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Abstract 
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neu-
rodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including 
high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their 
great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The 
potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for 
over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate 
and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/
Cas9 delivery in stem cells.
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Introduction

Genome Editing and Programmable Nucleases

In recent years, advances in delivery technologies have ena-
bled the intracellular loading of impermeable gene-editing 

tools, such as programmable nucleases, into different 
cell types. These technologies, coined as genome editing 
approaches, can lead to alterations in genomic DNA sequence 
through either insertion or deletion (indels) of one or more 
base pairs. Genome editing approaches have been exploited 
in various kinds of diseases, from treating life-threatening 
conditions (e.g., hereditary disorders) to restoring the lost 
function in gene expression studies [1, 2]. The genome-edit-
ing procedure mainly relies on creating double-strand breaks Malihe Lotfi and Dorsa Morshedi Rad contributed equally as first 
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(DSBs) at the site of the target sequence. These site-specific 
DSBs can be repaired through two distinct endogenous path-
ways: i) non-homologous end-joining (NHEJ), which is the 
primary repairing pathway throughout the cell cycle, and ii) 
homology-directed repair (HDR). In NHEJ, protein factors 
force the DSBs to re-join and ligate the cleaved DNA strands 
without requiring a homologous template leading to the for-
mation of indels followed by modification or inactivation of 
the target gene. With lower frequency, the HDR pathway can 
repair the DSBs only in the presence of an appropriate DNA 
donor template [3].

To date, different types of engineered nucleases, includ-
ing meganucleases, transcription activator-like effec-
tor nucleases (TALENs), zinc-finger nucleases (ZFNs), 
CRISPR/Cas9, and prime editing complexes have been 
developed to generate DSBs at targeted DNA sequences 
[4] (Fig. 1). These engineered nucleases recognize the tar-
get sites through interactions of DNA-protein (meganucle-
ases, TALENs, and ZFNs) or DNA-RNA (CRISPR/Cas9).

CRISPR/Cas9 is a novel gene-editing approach derived 
from the prokaryotic immune system produced in response 
to the exogenous nucleic acids of phages and plasmids. 
Since 2013, when Cong et al. employed CRISPR/Cas tech-
nology for efficient genome editing in eukaryotic cells, 
this approach has gained significant attention in the field 
[5]. Moreover, CRISPR/Cas editing tool has shown many 
advantages over the other engineered nucleases, such as i) 
guiding the nuclease to the targeted site through the simple 
base-pairing rules, ii) the possibility of synthesizing the 
guiding RNAs in vitro, and iii) generation of multiple DSBs 
synchronously by using different guide RNA sequences, 

which enables editing of several loci in the mammalian 
genome. Recent studies have employed CRISPR-Cas9 as the 
most popular gene editing approach to study cystic fibrosis 
[6, 7], sickle cell disease (SCD) [8, 9], Huntington’s chorea 
disorder [10, 11], Duchenne muscular dystrophy [12–14], 
chronic granulomatous disease [15, 16] retinitis pigmentosa 
[17] hemophilia [18, 19], and thalassemia [20–22].

The CRISPR/Cas9 system mainly comprises a nuclease, called 
Cas9, and a single guide RNA (sgRNA) containing a sequence-
specific CRISPR RNA (crRNA), capable of recognizing 18–20 
nucleotides of the target DNA, and an auxiliary trans-activating 
crRNA (tracrRNA) [23]. Currently, different systems are used in 
CRISPR/Cas9 mediated gene editing, including plasmid-based 
CRISPR/Cas9, ribonucleoprotein (RNP) complex-based Cas9 
protein with sgRNA, and Cas9 mRNA with sgRNA [24].

In plasmid-based CRISPR/Cas9 gene editing, plasmid 
DNA encoding both customized sgRNA and Cas9 protein 
enters the nucleus to be transcribed into target sgRNA and 
Cas9 mRNA. Next, the Cas9 transcript is translated into Cas9 
protein in the cytoplasm and then returned to the nucleus for 
genome editing [25]. Although CRISPR/Cas9 plasmid DNAs 
are more stable than CRISPR/Cas9 mRNA and RNP com-
plexes, potential disadvantages attributed to this approach 
are the long-lasting expression of the CRISPR/Cas9 system, 
increased off-target effects, and the possibility of DNA inte-
gration into the host genome [26]. On the contrary, in mRNA-
based CRISPR/Cas9 gene editing, the transcription of sgRNA 
and Cas9 mRNA is not required. Therefore, efficient gene 
editing can be performed faster while reducing the off-target 
effects. Upon cytoplasmic delivery of the sgRNA and Cas9 
mRNA, the mRNA translation would take place to produce 

Fig. 1  Schematic of the gene-editing procedure. Sample prepara-
tion process (I) and the leading gene-editing platforms, including 
ZFNs (II), CRISPR/Cas9 complexes (III), and prime editing com-
plexes (IV). Sample preparation involves isolating stem cells from 

the patient blood sample, followed by expanding the isolated cells 
in culture. Next, ex  vivo genetic engineering will take place, which 
involves creating double-strand breaks in DNA using programmable 
nucleases, CRISPR/Cas9 complex, or prime editing system



2578 Stem Cell Reviews and Reports (2023) 19:2576–2596

1 3

the Cas9 protein, followed by localization of both sgRNA and 
Cas9 protein to the nucleus for gene editing [27].

The RNP complex-based system (Cas9 protein and 
sgRNA) is the most efficient and rapid gene editing 
approach, in which neither transcription nor translation is 
required. Since the CRISPR/Cas9 RNP complex does not 
naturally exist in the cells of interest, this highly efficient 
approach offers minimal off-target effects. Despite these 
advantages, this approach suffers from the high cost of pro-
ducing RNP complex and toxic side effects [28].

