
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Hierarchical Core Decomposition in Parallel:
From Construction to Subgraph Search

Deming Chu§, Fan Zhang?, Wenjie Zhang§, Xuemin Lin§, Ying Zhang]

§University of New South Wales, ?Guangzhou University,]University of Technology Sydney
deming.chu@unsw.edu.au, fanzhang.cs@gmail.com

{zhangw,lxue}@cse.unsw.edu.au, ying.zhang@uts.edu.au

Abstract—The model of k-core discovers a novel hierarchical
structure of a network, which has been widely applied in various
areas, e.g., sociology, biology, and brain science. Based on the
containment relations of k-cores with different k, the hierarchical
core decomposition (HCD) of a graph formalizes the hierarchy of
all k-cores for each possible k. HCD is effective in locating high-
quality subgraphs (e.g., densest subgraph search) and exploring
particular network phenomena (e.g., user engagement study).
However, existing solutions of HCD are still not efficient enough,
for both the hierarchy construction and the subgraph search
on the hierarchy. In this paper, we propose the first parallel
construction algorithm PHCD for HCD, using a new union-find-
based paradigm, and the first parallel algorithm PBKS to search
high-quality subgraphs from the hierarchy with respect to various
community scoring metrics. We prove the problem of hierarchy
construction is P-complete (difficult to parallelize effectively).
Despite the negative result, our PHCD has a near-linear time
cost, and PBKS is time-optimal in score computation for most
community metrics. Extensive experiments are conducted on 10
real-world networks, where our proposed parallel algorithms
significantly outperform the existing solutions, for both the
hierarchy construction and the subgraph search.

I. INTRODUCTION

Graphs are ubiquitous to model complex relations between
entities in the real world, such as social networks [1]–[3],
web networks [4], [5], and biological networks [6]. As one
of the most important graph concepts, cohesive subgraphs are
formed by groups of densely connected vertices. The k-core is
a well-studied cohesive subgraph model, which is defined as a
maximal connected subgraph where every vertex is adjacent to
at least k other vertices in the subgraph [7], [8]. Every vertex
in the graph has a coreness value, i.e., the largest integer k
such that the k-core contains the vertex.

The model of k-core can decompose a graph into an elegant
hierarchy: for every integer k, each k-core is contained in
exactly one (k−1)-core, and each k-core is disjoint from each
other for the given k. Such a hierarchical core decomposition
can be represented by a forest structure, where each tree node
contains the vertices in a k-core with coreness of k, and each
tree edge represents that a k-core contains another k′-core, i.e.,
the parent-child relation of their corresponding tree nodes.

Example 1 (Rationale of Hierarchical Core Decomposition).
Figure 1(a): We depict a graph where the vertices are colored
by their coreness values. The whole graph S2 is a 2-core, in
which the 4-core is S4 and two 3-cores are represented by

𝑆4

𝑆3.2𝑆3.1

𝑆2

(a) Original Graph

𝑘 ൌ 4

𝑘 ൌ 3

𝑘 ൌ 2

(b) Core Decomposition

𝑘 = 3

𝑘 = 2

𝑘 = 4

𝑇3.1 𝑇3.2

𝑇2

𝑇4

(c) Hierarchical Core Decomposition

Fig. 1. Rationale of Hierarchical Core Decomposition

S3.1 and S3.2. Figure 1(b): The core decomposition organizes
all vertices into a core-periphery structure, where the vertices
with a higher coreness are more close to the center of the
network. In a core decomposition, all vertices with the same
coreness are maintained at the same layer. Figure 1(c): In the
HCD, each tree node contains the vertices in a k-core with
coreness k (marked by solid circles). Each k-core one-to-one
corresponds to a tree node. Let Ti represent the tree node
corresponding to Si. The HCD (i) distinguishes the vertices
with the same coreness while in different k-cores, e.g. the
vertices in T3.1 and T3.2, and (ii) identifies all the k-cores
and their containment relations, e.g., S3.1 = G[S4 +T3.1] and
S2 = G[S3.1 +S3.2 +T2], where G[S] is the subgraph induced
by the vertices in S.

Example 2 (Subgraph Search on HCD). We can find the
subgraphs with high quality using HCD, e.g., the k-core with
the largest average degree (twice the number of edges divided
by the number of vertices). In Figure 1, the 4-core S4 has
an average degree of 4, while the average degree of the 3-
core S3.1 is about 4.44. Because S3.1 has the highest average
degree among all k-cores for each possible k, we can return
S3.1 as the resulting subgraph.

Applications. HCD is a fundamental concept in network anal-
ysis, which is effective to locate cohesive subgraphs and can
lead to a better understanding of some network phenomena [9].

The representative applications of HCD are as follows.
(Cohesive Subgraph Search) We can efficiently search cohe-
sive subgraphs related to k-core using HCD. For instance, the
k-core with the highest average degree can be found on the
HCD in O(n) time [10], where n is the number of vertices
in the graph. It is a 0.5-approximate solution for densest
subgraph problem, which is the state-of-the-art on both output
quality and time cost. HCD can also help other k-core related
problems, e.g., finding the maximum clique [10], influential
communities [11], and attributed communities [12].
(User Engagement Analysis) The coreness of a vertex (user)
is often used to estimate the engagement level of the user [13].
It is validated that the average engagement (e.g., the number
of check-ins) of the users with the same coreness is positively
correlated to the value of their coreness on real data [14].
Recently, the experiments in [15] find that the engagement
estimation of a vertex can be more accurate if both its coreness
and its position in the HCD are considered.
(Graph Visualization) The hierarchical structure depicted by
HCD is an elegant visualization of a network. It helps users
to better understand and explore the insights in different areas,
e.g., the internet [16], biology [17], and brain networks [18].

Existing Solutions. In the construction of HCD, we should
compute the coreness of every vertex, i.e., do core decom-
position. It can be computed by recursively removing each
vertex with the smallest degree from the graph [19]. The
parallel algorithms for core decomposition are well-studied
[20]–[25], and the state-of-the-art are PKC [20] and GBBS
[23]. Existing works on (non-hierarchical) core decomposition
such as PKC cannot build the HCD, as they cannot distinguish
the connectivity among different k-cores.
(HCD Construction) To the best of our knowledge, there
is no parallel solution for HCD construction. The state-of-
the-art serial solution is LCPS [7] that runs in O(m) time,
where m is the number of edges. LCPS conducts a pri-
ority search v1, v2, · · · , vn, during which LCPS inserts the
visited vertex one by one into a HCD under construction.
Assume c(v) is the coreness of v and is pre-computed for
every vertex. Let R be unvisited neighbors of visited vertices
{v1, v2, · · · , vi−1}. In the i-th iteration of LCPS, we (i)
choose a vertex vi ∈ R with the highest priority pri(w) =
maxj<i,wvj∈E{min{c(w), c(vj)}}, (ii) adjust the HCD and
insert vi into the tree nodes under processing, according to
c(vi) and pri(vi), and (iii) set vi as visited and update R
along with the priority.
LCPS is still not efficient enough on large graphs and it is

hard to parallelize. ∆-stepping [26] can parallelize the priority
search of Dijkstra algorithm, but it cannot be applied to LCPS.
If LCPS concurrently visits two vertices u and v with the same
priority, the visit of u may prioritize other vertices. Thus, there
will be different priority orderings in different threads, and the
merged result would be incorrect due to inconsistent priorities.
(Subgraph Search on HCD) A major application of HCD is to
fast search cohesive subgraphs such as the densest subgraph
and the maximum clique. Given the HCD and a community

scoring metric Q (e.g., average degree or clustering coeffi-
cient), the subgraph search problem on HCD is to find a k-core
with the highest score regarding Q.

