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Abstract: 8 

Preventing living tissues' direct exposure to ionising radiation has resulted in tremendous growth in medical imaging and e-health, 9 

enhancing intensive care of perilous patients and helping to improve quality of life. Moreover, the practice of image-reconstruction 10 

instruments that utilise ionising radiation significantly impacts the patient's health. Prolonged or frequent exposure to ionising radiation 11 

is linked to several illnesses like cancer. These factors urged the advancement of non-invasive approaches, for instance, Electrical 12 

Impedance Tomography (EIT), a portable, non-invasive, low-cost, and safe imaging method. EIT image reconstruction still demands 13 

more exploitation, as it is an inverse and ill-conditioned problem. Numerous numerical techniques are used to answer this problem 14 

without producing anatomically unpredictable outcomes. Evolutionary Computational techniques can substitute conventional methods 15 

that usually create low-resolution blurry images.  16 

EIT reconstruction techniques optimise the relative error of reconstruction using population-based optimisation methods presented 17 

in this work. Three advanced optimisation methods have been developed to facilitate the iterative procedure for avoiding anatomically 18 

erratic solutions. Three different optimising techniques, namely, a) Advanced Particle Swarm Optimisation Algorithm (APSO), b) 19 

Advanced Gravitational Search Algorithm (AGSA), and c) Hybrid Gravitational Search Particle Swarm Optimization Algorithm 20 

(HGSPSO), are used. The convergence and solution stability performance is improved by utilising the advantages of these proposed 21 

techniques. 22 

EIT images were obtained from the EIDORS library database for two case studies. The image reconstruction was optimised using 23 

the three proposed algorithms. EIDORS library was used for generating and solving forward and reversed problems. Two case studies 24 

were undertaken, i.e. circular tank simulation and gastric emptying. Thus, the results are analysed and presented as a real-world 25 

application of population-based optimisation methods. 26 

Results obtained from the proposed methods are quantitatively assessed with ground truth images using the relative mean squared 27 

error, confirming that a low error value is reached in the results. The HGSPSO algorithm performs better than the other proposed 28 

methods regarding solution quality and stability. 29 
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1 Introduction 31 

Over the years, the progress and practice of non-invasive imaging methods in biology and medicine have been drastically enhanced 32 

due to industry and academic collaboration. The hazardous radiations produced by these imaging devices cause significant health 33 

problems for exposed patients [1]. These radiations can yield medium to severe illnesses such as cancer, a universal health concern. 34 

Electrical impedance tomography (EIT), a non-invasive imaging method, injects a low amplitude current on the body's surface and 35 

calculates the voltage on the surface electrodes. These voltage measurements are used as inputs to solve an inverse problem to recuperate 36 

the object's internal electrical properties (permittivity and conductivity) under examination [2]. EIT is a low-cost imaging method with 37 

no identified hazards; therefore, it has numerous industrial and medical applications. Image reconstruction is regarded as an ill-38 

conditioned nonlinear inverse problem in EIT that requires an efficient reconstruction method proficient in handling complex boundary 39 

shapes, noise in the measured data, and electrode locations. Because of being an ill-conditioned problem, the image reconstructed often 40 

has a low spatial resolution. A slight variation in the measured voltages causes a massive change in the conductivity or permittivity [3]. 41 

EIT is a two-step problem, the first stage is the forward problem, and the second stage is the inverse problem [4].  42 

1.1 Mathematical Modelling of Forward Problem  43 

The forward problem solution contains the voltage measurements on the surface electrodes for specific conductivity or resistivity 44 

distribution; however, the given object's applied current and conductivity distribution are known [5]. The finite Element Method (FEM) 45 

is used to acquire the numerical solution. To get the measured voltages at the electrodes forward problem has to be solved in EIT 46 

simulations. Mathematically EIT is represented by the Poison equations, which are as follows [6]. 47 

 48 
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𝛻. [𝜎(�⃗� )𝛻∅(�⃗� )] = 0,   ∀�⃗�  ∈  Ω   (1) 

 
∅𝑠𝑢𝑟(�⃗� ) = ∅(�⃗� ), ∀�⃗�  ∈  𝜕Ω      (2) 

 
𝐼(�⃗� ) = −𝜎(�⃗� )𝛻∅(�⃗� ) ∙ �̂�(�⃗� ),       ∀�⃗�  ∈  𝜕Ω (3) 

where 𝐼(�⃗� ) is the electrical current, ∅(�⃗� ) is the general distribution of electrical potentials,  Ω is the volume of interest, also called 49 

the domain, (�⃗� ) = (𝑥, 𝑦, 𝑧) is the position of the object under study,  ∅𝑠𝑢𝑟(�⃗� ) is the distribution of electric potentials on surface 50 

electrodes, 𝜎(�⃗� ) is the distribution of electrical conductivities, 𝜕Ω is the boundary of the domain, and �̂�(�⃗� ) is the normal surface vector 51 

in position (�⃗� ) ∈ 𝜕Ω. 52 

To determine the electric potential at the surface of the electrodes by applying current and given conductivity distribution following 53 

relationship is used.   54 

 
∅𝑠𝑢𝑟(𝑣 ) = 𝑓(𝐼(𝑣 ), 𝜎(𝑣 ) ), ∀𝑣  ∈  𝜕Ω  ∧ (�⃗� ) ∈ Ω (4) 

