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ABSTRACT
Understanding crowd behavior is crucial for energy demand-side
management. In this paper, we employ the fluid dynamics con-
cept potential flow to model the energy demand shift patterns of
the crowd in both temporal and spatial dimensions. To facilitate
the use of the proposed method, we implement a visual analysis
platform that allows users to interactively explore and interpret
the shift patterns. During the demonstration, we will invite con-
ference attendees to evaluate the proposed method through a
hands-on experience with a real case study.

1 INTRODUCTION
Due to the current energy crisis, effective urban energy man-
agement has become more urgent than ever. Improving energy
efficiency and reducing carbon emissions is a global topic that
has attracted widespread attention from governments or orga-
nizations around the world. Buildings are currently the main
contributor to energy consumption, accounting for 40-60% of
total energy consumption [2, 11]. Urban energy management to
balance demand and supply is crucial for energy efficiency. En-
ergy balance refers to a match between supply and demand at a
specific time and location. It is related not only to the operational
stability of the grid, but also to the efficient use of energy, such as
avoiding energy waste due to overproduction. However, energy
balancing is a challenging task because most controls take place
only on the production side, while much less on the demand side.
In demand-side management, the dynamics of energy demand
reflects demography, mobility, and urban spatial characteristics.
As such, it is closely related to a variety of factors, such as climate,
crowd consumption behaviors, and living habits. For example,
according to the study [5], consumer behavior can affect energy
consumption by up to 4.2% in the Netherlands. To better maintain
the balance between supply and demand, it is critical to explore
crowd consumption behaviors. However, exploration of energy
demand and crowd behavior remains in its infancy [12], which
requires more research efforts. Therefore, this research aims to
answer the following two questions: How does crowd behavior
affect urban energy demand, and how can the effects be visualized
to aid energy dispatch decisions?

Wefirst model the dynamics of urban energy demand in spatial
and temporal dimensions, and then present a visual analysis
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system for user interaction. In fluid mechanics, potential flow
[3] has been used to model flow dynamics, e.g., for water waves,
electro-osmotic flows, and groundwater flows. Changes in energy
demand have a continuum characteristic similar to that of fluid
dynamics. Inspired by this, we introduce the potential flow to
model the spatiotemporal dynamics of the crowd energy demand.
That is, the patterns of energy demand shifts are represented
as potential flows and visualized on a geographic map. With
the proposed system, utilities can provision energy supply and
optimize energy distribution based on demand.

2 RELATEDWORK
In recent years, energy data management, including energy data
analysis and visualization, has attracted increasing interest in
the database community. Among others, Cerquitelli et al. [4] pro-
pose a data visualization framework, INDICE, to explore building
energy efficiency by querying analytic tasks and implement a
dashboard that allows different stakeholders to discover and in-
terpret knowledge at different spatial granularities. Acquavivay
et al. [1] collect and analyze the thermal energy consumption of
heating systems in residential and public buildings and create
an analysis platform, EDEN, to present building energy perfor-
mance indicators, with the aim of raising awareness of energy
savings. Karatzoglidi et al. [7] propose an automated energy
prediction system, Enfore, for residential buildings. The system
supports automation of data preprocessing and prediction for
univariate or multivariate time series data of energy consump-
tion. In our previous research, we propose a smart meter data
analysis system, SMAS [9], for energy demand management; and
propose an interactive visual analysis system, VAP [10], which
allows users to explore energy consumption patterns and seg-
ment customer groups according to the patterns. In addition, we
benchmark smart meter data analysis technologies [8], including
in-database, in-memory, column-store and distributed data anal-
ysis. We hope that these research efforts will increase awareness
of this emerging application in energy data management within
the database community and stimulate further research on this
topic.

