sensors. The navigation laws
depended on the sensory information from plume structures, which could be performed in
a turbulent odor plume. If multiple odor plumes existed, the approach could not locate and
identify the sources. Ref. [88] solved the gas source localization problem by two destination
evaluation algorithms with gas distribution mapping (GDM), SLAM, and anemotaxis in an
unknown GPS-denied environment. The algorithms were anemotaxis-GDM for gas source
tracking and a FRONTIER-multicriteria decision-making that determined destination
candidates. Even though the success ratio reached 71.1% in the simulation, additional
experiments need to be conducted.

Figure 12. Odor−source search fields with the initial heading, the result of paths, and heading angle
histograms [86].
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6. Sound-Based Navigation

Animals also use sound for localization and navigation. Sound-based navigation is
usually used for sound-source localization and echo-based navigation. It can perform
3D localization and construction. Sound signal processing is considered during the de-
velopment. Some AI techniques are applied, such as neural networks, feedback models,
and optimized algorithms. The cited papers employ auditory sensors, sonars, ultrasonic
sensors, and event-based silicon cochlea.

A bioinspired binaural 3D localization was proposed with a biomimetic sonar, which
used two artificial pinnae with broadband spectral cues [89]. It selected the azimuth–
elevation pair for 3D localization with a binaural target echo spectrum. Steckel and Pere-
mans [90] developed a sonar-based spatial orientation and construction called BatSLAM,
inspired by RatSLAM. It used a biomimetic sonar for navigation in unmodified office
environments, which allowed navigation and localization with sonar readings at a given
timescale.

Abbasi et al. [91] developed a two-wheeled mobile robot with a trajectory tracking
controller and a path recommender system that adopted particle swarm optimization and
B-spline curves. It combined ultrasonic sensors and a camera, and the tracking module
reduced the sensor error. The system’s limitation was that it could only perform offline.
It could not handle real-time tasks, planning, or collision detection. The operation in a
cluttered indoor environment was not achieved.

An enhanced vector polar histogram algorithm was proposed for local path planning
of a reconfigurable crawling robot with an ultrasonic sensor [11]. It achieved obstacle
avoidance with the proposed algorithm but would lead to double back distance due to an
erroneous grouping of obstacles. This resulted in the unnecessary movements of the robot.
The displacement of ultrasonic sensors was also challenging in rolling mode. Tidoni et al.
[92] designed an audiovisual feedback model to improve sensorimotor performance in
brain–computer interfaces with human footstep sounds. The audiovisual synchronization
decreased the required control time and improved the motor decisions of the user. However,
the interactive capabilities with the environment were limited, and the adaptative behavior
was not shown.

Ghosh et al. [93] obtained the optimal path with flower pollination and bat algorithms
using a fitness function that considered the distance and goal-reaching behavior within
unknown environments and by conducting the experiment with an ultrasonic sensor. The
flower pollination algorithm depended on different pollination processes of flowering
plants, while the bat algorithm relied on frequency tuning and echolocation. The system
was only applied to a single robot, and it did not consider the static or dynamic obstacles
during operation.

Event-driven neuromorphic sensors include the silicon cochlea and the silicon retina,
which encode the sensory stimuli across different pixels as asynchronous streams. A novel
preprocessing technique was applied on the output cochlea spikes to better preserve the
interspike timing information for recurrent SNN in [94]. Glackin et al. [95] presented
an SNN-based model of the medial superior olive. It used the spike-timing-dependent
plasticity rule to train the SNN, and it was used for sound localization with an accuracy of
91.82%. The layers included input and cochlea model layers, bushy cell neurons, a graded
delay structure and an output layer. However, a limitation was the angular resolution, and
the network architecture was restricted to a subset of angles. More frequency ranges and a
hardware implementation should be further considered.

7. Inertial Navigation

A popular sensor to estimate the robot’s body is the inertial measurement unit (IMU).
An IMU is often used for indoor navigation because the indoor environment is GPS-denied.
The design of an IMU tends to consist of micro-electromechanical systems (MEMS) sensors
with lightweight and small sizes. Filtering techniques are widely used for data fusion with
other sensory inputs for reducing errors, such as the extended Kalman filter (EKF). A new
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mapping and tracking framework was proposed based on parametrized patch models with
an IMU and an RGB-D sensor in [96]. It was operated in real time for surface modeling and
terrain stepping with a dense volumetric fusion layer and multiple-depth data.

Sabiha et al. [97] used teaching–learning-based optimization for online path planning
in a cluttered environment, considering the potential collision and path smoothness as a
multiobjective optimization problem, as shown in Figure 13. An IMU achieved the robot
perception by collaborating with LiDAR and wheel odometry, then via data fusion with the
EKF. The model could not adapt to dynamic environments and was limited to convex and
regular obstacles. The path planning algorithm should be improved with a vision system
to detect the surroundings. Chen et al. [98] used an extended Kalman filter to estimate
the spatial motion with a six-axis IMU, joint encoders, and a two-axis inclinometer. The
body state also offered sensory information for feedback control, including the damping
controller to regulate the body position state in real time.

Figure 13. System architecture of the system [97].

A reconfigurable rolling–crawling robot was designed for terrain perception and recov-
ery behaviors with an IMU and visual sensor [99], and the remote computer received the
video stream in real time to process vision and feedback. However, the autonomous capa-
bilities were limited because the different terrains could not be perceived or classified, and
the robot could not walk with stairs. Yi et al. [100] designed a self-reconfigurable pavement
sweeping robot with a four-wheel independent steering drive and used a multiobjective
optimization and the optimal instantaneous center of rotation. It incorporated multiple
sensors, including LiDAR, IMU/GNSS, encoder, and camera, and the optimization consid-
ered the distance, varying width, clearance to a collision, and steering. Reconfiguration
and modern optimization are needed in the future.

A sensory-perceptual system exploits the environment to identify obstacles, walls, or
structures and is regarded as perception-driven obstacle-aided locomotion. Ref. [101] intro-
duced a multipurpose modular snake robot with an IMU, which used a linear discriminant
analysis to identify terrain in real time. It remodeled the elastic joint with a damper element
and redesigned the joint module using internal hardware components. The environments
and gaits were limited in the simulation. The kinematic model and mechanical design
should be further developed.