To find out the conductivity distribution from the 𝐼(�⃗� )  and ∅𝑠𝑢𝑟(�⃗� )  is called the inverse problem is given by the following 55 

mathematical expression: 56 

 
𝜎(�⃗� ) = 𝑓−1((𝐼(𝑣 ), ∅𝑠𝑢𝑟(𝑣 ) ), ∀𝑣  ∈  𝜕Ω  ∧ (�⃗� ) ∈ Ω (5) 

1.2 Mathematical Modelling of Inverse Problem 57 

EIT inverse problem focuses on determining the electrical properties of the object, which are dependent on the voltage measurements 58 

recorded at the surface of the domain [7]. The testing object placed in the volume conductor may vary in size. In EIT, the inverse 59 

problem is a complex problem involving many aspects. The nonlinearity of the problem is not the only reason. Still, it is severely ill-60 

conditioned, which means a minor difference in the electrical conductivity of the medium can bring a massive variation in measured 61 

electrical potential at the domain's boundaries. According to the theoretical perspective, the measured potential attained from the 62 

boundaries can be associated with a single conductivity distribution; however, the limited number of available measurements changes 63 

in real applications, making it different from the theoretical assumption. Other methods were presented for tackling the inverse nature 64 

of EIT. These methods can be separated into various types: inverse solvers that are nonlinear iterative methods such as linear 65 

approximators, Artificial Intelligence (AI) based techniques, Primal-Dual Interior Point Method (PDIPM), and Bayesian approach.[7] 66 

The linear approximation methods, for instance, one-step Gauss-Newton (GN), depend on a priori information and consider 67 

conductivity variation behaviour linear. While taking the measurements using linear algorithms, the most common setback is the linear 68 

change of the conductivity at the boundary of the objects, which leads to the strenuous evaluation of the target object. However, these 69 

methods can be beneficial in minimising the noise in data calculations. These algorithms are proficient in some particular applications; 70 

however, for nonlinear inhomogeneity, they cannot converge to the exact conductivity distribution [8]. On the contrary, nonlinear 71 

iterative techniques, such as the PDIPM, consider the nonlinearity and ill-condition of the inverse problem of EIT and use verified 72 

advanced computational methods to optimise nonlinear problems. Such a case was studied by Borsic et al.  [9], who solved the EIT 73 

problem using the iterative PDIPM method. Although these methods can give an improved approximation compared to the linear 74 

algorithms, require more computational time and are sensitive to noise. Hence, nonlinear iterative algorithms do not apply to actual EIT 75 

applications. The Bayesian inversion approach modelled the conductivity distribution as a random variable that obeys a prior density 76 

function and a posterior probability density that holds existing information of the conductivity distribution [10], i.e. a priori conductivity 77 

distribution is used to solve the inverse problem. The posterior density is the comprehensive probabilistic model of the EIT problem and 78 

characterises the vagueness in the unknown variables for available measurements. AI-based techniques such as Neural Networks [11]and 79 

evolutionary methods [12] were also employed for the EIT inverse problem. These methods are self-sufficient to determine the solution 80 

steps for solving the inverse EIT problem. The learning phase is carried out by associating a set of potential measurements and their 81 

relative conductivity distribution. They guess the conductivity distribution from the measurements after the learning phase. AI-based 82 

techniques are proficient in estimating the conductivity distribution in low computational time and, consequently, are appropriate for 83 

real-time applications [13]. After creating the data required for training that comprises noise and several artefacts, these algorithms can 84 

perform well in reconstructing the conductive distribution. 85 

1.3 Main Contributions to this Work 86 

The focus of this study is to use the advanced heuristic algorithms, which the authors have developed and published [14–16] 87 

This work implements two cases based on the reconstruction of EIT images from EIDORS. The authors have used these advanced 88 

optimisation algorithms to reduce the reconstruction error of the EIT images. The primary purpose of optimisation algorithms is to 89 

achieve a final reconstructed image with the least reconstruction error.  90 
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2 Optimisation Methodology for EIT Reconstruction 91 

The boundary domain is discretised into the small elements in a closed area to solve the problem. Hence, Ω and ∂Ω have a fixed 92 

number of meshes. Let us assume that na is the number of the meshes in the closed region such that na = Ω and nb is the number of 93 

meshes at the boundary such that nb = ∂Ω; the error fitness function is expressed as:  94 

 

𝑒𝑘 = ∑(𝑈𝑖

𝑛𝑏

𝑖=1

(𝑥𝑘) − 𝑉𝑖)
2 (6) 

where 𝑉 = [𝑉1 𝑉2 𝑉3 …𝑉𝑛𝑏
]  is the measured potential at the boundary of the domain, 𝑈(𝑥𝑘) =95 

[𝑈1(𝑥𝑘), 𝑈2(𝑥𝑘), 𝑈3(𝑥𝑘), …𝑈𝑛𝑏
(𝑥𝑘)]

𝑇 is the calculated potential. 96 

The inverse problem of EIT is solved by reducing the fitness function between the measured and expected electric potential values. 97 

The dimensions of the search area in the EIT inverse problem are equal to the number of meshes of the finite element model. For 98 

implementing the population-based optimisation algorithms for this inverse problem, the vector xk denotes the l-dimensional 99 

conductivities values, where l is the number of meshes of the FE model. The ith member of a population's position is represented as 100 