To the best of our knowledge, there is no parallel solution
for subgraph search on HCD. The state-of-the-art serial so-
lution is BKS [10] which incrementally computes the scores
of the k-cores from k = kmax descending to k = 0, with
the help of a light-weight vertex ordering technique on the
hierarchy. BKS is still not efficient enough on massive graphs,
e.g., it may take over 5000s on a commercial machine for
some community metrics. The issues with BKS in designing
a parallel solution are in two folds. First, BKS computes
the scores of k-cores in decreasing coreness, and it relies
on the results of larger coreness. As BKS requires barriers
when processing different coreness, it is not suitable for
parallel execution. Second, the vertex ordering of BKS sorts
all adjacency lists by coreness using a bin-sort-like method,
while it is inefficient to access a bin using multiple threads.

In this paper, we aim to propose efficient parallel algorithms
for HCD computation: from its fast construction to efficient
search of high-quality cohesive subgraphs.

Challenges. The problems are challenging because (i) on the
basis of classical core decomposition, HCD further considers
the complex relations of all k-cores in the hierarchy; (ii) as
proven in our paper, HCD construction is P-complete and thus
is probably inherently sequential (like linear programming);
and (iii) existing methods of constructing HCD and subgraph
search can hardly be parallelized, as discussed in introducing
existing solutions.

We also try to partition the graph, compute the hierarchy
on every partition (e.g., LCPS), then merge the results of
different partitions. According to our experiments in Section
V-B, parallel graph partition algorithms (e.g. Spinner [27],
KaHIP [28]) are much slower than our proposed parallel
algorithms for HCD construction, and an essential technique
RC in the paradigm is not efficient enough. The above issues
also exist for parallelizing subgraph search algorithms.

Our Solution. In this paper, we design the first parallel
algorithm for HCD construction with the well-known structure
of union-find [29]–[31]. As discussed above, LCPS may output
incorrect results when concurrently visiting two vertices. To
enable a concurrent visit of vertices, our PHCD incrementally
adds the k-shell (vertices with the coreness of k) to the graph
in descending k and builds the HCD in a bottom-up manner
using union-find. PHCD can independently handle the vertices
in the k-shell in parallel. The sequential version of PHCD is
1.24-2.33x faster than LCPS in our performance test, because
the priority in LCPS is maintained in multiple dynamic arrays
which are costly especially for large graphs. For the parallel
version, the total number of steps in PHCD is near-linear to
the number of edges in the graph.

We also propose the PBKS algorithm to efficiently search
high-quality subgraphs from HCD with respect to different
community metrics, e.g., average degree, conductance, mod-
ularity, and clustering coefficient. As discussed above, the

TABLE I
SUMMARY OF NOTATIONS

Symbol Description
G = (V,E) an undirected simple graph
n;m number of vertices/edges (assume m > n)
S a subgraph of G
N(v) the neighbor set of v
d(v) the degree of v in G
Kk k-core set: the set of all (connected) k-cores of G
c(v) coreness of v in G, max{k | v ∈ Ck}
kmax largest k s.t. Ck is not empty
Hk the k-shell of G, {v | c(v) = k}
r(v) the vertex rank of v in V
Ti a k-core tree node in the HCD
V (Ti) the set of vertices contained in Ti
P (Ti) the unique parent tree node of Ti
C(Ti) the children tree nodes of Ti
tid(v) the id of v’s belonged tree node, i.e., v ∈ V (Ttid(v))

existing subgraph search solution BKS [10] relies on the results
of larger coreness and it needs to sort all adjacency lists by
coreness. In comparison, our PBKS uses a different vertex-
centric paradigm and replaces the ordering of adjacency lists
with a lighter preprocessing. PBKS can process all vertices
concurrently due to a new counting strategy. For every com-
munity metric based on the primary values used in the paper,
we prove that PBKS is theoretically work-efficient and validate
that PBKS largely outperforms BKS in practice. PBKS can
also be used for the solutions to k-core related problems, e.g.,
densest subgraph search and finding the maximum clique.

Contributions. The major contributions are as follows.

• We first prove the P-completeness of HCD construc-
tion and evaluate the feasibility of parallelizing existing
algorithms. Then, the first parallel algorithm PHCD is
proposed for HCD construction, using a novel union-find-
based framework. The PHCD algorithm has a near-linear
work and is practically-efficient.

• We propose the first parallel algorithm PBKS for the
search of cohesive subgraph on HCD w.r.t. various com-
munity scoring metrics. We prove PBKS is work-efficient,
i.e., its number of steps asymptotically matches the best
sequential time complexity.

• Extensive experiments are conducted on 10 real-world
graphs. For HCD construction, PHCD is up to 22x faster
than the state-of-the-art serial algorithm on 40 cores, and
the runtime of PHCD is close to the lower bound (overall
connection cost in the union-find). For subgraph search,
our PBKS is up to 50x faster than the state-of-the-art
serial solution on 40 cores. We also validate that PBKS is
the state-of-the-art approximate algorithm for the densest
subgraph problem on both output quality and time cost.

II. PRELIMINARIES

In this section, we introduce the definitions of core decom-
position, hierarchical core decomposition, and the subgraph
search problem on the HCD. Table I summarizes the notations.

A. Core Decomposition

Let G = (V,E) be an undirected simple graph with n = |V |
vertices and m = |E| edges, where we assume m > n.

Given a graph G, a k-core is defined as a maximal connected
subgraph where each vertex has at least k neighbors in the
subgraph [7], [8]. Let the k-core set Kk of G be the subgraph
containing all (connected) k-cores. The k-core set with k
from 0 to kmax can form a nested chain, where kmax (graph
degeneracy) denotes the largest k such that the k-core exists.

Kkmax ⊆ · · ·K1 ⊆ K0 = V

Each vertex has a unique coreness c(v) = max{k | v ∈ Kk}
which is the largest k such that v is in a k-core. The k-shell
of G, denoted by Hk = {v | c(v) = k}, is the set of all
vertices whose coreness is k. The k-shell is also the difference
between the vertex set of k-core set and the (k + 1)-core set,
i.e., V (Kk) \ V (Kk+1). Thus, the k-core set can be induced
by all c-shells with c ≥ k, i.e., V (Kk) =

⋃
c≥kHc.

The core decomposition of a graph identifies the coreness
of every vertex. Batagelj-Zaversnik algorithm [19] computes
core decomposition in O(m) time, which recursively removes
each vertex with the smallest degree in current graph.

B. Hierarchical Core Decomposition

The k-cores in a core decomposition can be organized into
a hierarchy, because for every k (i) each k-core is disjoint
from each other, and (ii) a k-core is contained in exactly one
(k − 1)-core.

We formalize the hierarchical structure of k-cores through
HCD, where each k-core is uniquely associated with a k-core
tree node in the hierarchy.

