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A B S T R A C T   

Elastic metamaterials (EMMs) have enormous potential to be employed in real-world engineering, 
including transport, aerospace, civil engineering, due to their exceptional wave-manipulating 
capabilities. The system uncertainties raised by various factors in EMMs would lead to fluctua
tions in wave attenuation performance. Without thoroughly considering the system uncertainties, 
severe structural failure may occur. Thus, to provide possible access to quantifying the structural 
reliability involving material and geometrical uncertainties separately and simultaneously, a 
virtual model-aided framework is proposed. A recently developed virtual modelling technique, 
namely the Extended Support Vector Regression (X-SVR), has been adopted to generate virtual 
models, as alternatives to the original physical relationships between the system parameters and 
the concerned bandgap characteristics for EMMs. By implementing the sampling-based method 
on the established virtual models, sufficient statistical information and the structural reliability of 
concerned structural responses are estimated effectively and efficiently. In addition, the sensi
tivity analysis and information update can be easily executed on the established virtual models. 
Furthermore, the computational efficiency, accuracy, and robustness of the proposed virtual 
model-aided framework are demonstrated by numerical investigation. Convincingly, this 
advanced framework would significantly benefit the reliability-based analysis, design, and 
fabrication of EMMs in multi-disciplinary engineering applications.   

1. Introduction 

Elastic metamaterials (EMMs) with exotic properties [1], such as negative index of refraction [2], negative permeability [3], and 
negative permittivity [4], can be employed in a wide range of applications, including energy trapping, wave manipulation, acoustic 
clocking, wave guiding, which are attributed to their periodic structures with rationally designed unit cells [5–7]. One of the distinct 
attributes of EMMs is the capability to forbid the propagation of elastic waves due to the existence of bandgaps [8,9]. Bandgaps 
induced by the local resonance mechanism are capable of breaking the unit cell size limitation, offering significant merits over con
ventional materials in attenuating elastic waves at low frequencies [10]. Accordingly, locally resonant EMMs have been extensively 
investigated in recent years and are expected to possess great potential in various engineering disciplines, such as civil engineering, 
automotive, aerospace, biomechanics, etc. [11–13]. 
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System uncertainty, as an inherent feature in real-world engineering, is underpinned within almost every component of the system, 
e.g., material property, structural geometry, and environment, attributed to heterogeneous sources, such as manufacturing, pro
cessing, measurements, and so on [14–17]. Convincingly, for EMMs, the bandgap characteristics are tightly related to the solid 
constituent and unit cell architecture; in other words, the system uncertainties can be reflected in the structural behavior. Without 
properly quantifying these effects on concerned structural responses, catastrophic structural failure may be caused. Hence, reliability 
analysis, concerning the probability of limit state violation, is an essential task for EMMs, in which the effects of the system un
certainties on the concerned structural response are thoroughly considered, and the structural reliability is estimated correspondingly 
[18–20]. 

With the consideration of randomness in the system parameters, solving the structural responses can be treated as a stochastic 
problem [21]. The structural reliability can be calculated from a multi-fold probability integral regarding the random structural 
response [22]. Nonetheless, analytically solving the random structural responses is infeasible for EMMs due to complex geometries, 
boundary conditions, and intractable access to all possible realizations of the random variables [23,24]. The stochastic finite element 
methods (SFEMs) provide alternative approaches to evaluate the random structural responses for EMMs [25,26]. As a straightforward 
technique with high robustness, the brute FEM-based Monte Carlo simulation (MCS) can be applied to execute reliability analysis for 
EMMs [27]. Besides, other popular SFEMs include the perturbation stochastic finite element method (PSFEM) and the spectral sto
chastic finite element method (SSFEM) [28]. By employing the PSFEM, the non-deterministic analysis of the concerned quantities (i.e., 
band structures, mode shapes, and frequency responses) for 2D acoustic metamaterials was carried out by He et al. [29]. Then, by 
adopting a spectral method based on generalized polynomial chaos (GPC), Henneberg et al. [30] investigated the statistical moments 
of the bandgap behaviors for a plate-type 2D EMM with the consideration of the geometrical uncertainties. Souf et al. [31] explored the 
effects of system uncertainties on the sound transmission loss for composite panels by adopting the GPC method. Later, Zakian et al. 
[32] proposed a stochastically enriched spectral FEM to investigate wave propagation in a 2D plate with structural randomness. 
Though great success has been achieved in stochastic analysis for different types of EMMs, to the best knowledge of the authors, most of 
the existing works are focused on the investigations for 1D and 2D structures. However, the implementation of 1D and 2D EMMs in 
real-life scenarios is very limited, attributed to the total failure to demonstrate the exotic properties in the perpendicular direction to 
the periodicity [33,34]. Since 3D EMMs have periodicity in three directions, they are capable of working more effectively and pos
sessing significantly higher applicability in various engineering disciplines [92]. Nevertheless, the relevant studies on structural 
reliability for 3D EMMs are very limited. 

Compared with 1D and 2D EMMs, tackling the structural reliability assessment for 3D EMMs is more challenging in both analytical 
and FEM-based approaches. The analytical method that can be employed to derive the deterministic dispersion relations for 1D and 2D 
EMMs fails on the 3D EMMs [35]. Such a dispirited conclusion is mainly induced by complex geometries, complicated boundary 
conditions, and sophisticated constitutive relationships [36]. When material and geometrical parameters are modelled as random 
variables in the system, the transformation of the deterministic problem into a non-deterministic problem further exaggerates the 
difficulty in analytically evaluating the structural responses. Rather than relying on an analytical approach, SFEMs provide alternatives 
to estimate random structural responses [37]. Even FEM-based MCS possesses high robustness and flexibility, the applicability of the 
brute MCS suffers severely, since accurate estimation of structural reliability generally requires large iterations [38,39]. It is especially 
challenging to be employed on 3D EMMs due to the large computational cost, since each deterministic bandgap analysis already 
requires sufficient computational resources [26,27]. Therefore, it is imperative to propose an alternative approach for evaluating the 
structural reliability of 3D EMMs in an efficient and effective manner. 

Fortunately, with the blossoming of computer science, various virtual modelling techniques have been introduced to benefit the 
efficiency and effectiveness of stochastic structural analysis, structural reliability assessment, and structural health monitoring 
[40,41]. Typically, employing supervised virtual modelling techniques to reveal the implicit, underpinned, and sophisticated re
lationships between structural variables and dynamic responses for EMMs have gained tremendous popularity due to their highly 
efficient and accurate performance [42]. To benefit the applications of EMMs within various engineering disciplines, a virtual model- 
aided framework is proposed in this paper, aiming at systematically investigating the structural reliability of 3D EMMs in an efficient 
and effective manner. 

Within the proposed framework, the core is adopting the virtual modelling technique to reveal the underpinned relationship be
tween the system inputs and the concerned structural responses for 3D EMMs and establish effective virtual models correspondingly. 
To fulfil this task, a recently developed kernel-based virtual modelling technique, namely the extended support vector regression (X- 
SVR), is employed, which has been successfully implemented on reliability analyses for some engineering structures, including bar- 
type structures and building composites [23,42]. In addition, to improve the robustness of the X-SVR method, a new generalized 
kernel mapping function, namely the Automatic Relevance Determination - Generalized Eulerian kernel (ARD-GEK) is proposed, to 
serve as an additional option for the embedded X-SVR technique. By implementing the X-SVR virtual modelling technique, the implicit 
relationships between the system parameters and the structural responses are revealed based on a series of constrained optimization 
programming on the virtual models. Thus, instead of evaluating the sophisticated governing equations by FEM, the structural re
sponses can be estimated based on explicit mathematical formulations. Thus, subsequent analysis based on the established virtual 
model can be implemented with extensively reduced computational costs. By integrating the MCS method with the established virtual 
models, a sufficient amount of statistical information, including means, standard deviations, probability density functions (PDFs), 
cumulative distribution functions (CDFs), and structural reliability can be estimated efficiently and effectively. 

The remainder of the paper is organized as follows. The deterministic and reliability analyses of bandgap characteristics for 3D 
EMMs are illustrated in Sections 2.1 and 2.2, respectively. Section 3 introduces the detailed algorithms of the X-SVR method. The 
whole virtual model-aided framework is introduced in Section 4. Subsequently, to demonstrate the applicability, robustness, accuracy, 
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and efficiency of the proposed scheme, the structural reliability of a 3D lattice-based EMM is fully investigated in three numerical cases 
by considering material and geometrical uncertainties separately and simultaneously in Section 5. Finally, some conclusions are 
presented in Section 6. 