𝑥𝑘 = [ 𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑙] = [𝜎𝑘1, 𝜎𝑘2, … , 𝜎𝑘𝑙], where 𝜎𝑘1 is the conductivity value of the first element, and so on. Therefore,   101 

 
𝑈(𝑥𝑘) = 𝑈(𝜎𝑘) = 𝑓(𝐼(�⃗� ), 𝜎𝑘)   (7) 

The fitness function "r" is defined as the relative square error (Eq. 8) for solving the EIT inverse problem.  102 

 

𝑟(𝑥) = 𝑟(𝜎) = [
∑ (𝑈𝑖(𝑥) − 𝑉𝑖)

2𝑛𝑏
𝑖=1

∑ 𝑉𝑖
2𝑛𝑏

𝑖=1

]

1/2

 (8) 

The EIT reconstruction problem can be treated as finding the optimal conductivity distribution, σ, such that the error function, 𝑟(𝑥) is 103 

minimum. This study uses population-based optimisation methods to solve the EIT reconstruction problem. 104 

2.1 Proposed Methodologies: 105 

The authors developed the following algorithms, which are briefly described and used in this paper for solving the EIT problem. A 106 

detailed explanation of all these three algorithms can be found in [14–16] 107 

2.1.1 Advanced Particle Swarm Optimisation Algorithm (APSO): 108 

The conventional PSO method is essentially based on two equations: particle position and particle velocity. The APSO employed 109 

adds a term to the velocity equation, enhancing the PSO's performance.  110 

a) Modification in the velocity update equation:  111 

The advanced PSO employs the same initialisation process and parameters as the Standard PSO. The key distinction is in the velocity 112 

equation, which is also a critical component of the PSO algorithm. The third factor introduced into the PSO's velocity equation minimises 113 

particle positions during iterations, increasing velocity and allowing the algorithm to achieve the optimal solution faster. Furthermore, 114 

the particle position is influenced by the inertia weight. The velocity and position equations will be  115 

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑅1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑅2(𝑝𝑔 − 𝑥𝑖)  +  𝑤 (
𝑐1

𝑐2
) (𝑝𝑖 − 𝑝𝑔)                                                                                               (9) 116 

𝑥𝑖(𝑡 + 1) =  𝑤𝑥𝑖(𝑡) + 𝑣𝑖                                                                                                                                                               (10)                               117 

The new method used different equations and approaches to determine the particle's new position and velocity. As previously stated, 118 

the fitness test will find the local and global best in the same manner that the conventional PSO does. The rationale for dividing C1 and 119 

C2 in the velocity updated equation in the modified term is to keep the value from too little or too big, as both acceleration constants 120 

substantially influence particle movement in the search space. A nominal value aids particle convergence towards the optimal solution.  121 

b) Important Parameters Selection for the proposed algorithm: 122 

 Several aspects were taken into account when developing the APSO algorithm. These variables include the inertia constant, 123 

acceleration constants, and the maximum velocity limit.  124 

i. Maximum Velocity Selection:  125 

The APSO method assesses the velocity and location of each swarm member as they move in the provided search space dimensions 126 

after each iteration. If the value is enormous, members of the swarm can move unsteadily and far away from the best solution; on the 127 

other hand, if it is minimum, the particle's mobility is limited and does not move towards the best solution.  128 

ii. Acceleration constants Selection: 129 

The velocity equation's acceleration constants control the movements of every swarm member as it approaches the global and local 130 

optimal positions. If the values of the acceleration constants are too little, the movement of each component will be reduced. If it is too 131 

huge, each part deviates from its location. The acceleration constants are frequently used to fulfil the condition C1+C2 ≤ 4. PSO generally 132 

does not converge if it does not satisfy C1+C2 ≤ 4. Therefore, APSO's C1 and C2 values are set to 2.1 and 1.9, respectively.  133 
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iii. Selection of inertia constant:  134 

The inertial weight "w" is a crucial parameter to examine the convergence behaviour of the proposed APSO. The influence of the 135 

initial velocity on the present update is controlled by inertial weight. Inertial weight is a trade-off between the swarm's global and local 136 

capabilities. If the inertial weight has a higher value, it will enhance global exploration, i.e. it will aid in the search for new places. 137 

Similarly, suppose the inertial weight is minimal. In that case, it will facilitate local exploration, i.e. it will help fine-tune the present 138 

search region. As a result, in APSO, the inertial weight decreases linearly from one iteration to the next. The following relation is being 139 

used for inertial weight control:   140 

𝜒 =
2

𝛷−2+√𝛷2−4∗𝛷 
                                                                                                                                                                     (11)                                                                                                                                                                                                                                         141 

𝑤 = 𝜒 ∗ (0.0005 + 𝑤 ∗ (
𝑇−(𝑡−30)

𝑇
))                                                                                                                                       (12)                                                                                142 

In eq (12), T is the total iteration. The constriction factor is calculated as follows when phi=4.1; This constriction factor is used to 143 

modify inertial weight. The following control is incorporated into the inertial weight. In this paper, the value of phi is constant at 4.1. 144 

