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a b s t r a c t

Australia is a relatively stable continental region but not tectonically inert, having geological conditions
that are susceptible to liquefaction when subjected to earthquake ground motion. Liquefaction hazard
assessment for Australia was conducted because no Australian liquefaction maps that are based on mod-
ern AI techniques are currently available. In this study, several conditioning factors including Shear wave
velocity (Vs30), clay content, soil water content, soil bulk density, soil thickness, soil pH, distance from
river, slope and elevation were considered to estimate the liquefaction potential index (LPI). By consid-
ering the Probabilistic Seismic Hazard Assessment (PSHA) technique, peak ground acceleration (PGA)
was derived for 50 yrs period (500 and 2500 yrs return period) in Australia. Firstly, liquefaction hazard
index (LHI) (effects based on the size and depth of the liquefiable areas) was estimated by considering
the LPI along with the 2% and 10% exceedance probability of earthquake hazard. Secondly, ground accel-
eration data from the Geoscience Australia projecting 2% and 10% exceedance rate of PGA for 50 yrs were
used in this study to produce earthquake induced soil liquefaction hazard maps. Thirdly, deep neural net-
works (DNNs) were also exerted to estimate liquefaction hazard that can be reported as liquefaction haz-
ard base maps for Australia with an accuracy of 94% and 93%, respectively. As per the results, very-high
liquefaction hazard can be observed in Western and Southern Australia including some parts of Victoria.
This research is the first ever country-scale study to be considered for soil liquefaction hazard in Australia
using geospatial information in association with PSHA and deep learning techniques. This study used an
earthquake design magnitude threshold of Mw 6 using the source model characterization. The resulting
maps present the earthquake-triggered liquefaction hazard and are intending to establish a conceptual
structure to guide more detailed investigations as may be required in the future. The limitations of deep
learning models are complex and require huge data, knowledge on topology, parameters, and training
method whereas PSHA follows few assumptions. The advantages deal with the reusability of model codes
and its transferability to other similar study areas. This research aims to support stakeholders’ on deci-
sion making for infrastructure investment, emergency planning and prioritisation of post-earthquake
reconstruction projects.
� 2022 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Liquefaction is a behaviour of soil, where strength reduction
occurs on saturated soil because of an increase in pore pressure
during earthquake ground shaking (Seed et al., 1964, 1983; Seed
and Idriss, 1971; Chakrabortty et al., 2021). Liquefaction may
involve lateral displacement, loss of bearing capacity, and uplift
of engineering structures. The impact of earthquake induced lique-
faction on society may be seen from the long history of such
events, including billions of dollars in damage observed in Mexico
1985, Northridge 1994, Kobe 1995, Loma Prieta 1989, and most
recently, Christchurch and Japan 2011. Studies conducted on
infrastructure planning in Australia focused on the liquefaction
geohazard, given that soils susceptible to liquefaction exist in that
country. Although Australia is a low seismic hazard zone relative to
g).
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other tectonically active areas of the world, the country neverthe-
less experienced four major liquefaction events that have been
documented (Mote and Dismuke, 2011). In 1897, during an (Ms

6.5) earthquake near Beachport, South Australia, liquefaction was
observed (Mote and Dismuke, 2011); also in the 1903 (Ml 5.3)
earthquake in Warrnambool, Victoria (Mitchell and Moore, 2007).
In 1968 and 1979 sand blows were observed in Meckering and
Perth in Western Australia, followed by a Ms 6.8 and 6.1 earth-
quake, respectively (Clark et al., 2010). Liquefaction assessment
methodology has been well described by Seed and Idriss (1971)
and further refined over the last 40 years. For liquefaction hazard
(temporal probability of liquefaction) assessments, the critical
input parameters are cyclic stress ratio (CSR) and ground condi-
tions, in order to estimate liquefaction susceptibility (spatial prob-
ability of liquefaction) and Cyclic Resistance Ratio (CRR) (Seed and
Idriss, 1971).

Generally, liquefaction potential mapping (probability of an
earthquake that may cause liquefaction) is conducted using Stan-
dard Penetration Test (SPT) based methods that can be split into
several categories, such as semi-empirical traditional methods,
cyclic resistance (Seed and Idriss, 1971; Bolton Seed et al.,
1985), the critical SPT-N (State Infrastructure Commission,
1974), and the liquefaction safety factor method (Ishihara,
1977; Tatsuoka et al., 1980) and data-driven based machine and
deep learning methods which include decision tree (Liu and
Tesfamariam, 2012, artificial neural network (ANN) (Juang et al.,
2000; Zhang and Goh, 2018), support vector machine (Goh and
Goh, 2007) and logistic regression methods (Liao et al., 1988;
Zhang et al., 2013; Zhang and Goh, 2016). Juang et al. (2000)
developed a neural network model to generate an empirical equa-
tion based on a cone penetration test (CPT) for liquefaction study.
Pal (2006) proposed a support vector machine (SVM) model to
investigate the liquefaction potential based on CPT and SPT field
data. Ramakrishnan et al. (2008) conducted a study on the lique-
faction potential mapping of loose sediments using an ANN
model that indicates the suitability of an ANN approach.
Mughieda et al. (2009) presented ANN models to investigate the
soil liquefaction potential on the basis of CPT data. Farrokhzad
et al. (2012) developed the liquefaction microzonation for Babol
City based on an ANN model. Lee and Chern (2013) prepared a
liquefaction prediction map using an SVM-based approach. All
the above-described soft computing approaches are efficient as
compared to statistical methods, although they have some short-
comings including over-fitting, poor performance, slow conver-
gence, and local minimum arrival. A literature review shows
that all the liquefaction studies are at local scale and based on
field-based investigations. Samui and Sitharam (2011) conducted
case studies of soil susceptibility to liquefaction based on
machine learning models. They successfully applied ANN and
SVM models and predicted liquefaction potential using SPT and
CSR data. Zhang et al. (2020) successfully applied a constrained
back propagation neural network (C-BPNN) model for the deter-
mination of liquefaction potential using SPT data with global
applicability. Zhu et al. (2015) developed two liquefaction models
with geospatial variables that include PGA, shear-wave velocity,
compound topographic index, and a normalized distance param-
eter. They estimated the first-order approximations of the lique-
faction spatial extent for use in rapid response, loss estimation,
and simulations. In another work, Zhu et al. (2017) proposed
two models that offer enhanced performance over previous mod-
els. For global application, they updated the geospatial liquefac-
tion model. The best-performing model based on receiver
operating characteristics (ROC) curve in a coastal setting uses dis-
tance to the coast as a geospatial conditioning factor. However,
the second model uses PGV, VS30, water table depth, proximity
to the water body, and precipitation in non-coastal regions as
2

conditioning factors. The second model, according to the authors,
is suitable for global implementation.