Definition 1 (k-Core Tree Node). Each k-core S in G is
associated with a tree node TS which stores the vertices of
coreness k in S (i.e., S ∩Hk), if S ∩Hk is non-empty. Such
a TS is called a k-core tree node.

If a k-core S is associated with a k-core tree node TS , we
also say that S is the original k-core of TS . The vertices in a
k-core tree node may be separated, though its original k-core
must be connected.

Definition 2 (Parent Tree Node). Given a k1-core S1 associ-
ated with tree node T1 and a k2-core S2 associated with tree
node T2, we have T1 is the parent of T2, if (i) k1 < k2; (ii)
S2 ⊂ S1; and (iii) any k′-core tree node is not the parent of
T2, where k1 < k′ < k2.

The parent-child relationships (tree edges) in the HCD
record the containment and disjointness relations among all the
k-cores. Similar to rebuilding the k-core set from all vertices
with coreness no less than k, we can reconstruct a k-core by
its associated tree node and offspring tree nodes. The HCD of
a graph is defined as follows.

Definition 3 (Hierarchical Core Decomposition, i.e., HCD).
Given a graph G = (V,E) and the coreness c(v) for every
v ∈ V , the hierarchical core decomposition of G identifies (i)

𝑉(𝑇𝑖) 𝑃(𝑇𝑖) 𝐶(𝑇𝑖)

𝑇2 𝑁𝐼𝐿 [𝑇3.1, 𝑇3.2]

𝑇3.1 𝑇2 [𝑇4]

𝑇3.2 𝑇2 []

𝑇4 𝑇3.1 []

Fig. 2. The HCD Index of Figure 1(c)

all k-core tree nodes for every integer k from 0 to kmax; and
(ii) the parent-child relationships between those tree nodes.

The state-of-the-art serial solution for constructing the HCD
is LCPS with time complexity of O(m) [7], which sequentially
pushes a vertex according to a priority function and its unvis-
ited neighbors into queues s.t. the subtree containing the vertex
is built. Nevertheless, the algorithm is still not efficient enough
for large graphs and there is no existing parallel solution.
Index Overview of HCD. A HCD is denoted by T , where Ti
(id is i) is a tree node with three fields. We also use tid(·) to
store the tree node id for every vertex.
• V (Ti): the set of vertices contained in the k-core tree

node, and all vertices in the tree node has coreness of k.
• P (Ti): the unique parent tree node.
• C(Ti): the array of children tree nodes.
• tid(v): the id of the belonged tree node for every vertex
v, i.e., we have v ∈ V (Ttid(v)).

Example 3. Figure 1(c) depicts a HCD, and Figure 2 shows
its index. The tree node T2 is associated with the whole
graph (a 2-core S2), and it contains the 2-shell which is not
connected. Each vertex only appears once in the HCD.

C. Problem Definitions

In this paper, we aim to efficiently construct the HCD and
search for cohesive subgraphs on the HCD.
• HCD Construction. Given a graph G, build the HCD of
G that identifies all k-core tree nodes for every integer k
from 0 to kmax and the parent-child relationships between
those tree nodes.

• Subgraph Search. Given a graph G, the HCD of G,
and a community scoring metric Q, find the k∗-core S
that has the highest score among all the k-cores for any
integer k with 0 ≤ k ≤ kmax.

Given a community scoring metric, a higher score of a
subgraph implies a better quality of the subgraph in some
network features [32]. The subgraph search problem captures
the goodness of a particular community score as well as the
minimum degree constraint.

D. Community Scoring Metrics

A high-quality subgraph often has many connections inside
the subgraph and few connections to the outside, which can

be well measured by community scoring metrics according to
different scenarios [32]. Our proposed algorithms can cover
most of the metrics in [32], [33], because they can handle any
(new) metric that is defined upon following primary values.
Primary Values. Let S be a subgraph to evaluate, we study
the following common primary values.
• n(S): the number of vertices in S;
• m(S): the number of edges in S;
• b(S): the number of boundary edges in S, b(S) =
|{(u, v) | (u, v) ∈ E, u ∈ S, v 6∈ S}|;

• ∆(S), the number of triangles in S;
• t(S), the number of triplets (three vertices connected by

two edges) in S;

Metrics. Based on the above primary values, some community
scoring metrics are defined as follows (normalized to be the
higher the better).
• Average Degree: f(S) = 2×m(S)

n(S) is the average degree
of vertices in S;

• Internal Density: f(S) = 2×m(S)
n(S)×(n(S)−1) is the internal

density of vertices in S;
• Cut Ratio: f(S) = 1 − b(S)

n(S)×(n−n(S)) is the difference
of 1 and the fraction of existing boundary edges over all
the possible ones;

• Conductance: f(S) = 1− b(S)
2×m(S)+b(S) is the difference

of 1 and the proportion of degrees where the vertex points
to the outside;

• Modularity: f(P) =
k∑

i=1

(
m(Pi)

m −
(

2×m(Pi)+b(Pi)
2×m

)2
)

is the modularity for a partition P on G, where Pi is the
ith community in the partition [34];

• Clustering Coefficient: f(S) = 3×∆(S)
t(S) measures the

tendency of vertices to cluster together;

Type-A/B Metrics. According to computing complexity, we
divide the metrics into two categories. Type-A metric is based
on n(S), m(S), and b(S), while type-B metric is defined on
high-order motifs such as ∆(S) and t(s).

III. PARALLEL HCD CONSTRUCTION

In this section, we propose a scalable algorithm, named
PHCD, for parallel HCD construction. Section III-A introduces
the basic ideas of PHCD. Section III-B specifies the union-
find in our algorithm. Section III-C computes the vertex rank
in parallel, and Section III-D presents the details of PHCD.
Section III-E discusses a method based on divide and conquer.

Theorem 1. The problem of HCD construction is P-complete.

Proof. Given an integer k, the problem of determining if the
k-core is non-empty is P-complete [35]. This problem can be
solved by determining if there is a k′-core tree node (k′ ≥ k)
in the HCD. Thus, HCD construction is P-complete.

We prove the HCD construction problem is P-complete,
which implies the problem may be inherently sequential and
cannot be effectively parallelized (like linear programming and
circuit value problem). To tackle the hardness, we develop a
new paradigm to compute the HCD in parallel.

𝑻𝟒’s pivot 𝑻𝟑.𝟏’s pivot 𝑷 𝑻𝟒 = 𝑻𝟑.𝟏

𝑘 = 4 → 3

𝑻𝟑.𝟐’s pivot

𝑆4 𝑆3.2𝑆3.1

Fig. 3. The Idea of PHCD

A. Basic Idea of PHCD

As discussed in the introduction, LCPS is designed for
efficient serial computation. In the i-th round, LCPS [7]
chooses an unvisited neighbor vi of visited vertices and
inserts vi into the HCD, according to a priority function.
However, if LCPS concurrently visits two vertices u and v
with the same priority, the visit of u may prioritize other
vertices. Thus, there will be different priority orderings in
different threads, and the merged result would be incorrect due
to inconsistent priorities. Besides, for a divide-and-conquer
paradigm discussed in Section III-E, we validate in Section
V-B that it is not suitable for efficient parallelism.