2.1.2 Advanced Gravitational Search Algorithm (AGSA) 145 

The masses of agents assess the performance of the proposed approach. In AGSA, the force of gravity draws all agents. It is 146 

responsible for their movement toward the agents with greater mass. Higher mass agents are considered the best solution to the given 147 

problem. Since the physics laws inspire AGSA, every agent has four characteristics these are passive gravitational mass "Mp", inertial 148 

mass "Mi", active gravitational mass "Ma", and position. Let's consider a system having "N" agents; the position of the ith agent can be 149 

defined as: 150 

 
𝑋𝑖 =  𝑋𝑖

1 + 𝑋𝑖
2 + ⋯+ 𝑋𝑖

𝑑 + 𝑋𝑖
𝑛  𝑓𝑜𝑟 𝑖 = (1,2, … , 𝑁) (13) 

In the dth dimension, "N" denotes the dimension of the search area and "xd" represents the position of the ith object. The force exerting 151 

on mass "i" from mass "j" at time t is defined as: 152 

 
𝐹𝑖𝑗

𝑑(𝑡) = 𝐺(𝑡)
𝑀𝑝𝑖(𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+ 𝜖
 (𝑋𝑗

𝑑(𝑡) −  𝑋𝑖
𝑑(𝑡)) (9) 

where G(t) is a gravitational constant at time t, Rij(t)is the distance between two objects i and j, and ε is a small constant. Mpi is the 153 

passive gravitational mass related to object i. Maj is an active gravitational mass of object j.   154 

Let's assume that in dimension d, the total force acted on object i is a random weighted sum of all the components of the forces 155 

applied on the other agents. Then (14) can be rewritten as: 156 

 
𝐹𝑖

𝑑(𝑡) =  ∑ 𝑟𝑎𝑛𝑑𝑗

𝑁

𝑗=1,𝑗≠𝑖
𝐹𝑖𝑗

𝑑(𝑡) (10) 

Defined by the second law of motion at time t, the acceleration of the object i in the direction d can be written as: 157 

 
𝑎𝑖

𝑑(𝑡) =
𝐹𝑖

𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
  (11) 

For the ith agent, Mii is the inertial mass. The velocity of the agents is based on acceleration and their present velocity. The position 158 

and the velocity of every agent are updated by (17) and (18) as 159 

 
𝑋𝑖

𝑑(𝑡 + 1) =  𝑋𝑖
𝑑 + 𝑣𝑖

𝑑(𝑡 + 1) (12) 

 
𝑣𝑖

𝑑(𝑡 + 1) = (𝑟𝑎𝑛𝑑𝑖  ×  𝑣𝑖
𝑑(𝑡) +  𝑎𝑖

𝑑(𝑡)) × (1 − 
𝑡

𝑇
)𝛼  (13) 

where randi is a uniform random number within [0-1], t is the current iteration, T is the total number of iterations, which is the stopping 160 

criteria, and α is an integer. The gravitational constant, G, monitors the searching accuracy, decreasing over the iteration. In AGSA, the 161 

inertial and gravitational masses are calculated by evaluating the fitness function. An agent with heavier masses is efficient and indicates 162 

that agents with heavier masses have higher attractions and move slowly. Suppose all the masses are equal  so  the  inertial  mass and 163 

the gravitational masses can be updated as follows: 164 

 
𝑀𝑎𝑖 = 𝑀𝑖𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖     𝑖 = 1,2,3, ………𝑁 (14) 

 
𝑚𝑖(𝑡) =

𝑓𝑖𝑡𝑖(𝑡) − 𝑋𝑤(𝑡)

𝑋𝑏(𝑡) − 𝑋𝑤(𝑡)
 (20) 

 
𝑀𝑖(𝑡) =

𝑚𝑖(𝑡)

∑  𝑁
𝑗=1  𝑚𝑗(𝑡)

 (21) 

At time t, fiti (t) is the fitness value of the agent. Worst  Xw(t) and Best Xb(t) for  a maximisation problem  are  defined as: 165 

 𝑋𝑏(𝑡) = max𝑗𝜀{1,…𝑁}  𝑓𝑖𝑡𝑗(𝑡) 
(22) 
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 𝑋𝑤(𝑡) = min𝑗  𝜀{1, …𝑁} fit (𝑡) 
(23) 

For the minimisation problem, (22) and (23) are defined  as follows: 166 

 𝑋𝑏(𝑡) = min𝑗  𝜀{1, …𝑁} fit (𝑡) 
(15) 

 𝑋𝑤(𝑡) = max𝑗𝜀  {1, …𝑁} fit  𝑗(𝑡) 
(16) 

The number of agents is gradually reduced to maintain a balance between exploration and exploitation in AGSA until only agents 167 

with larger masses applying gravity to the other agents in the search space are considered. This set of agents is called the best agents, 168 

"Kbest." As a result, the value of Kbest gradually decreases over iterations until just one agent applies force to the other agents. As a result, 169 

(15) is changed as follows:  170 

 𝐹𝑖
𝑑(𝑡) = ∑𝑗𝜀𝐾𝑏𝑒𝑠𝑡,𝑗≠i  rand𝑗  𝐹𝑖𝑗

𝑑(𝑡) 
(17) 