2. Preliminaries 

2.1. Deterministic analysis of bandgap characteristics for 3D EMMs 

Bandgaps are endowed to EMMs and illustrations of 1D, 2D, and 3D EMMs are shown in Fig. 1.Compared with 1D and 2D EMMs, 3D 
EMMs exhibit periodicity in three directions and are capable of illustrating exceptional wave attenuation performance for waves from 
three directions. In EMMs, each unit cell interacts with adjacent cells [43,44]. Compared with 1D and 2D EMMs, each unit cell in 3D 
EMMs interacts with more neighboring cells. Since bandgap characteristics largely depend on interactions between unit cells [45,46], 
more interactions lead to more complex dispersion relations [43], which means that 3D EMMs generally have more complicated 
bandgap characteristics compared with 1D and 2D EMMs. To evaluate bandgap characteristics for 3D EMMs, a well-established 
theorem is employed, which is the Floquet-Bloch theorem [36,47–49]. Without loss of generality, the governing equation of elastic 
wave propagation in solids is given by [50] 

ρ ∂2ui

∂2t2
=
∑3

j=1

∂
∂xj

(
∑3

l=1

∑3

k=1
cijkl

∂uk

∂xl

)

, (i = 1, 2, 3) (1)  

where ρ denotes the density of the material; ui indicates the displacement vector; t denotes time; Cijkl represents the elastic constant of 
the material; and xj denotes the coordinate variables x, y, and z. To investigate the wave propagation behavior in an EMM with infinite 
unit cells, the Floquet-Bloch theorem is employed to solve Eq. (1). The solution can be written as: 

u(r) = uk(r)ei(k⋅r) (2)  

where r(x, y, z) denotes the position vector and k
(
kx, ky, kz

)
represents the Bloch wave vector. With the Floquet-Bloch periodicity 

condition applied in the x, y, and z directions, the components of displacement u(r) can be written as [49]: 

u(x + a, y, z) = u(x, y, z)ei(kx ⋅a) (3)  

u(x, y + a, z) = u(x, y, z)ei(ky ⋅a) (4)  

u(x, y, z + a) = u(x, y, z)ei(kz ⋅a) (5)  

where a is the lattice constant of the EMM. The passband and bandgap can be identified by solving the dispersion relation which is an 
implicit function between the wavevector and the eigenfrequency. By substituting the Eqs. (3)–(5) into Eq. (1), the dispersion relations 
of infinite 3D EMMs can be obtained by solving the eigenvalue problem: 

(
Γ − ω2(k)M

)
u = 0 (6)  

where Γ denotes the stiffness matrix, and M represents the mass matrix. By substituting the periodic boundary conditions of Eqs. (3)– 
(5) into Eq. (6), the solution set ω(k)* can be written as: 

Fig. 1. (a) 1D EMM, (b) 2D EMM, and (c) 3D EMM.  
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ω(k)* =
{

ω1(k),ω2(k), ...,ωp(k), ...,ωd(k)
}

(7)  

in which d denotes the degrees of freedom (DoF) of the models in FEM. Subsequently, the bandgap properties of the EMM can then be 
obtained by sweeping the wavevector k along the first Brillouin path [51]. The complete bandgap is identified, which has no 
eigenfrequency falling into the frequency range along the whole k-path. Since the first bandgap is mostly concerned and the inves
tigation about it can be easily extended to subsequent bandgaps over higher frequencies. Thus, in this research, the reliability analysis 
focuses on the investigation of the 1st bandgap, which is characterized by two quantities, i.e., the starting frequency (fs) and the cut-off 
frequency (fc). The 1st bandgap is identified by finding the lowest p denoted as pmin, satisfying min

(
ωpmin+1(k)

)
− max

(
ωpmin (k)

)
> 0. 

Then, the concerned fs and fc can be calculated as: 

fs =
max

(
ωpmin (k)

)

2π (8)  

fc =
min
(
ωpmin+1(k)

)

2π (9)  

2.2. Reliability analysis of bandgap characteristics for 3D EMMs 

In real-life engineering, system uncertainty is inherently existing within material properties, structural geometries, load conditions, 
and environments [52,53]. These system uncertainties would significantly affect the structural performance and numerous engi
neering accidents have repeatedly raised the warning on structural safety [54]. Thus, appropriate access to structural reliability is 
always an essential task in engineering applications [55]. Especially for EMMs, such an advanced material developed in recent years, 
sufficient exploratory research on its various physical performance is vital. Therefore, the reliability analysis for 3D EMMs by 
considering both material and geometrical uncertainties has been thoroughly investigated in this research. 

Without loss of generality, let ξR denotes the random vector, which collects all uncertain systematic input parameters ξR
ℓ , for ℓ =

1,2, ..., n in a probability space (Ω,Λ,P). The governing equation of the random dispersion relation for 3D EMMs is formulated as: 
⎧
⎪⎨

⎪⎩

(
Γ
(
ξR) −

(
ωR(k)

)2M
(
ξR)

)
uR = 0

ξR ∈ Ω :=
{

ξR ∈ R
n
⃒
⃒
⃒ξR

ℓ ∼ f D
ξR

ℓ
(x), for ​ ℓ = 1, 2, ..., n

} (10)  

where Γ
(
ξR) ∈ R

d×d and M
(
ξR) ∈ R

d×d indicate the random stiffness matrix and mass matrix, respectively, which are functions of the 
random vector ξR; R indicates a real number; uR and ωR(⋅) ∈ R

d denote the random displacement vector and solution of the dispersion 
relation, respectively; ξR ∈ R

n is an n-dimensional vector consisting of all system parameters modelled as random variables. The 
corresponding probability density function (PDF) for the ℓth random variable ξR

ℓ is fD
ξR

ℓ
(x). By considering system properties as random 

variables, concerned bandgap characteristics i.e., fs and fc possess the features of randomness, which can be functionally respectively 
expressed as, 

f R
s = Fs

(
ωR(k)

)
= F̂ s

(
ξR) (11)  

f R
c = Fc

(
ωR(k)

)
= F̂c

(
ξR) (12)  

where fR
s and fR

c represent random starting and cut-off frequencies, respectively; Fs( • ) and F̂s( • ) denote the functional expressions 
from ωR(k) and ξR to fR

s , respectively; Fc(•) and F̂c(•) represent the functional expressions from ωR(k) and ξR to fR
c , respectively. To 

avoid the repetition in the manuscript, only the limit-state function (LSF) for the concerned bandgap characteristics fR
s is presented, 

which is similar to fR
c in expression. Specifically, the LSF for fR

s is represented as G
(

fR
s

)
defined as G

(
fR
s

)
= f∗s − fR

s , where f∗s indicates 

the capacity of the system and is generally referred to as a deterministic parameter. Based on that, the safe region and the failure region 

are defined as Θs:=
{

fR
s ∈ R|G

(
fR
s

)
> 0

}
and Θf :=

{
fR
s ∈ R|G

(
fR
s

)
< 0

}
, respectively. Therefore, the structural reliability is defined 

as a multi-fold probability integral function: 

Pr = Pr
(
G
(
f R
s

)
⩾0
)
= Pr

(
f R
s ⩽f ∗s

)
=

∫ ∫

…
∫

f R
s ⩽f ∗s f D

f R
s
(x)dx (13)  

where Pr( • ) and fD
(•)
(x) denote the probability and the PDF of ( • ), respectively. To the best knowledge of the authors, analytically 

investigating structural reliability for 3D EMMs is theoretically infeasible, which is attributed to three main reasons. First, higher-order 
eigenmodes for 3D EMMs cannot be analytically solved, especially for unit cells with complex geometries [36]. With the introduction 
of system uncertainties, the deterministic eigenvalue problem transforms into a stochastic eigenvalue problem, and thus the difficulty 
surges significantly in analytical approaches. Secondly, due to the high dimensionality and nonlinearity, the multi-fold probability 
integral function is infeasible to be analytically solved directly [23,56]. The third reason is that it is computationally inaccessible to 
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solve all possible solutions for dispersion relations ωR(k), since there are infinite realizations and assemblies for random inputs 
[57,58]. 

Instead of relying on analytical approaches, brute MCS, i.e., FEM coupled with MCS, is a brute-force strategy with high robustness 
to estimate random structural responses for engineering structures [59]. However, large iterations of MCS are generally required to 
accurately estimate random structural responses [60]. It is especially challenging when the method is implemented on 3D EMMs, since 
solving a deterministic bandgap analysis has already been computationally expensive [38,61]. By considering the geometrical un
certainty, this dilemma would be further aggravated. In each realization, remeshing and reassembling the stiffness and mass matrixes 
would become inevitable, which further increases the computational burden. Another commonly adopted intrusive method to tackle 
stochastic analysis is the PSFEM [25]. In the implementation of PSFEM, the estimation of a random solution requires to access the 
system stiffness matrix, which is computationally ineffective when the structural discretization is altered [62,63]. In addition, since 
this method relies on a low-degree polynomial approximation of the structural response, the accuracy of the result suffers significantly 
when the uncertainties are in high variability levels to the nominal values [64]. Another popular SFEM is SSFEM [65]. Nonetheless, 
due to its inherent characteristics, the stiffness system matrix needs to be expanded along each of the random input dimensions [66]. 
Hence, the stiffness matrix size is increased in order compared with the one in the deterministic analysis, implying a tremendous 
computational cost, especially for the complicated 3D EMMs with large numbers of DoF [28]. 

Therefore, to provide possible accesses to tackle these challenges in structural reliability assessment for 3D EMMs, a virtual modal- 
aided framework, i.e., a metamodeling-based MCS with high robustness is developed. Before introducing the whole analysis frame
work, a recently developed supervised regression technique is introduced in Section 3, to bridge the implicit relationships between 
system parameters and the concerned structural responses. 

3. Virtual model construction 

3.1. Extended support vector regression (X-SVR) 

To significantly reduce the computational cost in estimating the structural responses, the underpinned constitutive relationships 
are substituted by explicit formulations, through a virtual modelling technique, namely the extended support vector regression (X- 
SVR). Hence, by implementing the MCS on the established virtual model instead of the FEM model, the required computational re
sources are sharply reduced. In the embedded X-SVR technique, a quadratic ε-insensitive loss function lε2( • ) introduced in Eq. (14) 
replaces the linear ε-insensitive function in the conventional SVR to improve the numerical stability. 

lε
2(Yi − f̂ (Xi) ) = |Yi − f̂ (Xi) |

2
, for i = 1, 2,…,m (14)  

where Xtrain = [X1,X2, ...,Xi]
T
∈ R

m×n and Ytrain = [Y1,Y2, ...,Yi]
T
∈ R

m are inputs and corresponding outputs in the training datasets, 
respectively; f̂ (Xi) denotes the established virtual models; m denotes the number of realizations for the random inputs. Accordingly, 
the governing formulation for the linear X-SVR technique can be expressed as: 

min
p,q,δ,ξ,ξ∗

:
(
‖p‖2

2 + ‖q‖2
2

)
+ λeT

n (p + q) +
C
2
(
ξTξ + ξ∗Tξ∗

)
(15)  

s.t.