3 DEMAND DYNAMICS ANALYSIS SYSTEM
Figure 1 presents an overview of the proposed visual analysis sys-
tem for exploring energy demand dynamics. The system consists
of three main building blocks, including (i) data and data process-
ing, (ii) energy demand dynamics modeling, and (iii) interactive



Data preprocessing

Outlier removal and
missing value fixing

Database

Descrete energy
consumption on map

Energy demand
strength map

Potential flows

Dynamics modeling
Interactive visual

analysis dashboard

Energy consumptin
data & Geospatial data

Figure 1: System overview
visual analysis dashboard. The system combines various tech-
niques to effectively model energy demand shift patterns over
spatiotemporal dimensions and visualizes the patterns in a user-
friendly manner. Visual analysis is an interactive process that
allows users to first make assumptions based on their own knowl-
edge or judgment, then explore the results on the dashboard, and
finally validate the assumptions and obtain new knowledge. The
visual analysis system uses PostgreSQL as the underlying data
management system, with an extension of PostGIS to support
spatial data operations.

3.1 Data and preprocessing
The energy consumption data are electricity data collected from
Pudong District, Shanghai, with a resolution of 12 hours and a
duration of 2 years. Spatial information including the longitude
and latitude of customers was also provided. The raw data con-
tains noise, irregularities, and missing values. We first smooth
the time series using window-based convolutional smoothing,
which involves creating an approximation function to smooth
the noisy data and fixing the missing values by interpolating over
a curve that follows the trend of the consumption time series.
Then, we use a weighted sampling method [6] to reduce bias in
the data. This method adds weights to the original data points
to measure their importance: The higher the weight, the more
important they are in the data set. The weighted sampled data
will be used in the kernel density estimation function in the next
subsection to model the energy demand dynamics.

3.2 Energy demand dynamics modeling
We model the dynamics of crowd energy demand using potential
flows, and show the schematic modeling process in Figure 2.
According to potential flow theory [14], external flows around
bodies are invicid (i.e., frictionless) and irrotational (i.e., the fluid
particles are not rotating) because the viscous effects are limited
to a thin layer next to the body called the boundary layer. A
potential flow can be described by means of a velocity potential
function, 𝜑 (𝑥,𝑦, 𝑧, 𝑡), where 𝑥,𝑦, 𝑧 represents the dimensions in a
3-D spatial space at the time at 𝑡 . The flow velocity is the gradient
of the velocity potential, i.e., ®𝑉 = ∇𝜑 . From vector calculus, for
any scalar,𝜑 , there is∇×∇𝜑 = 0. Consequently, there is∇× ®𝑉 = 0,
which implies that a potential flow is an irrotational flow.
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Figure 2: Schematic illustration of the modeling process

As we consider households that are spatially discrete and
distributed on a 2D map (see Figure 2), the modeling process

is based on the potential function, 𝜑 (𝑥,𝑦, 𝑡). Here, we employ
kernel density estimation (KDE) as a potential function to encode
energy consumption into a continuous representation of strength
map, defined as follows:
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where ℎ is the bandwidth; x𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 )𝑇 , is the coordinate
of a household 𝑖; 𝐾 is the kernel function, which is a symmetric
multivariate density; and 𝑐𝑖 is a normalized value of average
energy consumption used to reweight demand strength with
respect to geographic distribution, which is defined as follows:

𝑐𝑖 = ⌊𝛾𝐸⌋ (2)

where 𝐸 represents the energy consumption of 𝑥𝑖 and 𝛾 is the
filter coefficient defined by the users. We select the Gaussian
kernel to estimate the demand strength because it can provide a
reasonable estimate even for a small data set, which is defined as
follows:

𝐾ℎ (x − x𝑖 ) = 𝑒−
∥x−x𝑖 ∥2

2ℎ2 (3)
With the kernel density matrix (strength map), the temporal

dynamics of the energy demand over time from 𝑡1 to 𝑡2 can be
obtained by Equation 4, which calculates the gradient of the
strength difference in demand.