From the view of efficient parallelism, we design a new
framework PHCD for HCD construction. Our algorithm starts
from an empty graph. Intuitively, PHCD gradually adds the
k-shells to the graph in decreasing order of coreness k,
during which we incrementally build the HCD in a bottom-
up manner. In such a framework, each vertex in the k-shell
can be processed independently in one thread. The union-find
structures can be used to maintain the connectivity during the
bottom-up merge. We also propose the concept of pivot to
group vertices into tree nodes and identify the parent-child
relationships in the HCD during the merging process. In the
following, we introduce vertex rank to define pivot.

Definition 4 (Vertex Rank). A vertex v has a lower vertex rank
than a vertex u, denoted by r(v) < r(u), if (i) c(v) < c(u),
OR (ii) c(v) = c(u) and id(v) < id(u).

Definition 5 (Pivot). Given a subgraph (resp. a tree node) S,
the pivot of S is the vertex u ∈ S (resp. u ∈ TS) whose vertex
rank is the lowest.

A k-core and its associated tree node (e.g., S3.1 and T3.1)
always have the same pivot, because the vertices in the tree
node have the lowest coreness among the k-core. In a HCD,
the pivot of a k-core tree node is always different from other
tree nodes. We can use a pivot to uniquely identify a k-core
tree node along with its original k-core.

From k = kmax down to k = 0, we add the k-shell to the
graph and connect them to previously added vertices (whose
coreness is greater than k). In the process, we maintain the
pivot of every connected component (CC) in the union-find,
and we use pivot to group vertices into new tree nodes and
identify the parent-child relations between tree nodes. The
details are given in Section III-D.

Example 4. Figure 3 illustrates the basic idea of using pivot

Algorithm 1: parallel vertex rank computation
Input : a graph G, the core decomposition of G
Output : the vertex rank r(v) for each vertex v ∈ V , the

k-shell Hk for every possible k
pmax ← the number of threads;1
distribute vertices to V1, · · · , Vpmax in ascending vertex id;2
for each thread p from 1 to pmax do in parallel3

HL[p]← an array with kmax + 1 bins;4
for v ∈ Vp in ascending vertex id do5

atomic append v to HL[p][c(v)];6

for each k from 0 to kmax do in parallel7
Hk ← HL[1][k] + HL[2][k] + · · ·+ HL[pmax][k];8

Vsort ← H0 +H1 + · · ·+Hkmax ;9
for each v ∈ V do in parallel10

r(v)← the ranking of v in Vsort;11

return r(v) for each v ∈ V ;12

on the HCD in Figure 1(c). The pivot of T3.1 is the bold vertex
(right), and it can uniquely identify T3.1 (and S3.1). When
k = 4→ 3, the pivot of CC changes from T4’s pivot (left) to
T3.1’s pivot (right) due to a lower vertex rank. There are two
operations with pivot. (Group Vertices): we group the vertices
in the 3-shell into new tree nodes by their pivots, e.g., T3.1 and
T3.2 can be identified (right); (Find Parent): when k = 4→ 3,
the pivot of CC changes from T4’s pivot to T3.1’s pivot, thus,
T3.1 is the parent tree node of T4, i.e., P (T4) = T3.1.

B. Union-Find with Pivot

Union-find (UF) [29] can efficiently maintain the connec-
tivity of a graph using operations such as make_set, find,
union, and same_set. Besides, we define a new function
get_pivot(x) that returns the pivot of x’s belonged CC.

We implement the union-find with pivot as follows. For each
vertex, we store three fields in the UF including parent pointer,
union-find rank, and pivot t(x). Let the cardinal element of a
CC be rx = find(x), where x is any vertex in the CC. The
pivot of a CC is maintained at its cardinal element and we
compute get_pivot(x) by returning t(rx). When calling
union(x, y), rx and ry will be merged into a new cardinal
element, and we set the element with a lower vertex rank
among t(rx) and t(ry) as the pivot at the new cardinal element.

Union-find with pivot can be extended to a multi-core
platform using wait-free union-find (WF-UF) [30] which is
lock-free and can avoid synchronization overheads. Assume
there are n elements, m UF operations, p threads, and at most
F failures. WF-UF has total work of O(n

√
p+mα(n) + F)

time, where α(n) is the inverse Ackermann function and
α(n) < 5 for any practical input size n.

C. Vertex Rank Computation

In Algorithm 1, we compute the vertex rank (Definition 4)
in advance for better efficiency. The array Vsort is sorted by
vertex rank and can also be used to query the k-shell Hk

(set of vertices with coreness of k). Assume there are pmax

threads available, (i) Line 2 divides all vertices by increasing
id into pmax sets and assigns Vp to the p-th thread; (ii) for

each thread, Line 3-6 further push the vertices in Vp into
bins HL[p][0..kmax] according to the coreness; and (iii) the
concatenation of HL[1...pmax][k] is Hk (Line 7-8), and the
concatenation of H0..kmax

is Vsort that sorts all vertices by
vertex rank (Line 9). The total work of Algorithm 1 is O(n).

D. PHCD Algorithm

Algorithm 2 presents the pseudo-code of PHCD algorithm
that implements the paradigm of Section III-A. A line started
with atomic is executed atomically. The HCD index is speci-
fied in the index overview of Section II. The union-find (e.g.,
get_pivot and union) is discussed in Section III-B.

Line 1-3 run Algorithm 1 and initialize the data structures.
From k = kmax to k = 0, Line 4-22 compute the HCD in
four steps. Union-find (UF) with pivot in Section III-B is used
to efficiently maintain the connectivity of the graph and the
pivot of every CC.
Step 1 (Line 6-9): Find k′-Core Tree Nodes: When con-

structing the tree nodes associated with k-cores, we first
use pivot to identify the k′-cores tree nodes that would
be merged with the k-shell vertices at Step 2 and 3,
where k′ > k (Line 7-8). These pivots are stored in
kpc pivot (Line 9) and their parent k-core tree nodes
will be detected in Step 4.

Step 2 (Line 10-12): Connectivity Check on k-Shell and
k′-Cores: In the UF, we add the k-shell to the graph
and connect them to previously added vertices whose
coreness is no less than k. Note that we need to visit
v’s each neighbor u with c(u) ≥ c(v) (Line 11), because
the vertices may be disconnected in the tree node while
connected in its associated k-core. The pivots of CCs are
updated during the connection of UF (Line 12) s.t. the
vertices in different tree nodes are distinguished.

Step 3 (Line 13-18): Create Tree Nodes Associated with
k-Cores: The vertices belonged to the same pivot are in
the same tree node, so a new tree node is created for each
pivot pvt with tid(pvt) = ∞ (Line 15-16), and tid(v)
is copied according to its pivot (pvt) for each v ∈ Hk

(Line 17).
Step 4 (Line 19-22): Find Parent Tree Nodes: For each k′-

core tree node (represented by its pivot) stored in Step
1, it is the child of a newly formed k-core tree node in
Step 3. We find its parent tree node by the pivot of its
belonged CC (Line 22).

Example 5. Figure 3 shows the idea of PHCD. For k = 4,
the 4-shell has been added and T4 is already built. In the
following, we demonstrate the process of Step 1-4 when k = 3.

Step 1: visit the neighbors of the 3-shell whose coreness is
greater than k = c(v) = 3 and uniquely store its belonged
pivot into kpc pivot. The pivot of T4 is stored.