Kim et al. [102] presented a novel millirobot to extend the robot’s perception capa-
bilities with a swarm-sensing module based on a six-axis IMU, a processing and commu-
nication module, a locomotion module, and a proximity-sensing module with a camera
and proximity and light sensors. Decentralized formation control was used in behavior
studies via a swarm-sending module to exhibit collective behaviors, such as dynamic task
allocation, chain formation, aggregation, and collective exploration. Higher-performance
sensors could be further included in the research. Improvements of the processing power
and locomotion capabilities of the robot are also required.

An event-based visual–inertial odometry algorithm was designed to fuse range and
event simultaneously to improve the robustness and accuracy of the position in high-
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dynamic scenes in [13]. It ran in real time with IMU and range measurements processed
with a sliding-window optimization by feature extraction and tracking. The shortcoming
of the algorithm was that it did not consider the noise and the illumination, which may
reduce the accuracy of the position.

8. Multimodal Navigation

Multimodal navigation involves several types of approaches to enhance the adapt-
ability and performance of the navigation. This section mainly discusses the combination
of sensors and an AI-based approach. Multimodal navigation plays the most important
role in the recent development of bioinspired perception and navigation. It focuses on
sensor fusion and AI techniques. A popular integration is based on visual sensors. Neural
networks have gained the most attention in the research literature. Multimodal navigation
is aimed at navigating in challenging environments.

An embedded architecture was proposed as a multiscale attentional architecture for
bioinspired vision-based indoor robot perception in [103]. Its main layer included the
vision attentional layer and the neural control layer inspired by a multimodal approach
for fusion and learning, as shown in Figure 14a, which achieved environmental learning
while still working on a dynamically configurable camera. From the inspiration of how
locusts process visual information, a collision detection algorithm was introduced with a
collision-detector neuron even for high-speed vehicles [104]. It reproduced the excitation of
the collision-detecting neuron even with a low image resolution and planned the evasive
maneuvers. However, the algorithm could not respond well to overhead signs or ground
shadows.
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(a) Neural architecture

(b) Central pattern generator

Figure 14. (a) Neural architecture in which the loop runs for a visual scene for neural networks with a
visual attentional loop to categorize landmark [103]. (b) The network of the central pattern generator;
arrows refer to the excitatory connections, and lines end at inhibitory connections [3].

An exploration and navigation system was proposed based on animal behaviors as
central pattern generators as shown in Figure 14b [3]. The action selection model generated
a signal to trigger behaviors for homing, approaching, and exploration, and the path
integration model stored the signal for direct movement and the walked path with 90%
accuracy. Moreover, the orientation correction model redirected the virtual agent, and the
central pattern generator produced the path.However, the most significant shortcoming
was that the model lacked any obstacle avoidance capability, which resulted in the model
only being able to be implemented in a very simple environment. Porod et al. [105]
designed a cellular neural network system with nanoelectronic devices, which mapped the
motion detectors and biological features into spatiotemporal dynamics. An improvement
should focus on sensory-computing-activating circuits.

A log-polar max-pi model was presented with visual place recognition for a neural
representation of the environment by unsupervised one-shot learning in [106]. It processed
visual information by two distinct pathways with a novel detector and used the one-shot
learning mechanism and the spatial landmark’s position to learn the representation of
new positions for high localization scores and performance [106]. The shortcoming of that
model was that it recruited new neurons for every landmark, even the learned one, which
affected the computation frequency.
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Head-direction cells and place cells are gained by visual input and by encoding the
orientation and positions of the animal, and the animal’s brain can process raw visual data
into high-level information [2]. A spatial cognition model inspired by neurophysiological
experiments in rats was proposed, and it integrated head direction cells, hippocampus place
cells and entorhinal cortex grid cells to provide spatial localization and orientation [107].
The robot used a world graph topology for navigation in that approach, integrating place
cell activation with neural odometry. However, it could not support remapping or long-
term navigation. A reuse of the cells was also impossible due to the system’s processing
and memory limitations.

A generic neural architecture was conceptualized using an online novelty detection
algorithm and visual place cells in [108]. It was able to self-evaluate sensory motor strategies
and regulate its behavior for complex tasks, estimating sensory-motor contingencies. Future
work mentioned developing a homeostatic mechanism to self-regulate the system. Suzuki
and Floreano [109] designed an enactive vision with neural networks for wheeled robot
navigation. The network had no hidden units for simplification, and it was evolved with a
genetic algorithm and encoded in a binary string. However, the neural architecture was
limited and had to be designed for each task carefully.

A spatial association algorithm was proposed for autonomous positioning based
on place cells with a vision sensor in [110]. It used a vision sensor to get the distance
between the landmarks and the robot to construct the map of place cells, then used a radial
basis function neural network to achieve the association and memory of spatial locations.
However, it required a limit on the number of landmarks, memory points, and place cells.
Yu et al. [111] constructed a rat brain spatial cell firing model. It used an IMU and the
robot’s limbs to get the position, then encoded the position information by theta cells and
mapped it to place cells with a neural network. The connection weights of the network
were adjusted by Hebb learning.

Kyriacou [112] proposed a biologically inspired model based on head direction cells,
which implemented an evolutionary algorithm to determine the parameters and then
trained the artificial neural network connections. It used vestibular, visual, and kinesthetic
inputs incorporated with the objective function. Montiel et al. [113] designed a parallel
control model based on an optical sensing system to define the movements and a con-
volutional neural network (CNN) to analyze the environment and motion strategies to
achieve real-time control. It was proposed with two loops as a feedback motion control
framework for service robotics related to monitoring and caring for people. Egomotion
classifiers were designed with the first CNN for compound eye cameras, and it classified the
local motions of each eye image [114]. The voting-based approach was used to aggregate
the final classification for 2D directions, and the experiment had an 85% accuracy in the
building environment. A limitation of the classifier was that it could recognize backward
and forward motions and could only classify 2D movements.

An SNN processes bioinspired information, especially for event-based data. It was
proposed to overcome artificial neural networks’ energy limitations, but it also provides
synergies with neuromorphic sensors [115]. Event sensors use send-on-delta for temporal
sampling scheme to capture environmental information, which is triggered when the signal
deviates by delta. Send-on-delta schemes only send new reports when the monitored
variable decreases or increases beyond a threshold [116]. Some sensors with an event-
driven architecture support send-on-delta monitoring and the send-on-delta concept can
reduce reports and save bandwidth. Therefore, it is suitable for wireless sensor networking.
Comprehensive surveys of event-based sensors are published in [22,117,118].

