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Abstract

We introduce low-ASA residue pairs as classification features for distinguishing the different

types of protein interactions. A low-ASA residue pair is defined as two contact residues each from

one chain that have a small solvent accessible surface area (ASA). This notion of residue pairs is

novel as it first combines residue pairs with the O-ring theory, an influential proposition stating

that the binding hot spots at the interface are often surrounded by a ring of energetically less

important residues. As binding hot spots lie in the core of the stability for protein interactions,

we believe that low-ASA residue pairs can sharpen the distinction of protein interactions. The

main part of our feature vector is 210-dimensional, consisting of all possible low-ASA residue

pairs; the value of every feature is determined by a propensity measure. Our classification

method is called OringPV which uses propensity vectors of protein interactions for support

vector machine. OringPV is tested on three benchmark datasets for a variety of classification

tasks such as the distinction between crystal packing and biological interactions, the distinction

between two different types of biological interactions, etc. The evaluation frameworks include

within-dataset, cross-dataset comparison, and leave-one-out cross-validation. The results show

that low-ASA residue pairs and the propensity vector description of protein interactions are

truly strong in the distinction. In particular, many cross-dataset generalization capability tests

have achieved excellent recalls and overall accuracies, much outperforming existing benchmark

methods.
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1 Introduction

Close interactions are necessary and indispensable for proteins to fulfill molecular functions and

biological processes. Their binding behavior and the associated physicochemical properties are com-

plicated and amazing. One of the fundamental problems is to characterize the types of protein

interactions by using their structure information at the residue or atom level. Protein complexes

that are determined by the popular and prolific technique X-ray crystallography can be broadly clas-

sified into crystal packing or biological interaction according to the biological reality of the contact.

Crystal packing interactions/contacts are enforced by the crystallographic packing environment and

formed during the crystallization process, but they do not occur in solution or in their physiological

states1. Biological interactions have been carefully studied and categorized into sub-groups accord-

ing to various criteria, such as permanent versus transient complexes on the basis of the lifetime

of the complexes2, and homo-oligomers versus hetero-oligomers according to whether the interac-

tions occur between identical chains or not2. Depending on whether the protomers of interactions

can be found or not as stable structures on their own in vivo2, biological interactions can also be

grouped into obligate or non-obligate interactions2. Focusing on the different transition processes

in protein folding and binding3, two-state folding complexes and three-state complexes were also

used to describe obligate and non-obligate interactions. Further, Ofran and Rost’s work4 categorized

biological interactions in a more complicate way with six subtypes. The different types of biological

interactions possess their unique binding behaviors. For example, obligate interactions are stable,

and their protein chains function only in the complex form2; however, the protomers in transient

interactions associate to accomplish a particular function upon a molecular stimulus and dissociate

after that2. Therefore, deep understanding of these binding behaviors can be particularly useful for

reliable predictions on the types of interactions in new protein complexes5–7, and it is also helpful for

docking algorithms to construct the protein quaternary structures8 and to identify protein binding

sites9,10.

Outstanding chemical, physical and geometric properties9,11 have been extensively explored in

literature to describe and characterize protein interactions and their binding interfaces. These prop-

erties include hydrophobicity and polarity12–15 as chemical features, interface size and contact area

as physical features, and planarity, shape complementarity, circularity13,16 and secondary structure9

as geometric features. Other features such as residue conservation6,11, residue composition6,17–19

and propensity15, residue pairs7,20 and atomic pairs5,21–23 have been also proposed. Many of them
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have been involved in important findings. For example, biological interactions are found to be

significantly different in residue composition from the rest of protein surfaces15,16,24,25, while crys-

tal packing possess similar composition to the rest of protein surfaces26. The physical feature,

interface area of biological interactions, is found to be much larger than that in non-biological

interactions6,11,14,15,17,26–28.

These properties have also been integrated by many classification algorithms to discriminate

biological interactions from crystal packing15,29, and to distinguish different types of biological

interactions5,6, 30. Bernauer et al. developed structure-based scoring functions7,31 and later the

DiMoVo method32 for identifying biological interactions. Their key idea is on a Voronoi tessellation

which nicely describe the geometric and physicochemical complementarities of protein interfaces. Zhu

et al.6 proposed several descriptors of interfaces, such as interface area, amino acid composition and

gap volume, to distinguish obligate, non-obligate interactions and crystal packing. More recently,

atom/residue pairs were conceptualized and used in the distinction of protein interactions5,8, 21,22,30,

e.g., by the ACV (atom contact vector) method5.

The common approach adopted by the above classification methods is that the classification

properties are all taken from interface residues whose surface accessibility change is >0.1 Å2 14,15 or

>1.0 Å2 6,16 upon the formation of complexes. In this work, we further narrow down the scope of

interfacial residues to concentrate on those of low solvent exposure. Our new notion is called low-

ASA residue pairs. A low-ASA residue pair is defined as two contact residues whose ASA (solvent

accessibility surface area) is very small. The notion of low-ASA residue pairs is in agreement with the

influential O-ring hypothesis33–36, and one of its successors, the insightful “coupling” proposition37.

The O-ring theory states that the binding ‘hot spot’ residues are usually clustered and located at

the center of the interfaces, and they are often surrounded by energetically less important residues

shaped like an O-ring for occluding water molecules. The “coupling” theory37 highlights that the

hot spot residues are always coupled to each other with a short distance between the two sides of

the interface. Therefore, given a low-ASA residue pair, the two residues are both buried by O-ring

residues (i.e., the residues on the O-ring), and the spatial compactness between them is very tight.

Thus, low-ASA residue pairs probably form a special area that is richer of hot spot residues than

the other areas of the interface. As binding hot spots lie in the core of the stability for protein

interactions33, we believe that low-ASA residue pairs can sharpen the difference between different

types of protein interactions. With low-ASA residue pairs, an immediate ease is to accurately identify
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crystal packing, because the interfaces of crystal packing contain few fully buried atoms15.

A residue in a low-ASA residue pair may have multiple partners. Assume (A1, B1) is a low-ASA

residue pair in an interacting chain pair, it is often the case that (A1, B2), (A1, B3), or even (A1, B4)

is also a low-ASA residue pair. With this regard, we introduce O-ring-surrounded regions. Given an

interacting chain pair, its O-ring-surrounded region is the union of all low-ASA residue pairs of this

interacting chain pair.

We propose to construct a propensity vector to characterize the interaction behavior of an inter-

acting chain pair by using all of its low-ASA residue pairs as features. The propensity vector of the

low-ASA residue pairs consists of 213 feature elements: three elements are used for describing the

summary information of its O-ring-surrounded region, and the remaining 210 elements are reserved

for the propensity values of all possible low-ASA residue pairs contained in the O-ring-surrounded

region against the rest of protein surfaces. Assume we are given n number of protein interactions

in a classification problem, then n propensity vectors will be constructed accordingly. Each of these

propensity vectors will be labeled with the types of biological interactions, or crystal packing in the

training data.