Stem Cell‑Based Therapeutic Applications of CRISPR

A variety of genetic disorders arise from mutations at the 
genomic level. Stem cell-based therapies have demonstrated 
efficacy in treating these diseases in clinical trials. This 
promising strategy contains the autologous transplantation 
of genetically edited stem cells. These genetically modified 
stem cells offer several advantages, such as self-renewal 
capacity, increasing the patient’s lifetime, and dividing into 
daughter cells with the ability to be differentiated into resi-
dent cells within different tissues [29]. Growing evidence 
indicated that genome editing through CRISPR/Cas9 system 
is an efficient approach extending to stem cell-based research 

and therapies. HPSCs have great proliferation potential and 
can differentiate into various cell types. These cells (e.g., 
neural, hematopoietic, and mesenchymal stem cells) can 
be manipulated using CRISPR/Cas9 gene editing tools and 
employed for therapeutic applications [30, 31]. An online 
search ranging from 2010 until 2022 (15/07/22) was per-
formed on PubMed using the terms “CRISPR/Cas9” and 
“stem cell”. The search results revealed that several studies 
used the CRISPR/Cas9 system for the genetic engineering of 
the hPSCs (Fig. 2). Since the hPSCs are naturally imperma-
nent to external cargoes such as CRISPR/Cas9 gene editing 
tools, these studies have used external forces for transient 
cell membrane disruption and cytoplasmic loading of these 
tools inside the cells, which will be discussed in the next 
section.

Delivery Systems for Gene Editing 
by CRISPR/Cas9 in Stem Cells

During the past decades, several delivery technologies have 
been developed to transiently permeabilize hPSCs plasma 
membrane, followed by facilitating the cytoplasmic delivery 

Fig. 2  Research studies on the therapeutic applications of CRISPR/
Cas9-mediated gene editing in stem cells. I) Since 2013, several 
delivery technologies have been used for cytoplasmic delivery of the 

CRISPR/Cas9 gene editing tools into the hPSCs. Different delivery 
techniques (II) have been used to load various cargoes into a wide 
range of cell types (III)
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of the CRISPR/Cas9 genome editing tools. These technolo-
gies have successfully loaded the CRISPR/Cas9 tools inside 
the hard-to-transfect hPSCs for efficient genome editing with 
high specificity delivery efficiency [32]. This review focuses 
on carrier independent (e.g., physical and mechanical deliv-
ery) (Fig. 3) and dependent (e.g., nanoparticle, extracellular 
vesicles, viral-like particles, and viruses) strategies that have 
been employed to load CRISPR/Cas9 gene editing tools into 
different types of stem cells (Fig. 4).

Carrier Independent Delivery Approaches

Carrier-independent approaches comprise physical and 
mechanical methods that utilize external forces to con-
currently induce transient membrane disruptions and cargo 
delivery. These modalities, also coined as direct membrane 
permeabilization strategies, can create pores of different 
sizes allowing the passive diffusion of exogenous cargoes 
across the plasma membrane [33]. In this section, we will 
cover physical and mechanical delivery approaches that 
have been exploited for CRISPR/Cas delivery into the 
cells of interest.

Physical Delivery

Physical delivery methods are considered an effective 
approach for the direct delivery of nucleic acids, also called 
transfection, into the hard-to-transfect cells [34]. During the 
past decade, physical delivery approaches have been widely 
used for loading both CRISPR/Cas9 plasmid DNA and RNP 
into various cell types. The commonly used approaches for 
delivering CRISPR/Cas9 into different types of stem cells 
include electroporation, nucleofection, induced transduc-
tion by osmocytosis and propanebetaine (iTOP) [35], and 
mechanical transfection [36], which will be covered in the 
following sections. Although these approaches are simple 
and highly reproducible, challenges include processing a 
bulk population of cells resulting in heterogeneous responses 
within the cell population [37, 38].

Electroporation Electroporation is a physical delivery 
approach that uses a series of controlled electric pulses to 
induce transient membrane permeabilization and cytosolic 
uptake of impermeable macromolecules such as plasmid 
DNA and gene constructs [39]. In this approach, a bulk 

Fig. 3  Carrier independent 
strategies for CRISPR/Cas9 
delivery into stem cells. These 
approaches can be divided into 
physical methods, including 
electroporation and induced 
transduction by osmosis and 
propanebetaine (iTOP), and 
mechanical methods, such as 
microfluidic-, silicon nano-
blade-, and transmembrane 
internalization assisted by 
membrane filtration (TRIAMF)-
based delivery systems
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population of cells is resuspended in an electroconductive 
buffer and added to a cuvette placed between two electrodes. 
Therefore, applying controlled electric pulses with opti-
mized voltages and widths to the target cells can result in 
the creation of transient pores across the plasma membrane, 
facilitating the passive influx of the impermeable plasmid 
DNA [32]. Electroporation is considered as a highly efficient 
delivery approach that can increase the overall uptake and 
expression level of the exogenous DNA up to 1000 folds. It 
is worth noting that the delivery efficiency of this technique 
mainly relies on different parameters, including electric field 
characteristics (voltage, width, and number of pulses), elec-
trode geometry, and cell and cargo types. One-size-fits-all 
gene delivery through electroporation has been elusive as 
optimal delivery conditions must be determined based on 
different cell and cargo types. Gene delivery using cuvette-
based electroporation has shown promise in different appli-
cations, from vaccine development, transgenes expression, 
and enzyme replacement to cancer treatment. Since cuvette-
based electroporation is a heterogeneous treatment that can 
induce different levels of stress in the target cells depending 
on their position relative to the electrodes, the clinical appli-
cation of this conventional approach has been restricted [40]. 
Besides this, electroporation is a costly method that requires 
rather expensive reagents and kits, hindering its application 
in many laboratories.

Along with the technological advances in the field, signif-
icant efforts have been made toward implementing electropo-
ration at the microscale. As a result, the Neon™ transfection 
system, which works by inducing an electric field within 
capillaries, has been developed and further commercialized 
by Invitrogen/Thermo fisher. This new user-friendly setup 
is more flexible and is designed to address the challenges of 
the conventional cuvette-based electroporation strategy. In 
this setup, the transfection will happen within a biologically 
compatible pipette tip chamber, which has been employed 
to generate more uniform electric fields. This technique 
maximizes the distance between electrodes while minimiz-
ing their surface area to ensure a controlled electric pulse 
is passed through the target cells to achieve a homogenous 
exposure and treatment. This rapid and highly reproducible 
technique has significantly improved the delivery outcomes 
in hard-to-transfect cells compared to the cuvette-based elec-
troporation [41]. In 2019, this technology was used for the 
co-delivery of Cas9 protein, gRNA, and two indistinguish-
able donor DNA templates into induced pluripotent stem 
cells (iPSCs). This resulted in increased efficiency (~8.3%) 
of inducing in vitro homozygous modifications while main-
taining cell viability [42].