An SNN achieves bioinspired bottom-up visual attention, and it restricts the data
flow for online processing [119]. The SNN controls the camera’s view to switch to another
stimulus and can focus on simple stimuli. The SNN is expected to be evaluated with a
higher cognitive phenomenon in the future study. An indoor flying project evolved adaptive
spiking neurons with a multistage vision-based microrobot [120]. The adaptive spiking
neurons provided matches to the digital controllers, and it explored the space of solutions.
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However, the model could not be used in unpredictable and changing environments
because it could not be adapted on the fly.

Alnajjar et al. [121] offered a hierarchical robot controller based on Aplysia-like SNN
with spike-time-dependent plasticity, and each network was stored in a tree-type memory
structure. The memory enhanced navigation in previously trained and new environments,
and dynamic clustering and forgetting techniques could control the memory size. The
sensors used were infrared/light sensors, sound sensors, and cameras. Arena et al. [122]
developed a reactive navigation technique with a chaotic system in real time, and a dis-
tributed sensory system provided real-time environment modifications. It took inspiration
from the olfactory bulb neural activity and used continuous chaos control for the feedback.
The experiment was conducted with distance sensors and an FPGA architecture. However,
the contextual layer had the shortcoming of dealing with short-term and long-term memory
for navigation.

Another FPGA-based framework was proposed for a multimodal embedded sensor
system, which incorporated optic flow and image moments in low-level and mid-level
vision layers, inspired by mammalians [123]. The computation speed achieved real-time
estimation, but the optical flow computation at different moments and hardware imple-
mentation were the shortcomings of the method. Elouaret et al. [124] designed a high-
performance and low-footprint accelerator for image recognition with a spatial working
memory on a multi-FPGA platform. It implemented a bioinspired neural architecture
to process visual landmarks and used a distributed version for a multi-FPGA platform.
The system could not deliver high performance; a scheduling system or a postscheduling
algorithm could be used for improvement.

Sanket et al. [125] proposed a minimalist sensorimotor framework with onboard
sensing and monocular camera, including a vision-based minimalist gap-detection model
and visual servoing. It was used for finding and go through an unknown gap with a deep
learning optical flow, and the parameters would be chosen dynamically in further research.
Ref. [126] modeled a looming spatial localization neural network from the inspiration of
the Monostratified Lobula Giant type1 neurons with a presynaptic visual neural network.
It perceived its looming spatial location and biological counterpart and was sensitive to
size and speed. The model interacted with dynamic environments.

Wang et al. [127] designed an optimized dynamical model as a multiscale extension for
cognitive map building with grid cells. The robotic application was achieved by combining
a vision-assisted map correction mechanism, place cells, and a real-time path integration of
grid cells. The system consisted of vision information on depth and RGB data, a multiscale
path integration, place encoding, a hierarchical visual template tree, a topological map,
and an accumulated error correction. Barrera et al. [128] involved spatial cognition in
goal-oriented tasks, and the developed model produced a cognitive map by integrating
visual and kinesthetic information. Reinforcement learning and Hebbian learning were
used for the training to learn the optimal path leading through the maze. The adaptation
could be further improved. The system could not react to the internal changes in the map,
such as closing or opening corridors.

Pang et al. [129] trained robots using hybrid supervised deep reinforcement learning
(DRL) for the person following with visual sensors, while supporting dynamic environ-
ments. Features were extracted from monocular images for a supervised learning (SL)
policy network, then the RL policy and value network were applied. However, distance
detection should be utilized. Ref. [130] provided synthetic classification methods for terrain
classification by a simple-linear-iterative-clustering-based SegNet, which is a deep learning
network, and a simple-linear-iterative-clustering-based support vector machine (SLIC-
SVM) with visual sensors. The algorithms used the single-input multioutput model to
improve the applicability of the classifier and conduct superpixel segmentation on images,
while the terrain information could be more focused.

Arena et al. [131] applied a dynamic spatiotemporal pattern for bioinspired control,
and sensors provided heterogeneous information in the perceptual core to build the envi-
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ronment. A nonlinear lattice of neuron cells presented the robot’s internal state for many
solutions. It implemented the reward-based learning mechanisms and reaction–diffusion
cellular nonlinear networks for perception, albeit only for a simple environment. A novel
predictive model of visual navigation approaches based on mammalian navigation with a
combination of neurons observed in the brain was presented in [16] for visually impaired
people. It stored the environment representations as place cells and used the grid-cell
modules for absolute odometry and an efficient visual system to perform sequential spatial
tracking in redundant environments [16]. It was claimed to be robust by forcing the agent
to repeat the learned path, but other cues’ positions would cause interference.

A cognitive mapping model was introduced with continuous attractor networks,
conjunctive grid cells, and head direction cells to combine velocity information by encoding
movements and space as in Figure 15 [132]. The model was robust for building a topological
map with a monocular camera, then using head direction cells and conjunctive grid cells to
represent head directions, positions, and velocity, and then using the neural mechanisms
for spatial cognition of the brain. The model’s limitations included large numbers of
units. They could not provide a metric map [132]. Ref. [133] developed a novel quadrant-
based approach based on the grid neuron to input body movement and output periodic
hexagonal gridlike patterns. Then, the authors implemented a cognitive map formation
with the place–grid neuron interaction system to make predictions. The model provided
body parts’ movement tracking for several spatial cognitive tasks, which was better than
other grid neuron models. However, it was only implemented in a 2D environment.

Figure 15. The architecture of the cognitive mapping model and the visual odometry node estimates
the velocity, and the spatial memory network performs path integration and decisions [132].

Bioinspired place recognition was presented for the RatSLAM system with a modified
growing self-organizing map for online learning in unknown environments in [134]. It
used a pose cell network for path integration and view cells for the visual association to
produce an experience map. It is expected to combine local key-point descriptors with
GIST features for hierarchical scene learning in a further study. Another neuroinspired
SLAM system was proposed based on multilayered head direction cells and grid cells with
a vision system in [135]. The vision system provided self-motion and external visual cues
and used a neural network to drive the graphical experience map with local visual cues.
Then, it corrected accumulative path integration errors by a multilayered experience map
relaxation algorithm.