Propensity vectors of our low-ASA residue pairs are related to but different from the residue-pair

method proposed in 7,20. Firstly, our residue pairs are low-ASA residue pairs satisfying the O-ring

theory and the coupling proposition, while residue pairs of 7,20 are just interface residue pairs which

include residues outside the O-ring surrounded region. Secondly, we calculate propensity values of

the low-ASA residue pairs which are totally different from frequency values of residue pairs as used in
7,20. Propensity values of residues are more competitive to frequency values to improve classification

performance as early observed by Bahadur et al.15. Finally, propensity vectors do not require the

assumptions of additivity as 7,20 required. Our propensity vector is also different from the frequency

vector of atom pairs proposed in ACV5,30. Compared with ACV, our vectors take into account

more biologically useful properties, such as residue composition and propensity of residue pairs, for

signifying the physicochemical properties of interfaces.

The discriminating power of propensity vectors of protein interactions are tested on three bench-

mark datasets6,15,21. In the experiments, we consider a variety of classification tasks, such as dis-

tinction between biological interactions and crystal packing, distinction within biological interactions

(e.g., obligate vs non-obligate interactions) and the 3-class classification problem. The performance

evaluation is also measured under a variety of frameworks, including within-dataset comparison,
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cross-dataset generalization capability test, and LOOCV (leave-one-out cross-validation). Our com-

prehensive comparison results have shown that low-ASA residue pairs and the propensity vector

description of protein interactions are truly strong in the prediction of protein interaction types.

In particular, many cross-dataset generalization capability tests have achieved excellent recalls and

overall accuracies, much outperforming existing benchmark methods.

2 Methods

In this section, we give an overview to the three test datasets. Then we present a formal definition for

low-ASA residue pairs and O-ring-surrounded regions, followed by a description of how to compute

a propensity vector of the low-ASA residue pairs for a protein interaction. We also introduce our

classification method, OringPV, and describe performance evaluation measurements.

2.1 Three Benchmark Datasets

The first benchmark dataset is the BNCP-CS dataset6 which comprises 75 obligate interactions, 62

non-obligate interactions and 106 crystal packing. Zhu et al.6 tested their NOXClass method on

this dataset to predict the three types of protein interactions. Here, the obligate and non-obligate

interactions in the BNCP-CS dataset are specially denoted by BNCP-CSbio, and the set of obligate

interactions and crystal packing are denoted by BNCP-CShocp.

The second dataset is the Ponstingl dataset21. It consists of 95 monomers and 76 homodimers.

On this datset, Ponstingl et al. tested their score schemes21 for the distinction between homodimeric

proteins and monomeric proteins, and Mintseris and Weng tested their ACV method5.

The third dataset is the Bahadur dataset15 which contains 70 heterodimeric complexes (also

termed as protein-protein complexes in 24), 122 homodimeric proteins and 188 crystal packing. The

homodimeric proteins and crystal packing of this dataset were used previously in 7,15. In this

work, the homodimeric proteins and crystal packing are specially denoted by Bahadurhocp, and the

heterodimeric complexes and homodimeric proteins in the Bahadur dataset are denoted by Bahadurbio

dataset.
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2.2 Low-ASA Residue Pairs and Their Propensity Vector

Let C1 and C2 be a pair of interacting polypeptide chains, two residues r1 ∈ C1 and r2 ∈ C2 are defined

as a low-ASA residue pair, if (i) the ASA of r1 and of r2 are both small, ideally with a value close

to zero, namely no much contact with water solvent; (ii) the minimum of the atom distances between

r1 and r2 is less than a threshold plus the van der Waals radii of the corresponding atoms. Here, we

set this threshold value, denoted by dtw, as a real number less than the van der Waals diameter (2.75

Å) of water molecules. The first criteria of this definition captures the idea of the influential O-ring

theory, indicating that the two residues r1 and r2 should satisfy a proposed condition33,36 for them to

be in a hot spot. The second criteria best follows the spirit of the coupling proposition, emphasizing

the importance of a water-free distance between two contact residues. The notion of low-ASA residue

pairs also more-or-less shares a light with our recent “double water exclusion” hypothesis38 which

was proposed to refine the O-ring theory for the binding hot spots at protein interfaces.

The O-ring-surrounded region of an interacting chain pair is the union of all low-ASA residue

pairs of this interacting chain pair. Usually, such a region is covered by one O-ring, i.e., a mono-island

region. However, sometimes, two subsets of low-ASA residue pairs in the O-ring-surrounded region

of an interacting chain pair may not share any common residues with each other. Such a region

may be covered by two or more O-rings, i.e., a multi-island region. Nevertheless, we treat the union

of all low-ASA residue pairs as the O-ring-surrounded region of the chain pair. Figure 1 shows an

example of O-ring-surrounded region which is located at the binding site between chain F and G of

PDB entry 1GLA. This O-ring-surrounded region consists of 24 low-ASA residue pairs involving 14

residues at chain F and 8 residues at chain G. Of the 24 low-ASA residue pairs, some are duplicates.

For example, residue pair (THR, VAL) occurs four times, residue pair (PHE, THR) occurs three

times, and both residue pair (ILE, PHE) and (ILE, SER) occur twice. All the rest occur only once in

this O-ring-surrounded region. Actually, the size of O-ring-surrounded regions varies greatly among

protein interfaces, especially among different types of protein interfaces. This can be seen from Table

I which shows the size information of O-ring-surrounded regions for the interactions in the BNCP-CS

dataset. We note that a size of zero means the O-ring-surrounded region is an empty set of residue.

Given an interacting polypeptide chain pair C1 and C2, computationally, we use two steps to

locate low-ASA residue pairs:

(1) we take the NACCESS software39 to remove those residues that have a relative accessible

surface area in the complexed form bigger than a threshold. In this work, this threshold is
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TABLE I: The size of O-ring-surrounded regions for the BNCP-CS dataset.
Interaction number of residues (and residue pairs)

Type minimum average maximum

Crystal packing 0 (0) 13 ±7.4 40 (46)

Transient 12 (13) 45 ±20.6 146 (214)

Obligate 23 (28) 83 ±53.2 288 (393)

Fig. 1: The O-ring-surrounded region between chain F and G of 1GLA in the ‘spheres’ view in

PyMOL with the color red and magenta. The residues in green and blue are interfacial residues of

large ASA which are filtered and are not used to form low-ASA residue pairs.

set as 36% following the one recommended by 38. Theoretically, this threshold should be close

to zero, but in real case, it is too strict, leaving too small number of residues for statistical

analysis. On the other hand, some hot-spot residues have relatively large ASA34. How to

determine the optimal threshold is still a difficult problem.