In a separate work, Karpouza et al. (2021) conducted a study on
earthquake induced secondary effects using multi-criteria
decision-making methods. Their study demonstrates the seismi-
cally active regions characterised by both mountainous terrain
and coastal plain in Xerias drainage basin is useful for the joint
evaluation of slope destabilization and soil liquefaction hazard
caused by earthquake. Bozzoni et al. (2021) conducted a study in
Europe on megazonation of earthquake-induced soil liquefaction
hazard. A logistic regression based probabilistic prediction model
was developed using geospatial predictors that include PGA,
Vs30 and the compound topographic index. To validate the results
obtained using logistic regression model, a liquefaction database in
continental Europe was used. Lin et al. (2020) demonstrated a
framework for liquefaction susceptibility and probability assess-
ment for ten earthquake scenarios in highway network in New
Zealand. The exposure to the earthquakes resulted in a 40% of liq-
uefaction probability. Goh (1994) successfully applied ANN for a
liquefaction susceptibility study. Seed and his colleagues (1964,
1971, 1983) developed a methodology on the basis of CSR and
SPT along with PGA to assess the soil liquefaction potential. This
method is now a standard use for liquefaction studies around the
world. Liao et al. (1988) and Cetin et al. (2000) presented a proba-
bilistic model to estimate the variability and uncertainty associ-
ated with the liquefaction problem.

In Australia, Mosavat et al. (2013) conducted a liquefaction risk
mapping for road foundations in the Gold Coast Region. They con-
ducted several case studies which found low liquefaction failure
potential for the considered moment magnitudes. Collins et al.
(2004) conducted paleoliquefaction studies in Australia to derive
earthquake hazard estimates. From their research on paleolique-
faction areas, they revealed several natural drainage intersections,
where liquefaction deposits spanning different generations were
found. Mote and Dismuke (2011) produced a screening-level lique-
faction hazard mapping for Australia. They explored the range of
magnitudes of earthquakes for a liquefaction triggering study in
Australia and produced liquefaction maps. Very little research
has been conducted on liquefaction, and what has been done suf-
fered from considering too few factors, improper methodology
and poor datasets (Dismuke and Mote, 2012; Semple, 2013).

Extensive review of the aforementioned literature indicates that
estimating the liquefaction potential index (LPI) is a complex
geotechnical problem because of the diversified nature of the soils
and the participation of many other factors that affect the occur-
rence of liquefaction. Most liquefaction potential studies were con-
ducted at a local scale based on the SPT data (Mitchell and Moore,
2007; Karthikeyan et al., 2013; Mosavat et al., 2013; Lin et al.,
2020). These are field-based liquefaction studies conducted at local
scale without the benefit of any deep learning analysis. However,
some studies considered site classification information for the
earthquake hazard assessments (Mote and Dismuke, 2011;
Dismuke and Mote, 2012; McPherson and Hall, 2013; Ameri
et al., 2017). No liquefaction potential and hazard index estimation
and mapping were conducted on a national scale for Australia.
Until now, no liquefaction hazard map was developed for Australia
using deep learning techniques. Therefore, further assessment is
necessary to test the feasibility of mapping detailed zones of lique-
faction potential. As a novelty, this is the first ever study in Aus-
tralia on liquefaction potential and hazard index assessment that
can be considered an essential contribution to future geotechnical
designs. This study used the shear wave velocity Vs30 dataset for
the site classification of different soils across Australia, and then
applied this to the liquefaction potential mapping. The goals of this
earthquake-induced liquefaction study are to: (i) estimate lique-
faction potential and hazard index for Australia, (ii) generate a
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liquefaction hazard base map for Australia for future reference, (iii)
compare the results obtained based on three approaches. Alterna-
tively, this map can be created by combining several regional-scale
geotechnical and geological datasets in association with detailed
borehole information. The advantages deal with the reusability of
model codes and its transferability to other similar study areas.
This research aims to support decision making on infrastructure
investment, emergency planning and prioritisation of post-
earthquake reconstruction projects. Deep learning models are
complex and PSHA follows few assumptions in the current inte-
grated approach. The structure of the paper is organized as follows:
a brief introduction to the liquefaction hazard and a literature

review are described in Section 1. The detailed information on

study area geology and tectonics setting are described in Section 2.

Similarly, Section 3 discusses data and methodology whereas

results are presented in Section 4. Additionally, in Section 4, we

discuss the possible rationale behind the findings. To the end, Sec-

tion 5 concludes the work with limitations, drawbacks, and future
research.

2. Geology and tectonics

The geology of Australia can be divided into several principal
sections: the Archaean age cratonic shields, Proterozoic basins
and fold belts, Phanerozoic meta-igneous rocks, and sedimentary
basins (Fitzsimons, 2003). The average thickness of the Australian
continental crust is 38 km, varying from 24 km to 59 km (Spec
and Pap, 2003). Generally, the continental crust is characterised
by Archaean, Proterozoic and Palaeozoic granites and gneisses.
Fig. 1. Map of Australia showing state territor
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Many parts of the Australian landmass consist of a thin veneer of
sedimentary basins up to 7 km thick (Spec and Pap, 2003). The lar-
gest groundwater system in Australia is the Great Artesian Basin
(Lilley et al., 2003). The basin comprises of 20% of Australia and
holds 65,000 million megalitres of water that covers Queensland,
New South Wales, parts of the Northern and Southern territory
(Lilley et al., 2003). In Australia, the lineament pattern trends par-
allel to the shear planes network originally drawn by Vening Mei-
nesz for a shift of 70� of latitude along the 90� longitude meridian
(Meinesz, 1947). Australia’s recent earthquakes are restricted to
intraplate geologic events, as the continent is stable and away from
the plate boundary (Meinesz, 1947).