Ni et al. [136] introduced a bioinspired neural model based on SLAM with an extended
Kalman filter (EKF) for searching and exploring. The adaptive EKF used a neural model
to adjust the observation and system noise weights to guarantee stability and accuracy. It
could also deal with the noise in abnormal conditions.
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Ramalingam et al. [137] presented a selective area-cleaning/spot-cleaning framework
based on an RGB-D vision sensor and a deep learning algorithm for indoor floor-cleaning
robots, as shown in Figure 16. The human traffic region was traced by a simple online and
real-time tracking algorithm and the dirty region was detected by a single-shot detector
MobileNet. Then, waypoint coverage path planning was achieved via an evolutionary algo-
rithm on the selective area. Ref. [138] developed a deep-network solution for autonomous
indoor exploration with several CNN layers in a hierarchical structure. The system used
visual RGB-D information as input and provided the main moving directions, and the
Gaussian process latent variable mode created the feature map. Online learning algorithms
were proposed as the next step of the study, as well as extending the target space to the
continuous space.

Figure 16. Overview of a selective area-cleaning framework [137].

A novel learning approach named memory-based deep reinforcement learning was
proposed with a centralized sensor fusion technique in [12], which could learn from scratch
for exploration and obstacle avoidance without preprocessing sensor data. It considered
exploration as a Markov decision process and uses memory-based deep reinforcement
learning as in Figure 17a; it had further potential to reduce the search status of robots. Chatty
et al. [139] designed a learning-by-imitation method for a multirobot system, building a
cognitive map by coupling a low-level imitation strategy. It had a positive effect on the
behaviors of human and multirobot systems and on sharing information and individual
cognitive map building in an unknown environment. The visual input of place cells was as
in Figure 17b.

Another cognitive architecture was described based on a visual attention system
in social robots, which used a client/server approach [140]. The attention server sent
motion commands to the robot’s actuators, and the attention client gained the common
knowledge representation. The cognitive architecture consisted of five hardware tiers, the
programming interface, controllers, the operational level, the task manager level, and the
high-level mission. The energy consumed could be further analyzed.
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(a) Memory-based deep reinforcement learning

(b) Cognitive map

Figure 17. (a) The workflow of memory-based deep reinforcement learning [12]. (b) The construction
of place cells on the cognitive map [139].

The neurocognitive structure is presented in [141], which consists of a hippocampal-
like circuitry and a hierarchical vision architecture. The architecture is for spatial navigation,
and it combines the hippocampus and a biological vision system as a brain-inspired model,
including motor and sensory cortical regions. A more complicated environment and
computation complexity would be a further improvement. Kulvicius et al. [142] designed
an odor-supported place cells algorithm with a simple feed-forward network, which
analyses the olfactory cues on spatial navigation and place cell formation. It uses self-
marking for goal navigation by odor patches and a Q-learning algorithm, which supports
hierarchical input preference and remapping.

An endogenous artificial attention-based architecture was presented with multiple
sensory sources, including vision, sound, and touch in [143], as shown in Figure 18. It
achieved real-time responses and chose the relevant information for natural human–robot
interaction, reacting to sustained and punctual attention, although it required long-term
tests in stressful situations. Moreover, the correct functioning of the system should be
tested with the target population for performance. Ref. [144] proposed map planning
and neural dynamics for unknown dynamic environments, and it utilized an ultrasonic
sensor and Dempster–Shafer inference rule, then used a topologically organized neural
network. It determined the dynamics of neurons by a shunting equation and considered
the uncertainties of sensor measurements.
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Figure 18. The detectors extract information from the environment that is classified into auditory,
visual, and tactile information; the system performs an integration process for multisensory aggrega-
tion [143].

A multimodal tactile sensing module was proposed for surface characterization with a
micro-electromechanical, magnetic, angular rate, and gravity system in [10]. It used a clas-
sification method by a multilayer perceptron neural network, but it needed to be evaluated
with a larger dataset. Zhang et al. [145] developed a B self-organized fission–fusion control
strategy for swarm control, considering dynamic obstacle interference. Their algorithm
achieved fission–fusion movement with a control framework and then built a subswarm
selection algorithm with a tracking function. However, some specific parameters were not
investigated in depth during the experiments.

Yin et al. [146] presented a neurodynamic-based cascade tracking control algorithm
for AGV, providing smooth forward velocities with state differential feedback control.
The bioinspired neurodynamic model used two levels of controllers with a cascade track-
ing control strategy for smooth and robust control, although a real experiment would
be required. Moreover, lateral and longitudinal slips should be considered for tracking
problems. Ref. [147] employed CNNs such as Siamese neural networks in visual-teach-and-
repeat navigation for image registration which was robust to changes in environmental
appearance. Due to the high efficiency when generating high-fidelity data, real-time perfor-
mance was achieved. However, the training example was limited during the development.

Dasgupta et al. [148] presented an artificial walking system that combined neural
mechanisms and a central pattern generator and had distributed recurrent neural networks
at each leg for sensory predictions. It adapted the movement of the legs for searching and
elevation control in different environments and used neural mechanisms for locomotion
control with real-time data. Ref. [149] described a generic navigation algorithm based on a
proximal policy optimization with onboard sensors, which collaborated with long short-
term memory neural networks and incremental curriculum learning. The proximal policy
optimization reinforcement learning algorithm was optimized for real-time operation, and
the recurrent layer supported backtracking when stuck. It could be deployed to search,
rescue, or identify gas leaks. However, real-world experiments were not conducted.

Al-Muteb et al. [150] developed autonomous stereovision-based navigation with a
fuzzy logic controller in unstructured, dynamic indoor environments. It provided indoor



Biomimetics 2023, 1, 0 25 of 41

lighting adaptability via point-cloud filtering and stereomatching parameters. It assisted
the system with a laser measurement sensor for path adjustment and emergency braking to
move through waypoints. An intelligent system was proposed for robot navigation with an
adaptive-network-based fuzzy inference system which added the fuzzy logic to the neural
network and then used the ant colony method in a continuous environment as the second
layer [151]. The employed robots had two infrared sensors and a displacement device, then
used five layers of the fuzzy system: adaptive, rule, normalization, and defuzzification
layers, and a single node.