⎧
⎨

⎩

Xtrain(p − q) + δem − Ytrain⩽εem + ξ
Ytrain − Xtrain(p − q) − δem⩽εem + ξ∗

p, q⩾0n; ξ, ξ∗⩾0m

(16)  

where λ ∈ R
+ indicate a tuning parameter for balancing the performance of regression and feature selection; ξ, ξ∗ ∈ R

m denote two 
non-negative vectors; en = [1,1, ...,1]T ∈ R

n and 0n = [0, 0, ..., 0]T ∈ R
n represent the ones vector and the zeros vector, respectively; 

p,q ∈ R
n are two negative variables [67]; C denotes a penalty constant. 

The physical relationships between system parameters, i.e., material properties and geometrical parameters, and dispersion re
lations are sophisticated, especially for higher-order eigenfrequencies in 3D EMMs. Therefore, directly developing effective virtual 
models via a linear X-SVR technique on the input features is infeasible. To accurately estimate the structural responses, a nonlinear 
regression is requisite to be established [23]. This is achieved by mapping the raw input data from the low-dimensional space Rn into a 
higher-dimensional Euclidian space or even infinite dimensional Hilbert feature space by an empirical mapping function Φ(Xi). The 
implementation of the empirical mapping on Xi is written as: 

Xi =
[
Xi,1,Xi,2, …,Xi,n

]T→κ̂(Xi) =

⎡

⎢
⎢
⎣

Φ(X1)
TΦ(Xi)

Φ(X2)
TΦ(Xi)

⋮
Φ(Xm)

TΦ(Xi)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

κ(X1,Xi)

κ(X2,Xi)

⋮
κ(Xm,Xi)

⎤

⎥
⎥
⎦, for i = 1, 2,⋯m (17)  

where the empirical feature vector κ̂(Xi) is the ith empirical feature vector with the empirical degree of m, which is a m-dimensional 
vector space that is referred as the empirical feature space. In addition, κ̂(Xi) is the ith training input for developing the nonlinear 
virtual model. By virtue of a kernel function κ(•, •), the original training input datasets Xtrain can be converted into a kernel matrix that 
can be written as: 
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κtrain =

⎡

⎢
⎢
⎣

κ(X1,X1) κ(X1,X2) ⋯ κ(X1,Xm)

κ(X2,X1) κ(X2,X2) ⋯ κ(X2,Xm)

⋮ ⋮ ⋱ ⋮
κ(Xm,X1) κ(Xm,X2) ⋯ κ(Xm,Xm)

⎤

⎥
⎥
⎦ ∈ R

m×m (18)  

By using κtrain as the training input dataset, the nonlinear X-SVR optimization problem can be expressed as: 

min
p,q,δ,ξ,ξ∗

:
(
‖p‖2

2 + ‖q‖2
2

)
+ λeT

n (p + q) +
C
2
(
ξTξ + ξ∗Tξ∗

)
(19)  

s.t.

⎧
⎨

⎩

κtrain(p − q) + δem − Ytrain⩽εem + ξ
Ytrain − κtrain(p − q) − δem⩽εem + ξ∗

p, q⩾0n, ξ, ξ∗⩾0m

(20)  

Subsequently, the optimization problem in Eqs. (15) and (16) can be simplified as: 

min
ẑ,δ

:
1
2
(

ẑT Ĉẑ + δ2)+ λâT ẑ (21)  

s.t.(Â + I4m)ẑ + (εI4m + δĜ)b̂ + d̂⩾04m (22)  

where I4m ∈ R
4m×4n indicates the identify matrix, Ĉ, Ĝ and Â ∈ R

4m×4m are defined as: 

Ĉ =

[
I2m

CI2m

]

,

Ĝ =

⎡

⎢
⎢
⎣

02m×2m 02m×m 02m×m

0m×2m Im 0m×m

0m×2m 0m×m − Im

⎤

⎥
⎥
⎦,

Â =

⎡

⎢
⎢
⎣

02m×m 02m×m 02m×2m

− κtrain κtrain 0m×2m

κtrain − κtrain 0m×2m

⎤

⎥
⎥
⎦

(23)  

and the kernelized vectors â, b̂, d̂ and ẑ ∈ R
4m are defined as: 

â =

[
e2m
02m

]

, b̂ =

[
02m
e2m

]

, d̂ =

⎡

⎣
02m

Ytrain
− Ytrain

⎤

⎦, ẑ =

⎡

⎢
⎢
⎣

p
q
ξ
ξ∗

⎤

⎥
⎥
⎦ (24)  

Then, the kernelized X-SVR can be solved with the introduction of the non-negative Lagrange multiplier φ ∈ R
4m. Through the way for 

solving a quadratic programming (QP) problem, the optimization problem can further be formulated as: 

min
φ

:
1
2

φTQφ − mTφ (25)  

s.t.φ⩾04m (26)  

where Q ∈ R
4m×4m and m ∈ R

4m are defined as: 

Q = (Â + I4m)Ĉ− 1(Â + I4m)
T
+ Ĝ b̂ b̂T Ĝ (27)  

m = λ(Â + I4m)Ĉ− 1 â − εb̂ − d̂ (28)  

Let φ* be the solution of optimization problems in Eqs. (25) and (26), then the variables ẑ and δ can be determined as: 

ẑ = Ĉ − 1[(Â + I4m)
Tφ∗ − λâ

]
(29)  

δ = b̂T Ĝφ∗ (30)  

Then, the nonlinear regression function can be expressed as: 

f̂ (X) = (p − q)Tκ(X) + b̂T Ĝφ∗ (31) 
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The coefficient p and q can be obtained as: 

p = ẑ(1 : m) (32)  

q = ẑ(m + 1 : 2m) (33)  

To demonstrate the existence of a globally optimal solution in the X-SVR approach, the convexity of the X-SVR method is required to be 
proved. Let v ∈ R

4m be an arbitrary non-zero column vector, then, 

vTQv =
{[

(Â + I4m)
Tv
]T Ĉ− 1[(Â + I4m)

Tv
] }

+
(

b̂T Ĝv
)2⩾0 (34)  

Therefore, the QP problem shown in Eqs. (25) and (26) is convex. As a result, the kernelized X-SVR virtual models can be constructed. 

3.2. Automatic Relevance Determination - generalized euler kernel (ARD-GEK) 

In the virtual model construction, the selection of kernel function significantly influences the performance of the developed virtual 
models. Herein, inspired by the successes of the Eulerian polynomials in series expansion, a novel generalized kernel mapping 
function, namely the Automatic Relevance Determination - Generalized Eulerian kernel (ARD-GEK) is developed, to serve as an 
additional option for the embedded X-SVR technique. 

The global function is Eulerian polynomials, which are defined by the exponential generating function and can be computed by the 
recurrence, 

E0(t) = 1
Eƛ(t) = Eƛ− 1(t)[1 + (ƛ − 1)t ] + t(1 − t)E′

ƛ− 1(t), for ƛ⩾1
(35)  

where ƛ denotes the order of the Eulerian polynomial. In addition to the global function, the Gaussian kernel function is employed as 
the weighting function to accelerate the convergence speed. Till now, the Generalized Eulerian Kernel (GEK) function can be devel
oped, more specifically, 

κGEK
(
Xi,Xj

⃒
⃒ƛ̂, γ

)
=

∑ƛ̂
ƛ=0Eƛ(Xi)

TEƛ
(
Xj
)

exp
(

γ
⃦
⃦Xi − Xj

⃦
⃦2

2

) (36)  

where γ is considered as the length scale. Based on the established GEK, the Automatic Relevance Determination (ARD) strategy [68] is 
implemented. The aim of this strategy is to adjust the length scale separately for each feature, and eventually, to achieve higher 
robustness in regression. Thus, the proposed kernel function, ARD-GEK, can be expressed in the form of, 

κARD-GEK
(
Xi,Xj

⃒
⃒ƛ̂, γ1, γ2,…, γn̂,…, γn

)
=

∑ƛ̂
ƛEƛ(Xi)

TEƛ
(
Xj
)

exp
(∑n

n̂=1γn̂
(
xi,n̂ − xj,n̂

)2
) (37)  

where γ1, γ2,…γn̂,…, γn ∈ R
+ denote the characteristics length scales for each predictor. Generally, the proposed ARD-GEK consists of 

(n + 1) hyperparameters in total: the polynomial order ƛ̂ and n-dimensional positive kernel scale parameters γ1, γ2, …γn̂, …, γn. 
Moreover, it is necessary to highlight that when γ1 = γ2,…γn̂,…,γn = γ, the proposed ARD-GEK would degenerate into the predecessor 
GEK. Accordingly, the robustness of the developed ARD-GEK can be theoretically enhanced compared to the predecessor GEK. 

In addition, it is worth mentioning that the proposed GEK satisfies the Mercer Theorem [69–72], which is essentially for imple
menting the kernel function in support vector theorem-based methods. The property that the proposed GEK is a valid Mercer kernel can 
be systematically demonstrated by Proposition 1. 

Proposition 1. The proposed ARD-GEK expressed in Eq. (37) is a valid Mercer kernel. 

Proof. The proposed ARD-GEK can be expressed as the product of two kernel functions, as shown in Eq. (38) 

κARD-GEK
(
Xi,Xj

)
= κ1

(
Xi,Xj

)
κ2
(
Xi,Xj

)
(38)  

in which 

κ1
(
Xi,Xj

)
= exp

(

−
∑n

n̂=1
γn̂
(
xi,n̂ − xj,n̂

)2

)

(39)  

κ2
(
Xi,Xj

)
=
∑ƛ̂

ƛ=0
Eƛ(Xi)

TEƛ
(
Xj
)

(40)  
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Based on [16,73], the multiplication of two valid Mercer kernels is also a valid kernel function. As κ1
(
Xi,Xj

)
is the multiplication of the 

Gaussian kernel that satisfies the Mercer Theorem, κARD-GEK can be proved as satisfying the Mercer Theorem by proofing that κ2
(
Xi,Xj

)

satisfies the Mercer Theorem. 
Given an arbitrary squared integrable function g(x) defined as g : R

n→R and assuming each element in Xi and Xj is independent 
with each other, then 

∫∫

κ2
(
Xi,Xj

)
g(Xi)

Tg
(
Xj
)
dXidXj

=

∫∫ ∑ƛ̂

ƛ=0

Eƛ(Xi)
TEƛ
(
Xj
)
g(Xi)

Tg
(
Xj
)
dXidXj

=
∑ƛ̂

ƛ=0

∫∫

Eƛ(Xi)
TEƛ
(
Xj
)
g(Xi)

Tg
(
Xj
)
dXidXj

=
∑ƛ̂

ƛ=0

[ ∫

Eƛ(Xi)
Tg(Xi)dXi

∫

Eƛ
(
Xj
)Tg
(
Xj
)
dXj

]

=
∑ƛ̂

ƛ=0

{[∫

Eƛ(Xi)
Tg(Xi)dXi

][∫

Eƛ
(
Xj
)Tg
(
Xj
)
dXj

]}

⩾0

(41)  

Therefore, κ2
(
Xi,Xj

)
is a valid Mercer kernel and κARD-GEK

(
Xi,Xj

)
is an admissible Mercer kernel function. 