The evolution of the Australian continent occurred over five dis-
tinct time periods, namely: 3800–2100 Ma, 2100–1300 Ma, 1300–
600 Ma, 600–160 Ma and 160 Ma to the current state (Fitzsimons,
2003). The Australian extended shelf is divided into shelf, slope,
and deep ocean floor (Spec and Pap, 2003). Biogenic debris and car-
bonates can be found on the outer shelf and upper slope. Desertic
sand, sandy clay and relict carbonate also found as surficial sedi-
ments. The geomorphological features such as shoreface, Hum-
mocky inner and outer plain, depressions, bedrock and mounds
can be found in the continental shelf and desertic features can be
found as geomorphological features in Australia (Ollier, 1979).
These geologic events are surrounded by several Proterozoic belts
and basins, particularly the granulite gneiss and igneous rock, the
Arunta Block of amphibolite and granites, Glengarry Basin,
the Gascoyne Complex, and Bangemall Basin. The study area is pre-
sented in Fig. 1.

The amplitude, frequency and ground motions of earthquakes
are influenced by the regolith material beneath the soil layer
ies and earthquake hazard characteristics.
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(Seed and Idriss, 1971). This particularly affects the occurrence and
degree of damage to engineering structures and society (Seed and
Idriss, 1971; Idriss, 1990). The Newcastle earthquake of 1989
demonstrated the spatial correlation between site conditions and
building damage (Chandler et al., 1991). The site classification
scheme was developed by Wills et al. (2000) validated for several
Quaternary and unconsolidated deposits in several Australian sites
such as Perth, Sydney, and Newcastle urban areas, using shear
wave velocity of 30 m of soil (Vs30) data from previous geotechni-
cal investigations. Vs30 information demonstrates the unit age and
grain size influence on site classification (Tallett-Williams, 2017).
Therefore, Australian soil characteristics are quite important for
the Soil liquefaction study (Table 1). The soil map is depicted in
Fig. 2A and groundwater system geomorphology and lithology
are illustrated in Fig. 2B.

3. Data and methodology

The database included a base map for Australia, digitized at a
scale of 1:10,000,000 including faults, inventory events, and vari-
ous critical features collected from https://neotectonics.ga.gov.au/
. The geospatial dataset was collected directly from the database
of Geoscience Australia. The hydro-geologic settings, lithology,
groundwater movement and geomorphology information were
Table 1
Soil data collected from Geoscience Australia based on Australian soil classification order.

ASC Order Simplified description

Anthroposols Soils resulting from human activities
Calcarosols Lime-rich soils with sandy or loamy textures that may become mo
Chromosols Neutral to alkaline soils with a sharp increase in texture with dept
Dermosols Silicate clay, have loam to clay. Found in higher-rainfall coastal, de
Ferrosols Iron rich clay-loam to clay textures
Hydrosols Wet soils (sand and silt)
Kandosols Sandy to loamy-surface soil, grading to porous sandy-clay subsoils
Kurosols Acid soils texture increase with depth
Organosols Organic soils such as peats
Podosols Soils with accumulated organic matter, iron and aluminium
Rudosols Rudosols and Tenosols are poorly developed stony sand
Sodosols Soils with sodic subsoils
Tenosols Slightly developed soils
Vertosols Cracking clays

Fig. 2. (A) Liquefaction events plotted with soil map in Australia for different magnitude e
FE (Ferrosols), HY (Hydrosols), KA (Kandosols), KU (Kurosols), OR (Organosols), PO (Podos
settings and geomorphology of Australia.

4

also collected from the Geoscience Australia (https://www.
ga.gov.au/) and were converted to thematic layers using geospatial
information system (GIS) environment as described in Table 2. The
analyses involved evaluating the surface lithology, soil types, soil
characteristics and the surface water conditions, slope and eleva-
tion of the country (Fig. 3). The study implemented three
approaches for the earthquake induced liquefaction hazard assess-
ment. Firstly, this study estimated PGA using historical earthquake
catalog through PSHA technique. Secondly, a multi-layer spatial
analysis was conducted to estimate the GIS-based LPI for the coun-
try. For the LPI estimation, nine thematic layers were used as
inputs in the multi-criteria decision-making model to assess the
liquefaction potential zones. Here, Vs30 (29.9%), Clay content
(21.0%), Water content (14.2%), and Bulk density (11.6%) were con-
sidered as the major contributing factors. The final hazard index
was estimated by multiplying the PGA with LPI in the first
approach. In the second approach, the PGA information was col-
lected from Geoscience Australia which was directly multiplied
by the LPI to estimate the hazard. In the third approach, PGA was
involved as a factor to predict the top 10% of the previously pub-
lished liquefaction hazard as a target using DNNs prediction model.
Details about the data and the factors importance are provided in
Table 2. The implementation of PSHA and deep learning are
described in sub-section 3.1., 3.2. and 3.3., respectively.
Percentage of Australian soil Amplification factor

No data 0
re clayey with depth 9.2 8–10
h 3.0 3–6
lta and valleys 1.6 6–9

0.8 <3
2.2 10–12
16.5 6–9
1.0 3–6
0.1 3
0.4 <3
14.0 <3
13.0 6–9
26.3 <3
11.5 <3

arthquakes. AN (Anthropologic), CA (Calcareous), CH (Chromosols), DE (Dermosols),
ols), RU (Rudosols), SO (Sodosols), TE (Tenosols), VE (Vertosols); (B) hydro-geological

https://neotectonics.ga.gov.au/
https://www.ga.gov.au/
https://www.ga.gov.au/


Table 2
Data sources, factors, threshold to liquefaction and characteristics used in this study.

Data Factors Source Scale and
resolution

Threshold to liquefaction Description References

Shear wave
velocity (Vs30)

Vs30 site
classification

USGS (https://
earthquake.
usgs.gov/data/
vs30/)

30 arc-
seconds
(0.00833
degrees)

Vs30 < 295 m/s Velocity decreases with decrease in
rock/soil density that amplify the shear
wave.