A dynamic recurrent neurofuzzy system was improved with a short memory and
ultrasonic sensors to avoid obstacles by supervised learning in [152]. The second layer of
the system was the feedback connection to memorize the previous environment data, and
the structures and parameters were automatically optimized. Nadour et al. [153] introduced
a hybrid type-2 fuzzy logic controller with optical flow based on an image processing and
video acquisition algorithm. The optical flow used the Horn–Schunk algorithm to estimate
the velocity, and the fuzzy logic controller consisted of a fuzzification, a rule-based process,
an inference mechanism, a defuzzification, and a type reducer.

Ref. [154] employed a multilayer feed-forward neural network with infrared and
ultrasonic sensors as an intelligent controller in a dynamic environment. It inputted
obstacle distance to the target angle and position, respectively, and produced the steering
angle. The cognitive tasks were handled by the four-layer neural network with the time
and path optimization.Ref. [155] presented a winnerless competition paradigm, and the
spatial input determined the sequence of saddle points of the path and then reflected
the spatial–temporal motion. The framework was an action-oriented perception based
on Lotka–Volterra system with cellular nonlinear networks and distance sensors. The
challenges of the work included real and complex environments, bioinspired learning
methods for SLAM, and a neural-model-based EKF.

A hybrid rhythmic–reflex control method was developed based on oscillatory net-
works and feedback information, in which real-time joint control signals provided adaptive
walking for a biped robot [156]. The walking pattern was realized in real time with the
body attitude angle. The limitation of the work was that it only applied to the sagittal
plane, although the antidisturbance ability and irregular terrains are important for the
robot. Pathmakumar et al. [157] designed an optimal footprint-based coverage system for
false-ceiling inspection with a multiobjective optimization algorithm. The system included
a localization module with UWB, a controller module with Wi-Fi, locomotion modules
with encoders and motors, and a perception module with the camera. The robot followed a
zigzag path planning strategy to maximize the coverage area. However, dynamic optimiza-
tion and energy consideration were not determined, and static and dynamic obstacles were
not considered.

9. Others

Corrales-Paredes et al. [158] proposed an environment signaling system with radiofre-
quency identification (RFID) for social robot localization and navigation. It used the
human–robot interaction to get information for the waymarking or signaling process, and
it successfully experimented in a structured indoor environment. The robot could not learn
from the environment or possible changes. Other environments were considered possible
improvements, such as museums, hospitals, shopping centers, etc.

Collective gradient perception was enhanced based on the desired speed and distance
modulations for a robot swarm in [159]. It used social interactions among robots to follow
the gradient with an ultrawideband (UWB) sensor, assisted by a laser distance sensor, and
a flow camera. It could be used for searching and localizing sources, but it would need
more sensors to sense light, temperature, or gas particles.

Le et al. [160] introduced a multirobot formation with a sensor fusion of UWB, IMU,
and wheel encoders within a cluttered unknown environment. The global path planning
algorithm incorporated skid-steering kinematic path tracking, and the dynamic lineariza-
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tion decoupled the dynamics to control the leader robot of the formation. However, the
experiment was only conducted in static environments.

10. Discussion and Conclusions

From the literature, vision-based, remote sensing, tactile-sensor-based, olfactory,
sound-based, inertial, and multimodal navigation are the main bioinspired perception
and navigation systems for service robots in indoor environments. They are inspired by
animals such as rats, bats, and mammalian, etc. Environmental information is gained
through different sensors, depending on the applications or surroundings. The vision-
based approaches are the most popular among these methods, as well as in combination
with other approaches for multimodal navigation.

More precisely, Table 1 lists the vision-based approaches with their contributions,
sensors, and real-time performance, and the most popular method is the optic flow, which
is used by bees. The vision-based applications include transport [9,18,39,46,50,60], explo-
ration [8,19,24,26,40,41,45,49], tracking and assist [31,56,58], security and surveillance [7,52],
homing and searching [5,54,55], floor cleaning [6,43], and search and rescue [44]. Only
43.75% of the cited papers indicate they can operate in real time, which is achieved by pro-
cessing or computation speed, minimal computation load, or predefined parameters. The
challenges of visual navigation include not having an optimal path or dynamic obstacles,
more parameters or coefficients that should be considered, the accuracy in the navigation,
an optimal implementation, limited assumptions, and more sensors or approaches required.

Table 1. Vision-based navigation.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[9] Resource-efficient vision-based
navigation Optic flow Real time Optimized parallel processing

on FPGA

[18] Extract the depth structure from
the optic flow Optic flow N/A

[19] A quantitative model of the
optic flow Optic flow N/A

[31] A robust gradient-based optical
flow model Optic flow Real time Lightweight operating system

[29] Time-of-travel methods Optic flow N/A

[20] Lobula plate tangential cells Optic flow N/A

[7] A gradient-based optical
flow model Optic flow Real time GPU speed

[24] A novel integrated,
single-chip solution Optic flow Real time Computation speed

[23] Hierarchical SNN Optic flow, event-based camera Real time Large-scale SNNs

[25] Self-supervised optical flow Optic flow, event-based camera Real time Self-supervised neural network

[26] Control systems based on insects’
visuomotor control systems Optic flow N/A

[38] Highly efficient computer
vision algorithm Optic flow N/A

[161] An actor–critic learning algorithm Optic flow N/A

[17] A miniature hovercraft Optic flow N/A

[30] Feedback loops Optic flow N/A

[28] Attitude can be extracted from
the optic flow Optic flow N/A
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Table 1. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[33] Ultralight autonomous microfliers Optic flow, gyroscopes,
anemometer, Bluetooth N/A

[34] Visuomotor control system Optic flow N/A

[35] Minimalistic motion vision Optic flow N/A

[162] Learning process Optic flow N/A

[37] Optic flow-based autopilot Optic flow N/A

[27] Adaptive peripheral
visual system Optic flow N/A

[36] Wide-field integration of
optic flow Optic flow N/A

[8] A Portable bioinspired
architecture Visual Real time A minimal quantity of resources

[48] A self-adaptive landmark-based
aggregation method Landmark N/A An error threshold parameter