This concludes the proof.□. 
Since the developed ARD-GEK is a mixed kernel function that combines a local kernel κ1

(
Xi,Xj

)
(i.e., ARD-Gaussian kernel) and a 

global kernel κ2
(
Xi,Xj

)
(i.e., GEK), the developed ARD-GEK is considered as a multiple kernel learning algorithm using fixed rules and 

facilitating a separating length scale for each predictor. Theoretically, the introduction of the local Gaussian kernel improves the 
convergence speed, and the adopted ARD method enhances the robustness of the GEK. Convincedly, the proposed ARD-GEK serves as 
an additional option of kernel function to the embedded X-SVR method for solving complex engineering problems. 

3.3. Cross-validation (CV) and hyperparameter tunning 

To ensure the accuracy of prediction by developed virtual models and avoid overfitting, the cross-validation (CV) strategy is 
employed within the X-SVR method [16]. The measurement of training error is measured by the 5-fold CV error, denoted as Err5cv, that 
is calculated as 

Err5cv =
1
5
∑5

ϑ=1
errϑ (42)  

where errϑ indicates mean squared error (MSE) between the true function value (Yϑ ∈ R
mϑ ) and the predicted value by X-SVR 

( f̂ ϑ(Xϑ) ∈ R
mϑ ) in the ϑth fold. Specifically, errϑ is calculated as 

errϑ =
1

mϑ

∑mϑ

ϖ=1

[
Yϑ,ϖ − f̂

(
Xϑ,ϖ

) ]2
, for ​ ϑ = 1, 2, ⋯, 5 (43)  

where mϑ indicates the number of training samples in the ϑth fold; Yϑ,m represents the ϖth component in Yϑ; Xϑ ∈ R
mϑ×n collects the 

training inputs of the ϑth fold; Xϑ,ϖ ∈ R
n indicates the ϖth component in Xϑ and f̂

(
Xϑ,ϖ

)
denotes the model prediction for Xϑ,ϖ . 

The accuracy of the established virtual models depends on hyperparameters. The X-SVR method using ARD-GEK contains (n + 4) 
hyperparameters, including a regularization parameter λ, penalty parameter C, insensitive tube width ε, the polynomial order ƛ̂ and n- 
dimensional positive kernel parameters γ1, γ2, ...,γn. When the kernel mapping strategy is utilized, the dimension of the input n equals 
the size of the training sample m. In many cases, the training sample size is generally large, which consequently leads to a significant 
number of hyperparameters. Manual searching is infeasible for humans due to such high dimensionality. In addition, the grid searching 
method would also be stuck due to the dimensionality curse. To effectively tune hyperparameters, Bayesian optimization is embedded 

Table 1 
Searching ranges for hyperparameters.  

Hyperparameter Searching range 

λ [1e-5, 1] 
C [1e3, 1e6] 
ε [1e-7, 1e-4] 
ƛ̂ [0, 8] 

γ1, γ2, ... , γn [0.1, 50]  
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into the X-SVR method for minimizing Err5cv, in which both Gaussian and non-Gaussian processes can be used [73,74]. Since 
hyperparameter tunning by Bayesian optimization is the secondary problem in this research, the detailed algorithm can be referred to 
in the references [75–77]. The searching ranges of hyperparameters in the developed ARD-GEK are summarized in Table 1. 

By virtue of the X-SVR approach, the implicit and sophisticated relationships between system parameters and the structural re
sponses can be translated into explicit differentiable equations. Therefore, instead of solving the complicated constitutive equations, 
the problem is formulated into a series of constrained optimization programming on the virtual models. Once the virtual models are 
constructed, the following estimations of structural outputs are independent to the structural mesh and complex governing equations 
of the physical models. Via the solid mathematical support, this X-SVR approach significantly relief the pressure from computational 
efficiency in solving the original constitutive relationships. Accordingly, the adequate statistical information and structural reliability 
of concerned responses in EMMs can be estimated efficiently based on a proposed virtual model-aided framework, i.e., a novel 
metamodel-based MCS, introduced in Section 4. 

4. Virtual model-aided structural reliability analysis for 3D EMMs 

To efficiently and effectively conduct reliability analysis of bandgap characteristics for 3D EMMs, a novel virtual model-aided 
framework is developed. This novel framework consists of two main parts including Part I: Virtual model construction and Part II: 
Structural reliability assessment, intuitively demonstrated in Fig. 2. 

Fig. 2. Virtual model-aided framework for structural reliability assessment.  
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In Part I, the main purpose is to establish effective virtual models, which reveal the underpinned constitutive relationships between 
the system parameters and concerned structural responses (i.e., fs and fc). The virtual model construction is started with the design of 
experiment to clarify the physical problem, concerned structural responses and statistical information of uncertainties, including 
means, standard deviations and distribution types. Generally, the proposed framework supports multiple sources of datasets, including 
information and communication techniques, numerical simulation, experiments, and historical records [23]. However, herein, the 
main source of the training datasets is generated through numerical simulation. The training input dataset Xtrain, containing specific 
realizations of the system uncertainties ξR, can be generated through sampling methods, such as Latin hypercube sampling (LHS), 
Quasi-MCS (Sobol sequence or Halton sequence), etc. [78,79]. In this work, the training input samples are generated by a widely used 
sampling method, i.e., LHS, which can provide full coverage of the range for each variable [80–82]. By implementing MCS on the FEM 
models, training dataset output Ytrain is obtained, which are specific realization for concerned random bandgap properties (i.e., fR

s or 
fR
c ). In addition to the support of multiple data sources, the high compatibility of the proposed framework can be further highlighted, 

since various machine learning techniques, data processing techniques (e.g., dimension reduction, normalization, sampling, and noise 
discard strategies), and postprocessing techniques can be easily integrated into the proposed framework [83–85]. 

In this research work, the X-SVR method is employed to develop virtual models, revealing the underpinned relationships between 
structural parameters and concerned structural responses. The embedded X-SVR method can be formulated into a QP problem, which 
means that the global optimum solution can be obtained by any QP or convex solvers. To avoid overfitting in the constructed virtual 
models, a 5-fold CV is adopted in the X-SVR method. Furthermore, to effectively and efficiently tune hyperparameters, Bayesian 
optimization is employed, which can solve the minimum objective function with fewer iterations compared with the traditional 
method, such as grid searching. In this work, the maximum iteration for Bayesian optimization is set as 50. 

To establish effective virtual models revealing the relationship between structural parameters and outputs, a convergence study is 
conducted to determine the size of training samples. In addition, for each specific training sample size, virtual models are constructed 
repeatedly 20 times to assess computational stability and accuracy. To further improve the robustness of the embedded virtual 
modelling technique, a novel generalized kernel function is proposed. The developed kernel function integrates the Automatic 
Relevance Determination (ARD) strategy and Generalized Eulerian kernel (GEK), namely ARD-GEK to serve as an additional option for 
kernel mapping in applications. It is worth noting that when the local widths share the same value, the developed ARD-GEK can 
degenerate into the original GEK. 

Afterwards, Part II is executed for assessing the reliability of bandgap characteristics for 3D EMMs. In this paper, datasets for system 
uncertainties are established by utilizing sampling methods. With the aid of the explicit formulations of the virtual models, datasets 
with a sufficient amount of sampling points can be obtained in an efficient manner. Afterwards, adequate statistical information, such 
as means, standard deviations, PDFs, and CDFs can be estimated for concerned structural responses with the implementation of MCS. 
The estimated structural reliability concerning fR

s for an EMM by the proposed virtual model-aided framework is presented as follows: 

Pr = Pr
(
f R
s ⩽f ∗s

)
≈ Pr

(
f̂ s⩽f ∗s

)
=

∫ f ∗s

− ∞
f D
f̂ s
(x)dx ≈

1
N
∑N

ϛ=1
Ï
(

f̂
ϛ
s⩽f ∗s

)
(44)  

in which f∗s represents the capacity of the system for fR
s ; N denotes the number of sampling points; ̈I[ • ] denotes an indicate function 

which equals 1 if [ • ] is true and 0 if [ • ] is false; f̂
ϛ
s denotes the predicted response for fs by the constructed virtual model at the ϛth 

realization for random variables. It is worth mentioning that the estimated structural reliability with the aid of the virtual model is not 
equivalent to the theoretical value in Eq. (13). Errors can be induced from three sources, including the error in FEM physical models, 
the errors between FEM models and virtual models, and statistical errors resulting from sampling methods. Specifically, it can be noted 
from Eq. (44) that both the sampling size and realizations generated by sampling methods can contribute to errors in the failure 
probability estimation. 

As a partially non-intrusive method, once the virtual model has been established, the subsequent virtual model-aided EMM reli
ability analysis can avoid the computationally expensive calculation on the FEM model. Besides, it is worth mentioning that the virtual 
model training process is independent of distribution types for random inputs. After the virtual model is developed, the statistical 
information and structural reliability can be estimated for concerned structural responses based on the newly generated samples of 
random variables following updated distribution types. However, one limitation of the information update feature is that additional 
training datasets may be required for developing effective virtual models if the random structural parameters vary over larger ranges. 
Further analysis, such as design optimization, sensitivity analysis, and structural health monitoring can be conducted based on the 
established virtual models with ease. 