Shift|𝑡1,𝑡2 = ∇(𝑓𝑡2 − 𝑓𝑡1 ) (4)

The vector flow fields (arrows) in Figure 2 represent shifts in
energy demand, where the arrow represents the direction of the
shift and the length represents the strength of the demand; the
longer the arrow, the greater the demand shift.

4 VISUAL ANALYSIS DASHBOARD
This section will first introduce the user interface, then describe
the principles of visual analysis design, the used components
and process, and finally give some examples of exploring spatio-
temporal demand shift patterns.

4.1 User interface
Figure 3 shows the interface that allows users to interactively
explore potential flows to understand spatiotemporal demand
shift patterns. In the dashboard, view A is the control panel
and the only entry point for users to interactively explore the
dynamics of energy demand. Here, users can select any two
discrete time periods, i.e., first click the buttons on a1 and then
select the time periods of interest through drag and drop on
a3. The backend engine of the system will calculate the energy
demand shifts for the selected time periods in real time based
on the fluid dynamics model, and the results will be displayed
as the potential flows in view C, which represents the energy-
demand shift across different regions. To facilitate the use, we
have predefined several commonly-used demand shift analyses,
including daytime and nighttime, regular split periods, and the
flexible multiple time periods, which can be selected or entered
using the control components in a2. If the multiple time periods
are selected, view D will display the minimized views of the shift
patterns, also called the index view. For example, there are four
index views shown inD, including 1) 2017-01-14 to 2017-05-14; 2)
2017-04-29 to 2017-05-29; 3) 2017-05-14 to 2017-06-13; and 4) 2017-
05-29 to 2017- 06-28. When an index view is selected, it will be
displayed in the main view C. The associated quantitative profile
will be shown in view B, including total, daytime, nighttime
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Figure 3: Interactive visual analysis dashboard

(b) Q1/2017 → Q2/2017 (c) Q2/2017 → Q3/2017 (d) Q3/2017 → Q4/2017 (a) Daytime → Nighttime 

Figure 4: An example of exploring spatiotemporal shift patterns of energy demand
energy demand, the statistical distribution of daily consumption
and the consumption of households within the area.

4.2 Visual analysis and examples
As a visual analysis system, we introduce four visual elements to
represent the demand shift:
• Demand shift: It is represented by a flow map where the length
of the arrow encodes the strength of the demand shift;

• Demand-shift window: It gives the coverage of the analysis, and
its border color encodes the spatial demand shift. The window-
shape design will not obscure the map, but give the necessary
quantitative information for the demand shift;

• Demand-shift color legend: It gives the corresponding absolute
value for the spatial energy-demand shift in the grid area.
Quantitative results for the demand shift can be calculated
over spatial locations and time horizons;

• Demand-shift badge: It also encodes the spatial energy-demand
shift 𝜑 , which has the same meaning as the demand-shift win-
dow but gives a summary of demand shift in the grid area in
the index view. We use a solid grid, instead of a frame, because
it is much smaller on the visual index and more prominent.

This visual analysis design follows the Schniederman Mantra:
first the overview, zoom, and filter, then the details on demand [13].
With such a visual design, users can easily find the area of in-
terest and explore more information through interactions. For

example, the view D presents a thumbnail of the demand shift
within different periods, which is represented by a small demand
shift badge. If a user wants more detail, (s)he can simply click a
thumbnail to show the demand shift in the main view C. The vec-
tor arrows visualize the energy flow directions, while the color
of demand-shift windows represents an increase or a decrease of
energy demand.