[51] Landmark-tree (LT) map Landmark and omnidirectional
camera N/A

[49] A landmark vector algorithm Landmark-based N/A

[5] Entropy-based vision and visual
topological maps

Landmark and entropy-based
vision Real time A conventional bug

algorithm/metric maps

[50] Pan–tilt-based visual sensing
system Landmark and visual sensor Real time Perception-motion dynamics loop

[39] A bioinspired SLAM algorithm SLAM and monocular or
stereovision systems Real time CPU-GPU architecture

[47] Hierarchical look-ahead trajectory
model (HiLAM) SLAM Real time RatSLAM

[40] State estimation pipeline SLAM Real time Standard frames

[41] Refocused events fusion SLAM Real time Throughput

[42] Artificial neural SLAM
framework SLAM, event-based camera N/A

[45] Movement-based autonomous
calibration techniques

SLAM, cameras, sonar sensors, a
laser, an RGB, and a range sensor Real time Online sensor fusion

[43] Dirt-sample-gathering
strategy/ACO

SLAM Real time Dirt-gathering efficiency

[44] An decentralized approach SLAM N/A

[46] Environmental-adaptability-
improved RatSLAM SLAM N/A

[6] Visual navigation Depth camera Real time Superpixel image segment
algorithm

[57] Generate robot actions Depth camera Real time Partially observable Markov
decision process

[32] Ocular visual system Ocular sensor and Monte Carlo N/A

[53] Distributed wireless nodes Wireless vision sensors and
mosaic eyes Real time Image acquisition and processing

module
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Table 1. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[54] Parallel mechanism-based
docking system Camera infrared sensor Real time Stereo camera

[55] Signal processing and control
architectures Visual tool Real time Custom OpenGL application

[56] Mobile robots cooperation Camera Real time Visual servoing

[52] Intelligent recognition system Wireless camera Real time Path delineation method

[58] Visual-Teach-and Repeat Visual servo N/A

[59] Reconfigurable biomimetic robot Monocular vision Real time GPGPU coding

[60] Efficient stereoscopic video
matching Stereoscopic vision N/A

[61] Modeling multirotor UAVs
swarm deployment Visual N/A

[62] V-shaped formation control Binocular N/A

Additionally, Table 2 displays papers about remote sensing navigation, focusing on
LiDAR, laser ranger, and infrared sensors. The tasks include exploration [63,64,66,71],
wheelchair [78], transport [65,73–75], fire services or search and rescue [70], floor clean-
ing [68], tracking [76], education [72], and caring and service [79]. Some approaches are
combined with path planning algorithms, including metaheuristic algorithm, potential field,
and A* for navigation [66,68,70,78]. Online performance only reaches 29.41% in remote sens-
ing perception with models, algorithms, or controllers. The weaknesses of the cited remote
sensing techniques include unfiltered points, safety issues, real implementation, multirobot
exploration, sensors’ limitations, control parameters, sensing systems, and environmental
adaptability.

Table 2. Remote sensing navigation.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[63] Wide-field integration (WFI)
framework LiDAR-based N/A

[64] Modular robot LiDAR-based Real time Robot framework

[78] Tree expansion using particle
swarm optimization LiDAR-based Real time World model update

[65] LiDAR-Based Local path
planning LiDAR-based N/A

[66]

Metaheuristic salp swarm
algorithm and deterministic

coordinated multirobot
exploration

LiDAR-based Real time Metaheuristic algorithms

[70] Social potential field framework LiDAR-based N/A

[68] Modified A-star algorithm LiDAR-based Real time Modified A-star algorithm

[71] Motion policy; a direct mapping
from observation to control Laser ranger and omnidirectional N/A

[67] Evolutive localization filter (ELF) Laser ranger N/A
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Table 2. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[69] Chemical signaling Infrared sensors N/A

[73] Generic fault-detection system Infrared proximity sensors N/A

[75] Self-organized aggregation
behavior Infrared sensors N/A

[76] Cognitive dynamic system Radar and sonar N/A

[77] Steering a swarm of robots
Proximity, infrared, ultrasonic
sensors, and light-dependent

resistor
N/A

[74] A behavioral algorithm Ultrasonic and infrared sensors
and light-dependent resistor N/A

[72] Robotic platform Short-range infrared proximity
sensors N/A

[79] Control mechanisms Distance sensor Real time ESP32 microcontroller

Table 3 compares tactile-sensor-based, olfaction sensor-based, sound-based, and in-
ertial navigation. Tactile sensor-based approaches with online performance utilize board
processing, feedback, or technologies. Future work on tactile-based approaches is about
improving accuracy, and the applications are autonomous transport and perception [14,81–
83]. Olfaction-based navigation approaches are implemented for transport [15,84,86,87],
gas dispersion [85], and gas source localization [88]. The limitations of olfactory naviga-
tion include obstacle avoidance techniques, active searching, several odor plumes, and
precise localization. The sound-based approaches focus on sonar or ultrasonic sensors.
The primary tasks are exploration [89,92] and transport [11,90,91,93]. Some approaches are
combined with metaheuristic algorithms for efficiency, such as [91,93]. The challenges are
sensor displacement, sensor fusion, online collision detection and planning, and a dynamic
environment.

Inertial navigation usually is applied for reconfigurable robots [99–102], and some
approaches uses sensor fusion techniques [96–98]. Inertial navigation can be utilized for
exploration [96,99], sweeping [100], and autonomous transport [97,101]. Other navigation
implements RFID or UWB for localization for entertainment [158] and searching [159]. The
drawbacks of the research include optimization reconfiguration, autonomous capabilities,
performance, sensor fusion, dynamic environment with dynamic obstacles, and the kine-
matic model. The online performance of the sound-based and inertial navigation systems
is achieved via an algorithm or the model efficiency. Improving the framework for sensors
and operating within dynamic environments are considered future work.