Castellaro
et al., 2008

Soil properties Clay contentSoil
water contentBulk
densitySoil
thicknessSoil pH
(Acidic or Basic
characteristic)

Geoscience
Australia (https://
www.ga.gov.au/)
Australian soil
classification data

0.0025
degrees
0.0083
degrees

Clay Content < 10%–15%
and Liquid Limit 0.9 �
Liquid Limit, Bulk
density < 1.6, Soil
thickness < 30 m, Soil pH
(4.5–6.5)

>40% clay content is not susceptible.
Water content is a key parameter that
partitions liquefiable and non-
liquefiable silty/sandy soils. >1.6 bulk
density means highly compacted soil.
Silty sand and coarse grain sand comes
under PH value of 4.5–6.5.

Andrews and
Martin, 2000;
Bray et al.,
2004

Surface water Distance from river https://www.
arcgis.com/

0.0025
degrees

Dis river < 3 km More loose sediments can be found
near river deposits/delta/pedeplain.

Wotherspoon
et al., 2012;
Chakrabortty
et al., 2021

Digital elevation
model

Slope Elevation Earth explorer
(USGS) and
Geoscience
Australia

0.0083
degrees

Slope < 2% Elevation < 10 m Low slope and elevation are
responsible for loose soil deposit which
is susceptible for liquefaction.

Poulos et al.,
1985;Olson
and Stark,
2003

Historical event PGA USGS and
Geoscience
Australia

0.0083
degrees

Triggering threshold 6 Mw Intraplate 6Mw event is a triggering
event for soil liquefaction for such a
huge continent. Low magnitude could
not do that until unless the susceptible
and event locations are close to each
other.
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3.1. Probabilistic seismic hazard assessment

Probabilistic Seismic Hazard Assessment (PSHA) was employed
to estimate earthquake hazard from a probabilistic perspective, as
proposed by Cornell (1968). PSHA is an assumption-based analysis
concerning earthquake magnitude (M) and distance (R). The over-
all steps of PSHA are presented in Fig. 4.

The basic equation for PSHA can be seen in the equation below
by Cornell (1968).

k a > a�ð Þ ¼
Xns

i¼1
vðm > m0Þ

Xnm

j¼1

Xnr

k¼1
P a > a�jmjrk
� �

� P Mi ¼ mj
� �

P Ri ¼ rj
� � ð1Þ

Here, k a > a�ð Þ represents the Annual exceedance rate of a particu-
lar PGA. The annual occurrence rate of a 6 Mw earthquake can be
presented as vðm > m0Þ. The probability that the ground-motion
parameter exceeds the level a* for a magnitude ofm (Mw 6) at a dis-
tance r is P a > a�jmjrk

� �
. P Mi ¼ mj

� �
represents the magnitude dis-

tribution function, and P Ri ¼ rj
� �

is used as the distance
distribution function. The analysis was conducted for 50 years,
equivalent to return periods of 500 to 2500 years for the Australian
continent. The PGA result of the country was further utilized for liq-
uefaction hazard estimation corresponding to 500- and 2500-year
return periods.

The PSHA steps are as follows.

(1) Data completeness analysis

The incompleteness of the earthquake data may cause overesti-
mation or underestimation of parameters. To find out the complete
earthquake catalogue in a particular period, the frequency of earth-
quakes for different magnitudes can be plotted against the calcu-
lated time from the last observation (Khan and Kumar, 2018).
Visual observation of earthquakes in the study area provides infor-
mation regarding completeness of data (Fig. 5A). Data can be con-
5

sidered as complete when a constant slope can be observed from
the resulting graph (Khan and Kumar, 2018).

(2) Earthquake source modeling

Earthquake source modelling was conducted based on the
source depth: 0–50 km for shallow crustal faults and subduction
zones, 50–175 km, and 175–300 km for deep events. Each source
category was assembled by area sources and a group of earth-
quakes from the same category can be found in each segment
(Fig. 5B). The seismic parameters such as orientation, displace-
ment, slip sense, depth, maximum magnitude range (Mmax), rate
of earthquake activity (k), and ab-value as suggested by
Gutenberg and Richter (1956) can be estimated from earthquake
source modelling as presented in Table 3.

(3) Attenuation function selection

Parameters such as magnitude (M), intensity, and distance (R)
can be understood from the attenuation function relationship
(Joyner and Boore, 1981). The attenuation equation selection is
determined by the mechanism of the earthquake, the distance
from the epicentre and local soil conditions (ICOLD, 1989). In this
study, the attenuation function referred to the Australian earth-
quake source and hazard, as described in Table 4. According to
Nath and Thingbaijam (2012), the weights for the attenuation
function for each source in the earthquake model were employed,
as shown in the Table 4.

(4) Seismic hazard estimation

Seismic hazard was assessed by covering all Australia, including
the nearest subduction zone. The PGA hazard results were esti-
mated for 50 years, equivalent to 500 and 2500 years return peri-
ods and are presented in Fig. 5C and 5D which shows that the PGA
varies from 0.032 to 0.48 g and 0.008 to 0.25 g, respectively.

https://earthquake.usgs.gov/data/vs30/
https://earthquake.usgs.gov/data/vs30/
https://earthquake.usgs.gov/data/vs30/
https://earthquake.usgs.gov/data/vs30/
https://www.ga.gov.au/
https://www.ga.gov.au/
https://www.arcgis.com/
https://www.arcgis.com/


Fig. 3. Contributing factors to the soil liquefaction potential index estimation. A) Vs30 layer, B) clay content in soil, C) water content in soil, D) bulk density of soil, E) soil
thickness, F) soil pH, G) distance from river, H) slope, and I) elevation.
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3.2. Deep neural network architecture