Generally, the advantages of the proposed framework can be summarized as follows:  

(1) A systematic reliability analysis framework is proposed to quantitatively investigate material and geometrical uncertainties 
separately or simultaneously on structural reliability for EMMs.  

(2) A virtual modelling technique is embedded into the framework to reveal the underpinned and implicit constitutive relationships 
between structural parameters and concerned structural responses for 3D EMMs based on a limited number of datasets. The 
established virtual model can be formulated as a continuous explicit mathematical equation through the X-SVR technique.  

(3) Calculation on virtual models can bypass complicated tasks in original physical models, such as domain discretization, meshing, 
assembling structural matrix and evaluating sophisticated governing relationships within the framework of the FEM method. 
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(4) By integrating the established virtual models with sampling-based methods, sufficient statistical information, including means, 
standard deviations, PDFs, CDFs, and structural reliability can be estimated in an efficient and effective manner.  

(5) Once virtual models are developed, information update is an inherent feature. It facilitates the calculation of the concerned 
structural response on the established virtual model following any updated statistical information of the system inputs without 
re-running the relatively computationally exhaustive physical model and subsequently benefits in updating the structural 
reliability.  

(6) The proposed framework possesses high compatibility, which can be integrated with various sources of datasets, machine 
learning methods, and data processing techniques. 

5. Numerical investigations 

In the numerical investigation, the effectiveness and computational efficiency of the proposed virtual model-aided reliability 
framework for a lattice-based 3D EMM by considering both material and geometrical uncertainties are demonstrated. For 3D EMMs, 
they usually possess more complicated constitutive relationships between structural parameters and concerned bandgap character
istics compared with 1D and 2D EMMs [43–46]. To substitute the sophisticated underpinned physical relationship in a 3D EMM with a 
virtual model, the embedded virtual modelling technique is required to demonstrate high robustness. In addition, since the deter
ministic dispersion analysis for 3D EMMs already requires a large computational cost, to maintain the high applicability of the pro
posed framework, the employed virtual modelling technique is requested to illustrate high convergence speed in virtual model 
construction. To fulfil this task, the recently developed X-SVR method is adopted. The convergence speed, stability, robustness, and 
accuracy of the method are investigated thoroughly in three numerical investigation cases. In Cases A and B, material and geometrical 
uncertainties are considered separately in unit cells, in which each case involves three random variables. Then, the structural reliability 
analysis is implemented in Case C by considering both material and geometrical uncertainties simultaneously for the 3D EMM, 
involving six random variables. In addition, other popular machine learning methods, e.g., the traditional support vector regression 
(SVR) and neural network (NN), are also adopted in comparisons. All simulations are run in MATLAB. Statistics and machine learning 
toolbox is used to train virtual models by SVR and NN techniques, in which default settings are employed [86]. Specifically, when 
implementing SVR, the default Gaussian kernel is used. In NN models, the number of outputs in the first three fully connected layers are 
10, 5, and 10, respectively. Before investigating structural reliability, a deterministic analysis is conducted, illustrating the detailed 
procedure to evaluate the concerned structural responses by FEM in a single realization. 

5.1. The 3D EMM design and its deterministic bandgap analysis 

The numerical investigation is implemented on a lattice-based 3D EMM, the structural layouts are depicted in Fig. 3(a) and (b). 
Lattice-based EMMs have attracted significant attention due to their high stiffness-to-density ratio and excellent lattice symmetry, 
which have great potential to be implemented for a wide range of real-life engineering applications, including vibration control, 

Fig. 3. (a) Structural layout of the 3D EMM unit cell in a (a) 3D view, (b) 2D view; convergence study for (c) fs and (d) fc.  
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vibration suppression, and noise reduction [87]. 
The unit cell is characterized by four geometrical parameters including the unit cell size a, cornered sphere radius ra, centered 

sphere radius rb, and connected cylinder radius rc. In the numerical simulations, the material with Young’s modulus E = 2 GPa, density 
ρ = 1150 kg/m3, and Poisson’s ratio υ = 0.4 [11] is endowed to the EMMs. Bloch-Floquet boundary conditions [11] are applied on the 
boundary surfaces of the unit cells colored in blue as shown in Fig. 3(a). According to the convergence study in Fig. 3(c) and (d), 
obvious convergence trends are observed when the DoF reaches to 18645. The correspondingly adopted mesh with 3176 tetrahedra 
elements is illustrated. Based on the governing equation illustrated in Eq. (6), the deterministic bandgap solution of the EMM with a =
30 mm, ra=2 mm, rb=12 mm, and rc = 1 mm along the k-path of the First Brillouin zone is evaluated and presented in Fig. 4 [51]. The 
adopted k-path is Γ - X - M - Γ - R - X|M - R, where Γ represents the center of the Brillouin zone, M denotes the center of the edge, R 
demonstrates a corner point, and X indicates the center of a face, respectively. 

The concerned 1st bandgap is described by two variables including the starting frequency (fs) and the cut-off frequency (fc) labelled 
in Fig. 4. These two quantities are the concerned structural responses in the subsequent structural reliability analysis. 

5.2. Case A: material uncertainty in the unit cell 

In the structural reliability analysis considering material uncertainties, the material properties for the 3D EMM unit cell are 
considered as mutually independent random variables following uniform distributions within the ranges of [1.90e9, 2.10e9]Pa for E, 
[1093.25, 1207.50]kg/m3 for ρ, and [0.38,0.42] for υ, respectively. Training input dataset is generated by LHS and corresponding 
concerned structural outputs, i.e., fs and fc are computed by FEM to obtain the training output dataset. Besides the X-SVR method, the 
other two popular machine learning techniques, e.g., the traditional support vector regression (SVR) and neural network (NN), are also 
implemented in comparison, regarding computational convergence, accuracy, and stability. The brute FEM-based MCS with 2e3 it
erations is conducted as the benchmark. The estimation metrics listed in Table 2 are employed to quantitatively assess the compu
tational accuracy of the constructed virtual models. 

To establish effective virtual models bridging the underpinned relationship between material properties and the concerned 
structural responses, the convergence study is conducted on the virtual models with adjusted training sample sizes (i.e., training 
sample size = 10, 25, 50, 100, 150, and 200). R2 and RMSE are estimated for the established virtual models by the three machine 
learning techniques. Furthermore, a mutually independent calculation is repeated 20 times to test the computational stability. The 
results are summarized in the boxplots shown in Figs. 5–8. It is worth mentioning that FEM on MCS, X-SVR on MCS, SVR on MCS, and 
NN on MCS are simplified as FEM, X-SVR, SVR, and NN in the following figures and tables. 

Based on the results in Figs. 5–8, obvious convergence trends are noticed in R2 and RMSE for the established virtual models by these 
three machine learning methods. The thickness of the box indicates the dispersion of the results, and the red ‘+’ marker represents the 
outliers. It is noticed that the virtual models constructed by the embedded X-SVR approach share faster convergence speed and higher 
computational stability, with the thinnest boxes and little outliers. Moreover, scatter plots are demonstrated when the training sample 
size is 100, intuitively illustrating the dispersion of the estimated results in reference to the brute MCS results. Based on the plots, it is 
found that the estimations by the X-SVR method possess less dispersion compared with the results by SVR and NN techniques. 
Accordingly, the X-SVR method surpasses the traditional SVR method and NN in the virtual model construction for revealing the 
relationships between material properties and concerned outputs, in terms of convergence speed, computational accuracy, and 
stability. 

When the training datasets reach 100, effective virtual models with extraordinary performance in computational accuracy and 
stability can be established by the X-SVR approach. In the subsequent calculation, the evaluation of the complicated constitutive 
relationship between the system parameters and the concerned structural responses is no longer required. The concerned structural 
outputs can be estimated by the established explicit formations, which significantly relieve the pressure from computational efficiency. 

Subsequently, the PDFs and scatter plots of fs and fc are estimated. The associated computational results are shown in Figs. 9 and 10. 
From Figs. 9 and 10, the PDFs of fs and fc are successfully estimated by the established X-SVR virtual models learnt from 100 

training samples. High overlapping can be observed between the estimations by the X-SVR and the exhaustive MCS method. The 
superior performance of the X-SVR technique in virtual model construction is further demonstrated by the least dispersion in scatter 

Fig. 4. Band structure along the k-path in the First Brillouin zone of the EMM.  
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plots, in comparison to the traditional SVR and NN approaches. To further highlight the high computational accuracy of the developed 
virtual models, 7 concerned statistical information (i.e., μ, μ ± σ, μ ± 2σ, and μ ± 3σ) of fs and fc are estimated and shown in Tables 3 
and 4, respectively. The brute FEM-based MCS results are presented as the reference. 

It is clearly shown in Tables 3 and 4 that the statistical information of both fs and fc can be estimated accurately by the X-SVR virtual 
models. The maximum absolute value of RE in estimating fs is 7.66e-55 %, which is excessively lower than 0.26 % and 0.045 % by SVR 

Table 2 
Estimation metrics.  

Estimation metric Formulation 

R-squared (R2) 
R2 = 1 −

∑
N(Y − Ŷ)

2

∑
N(Y − Y)2 

Root Mean Square Error (RMSE) 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

N(Y − Ŷ)2

N

√

Relative Error (RE) 
RE =

Y − Ŷ
Y

× 100%  

*where Y, Ŷ , and Y denote the FEM-based MCS results, virtual models estimation, 
and the mean of the FEM-based MCS results respectively; N represents the number 
of samples.  

Fig. 5. Estimated R2 of the virtual models for fs by (a) X-SVR, (b) SVR, and (c) NN.  

Fig. 6. Estimated RMSE of virtual models for fs by (a) X-SVR, (b) SVR, and (c) NN.  