(2) Let C ′1 and C ′2 be the residue set of C1 and of C2, respectively, after the residue removal by

step 1. Let ri ∈ C ′1 and rj ∈ C ′2, we calculate the distance between all possible atom pairs of ri
and rj. If the minimal distance is less than their van der Waals radii plus dtw, then ri and rj

is a low-ASA residue pair.

We would like to also point out that there is no gold standard about how to determine an optimal

dtw. We have tried to set dtw as every value from 0.5 Å to 2.75 Å with step 0.25 Å. We found that the
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classification performance had only small variation across most of these situations when dtw changed.

In this work, we only report the results when dtw was set as 1.5 Å. Note that under this setting

(dtw=1.5 Å), the performance was not always the best on all of the datasets.

Construction of our Propensity Vectors: Given an interacting protein chain pair, C1 and

C2, we construct a propensity vector based on the low-ASA residue pairs of this interaction. This

propensity vector consists of two parts. (i) At the summary part, there are three feature elements for

describing the summary information of the O-ring-surrounded region—two numbers (each for one

chain) of the contact residues from the O-ring-surrounded region, and the total number of low-ASA

residue pairs; (ii) at the propensity part, there are 210 elements (C2
20 + 20=210) each for describing

the propensity value of one of the all possible residue pairs (ri, rj), i ≤ j, i, j = 1, ..., 20, between the

O-ring-surrounded region and the surface area of this protein chain pair. The propensity value of a

residue pair (ri, rj) is calculated by

p(ri,rj)= log(
f(ri,rj)

(fr1i fr2j+fr2i fr1j )/2
+ 1) (1)

where f(ri,rj) is the frequency fraction of the residue pair (ri, rj) in the O-ring-surrounded region;

frc
k
, k=i, j, is the frequency fraction of the residue rk in the surface residues of the protein chain

Cc (c=1, 2); the number 2 is used to compensate the double expected count of the pairs for surface

residues. A residue is considered as a surface residue if its relative accessibility is greater than 25%40.

Note that our frck is based on the protein surface residues instead of interface residues20. Reasons

why we calculate propensity values of residue pairs by using frc
k

in the protein surface residues

include: (i) The interface between two proteins in crystal packing occurs by chance, and the residue

composition in the interface is similar to that in the rest of protein surfaces26; (ii) However, at the

interfaces of biological interactions, the residue composition is statistically different from protein

surfaces15,16,24,25. Thus, the interfaces of biological interactions and crystal packing have different

propensities to be compared with protein surfaces.

We take an example to show how the propensity value of a feature is obtained. Residue pair

(THR, VAL) is a low-ASA residue pair in the O-ring-surrounded region shown in Figure 1. This

residue pair occurs four times in this region, so f(THR,V AL) is 0.167 (4/24). And then fF(THR)=0.076,

fG(THR)=0.0286, fF(V AL)=0.038 and fG(V AL)=0.0514. Therefore, the propensity value of this residue

pair, p(THR,V AL)=log( 0.167
(0.076∗0.0514+0.038∗0.0286)/2 + 1) =4.22.

Construction of binary vectors and frequency vectors: In parallel, a binary vector of low-

ASA residue pairs and a frequency vector of low-ASA residue pairs are also proposed in comparison
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to the above propensity vector. The binary vector and the frequency vector both have the same 213

feature elements as the propensity vector does. The only difference is on the feature values. The

values of the 210 feature elements (i.e., the second part of the vector) of a binary vector indicate

whether the residue pairs occur in the O-ring-surrounded region or not; similarly, the 210 feature

values of the frequency vector are the frequency values of the residue pairs in the O-ring-surrounded

region. These binary vectors and frequency vectors are called low-ASA binary vectors and low-

ASA frequency vectors respectively in this work. They are different from those defined in 7,20

which determine the feature values by using the entire interface residues (without considering the

water accessibility restriction). However, we use residues in O-ring-surrounded region which are the

energetically most important subset of residues in the binding. In this work, the binary vectors

and the frequency vectors based on the entire interfaces (without considering the water accessibility

restriction) are termed traditional binary vectors and traditional frequency vectors respectively.

2.3 OringPV: Our Classification Method

Given an interaction classification task, we first construct a propensity vector for every interaction

in the training data and also in the test data. Then, we take these training propensity vectors as

input and feed to Support Vector Machine (SVM)41 to build a classifier. As low-ASA residue pairs

are heavily involved in the construction of the propensity vectors, we name this learning process

OringPV (short for learning by Propensity Vectors of low-ASA residue pairs in O-ring-surrounded

regions).

In this work, all classification tasks are performed by running the libsvm software package42 which

contains an implementation of the SVM learning method. A Radial Basis (RBF) kernel function was

chosen in the training. To determine optimized C and γ for the RBF kernel functions, a grid search

heuristics43 was imposed on training data with 10-fold cross-validation.

For the test datasets above that have three types of protein interactions, such as the BNCP-CS

dataset and the Bahadur dataset, our OringPV method employs a two-stage SVM: the first-stage

SVM is used to discriminate crystal packing and biological interactions, and the second-stage SVM

is subsequently to differentiate different types of biological interactions.
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2.4 Performance Measures

To quantify sensitivity performance of classification methods, we denote biological interactions as

positive set and crystal packing as negative set when identifying biological interactions from non-

biological interactions, and one type of biological interactions (e.g., obligate interactions in the BNCP-

CS dataset) as positive set and the other type of biological interactions (e.g., non-obligate interactions

in the BNCP-CS dataset) as negative set in the process of distinguishing two types of biological

interactions. In addition to sensitivity (the fraction of correctly predicted positive interactions over

all positive interactions), the performance is evaluated also based on precision (the percentage of

correctly predicted positive interactions over all predicted interactions), specificity (the fraction of

correctly predicted negative interactions over all negative interactions), accuracy (the number of

correctly predicted positive and negative interactions divided by the number of all interactions), as

well as Receiver Operating Characteristics (ROC) curves and their Area Under the ROC curves

(AUC).

3 Classification Results

Our experiments are conducted under the following four aspects of considerations:

• Leave-one-out cross-validation (LOOCV) within the datasets for showing the outstanding ca-

pability of our OringPV method to distinguish different types of protein interactions.

• The comparison of the propensity vectors with low-ASA binary vectors, low-ASA frequency

vectors, and the vectors without considering the water accessibility restriction to show the

subtle and deep discriminating power of the propensity vectors.

• Within-dataset comparison with benchmark classification methods such as the NOXclass method6,

the DiMoVo method7, and other methods5,15,21. The evaluation frameworks for each dataset

strictly follow those set by these literature methods.

• Cross-dataset test for comparison between our OringPV method and the literature methods.