Deep learning is a type of machine learning that includes sta-
tistical and predictive modelling (Zhang et al., 2017). This study
employed deep neural networks (DNNs) for liquefaction hazard
estimation. A series of fully connected dense layers construct
the DNNs model that consider the attributes of every spectral
and textural factor (Xu et al., 2014) for classification purposes,
as elucidated in Fig. 6. The DNNs model successively computes
output values where the network layers perform well for any
given set of input features. The weighted sum is the main func-
tion in the hidden layer that includes output of every unit from
the prior layer. The basic architecture of the applied DNNs model
includes an input layer ðLinÞ, an output layer ðLoutÞ, and hidden
layers ðLhÞ that can be presented as ðh 2 f1;2; � � � ;HgÞ between
the input and output layers. A hidden layer ðLhÞ consists of sev-
eral units that can be patterned as a vector ah 2 R Lhj j,
where Lhj j indicates the total units in Lh. Hereafter, to parameter-
6

ize every hidden layer, an activation function f ð�Þ, a bias vec-

tor bh 2 R Lhj j, and a weight matrixWh 2 R Lh1j j� Lhj j, can be
implemented. The units in Lh can be computed using the mathe-
matical expression:

ah ¼ f ðWT
hah�1 þ bhÞ ð2Þ

where the units a0 originate from the compound feature vector in
the input layer L0, where h ¼ 1;2; � � � ;H. The activation function
called rectified linear unit (ReLU) was employed in this study, and
can be calculated as:

f xð Þ ¼ max 0; xð Þ ð3Þ

ReLU is a popular activation function used in deep learning (Glorot
et al., 2011). This model employed a Softmax function for the clas-
sification prediction Lout followed by aH estimation for the last hid-
den layer. Additionally, the model also used a loss function called



Fig. 4. Overall methodological flowchart for the earthquake induced soil liquefaction hazard index (LHI) estimation using three proposed approaches.

Fig. 5. (A) Data completeness and source identification, (B) source characterisation, (C) hazard estimation based on 2% exceedance rate (ER), and (D) 10% exceedance rate (ER)
for 50 years.
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categorical cross-entropy (CCE) to train the DNNs for classification
(Murugan, 2018). The loss function for CCE can be estimated using
the following formula:

LCCE g; f Ið Þ; d1ð Þ ¼
XS

i¼1

XP

j¼1

XC
c¼1

�1 gj
i ¼ C

� �
loglcðIjiÞ ð4Þ
7

Here, the ground truth label is gj
i , C is the number of classes, and the

last dense layer output at the pixel Iji is f(I
j
i). Moreover, d1 represents

the network parameters, S is the batch size, the jth pixel in the ith

patch is Iji, P is the pixels in each patch, and each class probability

of the pixel Iji is lc(I
j
i) and is denoted as:



Table 3
Australian major faults characteristics and their future earthquake capacity. Data adopted from Quigley et al. (2006).

Fault (event) Orientation
(str/dip)(�)

Slickenlines
(trd/pg)

Slip
sense

D(m) Timing Depth
FWsed (m)

FSRmin

(m/106 y)
FSRext

(m/106y)
SRL
(km)

M1

Prefrange
M2

Wilkatana Fault northern (1) 330/46 33/113 R-LL �3.8 32–29 Kaa 93 >26 51 13.8 6.6 – 6.9 6.4
Wilkatana Fault northern (2) 330/46 33/113 R-LL �8.3–11.1 67–32 Kaa 93 >26 51 13.8 6.8 – 7.1 6.4
Knick point Fault 326/80 NA R � 4.2 � 12 Kaa NA NA NA 13.8 6.6 – 6.9 6.4
Cobble Fault 355/69 NA R � 0.3 NA NA NA NA 13.8 5.8–6.2 6.4
Wilkatana Fault southern 355/72 NA R � 6.1 � 80 Kaa 82 417 36 13.8 6.7–7.0 6.4
Burra Fault 161/36 35/252 R � 3.8 � 83 Kaa NA NA NA 39.9 NA 6.9
Mundi Mundi Fault 348/48 47/094 R �2.1 >59.3 Kaa 100a >27 48 29.0 6.9–7.2 6.8

Slip sense: R, reverse; LL, left lateral.
Fault displacement (D).
FSRmin = Minimum fault slip rate.
FSRext = Extrapolated fault slip rate.
M1 preferred magnitude range.
M2 expected events.

a timing of fault movement.

Table 4
Attenuation function selection based on source characteristics and their weights.

Source Attenuation function Weights

Fault (0.5) Boore-Atkinson NGA (2014) 0.13
Campbell-Bozorgnia NGA (2014) 0.13
Chiou and Youngs (2014) 0.10
Gülerce et al. (2016) 0.10

Subduction zone (0.3) Atkinson and Boore (2003) Intraslab rock and global source subduction 0.04
Atkinson and Boore (2011) 0.12
Abrahamson et al. (2016) 0.10
Boore et al. (2014) 0.08

Deep Background (0.2) Zhao et al. (2006) Geomatrix slab seismicity rock 0.10
Atkinson and Boore (2003) interslab seismicity worldwide data region BC rock condition 0.10

Fig. 6. The architecture of the proposed DNN model.
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lc Iji
� �

¼
expðf c Iji

� �
Þ

Pc
l¼1expðf l Iji

� �
Þ

ð5Þ

The DNNs architecture is based on a multilayer feed-forward neural
network and was applied using the Keras and TensorFlow libraries
in python 3.5 for soil liquefaction mapping.

3.3. DNNs training and testing for liquefaction hazard

In this study, two datasets called the ‘‘training” and ‘‘testing” set
are used for the DNNs model. To maintain an acceptable accuracy,
8

dataset training was conducted, which highlighted the importance
of data preparation (Jena et al., 2021). For training, the top 10% of
the obtained liquefaction hazard map based on the second
approach was used as a target (very-high) and the non-
liquefaction hazards (moderate to very-low) were used to train
DNNs. Thus, the model applied a strategy of using 75% of data for
training, and 25% for validation of the liquefaction hazard predic-
tion. The dataset according to that ratio of 75/25, while ratios of
70/30 and 80/20 are also suitable for small datasets (Jena et al.,
2021). This study considers the liquefaction hazard map prepared
by the Geoscience Australia as the basis for further analysis. Any
scenario above the threshold ofMw 6 was used to conduct liquefac-
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tion hazard mapping. The study employed 66,000 data points, out
of which 63,000 points were for testing and 3000 for training.
These data points represent both liquefaction and non-
liquefaction points. The study achieved 94% and 93% accuracy with
the testing dataset when generating 2% and 10% exceedance prob-
abilities of liquefaction hazard. The four major liquefaction events
in Australia and a map obtained by Dismuke and Mote (2012) were
considered for validation purposes.
4. Results