In 2018, Xu et al. reported a tube-based electropora-
tion method for efficient genome editing by delivering the 
CRISPR/Cas9 RNP into nearly 90% of the iPSCs without 
affecting the cell viability. As a result, a relatively high 

HDR rate (42.1%) was achieved in the edited cells, which 
is significantly higher than those reported in the previous 
studies within the range of 2.1–6.7% [43, 44]. In a recent 
study, Yudovich and colleagues performed viral-mediated 
delivery of sgRNAs into hematopoietic stem and progenitor 
cells (HSPCs), followed by Cas9 mRNA delivery using BTX 
ECM 830 electroporation. Using this combinational strategy, 
they could achieve up to 90% knockout of CD44 and CD45 
cell surface proteins [45].

Nucleofection is another commercially available gene 
delivery strategy, which is mostly designed for the nuclear 
delivery of cargoes like siRNA, DNA, and oligonucleotides 
into hard-to-transfect and primary cell lines. This method is 
one of the most popular cuvette-based electroporation con-
figurations that utilizes cell line-specific buffers along with 
nucleofector pulsing parameters for the direct delivery of 
nucleic acids into the nucleus. Nucleofection has become a 
popular protocol for the highly efficient delivery of CRISPR/
Cas9 plasmids into different types of stem cells regardless of 
the cell cycle status [46–48]. Using the Amaxa Nucleofec-
tor 2 device (Lonza), Shinkuma et al. delivered CRISPR/
Cas9 plasmid into the iPSCs to target a dominant nega-
tive mutation (c.8068_8084delinsGA) of COL7A1 gene in 
dominant dystrophic epidermolysis bullosa (DDEB). Using 
this strategy, they could achieve up to 90% editing effi-
ciency through the NHEJ pathway in iPSCs generated from 
the DDEB patient’s fibroblasts [49]. In a follow-up study, 
Amaxa Nucleofector 2 device was used for co-transfection of 
spyFiCas9 and gRNA expression vectors into the iPSCs of 
recessive dystrophic epidermolysis bullosa (RDEB) patients. 
As a result, single and double allele mutation corrections 
in COL7A1 were achieved by activating the HDR pathway 
with efficiencies of 40% and 10%, respectively [50]. While 
HDR-mediated gene correction results in lower efficiencies, 
it is considered to be a more precise gene editing pathway 
than NHEJ. The lower efficiencies achieved through the 
HDR pathway can be attributed to the lower frequency of 
homologous recombination in target cells. Table 1 summa-
rizes the studies that leveraged electroporation for CRISPR/
Cas9 delivery, mostly in the form of CRISPR/Cas9 RNP, 
into different types of stem cells [136–138].

Induced Transduction by Osmocytosis and Propanebetaine 
(iTOP) iTOP is another carrier independent delivery strat-
egy that utilizes a hyperosmolar buffer to load cargoes, such 
as proteins, into different cell types. This delivery buffer 
consists of propanebetaine and sodium chloride acting as 
a transduction compound to trigger macropinocytosis and 
non-specific internalization of the extracellular fluid through 
engulfment of the 0.5–5 μm vesicles. This approach has been 
used for efficient intracellular delivery of sgRNAs and Cas9 
protein separately and together in the form of CRISPR/Cas9 
RNP complex [139]. The iTOP method allows the loaded 
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protein to transiently manipulate the cells and induce 
changes in cell function or epigenetic status. However, this 
approach has not gained much attraction due to its lower 
gene editing efficiency in primary cells compared with 
other commonly used delivery technologies [34, 140–143]. 
D’Astolfo and colleagues performed one and two consecu-
tive rounds of iTOP to deliver CRISPR/Cas9 to human 
embryonic stem cells while achieving 10% and 26% gene 
editing efficiency, respectively [141]. Since iTOP leverages 
NaCl-mediated delivery of the Cas9 protein, it can induce 
damage to desired cells and delivery protein resuspended in 
a highly concentrated salty solution, making this strategy 
inapplicable for in vivo gene editing purposes.

Mechanical Delivery

Creating transient ruptures in the phospholipid bilayer can 
be achieved by inducing mechanical forces to the cells of 
interest. Mechanical delivery, coined as mechanoporation, 
has been performed through physical contact with a firm 
structure or exposure to fluid shear forces directed at the 
cell surface. These mechanisms will result in lipid heads’ 
instabilities, facilitating the transient pore formation and 

passive cargo transports [144]. One advantage of mechani-
cal delivery is the efficient delivery of large-sized cargoes, 
including plasmid DNA, which is challenging using bench-
top delivery options. Moreover, this approach has shown 
utility for the efficient delivery of genetic materials into 
hard-to-transfect immune and stem cells. In recent studies, 
mechanical delivery has been employed for CRISPR/Cas9 
RNP complex delivery into HSPCs demonstrating the fur-
ther applicability for ex vivo cell therapies [145, 146]. 
In 2017, Ma et al. developed a microfluidic chip named 
nano-blade chip (NB-Chip) for transient mechanical defor-
mation and highly efficient delivery of the CRISPR/Cas9 
complex into the  CD34+ HSPCs. The proposed asymmetri-
cal microchannel features a silicon nanoblade structure on 
one side of the deformation zone to induce contact pres-
sure to the  CD34+ HSPCs leading to membrane disruption. 
During the design optimization, the nano-blade structure 
stiffness and sharpness were substantially increased, which 
further assisted the efficient delivery of biomaterials. Fur-
thermore, the treated HSPCs had long-term viability and 
maintained inherent multi-potency [145].

Another form of mechanical delivery is filtroporation 
which utilizes fluid shear forces to generate disruptions in 
the plasma membrane. This technique gained less attention 

Fig. 4  Carrier dependent 
CRISPR/Cas9 delivery strate-
gies. These modalities are 
classified into nanoparticles 
(e.g., lipid, polymer, and gold), 
extracellular vesicles, viruses 
(e.g., lenti, adeno, and adeno-
associated viruses), and viral-
like particles
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until 2018 when transmembrane internalization assisted by 
membrane filtration (TRIAMF) was developed based on 
the filtroporation using track-etched membranes to load 
CRISPR/Cas9 complex targeting β2-microglobulin into 
 CD34+ HPSCs. By forcing the cell suspension through the 
membrane’s micropores, fluid shear forces are generated, 
which further induce cellular stress to the point of creat-
ing transient membrane ruptures and, in turn, intracellular 
loading of cargo molecules to the target cells [146].