We use one dataset for training and other datasets for performance testing. It is similar to the

so called independent or blind data testing scheme. This is a more reliable approach to testing

a classifier’s generalization capability.
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TABLE II: The overall performance of our OringPV method under LOOCV procedure. The numbers

in parentheses are for classification performance by the traditional frequency vectors.
Dataset and Sensitivity Specificity Precision Accuracy(%)

Interaction Types (%) (%) (%) SVM Stage 1 SVM Stage 2 SVM Overall

BNCP-CS

OB 90.7(88.2) 97.0(92.9) 93.2(84.8)

96.7(95.1) 87.9(82.9) 92.2(88.1)NO 90.3(79.0) 93.4(93.4) 82.4(80.3)

CP 94.3(93.4) 98.5(96.4) 98.0(95.2)

Bahadur

HO 83.6(81.1) 96.9(88.0) 92.7(76.2)

87.9(78.7) 87.4(73.8) 85.8(75.5)NO 71.4(51.4) 95.5(94.5) 78.1(67.9)

CP 92.6(80.9) 83.3(76.6) 84.5(77.2)

Ponstingl
HO 88.2(81.6) - 93.1(88.6)

- - 91.8(87.1)
CP 94.7(91.6) - 90.9(86.1)

Bahadurhocp
HO 85.2(80.3) - 96.3(84.5)

- - 92.9(86.5)
CP 97.9(90.4) - 91.1(87.6)

BNCP-CSbio
OB 89.3(86.7) - 94.4(86.7)

- - 91.2(85.4)
NO 93.5(83.9) - 87.9(83.9)

Bahadurbio
HO 95.9(90.2) - 96.7(92.4)

- - 95.3(89.1)
NO 94.3(87.1) - 93.0(83.6)

‘OB’, ‘NO’, ‘CP’ and ‘HO’ represent obligate interactions, non-obligate interactions (heterodimeric complexes),

crystal packing and homodimeric interactions, respectively; ‘-’ means the values are not applicable.

3.1 LOOCV Performance by OringPV within Datasets

The OringPV’s sensitivity, precision, specificity and accuracy are presented in Table II, while the

corresponding confusion matrix results are reported in Supplementary Table I and Supplementary

Table II.

The results in Table II together with some results from Supplementary Table I demonstrate

a strong capability of distinguishing biological interactions and crystal packing by our OringPV

method. For example, it can effectively identify homodimers from monomers with an accuracy of

91.8% on the Ponstingl dataset and 92.9% on the Bahadurhocp dataset. For differentiating biological

interactions from crystal packing, the accuracy of OringPV can reach a level as high as 96.7% on the

BNCP-CS dataset and 87.9% on the Bahadur dataset. Therefore, we can conjecture that low-ASA

residue pairs and the propensity vectors can capture the signature patterns of biological interactions,

and our OringPV method can identify them from crystal packing with high accuracy.
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Fig. 2: The ROC curves of the classification between homodimeric proteins and monomers on the

Bahadurhocp dataset for frequency vectors, binary vectors and propensity vectors.

Outstanding classification performance by OringPV to distinguish between two types of biological

interactions is also shown in Table II, and the corresponding confusion matrix results are reported

in Supplementary Table II. The point we want to make here is: when an interaction is confirmed

as biological interaction, OringPV can exactly tell which type of biological interaction it belongs to

with high accuracy. For example, only 12 interactions were misclassified out of 137 interactions in

the BNCP-CSbio dataset, and only 9 misclassified in the 192 interactions of the Bahadurbio dataset,

which means 91.2% and 95.3% accuracy respectively.

We calculated the ROC curves and their AUC values of OringPV in every above individual

classification experiment with the optimal C and γ. Again, it is confirmed that OringPV can well

characterize the distinction of different protein interactions. For example, in Figure 2, the AUC

values of classification performance for low-ASA frequency vectors, low-ASA binary vectors and our

propensity vectors on the Bahadurhocp dataset are as high as 0.9571, 0.9573 and 0.9789 respectively.

3.2 Propensity vector in comparison to propensity vector without the

ASA restriction, and in comparison to traditional frequency vector

Recall that a low-ASA residue pair is a contact residue pair that satisfies the ASA restriction, i.e.

its ASA is required to be small. This ASA restriction is sometimes referred to as residue filtering.

In most cases, the classification performance of OringPV can be improved a lot if we take low-ASA

residue pairs instead of using the residue pairs that do not apply the ASA filtering, as shown in
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TABLE III: The accuracy performance comparison among propensity vector (PV), binary vector

(BV) and frequency vector (FV) with/without ASA restriction.
Dataset/SVM-stage PVOR BVOR FVOR PVNonOR BVNonOR FVNonOR

Ponstingl 91.8 86.5 83.6 89.5 88.3 87.1

Bahadur

SVM 1 87.9 82.6 82.6 85.2 81.6 78.7

SVM 2 87.4 81.7 79.0 84.5 82.0 73.7

overall SVM 85.8 81.1 79.7 83.2 81.0 75.5

Bahadurhocp 92.9 87.4 88.4 86.8 85.8 86.5

Bahadurbio 95.3 94.8 89.5 96.8 95.3 89.0

BNCP-CS 92.2 89.7 90.9 93.8 89.3 88.1

‘SVM 1’, ‘SVM 2’ and ‘overall SVM’ represent the first stage, the second stage of a SVM classifier and the whole

classifier. OR/NonOR means that the vectors are with/without ASA restriction.

column 2 and 5 in Table III. In particular, on the Bahadurhocp dataset, the accuracy of OringPV

is improved from 86.8% to 92.9% when the ASA filtering is applied to concentrate on low-ASA

residue pairs. It seems that the ASA filtering is very sensitive to the performance improvement for

identifying biological interactions from crystal packing. However, for distinguishing the two types

of biological interactions, the filtering cannot improve the performance as it does when classifying

biological and non-biological interactions. This difference is probably attributed to the degree of the

ASA filtering. The ASA filtering removes about 17.9% residue pairs from the contact residue pairs

of the biological interactions, and 31.8% residue pairs from crystal packing. In other words, the

binding interfaces of biological interactions much more satisfy the requirement of O-ring-surrounded

regions than non-biological interactions. Thus, the ASA filtering can achieve more improvement for

identifying biological interactions from crystal packing and has lesser impact on classification of two

types of biological interactions.