Step 2: add the 3-shell and link them to neighbors whose
c(u) ≥ k. There are two CCs now, and the pivot of a CC turns
from T4’s pivot to T3.1’s pivot.

Step 3: create two tree nodes and group the vertices in the
3-shell into tree nodes according to the belonged pivots.

Algorithm 2: parallel HCD construction
Input : a graph G, the core decomposition of G
Output : the HCD T of G
run Algorithm 1 to compute the k-shells and vertex rank;1
T ← an empty HCD;2
for v ∈ V do make_set(v); tid(v)←∞;3
for k from kmax to 0 do4

kpc pivot← ∅;5
for v ∈ Hk do in parallel // Step 16

for u ∈ N(v) and c(u) > c(v) do7
pvt← get_pivot(u);8
atomic add pvt to kpc pivot if not exists;9

for v ∈ Hk do in parallel // Step 210
for u ∈ N(v) and c(u) ≥ c(v) do11

union(v, u);12

for v ∈ Hk do in parallel // Step 313
pvt← get_pivot(v);14
if tid(pvt) =∞ then15

atomic create a tree node Ti; tid(pvt)← i;16

i← tid(v)← tid(pvt);17
atomic add v to V (Ti);18

for v ∈ kpc pivot do in parallel // Step 419
pvt← get_pivot(v);20
ch← tid(v); pa← tid(pvt);21
// Tpa is the parent tree node of Tch

P (Tch)← Tpa; atomic add Tch to C(Tpa);22

return T ;23

Step 4: find parent tree node for T4 stored in Step 1.
Currently, T4’s pivot belongs to a CC whose pivot is exactly
T3.1’s pivot. Therefore, P (T4) = T3.1.

Complexity. Assume n is the number of vertices, m is the
number of edges, p threads, and α(n) is the inverse Ackermann
function and α(n) < 5 for any practical input size n. (Time)
Line 1-3 run in O(n) time. Line 6-12 call get_pivot and
union on each edge, which needs O(m) WF-UF operations.
Line 13-18 visit each vertex once and need O(n) WF-UF
operations. Line 19-22 visit each parent-child relationship in
the core forest, which calls O(n) WF-UF operations. There are
O(m) WF-UF operations in total. Before calling Algorithm
2, we also run parallel core decomposition PKC [20] in
O(nkmax + m) time. Then, the overall work of Algorithm
2 is O(n

√
p + mα(n) + F) time, where there are at most

F failures. The work of Algorithm 2 is near-linear because
the dominant term mα(n) ≤ 4m for practical n. (Space) The
space cost of constructing HCD is O(n), while the overall
space complexity of Algorithm 2 is O(m) due to the space of
the input graph.

Correctness. Algorithm 2 can correctly compute the tree
nodes in the HCD and their parent-child relationships.

Proof. We prove the correctness of Algorithm 2 by showing
every step is correct.

Existing Graph. Given an integer k, the existing graph is
all the k-cores if the connected components in the union-find

are all k-cores. That is, for any pair of vertices v and u in the
same k-core, they belong to the same set in the union-find.

Step 2. Proof by induction. Initially, the graph is empty.
Assume the existing graph is all (k + 1)-cores before the
round. Then, Step 2 unites each vertex v in the k-shell with the
neighbors with coreness no less than k. After that, the existing
graph is all k-cores and their pivots are properly maintained.

Step 3. At this time, the existing graph is all k-cores, and the
pivot of each new k-core is in the k-shell. Since the pivot can
uniquely identify a new k-core, Line 15 can uniquely build
a new tree node for each new k-core, and Line 17-18 can
correctly group the k-shell into tree nodes by pivot.

Step 1, 4. In Step 1, Line 8 finds each k′-core (k′ > k) that
would merge into new k-cores in Step 2, and Line 9 uniquely
adds its pivot to kpc pivot. In Step 2, those pivots are merged
with the k-shell. In Step 4, each v ∈ kpc pivot is the pivot
of a k′-core tree node T [tid ch] and it is now contained in
a k-core associated with tree node T [tid pa], so they have a
parent-child relationship in the HCD.

E. Discussion on Divide and Conquer

We investigate how to compute HCD construction using
divide and conquer. Steps 1-3) use existing algorithms, while
Steps 4-5) can be computed by local k-core search (RC).

1) compute the coreness of every vertex.
2) divide G into pmax disjoint partitions S1, S2, · · · , Spmax .
3) run LCPS on each partition Sp to obtain the partial tree

nodes in the partition.
4) obtain all k-core tree nodes of G by merging the partial

results from different partitions.
5) confirm the parent-child relationships between tree nodes.
Given a vertex v, a local k-core search of v find the

maximal connected subgraph containing v where all vertices
have coreness no less than c(v). A local k-core search of v
can be computed by a BFS from v.

A local k-core search can reconstruct a k-core from its tree
node. In Step 4), given a partial tree node T∗, the local k-
core search starting from T∗ may contain other partial tree
nodes from different partitions, all these partial tree nodes
(including T∗) are merged into a new tree node. In Step 5),
we can confirm the parent-child relationships between two tree
nodes Ti and Tj if the local k-core search from Ti contains
Tj and the coreness of vertices in Ti is the lowest.

In the experiments of Section V-B, we show that the local
k-core search (RC) is not efficient enough. The divide-and-
conquer paradigm depends on the local k-core search, thus, it
is not efficient for parallel HCD construction.

IV. SUBGRAPH SEARCH IN PARALLEL

In this section, we start with the basic idea of PBKS in
Section IV-A. Then, we apply PBKS to compute type-A and
type-B metrics in Section IV-B and IV-C, respectively. Finally,
we present the details of PBKS in Section IV-D.

The hardness of the subgraph search problem depends on
the community metric and analysis task we choose. In this

Algorithm 3: search for best k-core on the HCD
Input : a graph G, a community metric Q, the HCD T of G

with preprocessing in Section IV-A
Output : the k-core with the highest score
pri_val← [0, . . . , 0];1
for each v ∈ V do in parallel2

i← tid(v);3
pri_val[i] += v’s contribution to Ti’s primary value4
where v has the lowest rank in the motif;

metric← [0, . . . , 0];5
for each tree node Ti from bottom to up do6

pa← {pa | P (Ti) = Tpa};7
pri_val[pa] += pri_val[i];8
metric[i]← get_metric(Q,pri_val[i]);9

S ← the k-core with the highest score according to metric;10
return S11

section, we aim to address the problem with most metrics,
i.e., the metrics based on the chosen primary values.

A. Basic Idea of PBKS

The state-of-the-art serial solution is BKS [10] which incre-
mentally computes the score of every k-core in decreasing k,
with the help of a vertex ordering technique. The issues with
BKS in designing a parallel solution are in two folds. First,
BKS computes the scores of k-cores in decreasing coreness,
and it relies on the results of larger coreness. As BKS requires
barriers when processing different coreness, it is not suitable
for parallel execution. Second, the vertex ordering of BKS sorts
all adjacency lists by coreness using a bin-sort-like method,
while it is inefficient to access a bin using multiple threads.