Carrier Dependent Delivery Approaches

Carrier dependent delivery strategies rely on biological and 
chemical vectors to encapsulate the exogenous cargoes and 

bypass the plasma membrane barrier. Not only do these vec-
tors protect the cargo from degradation but also, they facili-
tate the internalization of the cargo to the intended intracel-
lular compartment. The cargo internalization mechanism for 
vectors is either through endocytosis or membrane fusion. 
This section will provide further details on different car-
rier dependent delivery systems, including nanoparticles, 
extracellular vesicles, virus-like particles, and viral vectors 
(Fig. 4).

Nanoparticle Delivery

In recent years, nanoparticles (NPs) have been widely 
used as promising carriers of the CRISPR/Cas9 complex, 

Table 1  Electroporation and nucleofection mediated delivery of CRISPR/Cas9 into the stem cells

Delivery approach Stem cell type DNA repair CRISPR/Cas9 format Donor format Editing efficiency (%) Reference

Electroporation-
mediated 
CRISPR/Cas9 
delivery

iPSCs HDR RNP ssODN 20–70 [43, 51–53]
mRNA Plasmid DNA 2.3 [54]
Plasmid DNA ssODN 1–20 [44, 55–57]

Plasmid DNA 4.2–43.5 [13, 58–62]
NHEJ Plasmid DNA – N/A [18, 63]
ABE Plasmid DNA – 24.5 [64]

PSCs HDR mRNA Plasmid DNA 11–17.1 [65]
NHEJ Plasmid DNA – 2–34 [66]

HSCs HDR mRNA ssODN 21 [16]
Plasmid DNA 9 [67]
mRNA 8–23.5 [68]

RNP ssODN N/A [68]
NHEJ RNP – 15 [69]
MMEJ RNP – 75 [70]
ABE RNP/ mRNA – 44/80 [71]

ESCs NHEJ Plasmid DNA – – [72]
Nucleofection-

mediated 
CRISPR/Cas9 
delivery

iPSCs HDR Plasmid DNA Plasmid DNA 2–96.7 [7, 73–89]
ssODN 0.7–78 [90–104]
PCR product 2.8–3.1 [105]
dsDNA 22 [106]

RNP ssODN 19–70 [50, 52, 53, 107, 108]
NHEJ Plasmid DNA – 10–95 [49, 109–117]

RNP – 47–100 [118]
ABE/CBE mRNA – 13–47 [119]
Prime editor mRNA – 90 [119]

HSCs HDR mRNA ssODN 8 [120]
RNP Plasmid DNA 7.6–24.5 [121, 122]

ssODN 25 [123]
NHEJ Plasmid DNA – 42 [124, 125]

RNP/ mRNA – 2–83 [126–131]
Base editor RNP – 45.5–69.1 [132]

ESCs NHEJ Plasmid DNA – N/A [133, 134]
RNP – N/A [34]

MSCs NHEJ Plasmid DNA – 53–77 [135]



2583Stem Cell Reviews and Reports (2023) 19:2576–2596 

1 3

attracting great attention. Remarkable advances in nano-
particle research have revolutionized the field of controlled 
therapeutic delivery due to the advantages, including high 
efficiency, low cost, non-immunogenicity, and non-mutagen-
icity. To date, different types of lipid- and polymer-based as 
well as gold NPs have been developed and used for CRISPR/
Cas9 delivery into different cell types [147]. In the following 
sections, we will provide an overview of the mechanism of 
action and application of these NPs in CRISPR/Cas9 deliv-
ery research.

Lipid‑Based NPs (LNPs) Lipid-based NPs, also known as 
liposomes, are spherical vesicles made up of phospholipid 
bilayers acting as effective delivery vehicles in different 
biological applications, including intracellular delivery 
of genetic materials into the target cells and treatment of 
different diseases in clinical practice [148]. Since plasma 
membrane and nucleic acids both feature negative charges, 
the electrostatic repulsion hinders the entrance of exoge-
nous nucleic acids into the cells of interest. To overcome 
this challenge, nucleic acids are encapsulated into positively 
charged liposomes facilitating the cargo delivery and subse-
quent cellular uptake by converting the repulsive to attrac-
tive electrostatic forces [149]. LNP-mediated CRISPR/Cas9 
delivery is a food and drug administration (FDA) approved 
strategy, which induces less stress to the desired cells leading 
to higher cell viability than its counterparts. However, this 
modality suffers from low delivery efficiency as it mainly 

relies on the endosomal pathway for cargo internalization 
[150, 151].

Advances in nanotechnology have enabled the develop-
ment of the lipofectamine reagent, which is now the first 
preferred option for LNP-mediated delivery [150]. In a 
study, Lipofectamine® 3000 has been used as a CRISPR/
Cas9 delivery tool for correction of the suspected causative 
SCN5A variant (rs397514446) in iPSCs-derived cardio-
myocytes of patients with Brugada syndrome (BrS) [152]. 
Further studies with a focus on gene editing through lipo-
fectamine-mediated delivery of CRISPR/Cas9 system into 
stem cells are summarized in Table 2.

Polymer‑Based NPs In recent studies, cationic polymer-
based NPs have been widely used for different purposes, 
including gene delivery. These NPs can form polyplexes 
containing nucleic acids (nucleic acid/polycation com-
plexes) through electrostatic interactions between the cati-
onic group of the NPs and negatively charged nucleic acids 
[169, 170]. Polymer-based NPs can be formulated with 
different copolymer compositions and molecular weights 
with various degradation times ranging between several 
months to years [171, 172]. These NPs have been reported 
to improve the carrier-mediated delivery of CRISPR/Cas9 
components [173]. Among the polymer-based NPs employed 
for CRISPR/Cas9 delivery is poly lactic-co-glycolic acid 
(PLGA) which is a biodegradable polymer as its hydrolysis 
can result in the formation of glycolic acid, lactic acid, and 

Table 2  Carrier dependent techniques for CRISPR/Cas9 delivery into the stem cells

Delivery approach Stem cell type DNA repair CRISPR/Cas9 format Donor format Editing 
efficiency 
(%)

Reference

Nanodiamonds iPSCs HDR Plasmid DNA linearized DNA con-
struct

19.3 [153]

NanoMEDIC vesicle iPSCs Exon skipping RNP N/A Up to 92 [154]
Gold nanoparticle ESCs, iPSCs HDR RNP Plasmid DNA N/A [155]
Colloidal gold nanopar-

ticles
HSCs HDR RNP ssDNA 7.8–8.1 [156]