4.1. Results of first approach

A liquefaction potential index (LPI) map was derived and is pre-
sented in Fig. 7. The major four significant factors were found to be
Vs30 (29.9%), Clay content (21.0%), Water content (14.2%) and Bulk
density of soil (11.6%), where the percentages are the weights
obtained for the susceptibility index estimation. Based on the spa-
tial distribution of conditioning factors of the liquefaction in the
epicentral and surrounding areas, it can be inferred that the lique-
faction potential is concentrated on Western Australia, but also
includes some parts of central Australia. Spatial information of soil
properties was used in order to analyse the liquefaction-prone soil
for the country scale assessment. A very tiny part of South Aus-
tralia is characterised as a very-high potential zone. A significant
part of the northern territory is found to be susceptible to liquefac-
tion. The time averaged shear wave velocity to 30 m depth of soil
gives the most useful information regarding the site characteris-
tics. The liquefaction potential was evaluated based on the classifi-
cation developed by Iwasaki et al. (1984). In this study, very-high
(>7), high (5–7), moderate (3–5), and low (0–3), ranges of the liq-
Fig. 7. Soil liquefaction potenti

9

uefaction potential index were estimated. Iwasaki et al. (1984)
described in their study that no liquefaction phenomena can be
expected when LPI is zero. When LPI ranges between 5 and 15,
and 0 and 5, high and low potential can be anticipated, respec-
tively. When the LPI exceeds 15, a very-high liquefaction potential
is expected.

The earthquake hazard maps were estimated for 50 yrs based
on the PSHA model. The PGA was estimated based on 2% (0.032–
0.48 g) and 10% (0.008–0.25 g) annual exceedance rates. The lique-
faction hazard map was derived based on LPI and PGA as shown in
Fig. 8, which indicates that about 17% of Australia is highly haz-
ardous, while about 45% is not hazardous, to an earthquake sce-
nario above 6 Mw with PGA 0.48 g based on 50 yrs (Fig. 8A).
Similarly, 14% of Australia is highly hazardous, while about 42%
is not hazardous to an earthquake scenario of 6 Mw with PGA
0.25 g (Fig. 8B). The liquefaction hazard index (LHI) estimations,
based on the 2% and 10% annual exceedance rates, were 0.032–
1.920 and 0.008–0.5000, respectively. More importantly, it is evi-
dent that shallow groundwater tables and the increase in the thick-
ness of soft soil deposits in the valley were more susceptible to
liquefaction.

4.2. Results of second approach

The earthquake hazard information was collected from Geo-
science Australia (GAH) for a 50 yr equivalent to 500 and 2500 yr
return period, based on 2% and 10% annual exceedance rate. The
PGA map portrays 2% (0–0.47 g) and 10% (0–0.18 g) annual excee-
dance rate. The liquefaction hazard map was derived from esti-
mated LPI and PGA information as shown in Fig. 8. Based on the
2% exceedance rate of PGA the map demonstrates that about 16%
of Australia is highly hazardous, while about 46% is not hazardous
al index map for Australia.



Fig. 8. Earthquake induced soil LHI maps for Australia. (A) Estimated LHI for 2% and (B) 10% probability of exceedance rate (ER), (C) Observed LHI for 2% and (D) 10%
probability of exceedance rate (ER) based on Geoscience Australia’s ground motion hazard information (GAH), (E) DNN model based LHI prediction for 2% and (F) 10%
probability of exceedance rate (ER) based on top 10% very high hazard observed in (C) and (D).
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to an earthquake scenario of 6 Mw, with PGA 0.47 g based on a
50 yr return period (Fig. 8C). Similarly, 15% of Australia is highly
hazardous, while about 46.5% is not hazardous to an earthquake
scenario of 6 Mw with PGA of 0.18 g (Fig. 8D). The LHI estimates
based on the 2% and 10% annual exceedance rate of PGA, were
0.015–1.700 and 0.004–0.420, respectively. However, the liquefac-
tion hazard based on GAH might be little higher than the PSHA
based observed results. The classified maps showed red and orange
zones as very high, and high liquefaction hazard zones, resp., while
yellow represents moderate, and light and deep green areas show
the low hazard zones.
10
4.3. Results of third approach

As mentioned earlier, the liquefaction susceptibility of any area
mostly depends on geological conditions, soil properties, and
ground motion characteristics (Trifunac, 2016). To sketch an over-
view of the spatial relationships between these factors and soil liq-
uefaction, a parametric study was carried out using deep neural
networks (DNNs) to predict the liquefaction hazard and show the
influence of 2% and 10% probability exceedance rate on model out-
put. The earthquake hazard of Australia (GAH) for a 50 yr period
based on 2% and 10% annual exceedance rate was used along with



R. Jena, B. Pradhan, M. Almazroui et al. Geoscience Frontiers 14 (2023) 101460
9 conditioning factors. The DNNs model predicted the liquefaction
hazard location for 2% and 10% probability exceedance rate with an
accuracy of 94% (Fig. 9A and B) and 93% (Fig. 9C and D), respec-
tively. For the target, the top 10% of high liquefaction hazard areas
were considered, as generated from PGA information from Geo-
science Australia. Based on the 2% exceedance rate the map reveals
that approximately 19% of Australia is highly hazardous to lique-
faction, while about 45% is not hazardous, given an earthquake sce-
nario of 6 Mw with PGA of 0.47 g based on a 50 yr period (Fig. 8E).
Similarly, based on the 10% exceedance rate, 20% of Australia is
highly hazardous, while about 45.5% is not hazardous to an earth-
quake scenario of 6 Mw with PGA of 0.18 g (Fig. 8F). The LHI based
on the DNNs model was estimated at 2% and 10% annual excee-
dance rate of PGA, and ranged between 0 and 1. It shows that rea-
sonable results can be achieved in this study with DNNs.
Fig. 9. Accuracy and loss estimation in earthquake induced soil liquefaction hazard p

Table 5
Classification results for DNN based earthquake induced LHI prediction.