2.1.3 Hybrid Gravitational Search Particle Swarm Optimization Algorithm (HGSPSO)  171 

In the literature, several hybrid algorithms employ the qualities of two or more algorithms to increase the proficiencies of the hybrid 172 

variants. At the low and high levels, several techniques are utilised to merge the two methods in a homogeneous and heterogeneous 173 

manner. GSA is combined with PSO in this study, and the properties of both algorithms are used, i.e. both methods were conducted 174 

concurrently, and the hybrid algorithm, HGSPSO, is used to produce the results. The proposed fusion is primarily motivated by the need 175 

to capitalise on the PSO's exploitation capabilities and the GSA's exploration expertise. The parameters of each of these algorithms are 176 

used in HGSPSO. The two most significant parameters in PSO are the inertial weight and acceleration constants. As a result, in HGSPSO, 177 

inertial weight "w" is adjusted to either not employed as a linear reduction or is set as a constant value. However, it is used as a function 178 

of the global and local best fitness function values. Similarly, as the iteration advances, the acceleration constants utilised in this study 179 

vary adaptively. These two parameters are defined as follows:  180 

 
𝑤𝑖 = 1 − (

𝑝𝑔

𝑝𝑖

) (18) 

 
𝐶1 = (𝐶3 − 𝐶4) ∗ (1 −

𝑡

𝑇
) + 𝐶4 (19) 

 
𝐶2 = (𝐶5 − 𝐶6) ∗ (1 −

𝑡

𝑇
) + 𝐶6 (20) 

where C3, C4, C5, and C6 are constants values, "T" is the maximum iteration, and "t" is the current iteration. C1 values decrease 181 

adaptively, whereas C2 values increase during the iteration. Therefore, as the proposed approach advances to the exploitation stage, the 182 

masses become closer to the optimal solution. The acceleration coefficients are adjusted adaptively because there is no boundary in the 183 

evolutionary computation for transiting between these two phases. Furthermore, this adaptive technique aids exploration in the early 184 

stages and exploitation in the latter stages. The HGSPSO produces the best results when C1 is reduced from 2.5 to 0.5, C2 is reduced 185 

from 0.5 to 2.5, pg is the global best, and pi is the local best. Every agent is regarded as a potential solution in HGSPSO. Among other 186 

agents, the gravitational constant and gravitational force are measured using (30) and (31). (33) computes the agents' acceleration. At 187 

the time "t", the force of attraction by agent (mass) "i" from an agent (mass) "j" is defined as: 188 

 
𝐹𝑖𝑗

𝑑(𝑡) = 𝐺(𝑡)
𝑀𝑝𝑖(𝑡) ∗ 𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
(𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡)) (30) 

where Mpi is the passive gravitational mass associated with object i, ε is a small constant, Rij(t) is the distance between two agents i 189 

and j, Maj is an active gravitational mass of agent j, and G(t) is a gravitational constant at time t. G has been utilised adaptively to 190 

represent the relevance of exploration in the early stages of the algorithm and exploitation in the later stages. As a result, its value 191 

increases with each iteration. The primary goal of creating the G adaptively is to encourage the agents to take larger steps in the early 192 

stages of the algorithm. However, agents are compelled to travel gradually by the end of the iterations. (𝑡) is modified as follows:  193 

 
𝐺(𝑡) = 𝐺𝑜 × 𝑒−𝛾×(

𝑇−𝑡
𝑇

)
 (31) 

where Go is the initial gravitational constant and 𝛾 is the coefficient of decrease. Assume that in dimension "D", the overall force 194 

experienced on agent i is a random weighted sum of all the other parts of the forces exerted on the other agents (26) can be modified by 195 

the following equation.  196 

 

𝐹𝑖
𝑑(𝑡) = ∑  

𝑁

𝑗=1,𝑗≠i

rand𝑗  𝐹𝑖𝑗
𝑑(t) (32) 

 197 

Similarly, acceleration can be calculated as 198 
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𝑎𝑖

𝑑(𝑡) =
𝐹𝑖

𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
 (33) 

For the minimisation problem, the gravitational and inertial masses may be calculated similarly defined from (19-21). As previously 199 

stated, the GSA is a memoryless algorithm. The optimal solution may not be saved because other less-fitted masses pull away the best 200 

mass. A novel velocity update technique is proposed to circumvent this issue. The updated velocity update equation is as follows:  201 

 
𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑎𝑖 + 

𝑐1
𝑐2

 × (𝑝𝑔 − 𝑝𝑖) (21) 

Where C1 and C2 are the acceleration constants, w is the inertial weight, a is the acceleration, pg is the global best (gbest), pi is the 202 

local best position, and vi is the agent's velocity. The third term in (34) is similar to the social element in the PSO velocity equation. A 203 

greater C1 value favours GSA behaviour, whereas a more significant C2 value favours PSO's social aspect in the search method's 204 

execution. The adaptive approach allows GSA to evaluate the search region more effectively, and a PSO exploits the best solution. 205 

Finally, the positions of agents are modified as follows:  206 

 
𝑋𝑖

𝑑(𝑡 + 1) = 𝑤 × 𝑋𝑖
𝑑 + 𝑣𝑖

𝑑(𝑡 + 1) (22) 

All agents are randomly initialised in the proposed algorithm. Particle acceleration is then measured by utilising (33). At each 207 

iteration, the best solution found thus far should be updated. The velocities of all agents are then computed using (30), and the agents' 208 

locations are finally updated using (35). The iterations are completed when the required stopping criteria are met.  209 