Nano-silicon-blade iPSCs, HSCs NHEJ RNP N/A 50–82 [145, 157]
Exosome-liposome 

hybrid nanoparticle
MSCs NHEJ Plasmid DNA N/A N/A [158]

PLGA-nanoparticles HSPCs NHEJ RNP N/A 38.4 [69]
VEsiCas VLP iPSCs NHEJ RNP N/A 17 [159]
Lipofectamine iPSCs HDR Plasmid DNA Plasmid DNA N/A [152]

ssODN N/A [160]
NHEJ Plasmid DNA N/A N/A [161]
Base editing N/A N/A 21–37 [162]

ESCs, iPSCs, ESCs, 
MSCs, and intestinal 
stem cells

NHEJ Plasmid DNA N/A N/A [6, 163–167]

MSCs CRISPRa Plasmid DNA N/A N/A [168]
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metabolite monomers. Since glycolic and lactic acids are 
both endogenous and can be readily metabolized through the 
Krebs cycle inside the human body, using PLGA-based NPs 
for biological applications and drug delivery purposes has 
shown minimal cytotoxic effects [174]. Owing to the advan-
tages of PLGA-based NPs, using these NPs for drug delivery 
applications into the human body has been approved by the 
US FDA and the European medicine agency (EMA).

In a recent study, PLGA-based NPs were designed to 
encapsulate Cas9 protein (S. pyogenes) and gRNA and used 
as a carrier for CRISPR/Cas9 delivery into HSPCs. Upon 
successful delivery of the CRISPR/Cas9 complex, a rapid 
release of gRNA and Cas9 protein was observed, which was 
subsequently replaced with a continuous cargo release pat-
tern resulting from endosomal/lysosomal escape and cyto-
solic penetration. More importantly, Cruz et al. demonstrated 
that PLGA-based NP-mediated gene-editing of HSPCs using 
CRISPR/Cas9 complex did not induce cellular cytotoxicity. 
Upon escaping from the lysosomal compartments, CRISPR/
Cas9-PLGA-based NPs could efficiently (up to 40%) edit the 
γ-globin gene locus resulting in a significant increase in the 
expression level of fetal hemoglobin in primary erythroid 
cells [175]. Besides the advantages offered by these NPs, 
size dissimilarities and unpredictable behavior and interac-
tion of NPs with target cells are the remaining challenges of 
the field which require further investigations.

Gold NPs (au NPs) Along with the advances in nanotechnolo-
gies, inorganic NPs like Au NPs and magnetic NPs were 
developed and employed as appropriate carriers for gene 
delivery applications. Among inorganic NPs, Au NPs hold 
the potential to be used as multifunctional gene delivery 
systems due to their simple synthesis and modification pro-
cess, high loading capacity, high cellular uptake, and inher-
ent biocompatibility [176, 177]. Since these NPs are chemi-
cally inert, Au NP-mediated cargo delivery usually does not 
induce adverse immune responses inside the body [178]. 
Despite these advantages, Au NPs can induce cytotoxic 
effects at high concentrations eliminating their applications 
in clinical settings. However, a large number of studies have 
reported the use of Au NPs for CRISPR/Cas9 RNP com-
plex delivery in both in vivo and in vitro conditions [155, 
177, 179]. In a study, Au-NP-CRISPR/Cas9 carriers were 
generated through multiple formulation steps. First, Au NPs 
with the size of 15 nm were conjugated to single-stranded 
DNA sequences (50 thiols modified) that were hybridized to 
single-stranded donor DNA and generated the Au-NP-Donor 
complex. Then, CRISPR/Cas9 RNPs were loaded on Au-
NP-Donor complex and further coated with silica and PAsp 
(DET) polymer to escape the endosomal entrapment result-
ing in cytosolic cargo release. The resulting Au-NP-Donor-
CRISPR/Cas9-silicate carriers could successfully induce 
HDR in primary cells and cell lines in vitro with an editing 

efficiency of about 4% which is higher than lipofectamine-
mediated transfection and nucleofection. Furthermore, mus-
cular injection of NP-Donor-CRISPR/Cas9-silicate carriers 
in four-week-old mdx mice resulted in vivo correction of 
a point mutation in the dystrophin gene through the HDR 
pathway with editing efficiency of about 5.4% [155].

In another study, a CRISPR/Cas9 delivery system was 
developed by nano-formulation of colloidal Au NPs with the 
ability to enter the cells without the aid of external forces. 
The final monodispersed Au NP/crRNA nanoconjugates 
avoided lysosomal entrapment and were localized in the 
nucleus of HSPCs without inducing cytotoxicity. Genome 
editing at different points of interest in HSPCs was success-
fully achieved using these NPs nano-conjugated with dif-
ferent CRISPR nucleases (Cpf1 or Cas9). The primary cells 
of humanized mice treated with the monodispersed Au NP/
crRNA nanoconjugates demonstrated better engraftment 
kinetics compared with the untreated cells without any sig-
nificant difference in differentiation [156]. Further studies 
are required to generate the Au NPs that can perform tar-
geted delivery of the CRISPR/Cas9 system into the cells of 
interest in vivo.

Extracellular Vehicles (EVs)

EVs are cell-derived membranous structures that serve 
as carriers for the delivery of various types of therapeu-
tic cargoes, such as proteins, lipids, effector molecules, 
and receptors, to the target cells [180]. EVs are generated 
through cellular activation or stress. EVs serve as com-
municating agents between the cells by transporting the 
contents and surface proteins of the parent to the target 
cells. Various diagnostic and discovery applications have 
been demonstrated for EVs. Moreover, EVs are considered 
promising carriers for safe and robust cell and gene therapy 
applications that require strong target specificities [181]. 
In recent years, many studies have reported highly efficient 
delivery of CRISPR/Cas9 RNPs both in vitro and in vivo 
via different types of EVs [154, 182, 183]. These studies 
demonstrated the capability of EVs to be used in clinical 
settings. EVs are categorized into microvesicles, apoptotic 
bodies, and exosomes based on their intracellular origins. 
Among these, exosomes have attracted great interest to be 
used as carriers for delivery purposes [184]. Exosomes are 
small membrane-bound EVs (30–150 nm) secreted by the 
cells through the endosomal route. Exosomes may contain 
a complex cargo of contents associated with pathological 
and biological situations of the original cell. Owing to the 
advantages of exosomes, like inherent non-immunogenic-
ity, these therapeutic carriers have been preferred over the 
other nano-sized delivery carriers, like polymer-based and 
Au NPs as well as liposomes [185].
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In a recent study, Lin and colleagues developed exo-
some-liposome hybrid nanocarriers to surmount the 
inherent limitation of exosomes in the encapsulation of 
large nucleic acids [158]. Unlike exosomes, these hybrid 
nanocarriers could successfully encapsulate large-sized 
plasmids like CRISPR/Cas9 expressing vectors. These 
hybrid nanocarriers can enter the cells through the endo-
cytosis pathway and induce the expression of the encap-
sulated genes in the mesenchymal stem cells that were 
not efficiently transfected with liposomes. Since the exo-
some–liposome hybrid NPs were able to efficiently deliver 
CRISPR/Cas9 into mesenchymal stem cells, they can be 
new candidates for in vivo gene therapy applications which 
remain open for further investigations.