For the first issue, our PBKS computes the score in a vertex-
centric manner s.t. the computation on different vertices can
be independently executed. For the second issue, we replace
the vertex ordering with a preprocessing that is more suitable
for parallel execution, without sacrificing the effectiveness.
PBKS first computes the contributions of every vertex

in parallel. The computation is vertex-centric because we
uniquely count any motif (e.g., a triangle or an edge) using
the vertex with the lowest vertex rank in the motif. After that,
the contributions are summed up on the HCD to compute the
community score. We (i) sum up the contributions of every
tree node from its contained vertices, (ii) compute the primary
value of every k-core by bottom-up accumulation on the HCD,
and (iii) generate the community score of every k-core on the
computed primary values.

Algorithm 3 presents the framework of our algorithm,
where pri_val and metric store the primary values and
community score of every k-core (tree node). Firstly, Line 2-4
compute primary value (motif count) of every vertex v ∈ V
where v has the lowest vertex rank, and the contributions are
summed up into its belonged tree node Ti. Then, Line 6-9
sum up the primary value from bottom to up and compute the
community score of every k-core. Line 6-9 can be efficiently
computed by parallel tree accumulation [36]. The details are
given in following subsections.

Example 6. Let S3.1 = G[S4 + T3.1] be the 3-core in Figure
1(c). Assume we need to compute the number of vertices in
S3.1, i.e., n(S3.1). We have n(S4) = 6. For any v ∈ V (T3.1),
we compute the contribution ∆n(v) = 1. The contributions
of T3.1 is ∆n(T3.1) =

∑
v∈V (T3.1) ∆n(v) = 3. Then, we can

compute the primary value of S3.1 based on the children of
T3.1 in the HCD, i.e., n(S3.1) = n(S4)+∆n(T3.1) = 6+3 =
9. Similarly, we can incrementally count the number of vertices
and edges of every k-core in a bottom-up manner, and then
compute the average degree of every k-core.

Preprocessing on the HCD. During the score computation,
we always ask the number of neighbors with less (greater, or
equal) coreness, e.g., |{u | u ∈ N(v) ∧ c(u) > c(v)}|. To
answer such queries efficiently, the preprocessing is executed
once before any score computation. For each vertex v in
parallel, we pre-compute the number of neighbors with greater
coreness than v and with the same coreness to v. Then, we
can answer the number of neighbors with less (greater, or
equal) coreness instantly. The preprocessing can be done in
O(m) work. When computing subgraph search using different
metrics, the preprocessing can speed up the computation.

B. Parallel Type-A Metric Computation

Algorithm 4 applies the framework in Algorithm 3 to type-
A score computation. We store the the primary values (the
number of vertices, edges, and boundary edges) of every vertex
in arrays v,e, and b. The score of every k-core is stored in
metric.

Line 2-9 count the contribution of every vertex to the
primary value of tree nodes, where the vertex has the lowest
vertex rank. Here, gt k, eq k, and lt t represent the number
of v’s neighbors whose coreness is greater, equal, or less than
c(v), respectively. Each vertex contributes (i) 1 new vertex;
(ii) gt k + 1

2eq k new edges, where eq k is halved because
it would be counted by both endpoints; and (iii) lt k − gt k
boundary edges, because v has lt k neighbors outside c(v)-
core and gt k neighbors inside. Then, Line 11-14 do a bottom-
up tree accumulation on v,e,b and compute the community
score of every k-core.

Complexity. After O(m) work of preprocessing (executed
once for different metrics), the total work of Algorithm 4 is
O(n), since we visit each vertex and tree node once with a
constant number of counting. Algorithm 4 is work-efficient
because we need at least O(m) time for a metric requiring
the number of edges.

C. Parallel Type-B Metric Computation

Algorithm 5 follows the paradigm of Algorithm 3, and it
can efficiently compute the scores for type-B metrics. Array
ta and tp store the number of triangles and triplets in every
k-core (tree node), while array metric stores the community
scores of k-cores. Line 2-15 count the number of triangles and
triplets contributed by every vertex. Line 17-20 do bottom-up
tree accumulation on the numbers and compute the community
score. Line 22 returns the best k-core.

Algorithm 4: search for best k-core w.r.t. a type-A metric
Input : a graph G, a community metric Q, the HCD T of G

with preprocessing in Section IV-A
Output : the k-core with the highest score
v← e← b← [0, . . . , 0];1
for each v ∈ V do in parallel2

/* answer Line 3-5 by preprocessing */
gt k ← |{u | u ∈ N(v) ∧ c(u) > c(v)}| ;3
eq k ← |{u | u ∈ N(v) ∧ c(u) = c(v)}|;4
lt k ← |N(v)| − gt k − eq k;5
i← tid(v);6
v[i] += 1;7
e[i] += gt k + 1

2
· eq k;8

b[i] += lt k − gt k;9

metric← [0, . . . , 0];10
for each tree node Ti from bottom to up do11

pa← tid(P (Ti));12
v[pa] += v[i]; e[pa] += e[i]; b[pa] += b[i];13
metric[i]← get_metric(Q,v[i],e[i],b[i]);14

S ← the k-core with the highest score according to metric;15
return S16

Triangle Counting. Line 2-7 count the number of triangles
contributed by v. We enumerate each edge (v, u) where u has
less (or equal) degree than v. Then, for each u’s neighbor w,
we check if edge (v, w) exists. If so, (v, u, w) is a triangle
that is newly added when k = c(w), where w has the lowest
vertex rank among three endpoints, and we uniquely count it
in ta array.

Triplet Counting. Line 8-15 count the number of triplets
contributed by v. A triplet has three vertices connected by
two edges. Line 8-15 consider all triplets centered at v. Line
9 counts the triplets newly added when k = c(v), by choosing
two neighbors of v with coreness no less than v. For triplets
newly added when c(w) = k < c(v), Line 10-15 either
(i) choose two neighbors with coreness k by

(
cnt k

2

)
, or (ii)

choose a neighor with coreness k and another with coreness
greater than k by gt k × cnt k.

Complexity. (Triangle) Line 3-7 iterate over each edge (u, v)
where Line 4 guarantees u has lower degree than v. Thus, the
number of operations in Line 3-7 is bounded by the number
of visited w which is

∑
(u,v)∈E min{d(u), d(v)} = O(m1.5).

(Triplet) Line 8-9 need O(m) time for visiting all neighbor
sets. Line 10-13 cost d(v) operations, because we can iterate
over the neighbor set to pre-compute the neighbors with
coreness of k N(v) ∩ Hk and a vertex w in it. For each
vertex v, Line 14-15 require c(v) ≤ d(v) operations. The time
complexity of Line 14-15 is

∑
v∈V d(v) = 2m = O(m).

(Overall) Line 17-20 cost O(|T |) time, where |T | ≤ n.
Overall, the total work of Algorithm 5 is O(m1.5). For any
metric requiring triangle counting, the cost is at least O(m1.5)
time. Consequently, Algorithm 5 is work-efficient.