The numbers in the parentheses of Table II, Supplementary Table I and Supplementary Ta-

ble II are the classification performance achieved by the traditional frequency vectors on the three

benchmark datasets. (See the definition of the traditional frequency vectors at Section 2.2.) This

performance comparison suggests that the propensity vectors can much outperform the traditional

frequency vectors and improve the classification accuracy by 3% to 10% in most cases. For example,

on the Bahadur dataset, the accuracy is improved from 75.5% to 85.8% by the propensity vectors.
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3.3 Propensity Vector in Comparison to Low-ASA Binary Vector and

Low-ASA Frequency Vector

The performance of the propensity vectors is also compared to those achieved by low-ASA binary

vectors and low-ASA frequency vectors, as shown in column 3 vs column 6, and in column 4 vs

column 7 in Table III. First of all, the performance between the binary and frequency vector is very

similar to each other, though in most cases the binary vector can achieve a bit better performance

than the frequency vector. In fact, the accuracy difference between these two kinds of vectors is

in the range from -2% to 6%. Take the performance on the Bahadurbio dataset as an example, the

binary vector method has an accuracy of 94.8% and outperforms the frequency vectors (89.5%). But

on the Bahadurhocp dataset, the frequency vectors have an 88.4% accuracy, slightly better than the

accuracy 87.4% of the binary vector method.

OringPV outperforms both the binary vector and the frequency vector for almost every classi-

fication task involved in this work. For example, on the Bahadur dataset, our OringPV method

achieved an accuracy of 85.8%, much higher than 81.1% by the binary vectors and 79.7% by the

frequency vectors. The superior performance by OringPV is possibly attributed to two biological ob-

servations: (i) the residue composition in biological interaction interfaces is different from that in the

rest of protein surfaces, but those in non-biological interactions are similar to each other15,16,24,25;

(ii) the reside-residue pairing preference in obligate and transient interactions was also found to be

different19. Thus, it is only propensity vectors rather than binary vectors or frequency vectors that

can translate the ideas behind these facts into sharp discrimination power of a classifier, while binary

vectors and frequency vectors are concentrated on the binding hot spots (O-ring-surrounded regions)

only and unable to capture the relative difference between the binding interfaces and the rest of

protein surfaces.

For a visual display of the subtle and deep discriminating power provided by OringPV, we draw

a picture according to the average feature value of every residue pair within different interaction

types. Let (ri, rj) be a residue pair and N be the total number of interactions in a class, for

example, in the homodimeric class, then this average is calculated by V(ri,rj) =
∑N

k=1 V
k
(ri,rj)

N
, where

V k
(ri,rj) is the propensity value, or binary value, or frequency value of the residue pair (ri, rj) of

the kth interaction, depending on what kind of vectors is used in the classification. Similarly, we

calculate such averages for the heterodimeric class, and for the crystal packing class. The visualization

for the Bahadur dataset is shown in Figure 3. We also employ Wilcoxon signed rank test44 to
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calculate the statistical significance of the difference for each pairs of vectors with the same kind. To

show the process of the signed rank test, let’s take for example propensity vectors of homodimeric

interactions and crystal packing. Assume their propensity vector representations are P 1 = {p1
(ri,rj)}

and P 2 = {p2
(ri,rj)} respectively where (ri, rj), i ≤ j, i, j = 1, ..., 20, are residue pairs of residue

ri and residue rj, and p(ri,rj) is propensity value. Then the significance level of their difference,

p-value, is produced by (i) calculating the value difference of each feature p1
(ri,rj) and p2

(ri,rj), and

ranking every feature based on the absolute value of the difference; (ii) restoring the signs of the

differences to the ranks for obtaining the signed ranks; (iii) summing those ranks with positive

signs to W+; (iv) calculating the normalized test statistics by Tvalue = W+−E(W+)
V ar(W+) , where E(W+) =

n(n+1)
4 , V ar(W+) = n(n+1)(2n+1)

24 , and n is the number of features with nonzero difference values; (v)

obtaining p-value according to t-distribution with degree of freedom n, and value Tvalue; theoretically,

smaller a p-value is, more likely a pair of vectors have significant difference. The similar way above

can also be used to calculate p-value for the other two pairs of propensity vectors, and for pairs

of binary vectors or of frequency vectors. Finally, the p-values for three pairs of three types of

interactions based on propensity vectors, binary vectors and frequency vectors are shown in Table

IV where 3 p-values in each row are for the pair of crystal packing and heterodimeric complexes,

the pair of crystal packing and homodimeric proteins, and the pair of heterodimeric complexes

and homodimeric proteins, respectively. It can be noted from Figure 3 and Table IV that: (i)

the propensity vectors make clear distinction between the three types of protein interactions, and

the smallest difference among three pairs of propensity vectors has p-value 1.11E-16 (see the three

subfigures at the first row of Figure 3); (ii) the binary vectors show the difference between biological

and non-biological interactions, but they sometimes confuse homodimeric proteins with heterodimeric

complexes with p-value 4.61E-5 (see the middle three subfigures); (iii) the frequency vectors can

clearly differentiate homodimeric proteins from others, but they maybe mislead the discrimination

between crystal packing and heterodimeric complexes with p-value 2.0E-15 (see the three subfigures

at the third row).

Overall in summary, the vectors with the ASA filtering, especially our OringPV method, outper-

form the vectors without the ASA restriction in most cases. In fact, both the pair propensity idea

and the ASA filtering can sharpen the difference for the distinction of different types of interactions.
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(a) Average feature values in
shading for the propensity vec-
tors within the crystal packing
class

(b) Average feature values in
shading for the propensity vec-
tors within heterodimeric class

(c) Average feature values in
shading for the propensity vec-
tors within homodimeric class

(d) Average feature values in
shading for the binary vectors
within crystal packing class

(e) Average feature values in
shading for the binary vectors
within heterodimeric class

(f) Average feature values in
shading for the binary vectors
within homodimeric class

(g) Average feature values in
shading for the frequency vec-
tors within crystal packing
class

(h) Average feature values in
shading for the frequency vec-
tors within heterodimeric class

(i) Average feature values in
shading for the frequency vec-
tors within homodimeric class

Fig. 3: A visual display of the discriminative power carried by the three types of vectors (propensity
vector, low-ASA binary vector, and low-ASA frequency vector) for the distinction of protein interac-
tions in the Bahadur dataset. In above figures, each row and column represents a different residue,
and the residues are ordered according to their hydrophobicity with I as the most hydrophobic and
R as the least hydrophobic. The colors from blue to red indicate the magnitude of values from the
smallest to the largest.
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TABLE IV: The p-values of Wilcoxon signed rank test for three pairs of the three types of interactions

based on propensity vectors, binary vectors or frequency vectors.

Vectors
p-values

CP-PX CP-HO HO-PX

Propensity Vectors 1.11E-16 <1E-324 <1E-324

Binary Vectors <1E-324 <1E-324 4.61E-5

Frequency vectors 2.0E-15 <1E-324 <1E-324

‘CP’, ‘PX’ and ‘HO’ represent crystal packing, heterodimeric complexes and homodimeric proteins respectively in

the Bahadur dataset. Each column is one pair of the three different types of interactions.