In another investigation, a new EV-based deliv-
ery technology called NanoMEDIC was developed by 
employing two different homing mechanisms to package 
CRISPR/Cas9 RNP complex. In this delivery system, 
Cas9 protein was recruited to extracellular nanovesicles 
through ligand-dependent dimerization. Next, the two 
self-cleaving riboswitches and a viral RNA packaging 
signal held and released sgRNA into these nanovesi-
cles. The NanoMEDIC technology demonstrated >90% 
efficiency in exon 45 skipping in the dystrophin gene 
of skeletal muscle cells that were derived from iPSCs 
of a patient with Duchenne muscular dystrophy. Moreo-
ver, the muscular injection of these nanovesicles in mdx 
mice and a luciferase reporter mouse model successfully 
induced transient genomic exon 23 skipping in the dys-
trophin gene [154]. These findings suggest the potential 
in vivo application of NanoMEDIC for in vivo gene ther-
apy of Duchenne muscular dystrophy and other inherited 
genetic diseases.

Viral Vectors

Viral vectors are common carrier dependent delivery 
approaches used for gene editing purposes. Among these, 
adeno, adeno-associated, and lentiviral vectors have been 
extensively employed for the efficient loading of genetic 
materials to the target cells in both preclinical and clinical 
studies. These vectors act as highly efficient in vitro delivery 
approaches of genome-editing tools for both clinical and 
research applications [186]. Further details on the viral-
mediated CRISPR/Cas9 delivery into different types of stem 
cells are presented in the following sections, and a summary 
of these studies is provided in Table 3.

Adenoviral Vectors (AdVs) The AdVs are double-stranded 
DNA viruses with icosahedral nucleocapsids that are able to 
infect dividing and non-dividing cells. Owing to their advan-
tages, AdVs are considered promising gene transfer vectors 
with high transduction efficiency and expression level of the 
transgene in mammalian cells. Upon injection, the AdVs 
genome remains extrachromosomal without integration 
into the host genome [205]. This is especially important for 
CRISPR/Cas9-mediated genome editing as it minimizes the 
possibility of insertional mutagenesis and off-target effects. 
Recently, significant efforts have been made to optimize 
AdVs for gene delivery applications. In the first attempt, 
recombinant AdVs were generated by the deletion of the E1 
viral gene [206]. Next, a second generation of AdVs with 
8 kb packaging capacity was developed through the dele-
tion of E2 and E4 viral genes with the aim of decreasing the 
chronic immune responses [207, 208]. In the third genera-
tion of AdVs, coined as helper-dependent (HDAd) or gutless 
(GLAd), all the adenoviral genes were deleted to provide a 

Table 3  Viral-mediated delivery of CRISPR/Cas9 gene editing system

Delivery approach Stem cell type DNA repair CRISPR/Cas9 format Donor format Editing efficiency (%) Reference

Adenovirus HSPCs NHEJ HDAd5/35++ – N/A [126, 187]
HDR RNP HDAd5/35++ N/A [68]

AAV9 Muscle stem cells NHEJ Plasmid DNA – N/A [188]
AAV6 HSPCs HDR RNP AAV6 29–69% [8, 68, 189–194]

iPSCs/ ESCs HDR RNP AAV6 Up to 94% [195]
Lentiviral Vector iPSCs HDR Plasmid DNA LV N/A [196]

RNP LV N/A [197]
HSPCs NHEJ Plasmid DNA – N/A [198]

mRNA – 90% [45]
HDR Cas9 protein IDLV Up to 42% [199]

mRNA IDLV 20% [200]
Plasmid DNA LV N/A [201]

PSCs NHEJ Plasmid DNA – N/A [202]
ESCs CRISPRa Plasmid DNA – N/A [203]
MSCs CRISPR/dCas9 Plasmid DNA – N/A [204]
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higher packaging capacity of up to 37 kb for loading larger 
cargoes. These AdVs only contain inverted terminal repeat 
repeats and packaging signal (ѱ) required for DNA repli-
cation and encapsidation, respectively. These unique fea-
tures make the HDAds an ideal option for encapsulating the 
CRISPR/Cas9 system in a single vector providing the benefit 
of delivery procedure simplicity [209, 210]. CRISPR/Cas9 
delivery by AdV vectors has already been utilized in drug 
discovery, disease modeling, and treatments [118]. In 2018, 
non-integrating chimeric HDAds (Ad5/35++) were devel-
oped from serotype 5 of species C and serotype 35 of spe-
cies B AdVs, respectively. The generated vectors interacted 
with CD46, a membrane protein constantly expressed on 
human  CD34+ cells, resulting in efficient transduction of 
HSCs followed by high expression of CRISPR/Cas9 plas-
mid. The HDAds (Ad5/35++) vector included a number of 
mutations in the Ad35 fiber knob enhancing CD46 targeting 
(>25-fold), leading to highly efficient transduction at lower 
numbers of the multiplicity of infection for viral particles. 
These chimeric HDAdVs were used to reactivate the fetal 
γ-globin gene in sickle cell disease and β-thalassemia, affect-
ing the viability, in vitro expansion, and differentiation of 
human  CD34+ cells. To control the CRISPR/Cas9 activity, 
Li and colleagues generated chimeric vectors encapsulat-
ing anti-CRISPR (Acr) AcrII4 and AcrII2 peptides to tar-
get CRISPR/Cas9 complex (HDAd-Acr). The  CD34+ cells 
that were consecutively loaded with HDAd-CRISPR and 
HDAd-Acr demonstrated a significantly higher engraftment 
rate. 10 weeks upon transplantation, the engrafted  CD34+ 
cells had target site disruption frequencies similar to those 
of the pre-transplanted cells, demonstrating high viability 
and good survival of the genetically edited primitive HSCs 
[126]. Although AdV-mediated gene delivery does not initi-
ate chronic immune responses, the viral capsid still has the 
chance of inducing acute phase immune responses. It is note-
worthy that almost all humans have experienced the AdV 
infection since infancy, resulting in the production of neu-
tralizing antibodies. Therefore immunogenicity is one of the 
challenges associated with using AdVs for gene therapy in 
a variety of human diseases [205, 211]. Different strategies 
have been proposed to overcome this challenge including 
manipulation of the vector genome with the aim of decreas-
ing the immunogenicity and chemical protection to reduce 
the undesirable surface interactions [212].