Correctness. A motif is added exactly when the endpoint with
the lowest vertex rank (and coreness) is added. (Triangle) Line
4 visits each edge (u, v) exactly once. Conditions w ∈ N(u)
and w ∈ N(v) find the common neighbors of (u, v) that forms

Algorithm 5: search for best k-core w.r.t a type-B metric
Input : a graph G, a community metric Q, the HCD T of G

with preprocessing in Section IV-A
Output : the k-core with the highest score
ta← tp← [0, . . . , 0];1
for each v ∈ V do in parallel2

for each u ∈ N(v) do in parallel3
if d(u) < d(v) or (d(u) = d(v) and u < v) then4

for each w ∈ N(u) do5
if w ∈ N(v) and w has the lowest vertex6
rank among u, v, w then

atomic ta[tid(w)] += 1;7

/* answer Line 8 by preprocessing */
gt k ← |{u | u ∈ N(v) ∧ c(u) ≥ c(v)}|;8
tp[tid(v)] +=

(
gt k
2

)
;9

for each k from c(v)− 1 down to 0 do10
cnt k ← |N(v) ∩Hk|;11
if cnt k > 0 then12

w ← any vertex in N(v) ∩Hk;13
atomic tp[tid(w)] +=

(
cnt k

2

)
+ gt k × cnt k;14

gt k += cnt k;15

metric← [0, . . . , 0];16
for each tree node Ti from bottom to up do17

pa← tid(P (Ti));18
ta[pa] += ta[i], tp[pa] += tp[i];19
metric[i]← get_metric(Q,ta[i],tp[i]);20

S ← the k-core with the highest score according to metric;21
return S22

a triangle. Each triangle is checked three times by Line 6, but
the vertex with the lowest vertex rank only occurs as w once,
so we can uniquely count it using Line 7. (Triplet) The triplets
containing v are added when k ≤ c(v). In case k = c(v), the
correctness of Line 10-15 is immediate. In case k < c(v), v
has 1-2 neighbors whose coreness equals k, and Line 10-15
covers the two cases correctly.

D. PBKS: Parallel Subgraph Search

Before the subgraph search, we need to execute parallel
core decomposition using the state-of-the-art PKC [20] and
our proposed parallel algorithm PHCD (Algorithm 2) for HCD
construction. We then execute PBKS as follows.

1) Preprocessing (Section IV-A): the preprocessing is exe-
cuted once to quickly answer the number of neighbors
with less (or greater, or equal) coreness.

2) Score Computation (Section IV-B and IV-C): we use Al-
gorithm 4 to compute type-A metric, and Algorithm 5 to
compute type-B community metric.

The algorithm returns a k-core with the highest community
score. PBKS may benefit the solution to k-core related prob-
lems, e.g., finding the densest subgraph, the maximum clique,
and the size-constrained k-core. For instance, the k-core with
the highest average degree is a 0.5-approximate solution to
densest subgraph problem, because kmax-core is one of our
candidate results which is a 0.5-approximate solution [37].

TABLE II
STATISTICS OF DATASETS

Dataset n m davg kmax |T |
As-Skitter 1,696,415 11,095,298 13.1 111 902
LiveJournal 3,997,962 34,681,189 17.3 360 1755
Hollywood 1,069,126 56,306,653 105.3 2208 678
Orkut 3,072,441 117,185,083 76.3 253 253
Human-Jung 784,262 267,844,669 683.0 1200 4087
Arabic-2005 22,744,080 639,999,458 56.3 3247 28693
IT-2004 41,291,594 1,150,725,436 55.7 3224 53023
FriendSter 65,608,366 1,806,067,135 55.1 304 450
SK-2005 50,636,154 1,949,412,601 77.0 4510 14356
UK-2007-05 105,896,555 3,738,733,648 70.6 5704 79318

Complexity. After O(m) work of preprocessing, PBKS can
compute type-A metric in O(n) work and type-B metric in
O(m1.5) work. The score computation are both work-efficient.

V. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments on real-
world networks to evaluate the performance of our proposed
parallel algorithms.

A. Experimental Setup

Datasets. The statistics of datasets are shown in Table II in
ascending order of the number of edges. All directed datasets
are symmetrized in the experiments. Hollywood and Human-
Jung are from NetworkRepository1, Arabic-2005, IT-2004,
SK-2005, and UK-2007-05 are from LAW Datasets2, and the
others are from SNAP Datasets3. The dataset abbreviations are
highlighted in bold. kmax is the largest vertex coreness in the
graph, and |T | is the number of tree nodes in the HCD.
Algorithms. The major algorithms evaluated in our experi-
ments are as follows. The algorithms for comparison are all
state-of-the-art.

1) Core Decomposition
• PKC: the parallel core decomposition PKC [20]. As

Graph Based Benchmark Suite (GBBS) [23] can be an
alternative, we report the smaller runtime from PKC
and GBBS for each test. We use the open-source code.

2) HCD Construction
• LCPS: the serial algorithm for HCD construction [7].
• PHCD: our method for parallel HCD construction pro-

posed in Section III-D.
3) Subgraph Search
• BKS: the serial algorithm for finding the best k-core

on HCD [10].
• PBKS: our framework for parallel subgraph search

proposed in Section IV-D.

Environment. Our experiments are performed on a 40-core
server with 2× Intel Xeon 20-core CPU (E5-2630 v4 @
2.2GHz) and 128G memory. All algorithms are implemented
in C++ using GCC 10.2.0 and -O3 optimization. We use
OpenMP for shared memory multiprocessing programming.

1http://networkrepository.com
2http://law.di.unimi.it/datasets.php
3http://snap.stanford.edu/data

TABLE III
TIME COST OF HCD CONSTRUCTION.

Dataset (1) (40)
PHCD (s) LB LCPS PHCD (s) LB RC

AS 0.300 0.30x 1.66x 0.071 0.55x 4.06x
LJ 1.272 0.36x 1.24x 0.197 0.65x 9.11x
H 0.700 0.47x 1.71x 0.125 0.57x 63.82x
O 2.518 0.35x 1.37x 0.447 0.28x 25.35x
HJ 2.224 0.48x 2.05x 0.296 0.37x 124.97x
A 5.808 0.48x 1.87x 1.208 0.44x 9.46x
IT 10.885 0.44x 1.84x 1.766 0.54x 13.37x
FS 90.730 0.54x 2.12x 8.778 0.77x 58.74x
SK 16.372 0.50x 2.33x 2.609 0.63x 20.23x
UK 37.580 0.43x 2.02x 5.299 0.52x 22.43x

LB is the lower-bound cost using union-find, RC is the cost of local
k-core search, where (1) is the serial runtime, and (40) is the 40-core
time. We report the runtime of PHCD in seconds, and PHCD’s relative

speedup to other algorithms.

B. Performance of HCD Construction

In the following, we report the runtime performance of
PHCD and compare it with other related algorithms.

Serial Performance. In the (1) column of Table III, we
compare the serial performance of PHCD with the state-of-the-
art (LCPS) by reporting PHCD’s relative speedup to LCPS.
The serial PHCD is more efficient than LCPS on all graphs
(speedup ratio is 1.24-2.33x) and the performance gap is
enlarged on larger graphs. This is because that the priority
function in LCPS is maintained in multiple dynamic arrays
whose constant time cost is high and would increase with the
growth of network size. In contrast, the union-find cost in
PHCD scales stably. The runtime is also affected by network
structure, e.g., FriendSter has about half the size of UK-2007-
05 but requires much more time. The larger cost may come
from the frequent pivot update in FriendSter, which is caused
by small tree node numbers and giant components.