Table 3. Tactile sensor-based, olfaction sensor-based, sound-based, and inertial navigation approaches

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[14] A hybrid obstacle-overcoming
method Tactile sensor-based Real time Signal is transferred on board

[81] Triboelectric nanogenerators Tactile-sensor-based Real time Palm structure and triboelectric
nanogenerator technology

[82] Feedback control Tactile-sensor-based and whisker Real time Whisker feedback

[83] Terrain-recognition-based
navigation Tactile-sensor-based and whisker Real time On-board reservoir computing

system
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Table 3. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[80] Motor learning Tactile-sensor-based Real time Nonlinear recurrent SNN

[15] Odor-tracking algorithms with
genetic programming Olfaction-sensor-based N/A

[84] Search based on the silkworm
moth Olfaction-sensor-based N/A

[86] Multisensory-motor integration Olfaction-sensor-based and visual N/A

[87] Odor recognition system Olfaction-sensor-based and an
SNN N/A

[85] Gas dispersal and sensing
alongside vision Olfaction-sensor-based N/A

[88]
FRONTIER-multicriteria

decision-making and
anemotaxis-GDM

Olfaction-sensor-based, gas
distribution mapping (GDM), and

anemotaxis / SLAM
N/A

[89] Binaural sonar sensor Sound-based / sonar N/A

[92] Audiovisual synchrony Sound-based / Visual N/A

[11] Enhanced vector polar histogram
algorithm Sound-based, ultrasonic sensors N/A

[91] A two-wheeled mobile robot with
B-spline curves and PSO

Sound-based, ultrasonic sensors /
camera N/A

[90] Sonar-based spatial orientation Sound-based, sonar N/A

[93] FPA and BA metaheuristic Sound-based, ultrasonic sensors Real time Algorithm efficiency

[95] SNN-based model Sound-based N/A

[96] Curved patch mapping and
tracking IMU and RGB-D Real time Parametrized patch models

[99] Reconfigurable rolling–crawling
robot IMU and visual sensor Real time Remote computer for vision

processing and feedback

[100] 4WISD reconfigurable robot

IMU, Velodyne, and LiDARs,
ultrasonic sensors, absolute
encoder, wire encoder, and

camera.

N/A

[102] Millirobot with an open-source
design

IMU and camera N/A

[97] Teaching–learning-based
optimization and EKF

IMU, wheel odometry, and light
detection and ranging (LiDAR) Real time Algorithm

[101] Multipurpose modular snake
robot IMU Real time Linear discriminant analysis

[98] Sensor data fusion algorithm IMU, a 2-axis inclinometer, and
joint encoders, Real time Overall control strategy

[158] Environment signaling system Radiofrequency identification
(RFID) N/A

[159] Collective gradient perception UWB, laser, and camera N/A

[160] Multirobot formation with sensor
fusion-based localization

UWB position system, IMU, and
wheel encoders Real time Sensor fusion
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Moreover, Table 4 lists the multimodal navigation. The applications of the multimodal
navigation consist of entertainment [143], security [133], transport [2,106,107,110,112,147],
assistance [2,16,108], exploration [3,134,135,138,141], social applications [12,140], tracking [105,
125,131,145,146], caring and monitoring [113], disaster monitoring or search and rescue [136,
149], floor cleaning [137], wheeled robot [109], person following [129], and false-ceiling inspec-
tion [157]. The combination of virtual sensors and neural networks is most commonly used in
multimodal navigation, which represents 77.19% of the cited research.

Furthermore, 59.65% of the navigation approaches can perform real-time feedback
due to the AI-based approach, such as learning algorithm, neural network, fuzzy logic,
and optimization. Hardware, such as the architecture and controller, achieves some of the
online performance. Challenges exist in multimodal navigation including complex environ-
ments, remapping and reusing different environments, reducing computational resources,
undesired responses, learning datasets, cognitive phenomenon, parameter settings, layer
or neuron design, energy, accuracy, dynamic obstacles, and real experiments.

Table 4. Multimodal navigation.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[143] A Bioinspired endogenous
attention-based architecture Virtual Real time Selective attention’s correction

[110] Spatial association Virtual, neural network, place
cells Real time Neural network

[133] Quadrant-based approach Virtual, neural network, place
cells N/A

[2] Slow feature analysis Vision-based, place cells and head
direction cells N/A

[107] Spatial cognition model Vision-based, place cells, grid
cells and head direction cells N/A

[16] Navigation inspired by
mammalian navigation Vision-based Real time Prediction-oriented estimations

[132] Cognitive mapping model
Virtual, neural network, head

direction cells, conjunctive grid
cells, SLAM

Real time Conjunctive space-by-movement
attractor network

[112] Biologically inspired model,
evolutionary algorithm

Virtual, neural network, head
direction cells N/A

[106] Log-polar max-pi (LPMP) Virtual, neural network Real time Visuospatial pattern

[103] Embedded control system Vision-based, Neural control layer Real time Neural control layer

[104] Collision detection Virtual, Neural network Real time Collision-detector neuron in
locusts

[3] Central pattern generators (CPGs) Virtual, neural network Real time Pattern generators

[10] Tactile probe Tactile Sensing N/A

[134] Place recognition, RatSLAM
system Virtual, Neural network Real time Self-organizing neural network

[12] Deep-reinforcement-learning-
based intelligent agent

Virtual, neural network, infrared
proximity sensor Real time Memory-based deep

reinforcement learning

[13] Range and event-based
visual-inertial odometry Virtual, inertial odometry, range Real time Sensor

[135] NeuroSLAM Virtual, neural network Real time Neural network

[108] Generic neural architecture Virtual, neural network Real time Online detection algorithm
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Table 4. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[144] Neural dynamics and map
planning Virtual, neural network Real time Neural network

[139] Learning by imitation leads Virtual, cognitive map Real time Cognitive map

[145] Self-organized fission–fusion
control Multimodal N/A

[146] Neurodynamics-based cascade
tracking control Multimodal N/A

[105] Nanosensor-Enhanced CNN Virtual, neural network N/A

[131] Dynamic spatiotemporal patterns Virtual, neural network N/A

[119] Bioinspired visual attention
process using SNNs Virtual, neural network Real time Restrict the data flow

[114] CNN-based egomotion
classification framework

Virtual, neural network,
compound eye N/A

[125] Minimalist sensorimotor
framework Virtual, deep learning Real time Minimalist philosophy

[141] Vision-enhanced neurocognitive
structure Virtual, neural network N/A

[147] Contrastive learning Virtual, neural network Real time High efficiency

[122] Multisensory integration Virtual, distance sensor Real time FPGA architecture