3 Applications for EIT 210 

To study the EIT problem, two cases are used. In case 1, a circular tank simulation is conducted using the EIDORS [17]. In the 211 

second case, a gastric emptying problem is studied, and images are reconstructed using the data available in EIDORS.  212 

3.1 Circular Tank Simulation by using EIDORS  213 

To assess the performance of the proposed methods, a circular tank simulation is conducted by creating the forward model from 214 

EIDORS. The simulations are performed by implementing a 16-electrode EIT system. The forward modelling is achieved by the finite 215 

element method by discretising the forward model into small elements called meshes. The EIDORS parameters for the forward 216 

modelling are set as refining level '2' and density level 'b'. In this work, the detection of irregular objects is obtained that are placed at 217 

three different locations inside the circular tank. The relative error amongst the distributions of calculated and measured electrical 218 

potentials at the domain boundary is utilised from the optimisation perspective. The dimension of the problem is equal to the number of 219 

meshes of the finite element model. Each candidate's solution is the real vector used as a possible conductivity distribution. The 220 

population size of each algorithm is set to 100 agents. The stopping criteria are placed until the best image is obtained or when the total 221 

number of iterations is obtained. The images were obtained at t=50, 100, 200, 300, 400, and 500 iterations. The fitness function assesses 222 

the evaluation of the performance of the proposed methods.  223 

3.1.1 Experiential setup 224 

The experimental model was made to simulate the cylindrical phantom problem of EIT imaging and optimise the image 225 

reconstruction quality using swarm intelligence. The model consists of a cylindrical object. The interior of the cylinder has a constant 226 

and uniform conductivity. The cylinder is filled with a saline solution to achieve continuous and consistent conductivity in the physical 227 

setup. The cylinder is surrounded by 16 electrodes placed at equal arc lengths from each other. The electrodes are considered lossless, 228 

i.e., no voltage drop occurs at the electrodes and the wires connecting those electrodes. In a hardware implementation, the losses 229 

associated with electrodes and wires are also considered due to the high sensitivity of the measuring equipment.  230 

The 16 electrodes are chosen to obtain a good image while reducing the computational cost. The number of electrodes may be 231 

increased if a better image resolution is desired. Still, the time it takes to obtain an optimum solution will increase drastically.  232 

The inner cylinder is modelled as having a constant conductivity. A region is defined inside the domain of the outer cylinder with a 233 

constant conductivity which contrasts with the conductivity of the fluid-filled outer cylinder. Fig 1. shows the experimental simulation 234 

setup for the cylinder phantom problem.  235 
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 236 
Figure 1 Experimental Model for Simulation of Cylinder Phantom Problem 237 

3.1.2 Results and Discussion 238 

A simulation experiment is performed to validate the efficacy of the presented reconstruction algorithms for EIT image 239 

reconstruction. The parameters adopted for conducting the simulations for the three proposed algorithms are defined in Table 1. 240 

Table 1 Parameters of the proposed methods used for Case 1 241 

 242 

Figure 2 Forward model placed at the (i) centre (ii), near the left border (iii), and the right border of the circular domain 243 

Figure 2 shows the forward model of the circular tank that is discretised into small elements. Each element has a conductivity value. 244 

The background conductivity is defined as 1 S/m, and the target conductivity is 6 S/m in meshes, as shown in Fig.2. 245 

This object is highlighted with the dark colour in the forward model placed at the (i) centre (ii), near the left border (iii), and the right 246 

boundary of the circular domain. Figures 3, 4, and 5 show the reconstruction results obtained using APSO, AGSA, and HGSPSO 247 

algorithms. Figures 6, 7, and 8 show the RMS error with the number of iterations for the object placed in the centre, near the left border, 248 

and the right boundary of the circular domain. The performance of the reconstruction methods can be evaluated by studying the visual 249 

results shown in Figure 3, Figure 4, and Figure 5.  250 

AGSA algorithm shows an interesting behaviour because the results attained for the initial fifty epochs are neither conclusive nor 251 

anatomically steady. Also, the error of reconstruction for all three cases is steady, and the AGSA algorithm does not further down the 252 

reconstruction error. However, from the start, APSO gives morphologically stable results for all three cases, as seen in Figures 3,4 and 253 

5. Similarly, the relative error convergence is much better than the AGSA algorithm. Nevertheless, the HGSPSO approach gives 254 

remarkable results for all three qualitative and quantitative cases, as shown in figures 3-5. Combining the APSO and AGSA 255 

algorithms helps the HGSPSO algorithm provide the anatomically correct solution in the early iterations. It helps to escape from the 256 

Algorithms Parameters 

HGSPSO Population size= 100, C1 = [2.5-0.5], C2= [0.5-2.5], w= (5.16), Go=100 

APSO Population size=100, C1 = [2.5-0.5], C2= [0.5-2.5], w= (3.29) 

AGSA Population size=100, Go=100 
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local minima, accelerating convergence quickly compared to the other two algorithms. For the object on the right side of the circular 257 

domain case, the HGSPSO algorithm minimises the error after reaching 400 iterations than the other two algorithms. 258 

 259 
Figure 3 Reconstruction results for an object placed at the left for (A) APSO, (B) AGSA and (C) HGSPSO 260 

 261 
Figure 4 Reconstruction results for an object placed at the right side of the border for (A) AGSA, (B) APSO and (C) HGSPSO 262 
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 263 
Figure 5 Reconstruction results for an object placed on the centre for (A) APSO, (B) AGSA and (C) HGSPSO 264 