LHI prediction (2% ER)
0
1
accuracy
macro average
weighted average
Classification accuracy: 0.94%

LHI prediction (10% ER)
0
1
accuracy
macro average
weighted average
Classification accuracy: 0.93%

11
4.4. Comparative assessment among three approaches

Comparison of PSHA based liquefaction hazard, Geoscience
Australia’s PGA information-based liquefaction hazard and
DNNs model based LHI has been presented. Results obtained
by the three methods are very similar. As can be seen in
Fig. 9, the prediction accuracy for DNNs is good and can be
used as a preliminary basis for estimating liquefaction hazard
in Australia. The DNNs model-based prediction classification
results are shown in Table 5 for 2% and 10% probability of
ER, respectively. The results are quite close to each other.
Therefore, it is hard to interpret which result surpasses the
other two results. Thus, it can be accepted that all the results
could be reliable in earthquake-induced liquefaction hazard
mapping.
rediction. (A) and (B) for 2%, (C) and (D) 10% probability of exceedance rate (ER).

Precision Recall F1-score Support
0.934 0.936 0.935 424
0.945 0.943 0.944 494

0.940 918
0.939 0.939 0.939 918
0.940 0.940 0.940 918

Precision Recall F1-score Support
0.932 0.934 0.932 424
0.943 0.941 0.942 494

0.937 918
0.937 0.938 0.937 918
0.938 0.938 0.937 918
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5. Discussion

All the approaches we applied to estimate earthquake-induced
soil liquefaction potential and hazard index are reliable (Fig. 4). The
assessment of liquefaction potential and hazard involves much dif-
ficulty because of the uncertainty in soil characteristics and earth-
quake occurrence. This study adopted the amplification factor
(ratio of response spectra between soil and outcropping rock) of
rock types to understand the site classification map. As this study
implemented the Vs30 information at bedrock level, PGA was esti-
mated as an earthquake hazard. For moderate earthquakes, PGA is
a reasonably good determinant of damage. In severe earthquakes,
damage is more often correlated with peak ground velocity. As
mentioned before that the Australia has experienced very few
moderate events and some low magnitude events therefore PGA
was estimated as a ground shaking parameter. Peak ground veloc-
ity (PGV) and peak ground displacement (PGD) are important
strong ground motion parameters for correlating with damage
caused by an earthquake, for the analysis of existing structures
and for the design of new structures (Zhu et al., 2015, 2017). How-
ever, pseudo-spectral acceleration (PSA) is also used as a parame-
ter for the seismic shaking quantification (Gerstenberger et al.,
2007). However, according to the study conducted by Zhu et al.
(2017), the PGV performs better than PGA as the shaking intensity
parameter. Potential and hazard maps were classified into 4 and 5
classes using a Quantile classification technique, respectively (Jena
et al., 2021). The study used quantile classification for training and
testing data point creation, and ultimately for final mapping. This
study performed liquefaction hazard mapping for the uppermost
30 m of soil. Very-high to high liquefaction hazard can be observed
in western coastal parts, along with central and southern Australia.
As mentioned earlier, silty sand and sandy sediments are found in
the very-high to high hazard locations in Australia. This study
found that the possible reasons could be the presence of alluvial
layers along with the existence of a shallow groundwater table.
However, places where clay content is approximately 0–15%,
Vs30 is less than 290 m/s, medium water content 30–80 gm/cm2,
bulk density of 1.4–1.8, and 0–30 m of soil thickness and 5.5 to
6.5 soil pH along with shallow-seated silty sand levels all showed
a high potential for liquefaction. This is triggered by the PGA,
which varies from 0.003 to 0.48 g for the liquefaction hazard esti-
mation. Hazard areas mostly fall inwards from the coastal locations
in western and southern Australia. Our analyses also revealed that
the coastal areas of the Spencer Gulf on the south were highly sus-
ceptible to liquefaction. When the peak ground acceleration
reaches to amax = 0.48 g, much larger areas of Australia would be
affected by liquefaction. The low hazard zones identified were
characterised by rock (Site Class B, BC, and C) (Dismuke and
Mote, 2012). Liquefaction and no-liquefaction case studies by
Cetin et al. (2004), Moss et al. (2006), and Idriss and Boulanger
(2008) for SPT- and CPT-based assessment, revealed with the min-
imum CSR7.5 of about 0.05, that the liquefaction was noticed for
unconsolidated loose sand, and at approximately 0.1 for medium
dense sand. Therefore, a high liquefaction hazard can be expected
when CSR7.5 is more than 0.1 and moderate when CSR7.5 is
greater than 0.05 but less than 0.1.

A comparative study was done between the PSHA based lique-
faction hazard, Geoscience Australia’s PGA information-based liq-
uefaction hazard, and a DNNs model based LHI. The results
obtained from the first two on 2% and 10% probability of excee-
dance rate are quite similar to each other. However, the DNNs
model-based results show high percentages of areas as high hazard
areas. The specific reason could be the use of Geoscience Australia’s
PGA information based high liquefaction areas as the target of pre-
diction. Still, the performance of the DNNs model is comparable
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and provides good results. As mentioned earlier, all results are
based on global data, while all three approaches provide base maps
for an Australian liquefaction study.