[123] FPGA-based embedded sensor
system Virtual, optic flow Real time Processing speed

[124] Bioinspired neural architecture Virtual, image Real time FPGAs

[113] Parallel control model Virtual, image Real time Two loops form

[148] Distributed recurrent neural
network Leg, neural network Real time Adaptive locomotion

[150] Stereovision-based navigation
system Virtual, fuzzy logic Real time Algorithm

[153] Type-2 Fuzzy logic Virtual, fuzzy logic N/A

[149] Generic navigation algorithm Neural network, onboard sensor Real time Proximal policy optimization

[151] Intelligent system, ACO Infrared sensor, fuzzy logic N/A

[154] Multilayer feed-forward neural
network

Infrared sensor, ultrasonic, neural
network Real time Neural controller

[140] Visual attention system Virtual, cognitive architecture N/A

[137]
Selective

area-cleaning/spot-cleaning
technique

Virtual, deep learning Real time SSD MobileNet

[127] Optimized dynamical model Virtual, grid cells Real time Vision-assisted map correction
mechanism

[126] Looming spatial localization
neural network Virtual, motion-sensitive neuron N/A

[138] A novel deep learning library Virtual, RGB-D information, deep
learning Real time Deep learning



Biomimetics 2023, 1, 0 33 of 41

Table 4. Cont.

Paper Contribution Sensors Real Time How to Achieve Real-Time
Operation

[120] Vision-based microrobot Virtual, adaptive spiking neurons N/A

[109] Enactive vision Virtual, neural networks,
computer vision N/A

[155] Winnerless competition paradigm Neural networks, olfactory N/A

[136]
A

bioinspired-neural-model-based
extended Kalman filter

Neural networks, SLAM Real time Neural dynamic model

[142] Odor-supported place cell model RL, olfactory N/A

[156] Hybrid rhythmic–reflex control
method Neural network Real time ZMP-based feedback loop

[128] Spatial memory and learning Visual, cognitive map N/A

[152] Dynamic recurrent neurofuzzy
approach Ultrasonic, learning Real time Fuzzy logic

[130]

Simple-linear-iterative-clustering-
based support vector machine

(SLIC-SVM), simple-linear-
iterative-clustering-based SegNet

Visual, SVM Real time Sensor

[129] Hybrid supervised deep
reinforcement learning

Visual, RL, Markov decision
process (MDP) Real time SL policy network training

[157] Optimal functional footprint
approach

Visual, camera, beacon, UWB,
encoder, motor, Wi-Fi N/A

[121] A hierarchical autonomous robot
controller

Visual, infrared, sound, neural
network N/A

[111] Brain spatial cell firing model IMU, neural network N/A

From the bioinspired perception and navigation review, the main applications include
autonomous transport, exploration, floor sweep, and search and rescue. These strategies
allow service robots to operate safely, estimating their states and positions relative to
their surroundings. Multimodal navigation offers real-time performance due to the AI-
based approach, and it combines with other sensors for perception. The most popular
collaboration is with visual sensors and neural networks.

In the real implementation of robot perception and navigation, indoor environments
are dynamic and changing, including moving objects or people, challenging lighting [25],
and stairs or carpets [99]. The dynamic obstacles are unpredictable and hard to avoid.
However, most papers do not consider dynamic environments, except [13,136,154], which
tried to solve the problem with learning approaches. Some studies indicate a dynamic
environment as future work [13,93,97,124,157]. However, the problem of moving objects or
dynamic obstacles is still not solved. Navigation in dynamic environments requires real-
time performance, high adaptability, a quick decision-making ability, and object detection
and avoidance.

Learning ability and adaptability are also future research directions. The trend of
bioinspired perception is moving towards multimodal approaches, which are expected to
provide real-time responses [132,143]. The learning ability enables a robot to use previous
information to train the model to process new information and quickly respond to changes
in surroundings. Neural networks and machine learning are taken into account for learning
strategies, such as SNN [119], reinforcement learning [12], CNN [105], attention mecha-
nism [143], etc. Continual detection and avoidance algorithms should also be considered.
Fault detection and tolerance frameworks are expected to be developed in future research.
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Sensor fusion is one of the main directions of research, which incorporates several types
of sensors, such as combining visual, tactile, and auditory sensors [143], a tactile model
with nine-DOF MEMS MARG [10], IMU and visual sensors [96,102], more multimodal
approaches (refer to Section 8), etc. Because a single sensor easily gains some bias, other
sensory inputs can be used to correct these errors. A great sensor fusion algorithm can
provide accurate localization and navigation to determine the robot’s orientation and
position. The dynamic and unpredictable environment requires high accuracy to locate the
robot and its surroundings. It is also crucial for swarm operation.

Future research also focuses on swarm intelligence, which consists of multiple robots
in large groups. Swarm navigation allows robots to execute complicated tasks, explore
unknown areas, and improve efficiency. The communication between swarm individuals
and the kinematics of different robots are significant challenges [61]. The sensor-based com-
munication protocols must be addressed in physical swarm systems [62]. The issues of the
optimization of the navigation algorithm, decision-making strategy, energy consumption,
and safety are essential for deployment [66,73]. The swarm size, behavior, and coordinated
movements must also be considered [75].

Real-world experiments remain a challenge [50,75,109]. Future research should test
and validate approaches in different complex environments, not just be restricted to a
specific or simple environment. The representation of the cells and obstacle should consider
irregular shapes [97,132,156]. Hardware limitations and computational performance also
limit the deployment of bioinspired models [72,123]. It is challenging to integrate the
developed approaches into a suitable robot with the required sensors successfully.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping system
ACO Ant colony optimization
HSI Hue, saturation, and intensity
HiLAM Hierarchical look-ahead trajectory model
APF Artificial potential field
PF Particle filter
PSO Particle swarm optimization
GDM Gas distribution mapping
IMU Inertial measurement unit
EKF Extended Kalman filter
SLIC-SVM Simple-linear-iterative-clustering-based support vector machine
SL Supervised learning
DRL Deep reinforcement learning
RFID Radiofrequency identification
UWB Ultrawideband
MDP Markov decision process
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AER Address-event representation
SNN Spiking neural network
CNN Convolutional neural network
MEMS Micro-electromechanical systems
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