3.4 Performance Comparison of OringPV with NOXclass, DiMoVo, and

Other Methods

We have taken two comparison approaches: one is within-dataset comparison, and the second is

cross-dataset comparison. In these experiments, the thresholds for relative ASA and for atomic

distance (dtw) are always fixed at 36% and 1.5 Å respectively. Parameters C and γ in the RBF

kernel function of SVM are optimized in the training process of OringPV by cross-validation as what

exactly done by the existing methods.

3.4.1 Within-Dataset Comparison with NOXclass, DiMoVo, and Other Methods

NOXclass6 is a highly accurate algorithm trained on the BNCP-CS dataset to differentiate obligate

from non-obligate interactions, and it also identifies crystal packing interactions. It is a multi-stage

SVM prediction method, using interface properties such as interface area, ratio of interface area to

protein surface area, and amino acid composition of the interface as input. For a fair comparison

between the performance of OringPV and NOXclass on the BNCP-CS dataset, we take the two

evaluation frameworks (EF) originally set by the NOXclass method in 6.

Under the first evaluation framework (EF1), the whole BNCP-CS dataset was used in choosing

optimal parameters of SVM; then the performance of the classifier is measured also on the same data.

(This approach is called maximized training dataset method6.) The main objective of this kind of

learning is to see whether a classifier can have an optimistic learning on all existing data despite

of a possible overfitting problem. The result under this evaluation framework is shown in Table V.

Overall in the distinction of the three types of protein interactions, OringPV achieved an accuracy of
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TABLE V: The within-dataset performance comparison between OringPV and NOXclass.
Evaluation Accuracy(%)

Framework Method SVM 1 SVM 2 overall SVM

EF1
NOXclass 97.9 86.4 91.8

OringPV 97.5 91.5 94.7

EF2
NOXclass 94.5 75.2 83.1

OringPV 97.0 86.0 91.4

‘SVM 1’ and ‘SVM 2’ represent the first stage and the second stage of a SVM classifier. The performance of

NOXclass is taken from 6.

94.7%, higher than NOXclass’ 91.8%. This accuracy improvement is attributed to the outstanding

performance of OringPV for distinguishing the two types of biological interactions (91.5% versus

NOXclass’ 86.4%).

The second evaluation framework (EF2) takes into consideration of testing performance. It was

set as a 5-time 3-fold cross-validation integrated by a 10-fold cross-validation for training parameter

selection6. Under this framework, the BNCP-CS dataset is randomly divided into three parts:

iteratively each of the three parts for testing, and the other two parts for training in which the

selection of parameter values is optimized by 10-fold cross-validation. Then this procedure is repeated

five times to get an average performance of the classifier. The result is shown in Table V. It can

be seen that our OringPV method has improved NOXclass’ performance significantly from 83.1% to

91.4%. Again, this significant improvement comes from the sharper distinction capability of OringPV

for distinguishing the two types of biological interactions.

On the Ponstingl dataset, a score cut-off method21 misclassified 12 interactions, achieving an

accuracy of 93.0%. The ACV method5 (without symmetric consideration) also achieved the same

level 93.0% accuracy. Our OringPV method achieved an accuracy of 94.7% (under the same evalu-

ation framework). This is a slightly better performance than the two existing benchmark methods.

Furthermore, the generalized error rate of 200 bootstrap samples for the atom-pair scoring schemes

is 12.5%21, which is worse than our OringPV method’s 8.2% error rate under the LOOCV procedure.

On the Bahadurhocp dataset, Bahadur et al. tested the performance of a new score cut-off

method15, which is a method based on interface area, shape and atomic packing density, residue

propensity, etc. This score cut-off method15 misclassified 17 of the total 310 interactions, while

our OringPV method misclassified 18 interactions. More recently, Bernauer et al.7 proposed a new
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method called DiMoVo. DiMoVo is a binary classifier developed specifically to discriminate crystal

packing and biological interactions. It was evaluated on the Bahadurhocp dataset and achieved a 95%

accuracy under the LOOCV procedure with 0.5 as the cut-off score. Our OringPV method achieved

a comparable performance (an accuracy of 94.2%) with optimal parameters.

With all these within-dataset comparison results, we can note that OringPV is much more accu-

rate than NOXclass, and it is comparable to the score cut-off methods and DiMoVo. Our superior

performance over these score cut-off methods and DiMoVo is presented in the following subsection.

3.4.2 Cross-Dataset Test for Performance Comparison

As introduced, cross-dataset test refers to an evaluation framework for a classifier where two datasets

(usually from different authors) are given: one is used for training the classifier, and the other is

for testing. This is a less-biased assessment to demonstrate the high reliability and generalization

capability of a classifier. In this subsection, we compare the performance of OringPV under this

evaluation framework with NOXclass and DiMoVo. The reason for choosing only NOXclass and

DiMoVo is because their executable codes are available from the authors. However, both NOXclass

and DiMoVo are final, user-end software programs built-in with the whole BNCP-CS and Bahadurhocp

dataset respectively in the training. To our best knowledge, we are unable to train them again on a

different dataset, but they can be used to get a test accuracy for new datasets.

For a fair comparison to DiMoVo, we trained OringPV on the whole Bahadurhocp dataset as

well. Table VI shows the test performance of both OringPV and DiMoVo on the Ponstingl dataset

and on the BNCP-CShocp dataset for distinguishing between obligate (homodimeric) interactions and

crystal packing (monomers). We can see that on the Ponstingl dataset, our OringPV method and the

DiMoVo method achieved a comparable accuracy and recall. However, on the BNCP-CShocp dataset,

our OringPV method had a much better overall performance than the DiMoVo method (97.2% versus

89.0%), and especially on the homodimeric interactions, a significant recall improvement is from

DiMoVo’s 76% to 94.7%. This poor performance by DiMoVo is no surprise, and it is in agreement

with the limitations of DiMoVo as discussed by the authors previously7.

NOXclass is capable of conducting two kinds of classification tasks: (i) binary distinction be-

tween obligate and non-obligate interactions, and (ii) binary distinction between crystal packing

(monomers) and biological interactions. For task (i), we used the whole BNCP-CSbio dataset as

OringPV’s training data, and the Bahadurbio dataset was used as the independent testing dataset
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TABLE VI: The cross-dataset performance comparison between OringPV and DiMoVo.
Tested Dataset Method Recall CP Recall HO Accuracy(%)

BNCP-CShocp
DiMoVo 98.1 76.0 89.0

OringPV 99.1 94.7 97.2

Ponstingl
DiMoVo 97.9 92.1 95.3

OringPV 96.8 96.1 96.5

‘Recall CP’ and ‘Recall HO’ represent the recall of crystal packing and of homodimeric interactions respectively. The

performance of DiMoVo is obtained from the website “http://cgal.inria.fr/DiMoVo/”.

to assess the prediction performance of both NOXclass and OringPV. Based on the result shown in

Table VII, we can see that the performance of OringPV is tremendously better than NOXclass. In

particular, the recall rate on the non-obligate interactions is 20 points higher, and the accuracy is 13

points higher. Such an excellent performance is almost maintained by OringPV when it was trained

on the Bahadurbio dataset and tested on the BNCP-CSbio dataset (shown in third row in Table VII).