 265 

 266 

Figures 6-8 show the error reconstruction plots for all three cases, and it can be seen that the HGSPSO gives better performance than 267 

the APSO and AGSA methods. The relative error value for the HGSPSO is much smaller than the other algorithms. This RMSE 268 

replicates the reconstruction quality with relatively high sensitivity. This error lies between 0 and 1. The lesser value of the error shows 269 

that the variation between the model and the reconstructed image is small, the reconstruction quality is excellent and vice versa. If 270 

RMSE=0, that means there is no error in reconstruction. 271 

 272 
Figure 6 Error of reconstruction w.r.t iterations for an object placed at the right side of the circular 273 
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 274 
Figure 7  Error of reconstruction w.r.t iterations for an object placed at the left side of the circular tank 275 

 276 
Figure 8 Error of reconstruction w.r.t iterations for an object placed at the centre of the circular tank 277 

Table 2 Comparison of the proposed methods for the circular tank simulation 278 

Case 1  HGSPSO AGSA APSO 

Left 

Mean 0.105967 0.16214 0.12699 

Std. Dev 0.011042 0.00279 0.000413 

Rank 1 3 2 

Right 

Mean 0.089787 0.128333 0.09883 

Std. Dev 0.000196 0.003377 0.000411 

Rank 1 3 2 

Centre 

Mean 0.055803 0.075223 0.058824 

Std. Dev 0.00045 0.000449 0.001092 

Rank 1 3 2 

Table 2 compares the three proposed methods' mean and standard deviation values. It is clear from the table that the HGSPSO 279 

algorithm has lower values of the mean and standard deviation and has better performance than the other two techniques. The lower 280 

mean value of the reconstruction error shows that the reconstructed image matches the model better. 281 

3.2 Gastroparesis (Case 2) 282 

Gastroparesis is an illness that disturbs the stomach muscles and stops stomach emptying. Gastroparesis can affect digestion. The 283 

primary reason may be the damage to a nerve that controls the stomach muscles. Various pathological situations are related to delayed 284 

gastric emptying; common reasons are gastroparesis tributary to surgery, gastritis, diabetes, or gastric ulcer. Radionucleotide techniques, 285 

which encompass the classification of the solid or liquid phase of a meal with a standard isotope like 99mTc and 111In, are regarded as 286 

the most precise clinical methods for assessing gastric motility. This method involves ingesting a test meal followed by recurring imaging 287 

every 15 minutes for up to 3 hours to determine the commotion in the region of interest. The key factors that affect gastric motility are 288 

meal composition, volume, and caloric content. 289 
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Electrical impedance tomography (EIT) is a new medical imaging technology developed in the last few decades. It has three 290 

significant advantages: functional imaging, non-invasive, and medical image monitoring. Its benefits in the gastrointestinal field the 291 

most common application is to evaluate the flow of food through the stomach instead of the nuclide method, which is still regarded as 292 

the gold standard for gastric emptying measurement in clinical practice. EIT can accurately measure changes in gastric volume. EIT 293 

gastric emptying measurement correlates well with dye dilution, gastric retention, nuclide, etc. EIT gastric motility measurement uses 294 

electrodes placed on the body surface. The array realises non-destructive detection and directly displays the contraction and movement 295 

of the stomach body in the body in real-time image mode. It will significantly advance gastric motility detection and evaluation methods 296 

and show an attractive application prospect. 297 

The stomach is one of the tissues and organs in the human body that are easier to extract EIT information. During the active period 298 

of the stomach, especially during the food digestion period, due to the contraction and movement of the stomach, its shape, volume, and 299 

content composition change significantly. The electrical characteristics change very; obviously, the signal is strong, and the information 300 

is enormous. The EIT technology can non-invasively and continuously detect the gastric motion signal, extract the electrical 301 

characteristics and change information corresponding to the gastric dynamics, and reflect the contraction, peristalsis, and emptying 302 

process to detect and evaluate gastric motility function. 303 

3.2.1 Experimental Setup: 304 

The experimental model for the gastric emptying problem consists of a cross-section of the human abdomen at the stomach level 305 

[18]. This model is available in the EIDORS library [19]. A sixteen electrodes EIT data acquisition system is used for measuring the 306 

voltage and injecting current. The system can detect applied voltage at all electrodes of a single injection pattern in 40ms. A current 307 

injection of 1 mA at 13 kHz was used.  To disregard any conductivity modifications caused by cardiac activity, all the data was set at 308 