We now show four examples of typical energy demand shift
patterns in Figure 4. Figure 4(a) represents the spatial patterns
from daytime to nighttime during a workday. The heads of the
potential arrows point to the red-colored area, which is the res-
idential area in Pudong district, while the tails of the potential
arrows are the commercial areas on both sides of the residential
area. This indicates that the high energy demand area will shift
from the commercial area to the residential area when people go
home after work. Figure 4(b)-(d) are the energy demand shift pat-
terns between any two continuous quarters in 2017, and Figure 5
shows the corresponding quantitative results of demand shift
amount. It is worth noting that from Q2 to Q3 has the highest
amount of demand shift, and the heads of the potential arrows
are pointing to the red-colored area (see Figure 4(c)). This place is
the location of Shanghai Disneyland where there are also many
hotels nearby. During the summer holidays, there is often a huge
tourist flow to this area, which may cause more energy consump-
tion. The other two demand shift patterns on spatial space can
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Figure 5: Demand shift amount between two quarters

be seen in Figures 4(b) and (d), and the difference in amount
are both negative. The amount difference can be explained by
the weather temperature. Typically, the weather in Shanghai is
mild in Q2 and there is no need for heating or cooling, while
winter is cold and some households use electricity for heating.
Q3 is hot summer time when a significant amount of electricity
is used for cooling. Therefore, Q3 is the season with the highest
consumption, followed by Q1 and Q4, while Q2 is the least.

As a result, utilities can schedule their power production and
plan supply for different time periods and areas based on demand
shift patterns and amount differences.

5 DEMONSTRATION
During the demonstration, we will present the proposed visual
analysis system in exploring crowd energy demand shift patterns
using the real-world electricity data set from the Pudong district.
We will first present the architecture of the entire system, includ-
ing the design of the backend and frontend and the modeling
approach to energy demand dynamics, and then show how to
use the system, especially the visual analysis process involved, to
ask questions, find answers through exploration, and gain knowl-
edge. Finally, conference attendees will experience the system
based on the following two scenarios:

S1: Exploration for district-wide demand shift patterns. In this
scenario, a user can examine demand shift patterns throughout
the Pudong district. This scenario will give the user hands-on
experience of using the proposed visual analysis and will help the
user interpret the result properly. The user will use the temporal
energy demand controls in the dashboard (View A in Figure 3).
The user first toggles the auxiliary analysis line (daily, yearly,
quarterly, monthly average demand button) and selects the period
of interest for analysis, then (s)he defines the exploration task in
one of the following temporal types: daytime-nighttime period,
regularly split period, or multiple periods. The user can toggle
the corresponding button, select the period(s) of interest by brush
operation, and then toggle the compute button to generate the
results listed as the demand shift visual index in view D, finally
select an index view to visualize the greater detailed demand shift
pattern in view C. The exploratory analysis results will include
the examples that were presented in Section 4.2. The user will
be asked to interpret each result obtained, with the necessary
assistance from us.

S2: Customized exploration for demand shift patterns and rec-
ommendation. This scenario allows the user to further explore
the spatiotemporal demand shift patterns. Based on the experi-
ence from S1, the user can customize the analysis areas and time
periods, i.e., select two or more areas on the map and two or
more time periods. The user can select different areas with any

shape simply by clicking and draging the mouse on the map, and
then click the time split button and select different discrete time
periods. The system will automatically select the corresponding
households within the selected areas, supported by PostGIS ge-
ometry operations in PostgreSQL. The system will then compute
the potential flow model result, and generate the index views
as shown in view D and the statistical information in view B.
The user will interpret the results and make the recommenda-
tion about energy distribution across different areas over time,
for example, the amount of electricity to be dispatched and the
dispatch time in order to achieve the supply and demand balance.
The user can also provide information on the implications of
the system, such as investments in energy infrastructure, energy
policies, and changes in consumer behavior that lead to better
energy efficiency.

6 CONCLUSION
Crowd consumption behaviors can have a significant impact on
energy demand side management, e.g., balancing energy supply
and demand. In this paper, we presented a novel visual analysis
system for analyzing energy demand shift patterns from spatial
and temporal dimensions. We have introduced the fluid dynamics
concept, potential flows, to model the energy demand dynamics,
and visualized it on a user-friendly dashboard. The proposed
visual analysis system supports the exploration of energy demand
shift patterns with different geographic areas and time periods.
We presented two demo scenarios to help users gain hands-on
experience using our system and gain insight into visual analysis
on energy data.
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