We were unable to report NOXclass’ performance for this case, as its trained model is fixed on the

BNCP-CS dataset only.

For task (ii), we trained OringPV on the BNCP-CS dataset and tested on the Ponstingl dataset.

The accuracies by NOXclass and by OringPV are 86% and 87.7% respectively. However, when these

two classifiers were used to predict whether the interactions in the Bahadur dataset are or not crystal

packing, both performances were not good6. It may be due to that the non-biological interactions

in the Bahadur dataset have large interfaces6 similar to the size of biological interactions. This

causes difficulties for the classifiers to learn necessary information to clearly classify biological and

non-biological interactions when they are trained on the BNCP-CS dataset whose crystal packing

generally have smaller interfaces than biological interactions.

We have further examined the capability of distinguishing homodimers and monomers by Or-

ingPV. We merged the two datasets of Bahadurhocp and BNCP-CShocp as training data for OringPV.

Then OringPV was tested on the Ponstingl dataset. The accuracy reached to 98.8%, an almost

perfect accuracy (namely, only 1 homodimer and 1 monomer misclassified).

We note that the interpretation of the cross-dataset test results should be taken with some

caution. The concern is the inter-dataset redundancy. Actually in this work, the redundancy among

these three datasets does not play an important impact in the performance evaluation. This point

can be verified as follows. OringPV’s LOOCV accuracy (91.8%) on the Ponstingl dataset is less
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TABLE VII: The cross-dataset performance comparison bewteen OringPV and NOXclass to distin-

guish the two types of biological interactions.
Tested Dataset Method Recall OB Recall NO Accuracy(%)

Bahadurbio
NOXclass 84.4 78.6 82.3

OringPV 93.4 98.6 95.3

BNCP-CSbio OringPV 97.3 79.0 89.1

‘Recall OB’ and ‘Recall NO’ represent the recall of obligate (homodimeric) interactions and non-obligate interactions

(heterodimeric complexes) respectively. The performance of NOXclass is taken from 6.

TABLE VIII: The accuracy of OringPV in comparison to NOXclass and DiMoVo.
Tested Dataset OringPV vs NOXclass (%) OringPV vs DiMoVo (%) Tested Dataset

(Training on BNCP-CS) OringPV NOXclass OringPV DiMoVo (Training on Bahadurhocp)

BNCP-CS 94.7a(91.4b) 91.8a(83.1b) 97.2 89.0 BNCP-CShocp

Bahadurbio 95.3 82.3 94.2 95.0 Bahadurhocp

Ponstingl 87.7 86 96.5 95.3 Ponstingl

The italic numbers are for within-dataset comparison and the others for cross-dataset comparison. a and b stand for

EF1 and EF2 respectively.

than the cross-dataset accuracy (97.7%) on the Ponstingl dataset when OringPV is trained on the

Bahadurhocp dataset. This may speculate some redundancy concern over the Ponstingl dataset and

the Bahadurhocp dataset. However, OringPV’s LOOCV accuracy (92.9%) on the Bahadurhocp dataset

is higher than the cross-dataset accuracy on the Bahadurhocp dataset when OringPV is trained on the

Ponstingl dataset or on the BNCP-CShocp dataset. (The corresponding accuracy is 90% or 85.8%.)

To conclude Section 3.4, we use Table VIII to summarize the various and critical comparison

results.

4 Insights into Low-ASA Residue Pairs and Propensity Vec-

tors: A Discussion Based on Misclassifications

The comprehensive comparison results have already shown that OringPV is a highly accurate classifier

to distinguish different types of protein interactions no matter the performance evaluation is by

within-dataset, cross-dataset, or LOOCV. However, the focus on this section is different: we discuss
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TABLE IX: Performance trend of a classifier when training datasets change.

Tested Dataset
Training Dataset (Accuracy %)

BNCP-CShocp Ponstingl Bahadurhocp

Bahadurhocp 85.8 90 92.9

Ponstingl 88.3 91.8 97.7

BNCP-CShocp 98.3 98.3 98.3

The italic numbers are for within-dataset comparison and others for cross-dataset comparison. In this table, the

accuracies are a little different from Table VIII due to that the training datasets and training frameworks in Table

VIII are under the same ones as what exactly done by the existing methods, such as leave-one-out learning with a

5-fold cross-validation procedure when OringPV is compared with DiMoVo in Table VIII. But OringPV is trained

with leave-one-out cross-validation here.

why some interactions are still misclassified and give insights into the reasons.

We start with an interesting observation on the performance change when OringPV turned back

to make predictions on the BNCP-CSbio dataset. Recall from Table VII that OringPV achieved a

testing accuracy of 95.3% on the Bahadurbio dataset when it was trained on the BNCP-CSbio dataset.

However, its testing accuracy reduced to 89.1% on the BNCP-CSbio dataset when it was trained on

the Bahadurbio dataset. To find out the reason behind this discrepancy, we examined the size of the

O-ring-surrounded regions of the interactions in these two datasets. We obtained that on average,

both the O-ring-surrounded region size of the interactions and the size variance in the BNCP-CSbio

dataset are much bigger than those in the Bahadurbio dataset. This indicates that the diversity

of the O-ring-surrounded regions in the BNCP-CSbio dataset seems to overwhelm the cases in the

Bahadurbio dataset. Therefore, the testing performance on the BNCP-CSbio dataset can be sacrificed

as OringPV may not learn enough from the less-diversified Bahadurbio dataset.

The second observation is about the big change of the testing performance on the same dataset

when OringPV’s training data is shift from one dataset to another. This can be seen from Table IX

that: (i) the testing performance on Bahadurhocp changes from 85.8% to 90% to 92.9% if OringPV’s

training data is switched from BNCP-CShocp to the Ponstingl dataset and to Bahadurhocp (LOOCV

is used if training data is the same as test data); (ii) the testing performance on the Ponstingl dataset

changes from 88.3% to 91.8% to 97.7% if OringPV’s training data is switched from BNCP-CShocp to

the Ponstingl dataset to Bahadurhocp; (iii) however, the OringPV’s testing performance on BNCP-

CShocp has no significant change and maintains at the high level of a 98.3% accuracy when the training

dataset is switched from BNCP-CShocp to the Ponstingl dataset and to Bahadurhocp. It seems that
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Bahadurhocp is the most accountable training dataset, and the Ponstingl dataset is the second most

accountable, while BNCP-CShocp is less reliable, in this special classification task of distinguishing

between obligate (homodimeric) interactions and crystal packing.