Adeno‑Associated Viral Vectors (AAVs) AAVs, also known 
as non-enveloped viruses, are among the most popular viral 
vectors for CRISPR/Cas9-based gene editing purposes. 
Owing to the unique characteristics of AAVs, such as their 
good safety profile and therapeutic potential, they have been 
extensively utilized in gene therapy clinical trials [213]. 
Other advantages include mild immunogenicity and cyto-
toxicity observed at high doses of AAVs injection in animal 

models [213, 214]. Moreover, upon transduction, the AAVs 
genome usually remains episomal or extrachromosomal, 
which further integrates into hotspots of mitochondrial 
DNA and specific locus of the host genome at chromosome 
19q13.4 called AAV integration site 1 (AAVS1) [215, 216]. 
These integrating sites are known as safe harbors without 
any contribution to tumorigenesis.

Furthermore, AAVs concameters have shown the ability 
to provide steady transgene expressions due to their long-
lasting existence in non-dividing cells. Various AAV sero-
types have been shown to be suitable for tissue-targeted gene 
delivery as well as CRISPR/Cas9-based genome editing in 
specific tissues. To this aim, AAV6 and AAV9 serotypes 
have been used for genome editing in murine muscle and 
brain tissue, respectively [118]. In a study, Xu et al. lever-
aged the site-specific integration of AAVs to induce long-
lasting expression of human blood-coagulating factor IX in 
transgenic mice [217]. In a recent study, Martin and col-
leagues proposed a new marker-free approach for genome 
editing of human pluripotent stem cells (hPSCs) through 
electroporation of CRISPR/Cas9 RNPs followed by AAV6-
mediated donor template delivery. Using this approach, 
they achieved up to 94% mono-allelic edition frequency of 
sickle cell mutation at the hemoglobin beta (HBB) site in the 
hPSCs without requiring marker selection [195]. Despite the 
popularity of AAVs in gene editing clinical trials, the major 
drawback attributed to these vectors is their limited cloning 
capacity. Further investigations can focus on the generation 
of recombinant AAVs with a higher packaging capacity of 
transgene than the wild type to attenuate the impact of AAVs 
in clinical gene therapy.

Lentiviral Vectors (LVs) LVs are considered highly efficient 
vectors for CRISPR/Cas9 delivery into a wide range of 
dividing and non-dividing cells for gene therapy of mono-
genic disorders. These vectors can provide the following 
advantages: i: higher capacity for packaging the transgene, 
ii) efficient transduction of a different type of dividing and 
non-dividing cells, iii) low immunogenicity and cytotoxicity, 
and iv) minimal effect on the cells cycle. These favorable 
aspects have made LVs the vector of choice for gene-edit-
ing of infections associated with hepatitis B virus (HBV), 
human immunodeficiency virus (HIV-1), and herpes simplex 
virus (HSV-1), as well as correcting the defects in human 
genetic disorders like cystic fibrosis [218–220]. Despite 
these appealing features, LVs suffer from issues such as 
off-target effects. Since LV-mediated delivery can result in 
stable expression of the CRISPR/Cas9, it may increase the 
chance of non-specific DSBs, unwanted off-target effects, 
and higher indels at off-target sites hindering their applica-
tion for precise genome editing purposes [220]. To address 
these issues, integrase-deficient LVs (IDLVs) have been 
developed for efficient CRISPR/Cas9 delivery with superior 
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cloning capacity while demonstrating a very weak integra-
tion capability and transient expression in the host cell [220]. 
In 2021, an IDLV-mediated CRISPR/Cas9 gene editing 
approach, coined as an “all-in-one” delivery system, was 
developed to encode guide RNA and donor DNA templates. 
Using this strategy, one-time correction of sickle cell disease 
mutation in the HBB gene was successfully achieved with 
an efficiency of up to 42% [199]. The application of the 
IDLVs for CRISPR/Cas9 delivery into the HSCs is yet to be 
extensively explored.

Virus‑Like Particles (VLPs)

Although viral vectors have shown success in the efficient 
delivery of the CRISPR/Cas9 system into the desired cells, 
major weaknesses attributed to these vectors are the i) high 
expression level of Cas9 nuclease, ii) increased chance 
of off-target effects, and iii) immune and inflammatory 
response issues, and iv) integration into the host genome. 
Recently, a new type of delivery particle, virus-like parti-
cles (VLPs), has been developed for gene editing purposes 
[221]. These particles are derived from viruses and mimic 
them in size and shape. The VLPs contain almost all the 
viral components (e.g., capsid and envelope) except the 
genome, which eliminates the risk of genome integration 
and infection in the host cells [222]. These particles are 
mostly derived from LVs and can package different pay-
loads, including mRNAs, proteins, and RNPs. VLPs take 
advantage of the high infecting efficiency of viral vectors for 
transient expression of the Cas9 nuclease resulting in a safe 
and highly efficient genome editing procedure [221, 222].

Recently, a new type of vesicle, called VEsiCas, was 
developed to deliver CRISPR/Cas9 RNPs into iPSCs effec-
tively. These VLPs were derived from vesicular stomatitis 
viruses (VSV) and decorated with fusogenic glycoprotein 
(VSV-G) for efficient protein delivery. Since VSV-G-envel-
oped SpCas9 vesicles are free from viral DNA encoding 
sgRNA and SpCas9, it makes it possible to rapidly clear the 
nuclease components of the target cells that correlate with 
reduced genome-wide off-target cleavages. It is shown that 
in comparison with the classical method of SpCas9 RNPs 
electroporation for obtaining the transient SpCas9 activities, 
VEsiCas have lower toxic effects and higher efficiency in 
nuclease delivery [159].