100 ms. The conductivity distribution is then calculated by solving the nonlinear methodology of equations. The focus is mainly directed 309 

toward the dynamics of EIT due to its ability to overshadow minor measurement errors and sensitivity towards microscopic changes in 310 

conductivity. Electrodes were positioned uniformly, encompassing the subject's abdomen. The experiment was carried out three hours 311 

after the last meal the subject had consumed. A series of standardised values were obtained, and the subject drinking 355ml of Coke 312 

induced conductivity change. At intervals of five minutes, measurements were obtained for an hour. Based on this acquired data, 313 

conductivity changes with respect to changes in gastric activity were measured. Sixteen electrodes are placed at the periphery of the 314 

cross-section to simulate the real-world scenario.   315 

The interior of the cross-section is modelled as a constant conductivity fluid. In contrast, the stomach is modelled as a circular region 316 

with constant conductivity, contrasting with the surroundings. The conductivity of the stomach varies with the number of contents inside 317 

it.  318 

Figure 9 shows the experimental simulation setup for the gastric emptying problem. The number of electrodes can be increased if 319 

high-resolution images are required, increasing the computation time.  320 

 321 
Figure 9 Experimental Model for Simulation of Gastric Emptying Problem 322 

3.2.2 Results and Discussion 323 

The parameters adopted for conducting the simulations for the three proposed algorithms are defined in Table 3. 324 

Table 3 Parameters of the proposed methods for Case 2 325 

Algorithms Parameters 

HGSPSO Population size= 100, C1 = [2.5-0.5], C2= [0.5-2.5], w= (5.16), Go=100 

APSO Population size=100, C1 = [2.5-0.5], C2= [0.5-2.5], w= (3.29) 

AGSA Population size=100, Go=100 
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The data in this example is taken from the EIDORS-contributed data [20]. Figures 10-12, solved by the three proposed methods, 326 

present the variation in conductivity distribution between the reference calculations and those instantly after assimilation; the images 327 

taken after some time of the ingestion changed in amplitude only. In the left front section, there is an area of reduced conductivity that 328 

is similar to the position of the stomach. The sub-figures (a)-(l) in figures 10-12 show a gradual decrease in the conductivity in the 329 

stomach region with time. Figure (a) shows the image taken at the start of the process when the subject had ingested 330 ml of Coke. 330 

The data used in this study is taken from the EIDORS. Figure (b) shows the image captured after five minutes. All subsequent images 331 

(c)-(l) are captured at 5 minutes intervals. These figures show a reduction in the conductivity of the stomach. This is because as the drink 332 

leaves the stomach and enters the small intestine, the fluid inside the stomach decreases, reducing conductivity. The last figure (l) was 333 

captured 60 minutes after the subject had the drink. The stomach showed a lower conductivity than at the start of the gastric emptying 334 

test. All these sub-figures show a regressive decrease in the conductivity of the stomach. Fig 13 shows the relative error of reconstruction 335 

between the three proposed methods. The results indicate that the HGSPSO algorithm gives better image reconstruction with minimum 336 

error. This shows that EIT is subtle to conductivity variations if it lies away from the measurement plane as it detects the liquid even if 337 

it has gone into the small intestines and in the areas not possible by radionucleotide imaging. These results highlight that EIT is a 338 

promising physiological imaging technique. 339 

Table 4 Comparison of the proposed methods for gastric emptying 340 

Case 2 HGSPSO AGSA APSO 

Mean 0.007677 0.044774 0.023499 

Std. Dev 0.002317 0.001302 0.005139 

Rank 1 3 2 

 341 

Table 4 compares the APSO, AGSA, and HGSPSO algorithms for gastric emptying. The mean and standard deviation values indicate 342 

that the HGSPSO performs significantly better than the other two methods for gastric emptying. 343 

 344 

 345 
Figure 10 Gastric Emptying images by HGSPSO 346 
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 347 
Figure 11 Gastric Emptying images obtained from AGSA 348 

 349 

 350 

Figure 12 Gastric Emptying images obtained from APSO 351 
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 352 
Figure 13 Comparison of the Relative Error of reconstruction between three proposed methods 353 

4 Conclusions 354 

The circular tank simulation is conducted using EIDORS. The forward model is built by FEM, where the circular domain is 355 

discretised into small elements. The proposed methods solve the EIT problem as an optimisation problem by minimising the root mean 356 

square error. The results showed that the HGSPSO method gives better image reconstruction than the other presented methods. The 357 

error value obtained from the HGSPSO algorithm is close to zero, which indicates that there is significantly less error between the model 358 

and the reconstructed images obtained in case 1. In addition to the simulations performed for the circular tank in case 1, a gastric 359 

emptying problem is also examined in this study. 360 

EIT has outstanding advantages of functional imaging, non-invasive and medical image monitoring, which is conducive to detecting 361 

and evaluating gastric motility and changes during digestion and digestion. The frequency of gastric contraction and peristalsis is about 362 

three times/min. For EIT, the real-time requirements of the system are not high, impedance information is easy to extract, and one of 363 

the better EIT application targets. EIT gastric motility measurement uses electrode arrays placed on the body surface to achieve non-364 

destructive testing and directly display the contraction of the gastric body in the body in real-time images. Identifying and eliminating 365 

respiratory disturbances and exercise conditions is easy, which will be the most critical advancement in gastric motility detection and 366 

evaluation methods, showing attractive application prospects. 367 

The proposed methods give a new paradigm for solving the EIT problem. These methods not only optimise the reconstruction error 368 

of the EIT image but may also be used to enhance other features. There are several factors on which the reconstruction and forward 369 

problems are dependent. These factors include the signal-to-noise ratio, spatial resolution, and on modelling. Using population-based 370 

methods, these factors can be quickly and accurately optimised. The advantage of population-based methods is finding the best image 371 

out of many possibilities. These methods can also improve the resolution of the captured images. It can also optimise the voltage 372 

difference norm used for the time difference EIT image reconstruction.  373 
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