Fig. 7. Estimated R2 of the virtual models for fc by (a) X-SVR, (b) SVR, and (c) NN.  
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and NN methods, respectively. Meanwhile, an extremely narrow range of REs between -1.94e-4 and 4.65e-4 % is noted in estimating 
the local statistical information for fc by the X-SVR virtual model. The corresponding ranges of REs by the SVR and NN methods are 
[-0.25, 0.27]% and [-0.015, 0.021]%, respectively, which are significantly larger in contrast to the results by the X-SVR approach. 

Then, statistical tests are conducted to demonstrate the capability of the proposed method to estimate means and variances for fs 
and fc. Different samples are generated when MCS sample sizes are set as 5, 10, 25, 50, 75, 100, 125, 350, 500, 750, and 1000 
respectively. The convergence plots of the estimated means and variances for fs and fc are shown in Figs. 11 and 12 respectively. 

It can be seen from Figs. 11 and 12 that obvious convergence trends are observed in the estimated statistical information by the two 
approaches when the MCS sample size reaches 1000. Moreover, the REs of estimated means for fs and fc at the MCS sample size of 1000 
are only 2.59e-2 % and 2.36e-2 %, respectively. 

Fig. 8. Estimated RMSE of the virtual models for fc by (a) X-SVR, (b) SVR, and (c) NN.  

Fig. 9. Estimated (a) PDFs and (b) the scatter plot of fs for the EMM involving material uncertainties.  

Fig. 10. Estimated (a) PDFs and (b) the scatter plot of fc for the EMM involving material uncertainties.  
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Then, structural reliability is estimated when both f*
s and f*

c are set as the values corresponding to μ, μ ± σ, μ ± 2σ, and μ ± 3σ, 
respectively. The corresponding values are summarized in Tables 3 and 4. It is worth mentioning that the widely used MCS on physical 
models is adopted as the benchmark to demonstrate the computational accuracy of the virtual model-aided framework [88–90]. Then, 
the estimated structural reliability is compared based on the estimation metrics RE when the sampling sizes are 2e3 iterations to further 
highlight the high computational accuracy. By virtue of developed virtual models with high computational efficiency, structural 
reliability for the EMM is estimated when sampling sizes reach 1e5 iterations. The computational results are summarized in Tables 5 
and 6 for the concerned structural responses fs and fc, respectively. 

From Tables 5 and 6, it is found the structural reliability for fs and fc are accurately estimated by the X-SVR approach compared 
with the MCS benchmark. The largest deviations are found at Pr(fs≤1842.07087) and Pr(fc≤7296.54502) with REs of -1.34 % and 0.71 
% respectively. Furthermore, it is worth mentioning that the accuracy for the estimation of structural reliability depends on f*

s and f*
c . 

Quantification of the structural reliability relating to rare events is critical to avoid structural failure in real-life applications. The X- 
SVR algorithm still possesses outstanding performance to estimate structural reliability. Hence, by only utilizing 100 training samples, 
it is well demonstrated that the embedded X-SVR approach is capable of generating effective virtual models, showing extraordinary 
computational accuracy to estimate structural reliability. Moreover, the high computational efficiency of the X-SVR method is 
highlighted with more statistical data. All computations were carried out on a workstation with Intel(R) Core(TM) Gold 5215 CPU @ 
2.54GH 2.49 GHz. To estimate the structural reliability by the virtual model-aided framework, the main computational resources were 

Table 3 
The estimated statistical information of fs when sampling size is 2e3 iterations. (Unit: Hz).  

Location FEM X-SVR RE (%) SVR RE (%) NN RE (%) 

μ − 3σ 1842.07087 1842.20723 7.66e-5 1846.90013 0.26 1842.89611 0.045 
μ − 2σ 1882.23236 1882.23364 6.80e-5 1885.39761 0.17 1882.82684 0.032 
μ − σ 1922.39384 1922.39499 5.98e-5 1923.89449 0.078 1922.75758 0.019 

μ 1962.55532 1962.55634 5.19e-5 1962.39167 -8.33e-3 1962.68832 0.0068 
μ + σ 2002.71681 2002.71770 4.44e-5 2000.88885 -0.091 2002.61906 -0.0049 
μ+ 2σ 2042.87829 2042.87905 3.71e-5 2039.38603 -0.17 2042.54980 -0.016 
μ+ 3σ 2083.03977 2083.04040 3.01e-5 2077.88321 -0.25 2082.48054 -0.027 

R2 N/A >0.99999 N/A 0.98511 N/A 0.99892 N/A 
RMSE N/A 0.027567 N/A 4.73194 N/A 1.31555 N/A  

Table 4 
The estimated statistical information of fc when sampling size is 2e3 iterations. (Unit: Hz).  

Location FEM X-SVR RE (%) SVR RE (%) NN RE (%) 

μ − 3σ 7296.54502 7296.57894 4.65e-4 7316.30688 0.27 7298.09748 0.021 
μ − 2σ 7455.27999 7455.53601 3.43e-4 7468.50211 0.17 7456.61215 0.015 
μ − σ 7614.51098 7614.52827 2.27e-4 7620.69735 0.081 7615.12681 0.0081 

μ 7773.49397 7773.50294 1.15e-4 7772.89256 -0.0077 7773.64148 0.0019 
μ + σ 7932.47695 7932.47760 8.22e-6 7925.08782 -0.093 7932.15614 -0.0040 
μ+ 2σ 8091.45993 8091.45226 -9.47e-5 8077.28306 -0.18 8090.67081 -0.0098 
μ+ 3σ 8250.44291 8250.42693 -1.94e-4 8229.47829 -0.25 8249.18547 -0.015 

R2 N/A >0.99999 N/A 0.98496 N/A 0.99960 N/A 
RMSE N/A 0.12280 N/A 18.80417 N/A 3.17915 N/A  

Fig. 11. Convergence plots of the estimated (a) mean and (b) variance for fs.  
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consumed by the dataset establishment. By utilizing FEM, it took approximately 9.17 h to construct datasets with 100 sampling points. 
The subsequent estimation of structural responses with 1e5 iterations required less than 1 s. Alternatively, under the same compu
tational environment, the exhaustive MCS method with 2e3 iterations took 183.34 h in total, which was significantly larger than the 
consumed resources to estimate structural reliability by the metamodel-based approach with 1e5 iterations. 

Subsequently, the capability of the developed framework to estimate statistical information for concerned structural responses 
following multiple distribution types is demonstrated. By generating new samples following various distribution types, concerned 
structural responses, statistical information, and structural reliability are estimated with the aid of the developed virtual models. In the 
numerical example, the updated statistical information of the system uncertainties is summarized in Table 7. 

Fig. 12. Convergence plots of the estimated (a) mean and (b) variance for fc.  

Table 5 
Estimated structural reliability of fs.  

f*
s (Hz) Pr

(
fs⩽f*

s
)

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) X-SVR (1e5 iterations) 

1842.07087 1.214658e-5 1.1984e-5 -1.34 <1e-20 
1882.23236 0.019970 0.019945 -0.13 0.016807 
1922.39384 0.17866 0.17877 6.16e-2 0.17913 
1962.55532 0.50360 0.50357 -5.96e-3 0.50910 
2002.71681 0.81577 0.81568 -1.10e-2 0.82542 
2042.87829 0.97920 0.97926 6.13e-3 0.98055 
2083.03977 0.99998 0.99998 4.70e-6 >0.99999  

Table 6 
Estimated structural reliability of fc.  

f*
c (Hz) Pr

(
fc⩽f*

c
)

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) X-SVR (1e5 iterations) 

7296.54502 1.16268e-5 1.1709e-5 0.71 <1e-20 
7455.27999 0.019893 0.019902 4.52e-2 0.017306 
7614.51098 0.17880 0.17875 -2.80e-2 0.18014 
7773.49397 0.50381 0.50375 -1.19e-2 0.51068 
7932.47695 0.81557 0.81558 1.23e-3 0.82649 
8091.45993 0.97922 0.97928 6.13e-3 0.98084 
8250.44291 0.99998 0.99998 9.45e-6 >0.99999  

Table 7 
Updated statistical information of the material properties.  

Random variable Distribution type μ σ 

E(GPa) Extreme value 2.00 0.013 
ρ(kg/m3) Lognormal 1150 11.36 

υ Normal 0.4 0.004  
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Since extreme values for material properties are impractical in real-life scenarios, sample points are truncated at the ranges of 
[1.92e9, 2.02e9] Pa for E, [1.11e3, 1.19e3] kg/m3 for ρ, and [3.88e-1, 4.16e-1] for υ. Through the developed virtual models, the 
statistical moments of fs and fc are estimated. The brute FEM-based MCS with 2e3 iterations is conducted as the benchmark for 
assessing computational accuracy. The computational results are summarized in Table 8. 

From Table 8, the accuracy in estimating statistical moments by the X-SVR approach is well demonstrated by referring to the highly 
matched μ and σ for fs and fc in contrast to the MCS results. Furthermore, the effectiveness of the virtual model is further highlighted by 
referencing to the R2-values nearly 1 and the low RMSE-values. 

Then, the corresponding estimated PDFs and scatter plots for fs and fc are generated. The associated results are shown in Figs. 13 
and 14. 

It is evidently found in Figs. 13 and 14 that the estimated PDFs by the X-SVR method highly overlap with the results from the 
exhaustive MCS. Besides, the accuracy of the virtual models is also intuitively shown by the scatter plots, illustrating that the results by 
the X-SVR method highly match with the MCS results. Therefore, it is well demonstrated that the developed virtual model is capable of 
effectively updating the structural responses (i.e., fs and fc) and statistical information for the concerned outputs. Then, 7 concerned 
structural reliability corresponding to distinguish assumed capacities of the system at different statistical information (i.e., μ ± 3σ, 
μ ± 2σ, μ ± σ, μ), are updated and presented in Table 9. 

From Table 9, the concerned statistical probabilities are updated accurately by the established X-SVR virtual models. The accuracy 
of the implemented X-SVR method is highlighted by the detailed information, i.e., the REs over the concerned probabilities fluctuating 
between -5.4e-3 % and 5.5e-2 %. Hence, the developed virtual models possess high robustness and are capable of estimating the 
concerned structural responses under the random variables with multiple distribution types including normal, lognormal, and extreme 
value distributions. 