A follow-up study has reported on the development 
of engineered murine leukemia VLPs loaded with Cas9-
sgRNA RNPs (Nanoblades) for effective genome-editing in 
primary cells and cell lines such as human hematopoietic 
and human induced pluripotent stem cells [157]. Moreo-
ver, in vivo genome-editing was achieved by transgene-free 
Nanoblades in the liver of the injected mice and the mouse 
embryos. The complex of Nanoblades with donor DNA can 

also be used for homology-directed repair or may be pro-
grammed with modified variants of Cas9 for mediating tran-
scriptional gene up-regulations. These engineered VLPs can 
be easily prepared and are affordable and easy-to-implement 
in cellular biology laboratories. Since Cas9-sgRNA complex 
delivery with these VLPs is transient and dose-dependent, it 
can reduce off-target effects compared with the commonly 
used CRISPR plasmid transfection method [157].

Challenges and Future Directions

Despite the advantages of exploiting the CRISPR/Cas9 
system for gene editing purposes, extensive research is 
still required to determine the safety and editing efficiency 
achieved through this system. The main drawback associ-
ated with CRISPR/Cas9-mediated gene editing is the cleav-
age of off-target genomic sites, as a shorter sequence of the 
target RNA is exploited in this approach compared to those 
used in ZFN- and TALEN-mediated gene editing [223]. 
Although different strategies have been employed to increase 
the specificity of CRISPR/Cas9-mediated gene editing, such 
as advancements in gRNA design [224], the development 
of new versions of the Cas9 nuclease [225], and optimiza-
tion of the CRISPR/Cas9 delivery mechanisms, off-target 
effects remain an important hinder to the clinical translation 
of CRISPR/Cas9-mediated gene editing. In addition, unin-
tentional large deletions and complex genomic rearrange-
ments have been observed in the CRISPR/Cas9 edited cells 
[226]. On the other hand, inherent individual human genetic 
variations (e.g., single nucleotide polymorphisms and copy 
number variations) can lead to unintentional off-target gene 
editing. Although the standard human genome is often used 
as a reference for CRISPR/Cas9 optimization and off-target 
tool design, these polymorphisms can lead to multiple off-
targets even using well-designed gRNAs [227]. Therefore, 
genome-wide sequence analysis, large-scale off-target pre-
diction, individual intensive genotoxicity risk assessment, 
and careful patient monitoring are the measures to be con-
sidered in CRISPR/Cas9-mediated gene editing. The immu-
nogenicity of the Cas9 nuclease also needs to be considered 
during the clinical translation of the CRISPR/Cas9 technol-
ogy, which can cause severe immune responses in patients 
treated with CRISPR/Cas9 edited stem cells [228].

Base‑Editing and Prime‑Editing as Novel Gene 
Editing Approaches

The CRISPR/Cas9-mediated genome editing relies on the 
induction of a DNA double-strand break in the target DNA 
sequence. The generation of these breaks raises several 
concerns about the clinical applications of this gene edit-
ing strategy. DNA base-editing and prime-editing are novel 
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gene editing approaches proposed to overcome the field’s 
current challenges. DNA base-editor is an engineered Cas 
enzyme that can bind to the target site and modify the target 
nucleotide without generating DSBs. Adenine base-editor 
(ABE) and cytosine base-editor (CBE) are two well-known 
types of DNA base-editor systems. Until recently, the cor-
rection of four transition mutations (C → T, G → A, A → G, 
and T → C) was only possible using the known CRISPR/
Cas9 base editing. A recent study has proposed two new 
base editors for efficient C to G transversion [229]. In addi-
tion, dual base-editor Cas enzymes have been engineered 
recently for combinatorial editing in human cells [73, 230, 
231]. Taken together, the engineered base editors broaden 
the application of DNA base-editing to transversion muta-
tions and more complex edits that are impossible using sin-
gle DNA base-editors.

Prime-editing is another gene editing strategy recently 
developed to expand the range of mutations that can be 
edited [232]. Unlike CRISPR-based editing, prime-editing 
does not require double-strand DNA breaks. The prime-
editing system consists of a Cas9 H840A nickase fused to 
an engineered reverse transcriptase enzyme and a prime 
editing gRNA (pegRNA). The pegRNA is an extended 
guide RNA that includes a primer binding site (PBS) and 
a reverse transcriptase (RT) template sequence, which is 
then reverse-transcribed to DNA by the RT enzyme. Prime 
editing has several benefits over CRISPR/Cas9-mediated 
gene editing, including the ability to introduce nearly all 
conceivable nucleotide substitutions, the absence of a 
need for simultaneous delivery of a corrective donor tem-
plate, the elimination of indel-induced frameshifts, and a 
lower rate of off-target edits. Consequently, it is a new and 
ideal candidate for overcoming the limitations of current 
CRISPR/Cas9- mediated gene editing, which can open up 
promising avenues toward more versatile and improved 
genome editing [233].

Conclusion

Different factors can affect the efficiency of CRISPR/
Cas9-mediated gene editing, and the delivery approach 
is an essential factor that plays a vital role in the efficient 
gene editing process, especially in the case of hard-to-
transfect stem cells. Since gene editing in stem cells can 
translate to the clinic, developing effective methods for 
delivering gene-editing components to different types 
of stem cells is necessary. This review paper entails a 
wide range of physical, chemical, mechanical, viral, and 
nanoparticle-based methods used to deliver gene editing 
tools to stem cells. These methods categorize into two 
main classes, carrier-dependent and carrier independent 

delivery approaches. Amongst them, a subset of car-
rier independent delivery approaches, called physical 
delivery (e.g., electroporation), is the most widely used 
method that gained much more attention for delivery 
applications. Several efforts have been made to enhance 
the efficiency of loading gene editing tools into target 
cells by combining some of the aforementioned meth-
ods. Since gene editing approaches are evolving rapidly, 
choosing an effective mechanism for loading the newly 
developed gene editing tools into the target cells among 
the existing options relies on the aims and objectives of 
the experiments. Developing novel delivery technologies 
that efficiently deliver gene editing tools inside the target 
cells without affecting the cell functionality will signifi-
cantly impact the research and clinical outcomes of stem 
cell gene editing with remarkable accuracy.
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