Hu et al. (2016) conducted a seismic liquefaction potential
assessment on the basis of a Bayesian network constructed using
historical information and domain knowledge. Their study results
show that the Bayesian network is useful for liquefaction predic-
tion and is feasible in practice. Approximately 90% of their data
were correctly classified. Zhang et al., (2021) adopted DNNs to
predict soil liquefaction based on shear wave velocity. They
achieved peak accuracy values for the training, validation and test
sets of 89%, 92% and 93%, respectively. Zhang et al. (2020) applied
a constrained backpropagation neural network (C-BPNN) model
using the SPT based soil characteristics for liquefaction assess-
ment. Their results recorded 89% accuracy for the study with glo-
bal applicability. Samui and Sitharam (2011) applied SVM and
ANN models for soil liquefaction susceptibility estimation. Their
comparative study recorded an accuracy of 94.19% and 88.37%
for SVM and ANN, respectively. Kumar et al. (2021) developed a
novel methodology for soil liquefaction assessment using deep
learning (DL). According to their results, the study achieved 99%
and 100% accuracy based on an emotional backpropagation neu-
ral network (EmBP) model and deep learning (DL) model, respec-
tively. Xue and Liu (2017) conducted a seismic liquefaction
potential study using neural networks. The work implemented
BP, GA–BP and PSO–BP models and reported prediction accuracy
rates of 94.6%, 95.8% and 97.6%, respectively. No study has been
conducted using the GIS thematic layer-based liquefaction poten-
tial mapping at a countrywide scale, a feature that makes this
study unique. Therefore, PSHA, Geoscience Australian hazard
information based and DNNs based liquefaction potential and
hazard assessment provide good results, whereas the DNNs
achieved 94% and 93% accuracy. Fan et al. (2019) demonstrated
that the prediction of earthquake-triggered liquefaction is an
earth process that can be used to observe the landscape dynam-
ics. Karpouza and Emvalotis (2019) implemented an integrated
hazard evaluation in their study that has the potential to catego-
rize the areas that are threatened either by co-seismic effects and
soil liquefaction or integrated occurrence. Therefore, the current
study also could be an asset for integrated research and useful
for the landscape dynamics observation.

A total of four liquefaction events were experienced in Australia
(Dismuke and Mote, 2012). As mentioned earlier, the Southwest
Seismic Zone of Meckering in 1968, urban center in Perth, Western
Australia and Victoria shows the evidence of liquefaction that is
described in detail in Table 6. Therefore, the above information
was used to validate the obtained liquefaction hazard maps. Fur-
thermore, the validation was also conducted using the liquefaction
hazard maps published by Dismuke and Mote (2012). Although
their study was totally based on Vs30 data, however, it shows sim-
ilar results with our predicted liquefaction hazard maps.

The weakness of the current model deals with the unavailabil-
ity of country scale borehole data for a geotechnical based lique-
faction hazard assessment. Because of the current limitations of
our database, this research includes observations of the pres-
ence/absence of four paleo liquefaction events and geospatial
explanatory variables. Disaggregation of a PSHA is the typical
method that should be used to select the magnitude that con-
tributes the most to the ground motion hazard. As a limitation,
in Australia, this information is not available. In fact, this is the
first study to develop an earthquake-induced soil liquefaction
map. This study illustrates the limitations of a country-scale
investigation and reinforces the requirement to collect high reso-
lution geophysical and geotechnical data on local scales for earth-
quake risk assessments.



Table 6
Validation of LHI using the paleo-liquefaction evidence.

Date Events Location Effect Paleo-liquefaction features References

10 May 1897 6.5 Ms Southeast of the
state at Kingston,
Robe and Beachport

Pronounced liquefaction observed. � The river bank exposed sand, mottled clayey sand, lime-
stone and hematite rubble zone interpreted to be a pale-
osol, fluvial deposits and modern soil

� A shattered dike is still can be seen as a part of paleo-
liquefaction

Dismuke
and Mote
(2012)

06 Feb 1979 6.1
ML

Cadoux, Perth
region.

Liquefaction observed in an urban
centre located in a large basin in
the South West Seismic Zone.

� Found unusual features that might be related to earth-
quake induced liquefaction in Pleistocene deposits found
on the Swan near Courtney Island.

Collins
et al.
(2004)

14 October 1968 6.8 Ms Western Australian
town of Meckering

Induced liquefaction Meckering. � Liquefaction deposits exposed in the Mortlock River flood
plain.

Mosavat
et al.
(2013)

14 July 1903 5.3
ML

Warrnambool,
Victoria

Earthquake shaking is the source of
liquefaction.

� Banks of the Goulburn River in Victoria consist of uncon-
solidated sedimentary deposits near the large scarp in
Cadell fault, which originated in the Quaternary period.

Collins
et al.
(2004)
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6. Conclusion

Throughout Australia, areas susceptible to soil liquefaction exist
in association with unconsolidated young sediments. In this study,
liquefaction is triggered by ground motion levels and earthquake
magnitude from the seismological point of view. The PSHA was
used to estimate the PGA for 500 and 2500 yr. return periods.
The liquefaction hazard maps are intended as an aid to show what
might be triggered by events at or above the threshold of Mw 6.
Four liquefaction hazard maps were generated with annual excee-
dance rates of 10% and 2% over a 50-year period, which provide
base level tools for evaluating earthquake-induced liquefaction
hazard throughout Australia. The derived LPI can be compared to
the Australian Site Classification map as a proxy for ground condi-
tions. In practice, the derived LP map is quite similar to the site
classification map where low Vs30 Class D, DE, or E fall into the
high liquefaction potential zones. For all hazard levels, all the con-
ditioning factors including field-based soil characteristics and
groundwater conditions should be used for the improvement of
the liquefaction hazard map. At a national scale, the geospatial
dataset that includes PGA, Vs30, Soil water content, Clay content
and Bulk density and distance to the rivers performs best as a con-
tributing factor to liquefaction hazard. The maps were validated
based on the previously published maps and assess the probability
and hazard thresholds and the spatial extent of liquefaction. The
proposed models are easy to implement for the post-earthquake
liquefaction hazard assessment. The geospatial variables can be
considered as proxies for three contributing factors such as soil
density, saturation, and shaking.

The following conclusions that were made in this study to
develop these maps:

(1) Soil that is susceptible to liquefaction was assumed to be
present everywhere that was mapped as Classes D, DE, or
E sites in previous studies. No conservative assumption
was made for the current LPI estimation. Highly susceptible
locations can be found in approximately 30% of the study
area.

(2) The ground motion variability was based on modern PSHA.
However, a threshold magnitude of 6 Mw was assumed for
the triggering event for liquefaction, because it is unlikely
that earthquake-induced liquefaction is triggered by earth-
quakes with low magnitudes. LHI varies as 2% (0.032 to
1.9) and 10% (0.008 to 0.5) probability of ER in Australia,
respectively.

(3) Several other aspects including local scale geotechnical data
can be used for liquefaction micro-zonation using extreme
13
deep learning. The liquefaction hazard maps should always
be reality checked against local site and groundwater condi-
tions. Implementation of extreme deep learning and
explainable artificial intelligence can be used in future
research.
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