To understand the deep reasons, we examine two factors: the average size of O-ring-surrounded

regions in each dataset, and the propensity vector values of O-ring-surrounded regions with various

sizes. Our examination shows that the average size for O-ring-surrounded regions of the crystal

packing in the Bahadurhocp dataset and the size variance are both bigger than those in the Ponstingl

dataset, which are both bigger than those in BNCP-CShocp. On the contrary, the average size for

O-ring-surrounded regions of the homodimeric interactions in the Bahadurhocp dataset and the size

variance are both similar to those in the Ponstingl dataset, which are both smaller than those in

BNCP-CShocp. This means that crystal packing and homodimeric interactions within the Bahadurhocp

dataset are more complicated though separable than those within BNCP-CShocp and the Ponstingl

dataset are. Therefore, OringPV, especially propensity part of propensity vectors, can learn better

if its training data is switched to the Bahadurhocp dataset. On the other hand, smaller O-ring-

surrounded regions are easier to produce random sharp propensity values in a vector due to that

the propensity vectors have 210 dimensions of residue pairs together describing the whole interfaces.

Further, the dataset with smaller O-ring-surrounded regions and also with smaller size variance might

make the propensity part of propensity vectors less helpful in the classification process. It is why the

testing performance is better when OringPV is trained on the datasets whose crystal packing have

larger O-ring-surrounded regions and larger size variance, such as the Bahadurhocp dataset, than when

OringPV is trained on the datasets whose crystal packing have smaller O-ring-surrounded regions

and smaller size variance, such as the BNCP-CShocp dataset.

Our third observation is as follows. A biological interaction is easy to be wrongly predicted as

crystal packing if its O-ring-surrounded region is small, and a crystal packing is also easy to be

wrongly predicted as biological interaction if its O-ring-surrounded region is large. We show three

examples taken from the BNCP-CS dataset in the process of identifying biological interactions from

crystal packing. Under LOOCV, OringPV misclassifies 8 interactions (2 non-obligate interactions

are wrongly predicted as non-biological interactions, and 1 crystal packing as obligate, and 5 crystal

packing as non-obligate interactions). If OringPV is trained on the Bahadur dataset, it wrongly

classifies 12 interactions (2 obligate interactions and 7 non-obligate interactions are grouped into

non-biological interactions, and 1 and 2 crystal packing into obligate and non-obligate interactions

24



respectively). Under these two prediction approaches, there are two common biological interactions

misclassified as non-biological interactions, and one common crystal packing that is wrongly predicted

as a biological interaction. Interestingly, DiMoVo also wrongly classifies these three interactions.

Of the two wrongly predicted biological interactions, one is in the PDB entry 1ARO between

chains L (T7 lysozyme) and P (T7 RNA polymerase), and the other is in 2PCB (A complex between

electron transfer partners) between chains A (Cytochrome C peroxidase) and B (Cytochrome C).

Figure 4(a)(b) show their structures. Recall that the propensity vectors are based on the number of

O-ring-surrounded residues and the number of surface residues. We examine the number of surface

residues, NS, of 1ARO and of 2PCB, in comparison to the number of residues, NO, in their O-

ring-surrounded regions. The investigation indicates that NO/NSs of 1ARO and of 2PCB are the

minimum in all biological interactions. A smaller NO/NS means that residue pairs in the O-ring-

surrounded region are too fewer to make propensity values outstanding. We also observed that when

NO/NS is less than 0.1, 3 out of 4 biological interactions are wrongly classified. The misclassified

prediction is likely due to that those O-ring-surrounded regions of misclassified interactions are so

small that the propensity part of propensity vectors has many random sharp propensity values, thus

misleading the true propensity properties of those residue pairs.

The PDB entry of the one commonly misclassified crystal packing is 1M7G (APS kinase from

Penicillium Chrysogenum: ternary structure with ADP and APS) whose structure is shown in Figure

4(c). Similar to the above data analysis, NO/NS of 1M7G is found with the maximum NO/NS in all

crystal packing. Furthermore, there are 7 misclassified non-biological interactions (by the LOOCV

procedure or by OringPV trained on the Bahadur dataset) among the top 11 maximum of NO/NS

descending ranking of crystal packing. The NO/NS values of those 7 misclassified crystal packing

are all larger than 0.13. A possible reason is that crystal packing can occasionally form ‘abnormal’

large O-ring-surrounded regions, which computationally results in propensity values similar to those

of biological interactions.

5 Conclusion

In this work, we have introduced low-ASA residue pairs and O-ring-surrounded regions. The biologi-

cal principle of this notion is based on the long standing O-ring theory and the coupling proposition.

The water accessibility restriction and the contact distance are both considered in the definition of
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(a) A misclassified biological interaction at chain L and P
in 1ARO

(b) A misclassified biological interaction at chain A and B
in 2PCB

(c) The misclassified crystal packing in 1M7G

Fig. 4: The interactions in (a) and (b) are biological interactions but wrongly predicted to crystal
packing; the interaction in (c) is crystal packing but wrongly predicted to biological interaction. The
O-ring-surrounded regions are in the ‘spheres’ view in PyMOL with red and blue colors.
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low-ASA residue pairs. Thus, with this definition, the properties of binding hot spot residues are

fully integrated into such residue pairs. We also introduced propensity vectors of low-ASA residue

pairs and have suggested to use these propensity vectors to characterize the different types of protein

interactions.

The OringPV method, our newly proposed learning scheme with propensity vectors as the input

of SVM, has shown excellent performance in the prediction of the three types of protein interactions.

The experiments are conducted on three benchmark datasets: the BNCP-CS dataset6, the Ponstingl

dataset21, and the Bahadur dataset15. The performance is evaluated under the LOOCV proce-

dure, and also under the comparison frameworks such as within/cross-dataset tests in comparison

to widely accepted literature methods, including NOXClass6 and DiMoVo7. The evaluation results

demonstrate that the propensity vectors can signify important characteristics of protein interactions,

and OringPV is highly accurate to identify biological interactions from non-biological interactions

and to distinguish different types of biological interactions.

As a future work, OringPV perhaps can be used to determine and rank the fitness scores of all

possible binding structures constructed by docking algorithms45. We also consider to apply low-ASA

residue pairs and the propensity idea to deal with hot spot or interface prediction problems. In fact,

those problems are similar to the current one, though they are beyond the scope of the current work.

One consideration is that we construct propensity vectors for interacting chain pairs that contain

a hot spot as the current work does. Second, we construct propensity vectors for interacting chain

pairs where non-hot spots are identified. These two classes of propensity vectors, labeled with hot

spot or non-hot spot, can be then used to train a classifier to predict whether a cluster of contact

residue pairs is or not a hot spot. However, one difficulty of this future work is that we are lack of

experimental data of non-hot spots. Perhaps, one-class learning algorithms46 are useful. We leave

all these details for readers who are interested in those problems.
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