Subsequently, statistical tests are conducted to demonstrate the capability of the proposed framework to infer means and standard 
deviations for concerned structural responses when distribution types for random variables are changed. The MCS sample sizes are 5, 
10, 25, 50, 75, 100, 150, 300, 550, 700, and 1000, respectively. The convergence studies of the estimated means and standard de
viations for fs and fc are demonstrated in Figs. 15 and 16. 

From Figs. 15 and 16, it can be seen that general convergence trends can be captured when the MCS sample sizes reach 1000, 
demonstrating the capability of the proposed framework to estimate statistical information for the concerned bandgap properties. 
Besides, it is necessary to highlight that the estimation of structural reliability by the X-SVR took less than 1 s to update the structural 
reliability when random variables are modelled as different distribution types. However, FEM-based MCS required more than 270 h to 
calculate the structural responses with 3e3 iterations, which caused a significantly larger computational burden than the proposed 
virtual model-aided framework. 

5.3. Case B: geometrical uncertainty in the unit cell 

Different to the previous Case A, the reliability analysis is conducted in Case B by considering the geometrical uncertainty in the 3D 
EMM. To construct the effective virtual models through the embedded X-SVR technique, the LHS is employed to generate realizations 
for the mutually independent inputs within the ranges of [2.85, 3.15] mm for ra, [11.40, 12.60] mm for rb, and [0.76, 0.84] mm for rc. 
In this case, the material properties are considered as deterministic parameters, with the values of E = 2 GPa, ρ = 1150 kg/m3, and 
υ = 0.4. FEM is utilized to compute the corresponding structural responses and the domain discretization in each realization is 
conducted by the auto-mesh in the FEM software. The brute MCS with 2e3 iterations is conducted as the benchmark to assess the 
computational accuracy of the established virtual models. With the aid of the convergence study, X-SVR virtual models trained by 100 
samples, showing exceptional computational accuracy, and stability, are developed to estimate the structural outputs for fs and fc, 
respectively. Besides, to highlight the computational accuracy of the X-SVR approach, the traditional SVR and NN methods are also 
implemented for comparison. The performance of the established virtual models is estimated by R2 and RMSE. The associated results 
are illustrated in Table 10. 

From Table 10, superior performance in virtual model construction for both concerned structural responses (i.e., fs and fc) can be 
noticed through the embedded X-SVR technique. Evidentially, in comparison to the traditional SVR and NN, based on the same sets of 
training samples, the embedded X-SVR models possess higher R2 values and lower RMSE values. Convincingly, based on relatively 
small training datasets, the X-SVR approach demonstrates high robustness to construct effective virtual models, revealing the 

Table 8 
Statistics of fs and fc by the FEM-based MCS and X-SVR.    

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) 

fs μ(Hz) 1958.90762 1958.91050 1.47e-4 
σ(Hz) 11.40668 11.42431 1.56e-1 

R2 N/A >0.99999 N/A 
RMSE N/A 0.019085 N/A 

fc μ(Hz) 7758.59417 7758.60332 1.18e-5 
σ(Hz) 45.12989 45.20060 1.57e-1 

R2 N/A >0.99999 N/A 
RMSE N/A 0.078146 N/A  
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sophisticated relationship between geometrical parameters and concerned structural responses for the 3D EMM. 
By substituting the cumbersome FEM with the explicit virtual models in the following analysis, serious problems that may be raised 

in the FEM can be avoided, including the time-consuming re-discretization of the domain, re-evaluation of the constitutive re
lationships with excessive computational burden and computational results with poor quality or even failure in convergence. 
Accordingly, based on the developed virtual models, an adequate amount of sampling points can be generated in an efficient and 
effective manner. It provides possible access to the structural reliability for the 3D EMM involving geometrical uncertainty. 

Through adopting the LHS to generate more realizations of the uncertainty datasets, corresponding structural responses are esti
mated by the established virtual models. The PDFs of the concerned structural responses are estimated and shown in Figs. 17 and 18, 
respectively. The brute MCS with 2e3 iterations are implemented for result verification. 

From Figs. 17 and 18, it is found that the estimated PDFs by the X-SVR virtual models highly overlap with the MCS results for both 

Fig. 13. Estimated (a) PDFs and (b) the scatter plot of fs under information update.  

Fig. 14. Estimated (a) PDFs and (b) the scatter plot of fs under information update.  

Table 9 
Estimated structural reliability of fs.  

f*
s (Hz) Pr

(
fs⩽f*

s
)

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) X-SVR (1e5 iterations) 

1924.68758 2.14910e-3 2.14899e-3 -5.4e-3 3.56083e-3 
1936.09426 0.026467 0.026479 4.7e-2 0.029915 
1947.50094 0.15932 0.15941 5.5e-2 0.16579 
1958.90762 0.48204 0.48225 4.3e-2 0.49445 
1970.31431 0.83760 0.83773 1.5e-2 0.83464 
1981.72099 0.94540 0.94542 2.5e-3 0.97712 
1993.12766 0.99938 0.99935 -2.64e-3 0.99870  
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quantities of interest. Distinct deviations in the PDFs are noted by the SVR results against the MCS results. Besides, the accuracy of the 
estimation is further intuitively demonstrated by the scatter plots. From Figs. 17(b) and 18(b), it is noted that obvious dispersion is 
found between the results from SVR and MCS, especially for the estimation of fs. In addition, distinct deviations are found between the 
results from NN and MCS when outputs are around μ ± 3σ. Among these three methods, the X-SVR approach illustrates superior 
accuracy in estimating the results by the least dispersive data with the MCS results. 

Afterwards, the structural reliability is estimated when both f*
s and f*

c are set as 7 different values, corresponding to 7 statistical 
information of μ, μ ± σ, μ ± 2σ, and μ ± 3σ. The results are summarized in Tables 11 and 12. 

It is found in Tables 11 and 12 that the trained X-SVR virtual models are competent in estimating the concerned probabilities 
accurately for both concerned structural responses, by referring to the highly matched estimation between MCS and the X-SVR results. 
By learning from only 100 training samples, the effective virtual models are established and illustrate exceptional performance in 
computational accuracy to estimate the adequate statistical information and structural reliability for the 3D EMM considering spatially 
randomness. 

Besides the high accuracy and robustness of the virtual model-aided framework to conduct the reliability analysis considering 
geometrical uncertainties, it is also worth highlighting the high efficiency with additional statistical data. To estimate the structural 

Fig. 15. Convergence plots of the estimated (a) mean and (b) variance for fs when random variables are following multiple distribution types.  

Fig. 16. Convergence plots of the estimated (a) mean and (b) variance for fc when random variables are following multiple distribution types.  

Table 10 
Estimated metrics for the trained virtual models.   

fs fc  

X-SVR SVR NN X-SVR SVR NN 

Training sample size 100 100 100 100 100 100 
R2 0.99991 0.98182 0.99901 0.99923 0.97056 0.99827 

RMSE 0.61194 8.60830 2.05456 8.89021 51.97002 13.36168  
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reliability through the proposed virtual model-aided framework, the majority of the computational resources were consumed in the 
training dataset establishment process. It took 10.28 h to establish the training datasets with 100 sampling points. Subsequently, the 
estimation of structural reliability with 1e5 iterations took less than 1 s. Nonetheless, the required computational cost to estimate the 
structural reliability by the FEM-based MCS with 2e3 iterations was 205.6 h. The consumed computational time has been significantly 
reduced by the proposed framework, which significantly improves the applicability of the brute MCS to conduct the structural reli
ability analysis for 3D EMMs. 

With the aid of the developed virtual models, a local sensitivity analysis, measuring the effects of local perturbations in the random 

Fig. 17. Estimated (a) PDFs and (b) the scatter plot of fs for the EMM involving geometrical uncertainties.  

Fig. 18. Estimated (a) PDFs and (b) the scatter plot of fc for the EMM involving geometrical uncertainties.  

Table 11 
Structural reliability of fs.  

f*
s (Hz) Pr

(
fs⩽f*

s
)

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) X-SVR (1e5 iterations) 

1453.81625 4.36638e-6 4.21438e-6 -3.48 <1e-20 
1519.32468 0.015198 0.015351 1.01 0.012446 
1584.83311 0.18627 0.18680 0.29 0.17158 
1650.34154 0.50436 0.50450 0.028 0.50088 
1715.84997 0.82068 0.82023 -0.056 0.82000 
1781.35840 0.97496 0.97599 0.11 0.97653 
1846.86684 0.99995 0.99995 <1e-5 >0.99999  
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variables on structural reliability, can be conducted efficiently and effectively. In the investigation, ra, rb, and rc are varied in the range 
from 98 % to 102 % with regard to the nominal values. The associated results are shown in Fig. 19. Besides, the sensitivity index (SIs) 
[91] measuring the extent of changes in outputs is calculated, which is utilized to identify the critical parameters, affecting signifi
cantly on the structural reliability. 

Based on the results in Fig. 19, both fs and fc are highly sensitive to the uncertainties within rb and rc. Significantly lower SIs of ra are 
found, especially for fs, which is less than 15 % of the corresponding SIs of rb and rc. Hence, greater effects on structural reliability can 
be contributed by the uncertainties from rb and rc. With the aid of the developed virtual models, the local sensitivity analysis can be 
conducted with significantly reduced computational time compared with running the reductant FEM models for each distinct reali
zation. Generally, the computational effectiveness, efficiency, and robustness of the proposed virtual model-aided robust reliability 
analysis, as well as accessory features (e.g., information update and sensitivity analysis), convincingly can benefit the reliability-based 
design and analysis for 3D EMMs in engineering applications. 

5.4. Case C: material and geometrical uncertainties in the unit cell 

The respective influences from material and geometrical uncertainties on structural reliability have been revealed in Cases A and B. 
Considering practical implications, it is common that material and geometrical uncertainties coexist in engineering structures. 
Therefore, in this case, material and geometrical uncertainties are considered simultaneously in the structural reliability analysis for 
3D EMMs. To construct effective virtual models, a training input dataset is generated through LHS when the structural parameters are 
modelled as mutually independent variables within the ranges of [2.85, 3.15] mm for ra, [11.40, 12.60] mm for rb, [0.76, 0.84] mm for 
rc, [1.90e9, 2.10e9] Pa for E, [1093.25, 1207.50] kg/m3 for ρ, and [0.38,0.42] for υ. The training output dataset is obtained through 
FEM and the remeshing in each realization is fulfilled by auto-mesh in COMSOL. According to the convergence study, the obvious 
convergence trends can be captured when the training sample sizes reach 100 for both fs and fc. The established virtual models present 
extraordinary performance in accuracy and computational stability. To further highlight the exceptional performance in virtual model 
construction, other popular machine learning algorithms, such as SVR and NN are implemented to establish virtual models based on 
the same training datasets. The performance of the virtual models is assessed based on R2 and RMSE. The corresponding results are 
shown in Table 13. 

In Table 13, it is demonstrated that exceptional performance is achieved in virtual model construction by X-SVR for both fs and fc, 
by learning from 100 training samples. Compared with SVR and NN, virtual models by X-SVR possess higher R2 and lower RMSE, 
which indicates superior performance in establishing explicit formations for revealing the underpinned relationships between 
structural parameters, including both material and geometrical parameters, and concerned bandgap properties. Once the virtual 
models are constructed, fs and fc can be estimated based on the established virtual models, which is independent of multiple time- 
consuming tasks, including domain discretization, meshing, assembly of structural matrix, and evaluation of implicit governing 
equations. In addition, by integrating the developed virtual models with the sampling-based method, statistical moments, PDFs, and 
structural reliability can be estimated competently with the extensively reduced computational burden compared with brute MCS 
coupled with FEM. To demonstrate the high robustness of the X-SVR method in addressing the reliability problem for 3D EMMs, system 

Table 12 
Estimated structural reliability of fc.  

f*
c (Hz) Pr

(
fc⩽f*

c
)

FEM (2e3 iterations) X-SVR (2e3 iterations) RE (%) X-SVR (1e5 iterations) 

5024.47535 8.26912e-6 8.47975e-6 2.55 <1e-20 
5345.61926 0.015504 0.015547 0.28 0.016377 
5666.76316 0.18329 0.18057 -1.49 0.19005 
5987.90706 0.50227 0.50149 -0.16 0.52680 
6309.05096 0.81901 0.81863 -0.047 0.82307 
6630.19486 0.97368 0.97337 -0.0315 0.97351 
6951.33876 0.99981 0.99977 -4.11e− 3 0.99997  

Fig. 19. Local sensitivity analysis of bandgap characteristics with respect to (a) ra, (b) rb, and (c) rc.  
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uncertainties are modelled as random variables following multiple distribution types. The corresponding statistical information is 
shown in Table 14. 

The accuracy to estimate structural responses by the established virtual models is assessed based on R2 and RMSE. In addition, 
statistical moments of fs and fc are calculated. The exhaustive MCS with 2e3 iterations is employed as the benchmark. The corre
sponding results are summarized in Table 15. 

From Table 15, it is worth noting that the developed virtual models by X-SVR illustrate exceptional performance in computational 
accuracy for estimating two concerned structural responses, especially for fc. The R2 is significantly higher and RMSE is extensively 
lowered of the virtual model by X-SVR compared to SVR and NN. Moreover, REs between MCS and X-SVR for both μ and σ are 
significantly lower than the corresponding values from SVR and NN. Evidently, the embedded X-SVR method, possessing high 
robustness, is capable of accurately estimating bandgap characteristics and statistical moments for 3D EMMs involving both material 
and geometrical uncertainties following multiple distribution types. 

Subsequently, the corresponding estimated PDFs and scatter plots for fs and fc are presented in Figs. 20 and 21. MCS with 2e3 
iterations is conducted as the reference. 

From Figs. 20 and 21, it is noteworthy that the estimated PDFs by X-SVR highly match with MCS results. In addition, the accuracy of 
the estimation by X-SVR is intuitively illustrated by the least dispersive results in reference to MCS results. Therefore, it is convincedly 
that the adopted X-SVR method can accurately estimate sufficient statistical information, including μ, σ, and PDFs when both material 
and geometrical uncertainties exist in the 3D EMM. Then, structural reliability corresponding to 7 different values of f*

s and f*
c , cor

responding to 7 statistical information of μ, μ ± σ, μ ± 2σ, and μ ± 3σ are estimated. The corresponding results are illustrated in Ta
bles 16 and 17. Results from exhaustive MCS with 2e3 iterations are demonstrated as the reference. 

From Tables 16 and 17, by comparing the estimations by FEM and X-SVR both in 2e3 iterations, they are highly matched for both fs 
and fc. However, it should be noted that the computational results in 2e3 iterations have not reached a converged stage. To achieve an 
acceptable convergence trend, the brute MCS may fail due to the daunting computational costs. Then, our proposed approach provides 
a feasible solution to extend a much large number of iterations on the established surrogate model. Accordingly, the computational 
results on the X-SVR model for both fs and fc in 1e5 iterations are also presented in Tables 16 and 17. 

Besides the high robustness and accuracy of the developed framework, the high efficiency of the proposed framework is highlighted 
with more statistical data. It consumed 211.18 h to conduct structural reliability analysis through exhaustive MCS with 2e3 iterations. 
Nonetheless, by employing virtual model-aided framework, the majority of time is consumed by the training dataset generation 
process, which took 10.56 h to construct the training dataset with 100 sampling points. Then, the estimation of structural reliability 
with 1e5 iterations required less than 1 s. Hence, it is clearly illustrated that the computational cost is extensively reduced in the virtual 
model-aided approach, implying the significantly improved applicability to conduct structural reliability analysis for 3D EMMs. 

Apart from the merits of the framework, it is worth emphasizing that the accuracy of failure probability estimation by the proposed 
approach on the 3D EMM is influenced by the structural capacity. Implementing the proposed framework for estimating failure 
probability concerning rare events requires careful consideration. Moreover, one assumption in the numerical investigation is that the 
uncertainties of each unit cell in 3D EMMs are identical, which is not practical in real-life scenarios. The investigation in this paper 
provides an approximation of structural reliability for 3D EMMs. Future works investigating structural reliability for EMMs with 
supercells or metastructures with spatial variations are required for accurate estimation of failure probability for 3D practical EMMs. 

6. Conclusion 

A novel virtual model-aided framework is proposed in this paper to estimate the structural reliability for 3D EMMs involving both 
material and geometrical randomness. A supervised kernel-based virtual modelling technique, namely the extended support vector 
regression (X-SVR) is embedded into the approach to establish effective virtual models that depict the underpinned and sophisticated 

Table 13 
The estimation metrics for virtual models learnt from 100 sets of training samples.   

fs fc 

X-SVR SVR NN X-SVR SVR NN 

R2 0.99990 0.96256 0.99492 0.99923 0.97659 0.97450 
RMSE 0.71980 12.99856 5.13588 10.08214 52.4792 59.9215  

Table 14 
Statistical information of material and geometrical uncertainties.  

Random variable Distribution type μ σ Range 

ra(mm) Gamma 3.00 0.03 2.85–3.15 
rb(mm) Normal 12.00 0.12 11.40–12.60 
rc(mm) Extreme value 0.8 0.005 0.76–0.84 
E(GPa) Logistic 2.00 0.015 1.9–2.1 

ρ(kg/m3) Lognormal 1150 11.5 1.09–1.21 
υ Lognormal 0.4 0.004 0.38–0.42  
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relationships between system uncertainties and the concerned structural responses. Then, the Monte Carlo simulation (MCS) is 
implemented on the established virtual models to estimate adequate statistical information and structural reliability in an effective and 
efficient manner. Distinct from the brute MCS coupled with the finite element method (FEM), such a calculation scheme can be 
partially independent of the cumbersome domain discretization, the structural matrix assembly, and the sophisticated constitutive 
relationship evaluation, which are often the nest of computational burdens or even errors. 

The high robustness, accuracy, and efficiency of the X-SVR technique are highlighted in three numerical investigation cases, which 
analyze structural reliability considering material and geometrical uncertainties separately and simultaneously. Furthermore, once the 
virtual models are established, information update and the sensitivity analysis can be fulfilled easily. Convincingly, the proposed 
virtual model-aided framework with high robustness and applicability can tackle the reliability analysis for EMMs efficiently and 

Table 15 
Statistics of fs and fc by MCS, X-SVR, SVR, and NN when sampling size is 2e3 iterations. (Unit Hz).    

FEM X-SVR RE (%) SVR RE (%) NN RE (%) 

fs μ 1644.8184 1644.8534 2.1e-3 1640.6020 0.26 1647.1754 0.14 
σ 21.3571 21.3390 -0.060 25.6223 20.0010 20.3418 -4.73 

R2 N/A 0.9993 N/A 0.9465 N/A 0.9720 N/A 
RMSE N/A 0.5481 N/A 6.1753 N/A 3.4763 N/A 

fc μ 5955.7534 5958.9650 0.054 5930.1108 -0.43 5966.5354 0.18 
σ 107.9151 108.2019 0.2908 139.7218 29.474 124.8680 15.74 

R2 N/A 0.9932 N/A 0.9187 N/A 0.9270 N/A 
RMSE N/A 8.9562 N/A 42.2359 N/A 30.0146 N/A  

Fig. 20. Estimated (a) PDFs and (b) the scatter plot of fs for the EMM with material and geometrical uncertainties simultaneously.  

Fig. 21. Estimated (a) PDFs and (b) the scatter plot of fc for the EMM with material and geometrical uncertainties simultaneously.  
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effectively, offering extensive merits on the structural analysis, design, and application of them with high reliability in multi- 
disciplinary engineering. 
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