Comparison to Lower-bound Cost. LB unions every adjacent
vertex pair, and it is a lower-bound cost for a union-find-based
algorithm. Table III reports PHCD’s relative speedup to LB
on 1 core and 40 cores. For the serial case, PHCD’s speedup
ratio to LB is about 0.4 on large graphs; For the 40-core case,
PHCD’s speedup ratio to LB is about 0.5 on most datasets. As
PHCD has a close performance to the lower bound, it achieves
satisfactory results under the union-find-based paradigm.

Feasibility on Divide and Conquer. In the following, we
show that it is infeasible to design an efficient parallel algo-
rithm using the divide-and-conquer method in Section III-E.

Firstly, recent algorithms for parallel graph partitioning (e.g.
Spinner [27], KaHIP [28]) are much slower than our PHCD.
Specifically, on a graph with about 2 billion edges (SK-2005),
KaHIP requires about 200 seconds on 2000 cores, while PHCD
only costs about 2.6 seconds using 40 cores. This issue also
applies to Spinner that requires about 100 seconds on 40 cores.

Secondly, a divide-and-conquer paradigm depends on the
local k-core search (RC in Section III-E) which is not efficient
enough. We test RC by computing the parent-child relations in
the HCD. RC (40) column of Table III reports the speedup of
PHCD to RC on 40 cores. We find that PHCD is 4.06x-124.97x

faster than RC, and PHCD outperforms RC by one order of
magnitude on UK which has over 3 billion edges.
Improvement over LCPS. In Figure 4, we report the relative
speedup ratio of PHCD compared with LCPS. When 40 cores
are used, PHCD is up to 22x faster than LCPS. On all
the datasets, PHCD scales well as the number of threads
grows. We also find PHCD has a better speedup ratio on
larger networks. The results show that our proposed PHCD
is practically scalable and efficient on real-world networks.

In Figure 5, we further include the cost of computing the
input, i.e., core decomposition for PHCD and LCPS. The
overall cost including the runtime of core decomposition is
reported. Compared with Figure 4, the speedup ratio is slightly
reduced because PKC has a lower speedup than PHCD.

C. Performance of Subgraph Search

Compared with the BKS, our PBKS significantly accelerates
the subgraph search without sacrificing its effectiveness.
Approximate Densest Subgraph. The densest subgraph is the
subgraph with the largest average degree [37]. Let PBKS-D
be our algorithm that returns the k-core with the highest
average degree. PBKS-D can return an approximate solution
for densest subgraph search with a 0.5 approximation ratio,
because its result is always better than the kmax-core which
is a 0.5-approximate solution [37]. In Table IV, we compare
PBKS-D with a recent approximate solution CoreApp [37]
and the state-of-the-art Opt-D [10] based on BKS. PBKS-D
outputs the same result to Opt-D with a largely improved
efficiency. Therefore, PBKS-D is the state-of-the-art approx-
imate solution for densest subgraph problem on both output
quality (average degree) and time cost.
Maximum Clique. The maximum clique is the largest subset
of vertices where every vertex pair is adjacent [38]. Let S∗

be the output subgraph of PBKS-D. Table IV shows that
S∗ contains the maximum clique with high probability (7
out of 10 datasets), even though the size of S∗ is only
0.005%-1.147% of the whole vertex set. Our method can be a
promising pruning technique for finding the maximum clique.
Speedup of Subgraph Search. Table V compares the sub-
graph search of the 40-core PBKS and the serial BKS (in
PBKS’s speedup). Figure 6 and 8 report the speedup of PBKS’s
score computation using different cores. For type-A metrics,
the speedup ratio can be up to 50x because our PBKS has a
better algorithm design. For type-B metrics, PBKS can achieve
about 20x speedup when 40 cores are used.
Runtime with Computing the Input. When taking a graph
as the input, the time cost of subgraph search further includes
the runtime of core decomposition and HCD construction with
preprocessing. Figure 7 and 9 report the speedup ratio of total
runtime, i.e., PKC + PHCD + PBKS’s speedup to PKC + LCPS
+ BKS. We achieve a better speedup on harder cases, i.e., on
type-B metrics, because the score computation dominates the
runtime in this case. Compared with Figure 6 and 8 (score
computation), the speedup ratio here is reduced, because the
speedup ratio of computing the inputs is smaller than PBKS.

LJ H O FS SK UK

 0

 2

 4

 6

 8

 10

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads

 0

 5

 10

 15

 20

 25

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads
Fig. 4. PHCD’s Speedup to LCPS

 0

 2

 4

 6

 8

 10

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads
Fig. 5. PKC + PHCD’s Speedup to PKC + LCPS

 5
 10
 15
 20
 25
 30
 35
 40
 45

1 5 10 20 40

s
p
e
e
d
u
p
 r

a
ti
o

#threads

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1 5 10 20 40

s
p
e
e
d
u
p
 r

a
ti
o

#threads
Fig. 6. PBKS’s Speedup to BKS (Type-A)

 2

 4

 6

 8

 10

 12

 14

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads

 2
 4
 6
 8

 10
 12
 14
 16
 18

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads
Fig. 7. PKC + PHCD + PBKS’s Speedup to PKC + LCPS + BKS (Type-A)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 5 10 20 40

s
p
e
e
d
u
p
 r

a
ti
o

#threads

 5

 10

 15

 20

 25

1 5 10 20 40

s
p

e
e

d
u

p
 r

a
ti
o

#threads
Fig. 8. PBKS’s Speedup to BKS (Type-B)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 5 10 20 40

s
p
e
e
d
u
p
 r

a
ti
o

#threads

 5

 10

 15

 20

 25

1 5 10 20 40

s
p
e
e
d
u
p
 r

a
ti
o

#threads
Fig. 9. PKC + PHCD + PBKS’s Speedup to PKC + LCPS + BKS (Type-B)

TABLE IV
THE PERFORMANCE OF PBKS-D ON DENSEST SUBGRAPH & MAXIMUM CLIQUE

Dataset
CoreApp Opt-D PBKS-D PBKS-D (output S∗)

davg time (s) time (s) davg time (s) MC ⊆ S∗ |S∗|/n
AS 150.02 1.145 1.374 178.801 0.196 0.027%
LJ 374.71 4.943 4.832 387.027 0.529 X 0.011%
H 2208 3.002 3.635 2208 0.542 X 0.207%
O 438.64 20.14 11.72 455.732 1.159 0.854%
HJ 2013.88 15.272 14.457 2114.915 2.851 X 1.147%
A 3247 40.703 35.359 3248.92 4.511 X 0.014%
IT 3238.921 90.86 77.276 4016.37 8.036 X 0.010%
FS 513.85 1041.528 836.279 547.035 30.022 0.08%
SK 4513.00 202.682 125.04 4514.99 12.890 X 0.009%
UK 5704 300.67 299.186 5704.99 24.243 X 0.005%

davg is the average degree of the output subgraph. The davg of Opt-D’s output is equal
to PBKS-D. S∗ is the output subgraph of PBKS-D. MC ⊆ S∗ means the maximum
clique is contained in S∗. |S∗|/n is the vertex proportion of S∗ in the whole graph.

TABLE V
RUNTIME OF SUBGRAPH SEARCH

Dataset Type-A (s) Type-B (s)
(40) (1) (40) (1)

AS 0.004 25.00x 0.176 24.49x
LJ 0.009 34.44x 0.892 18.94x
H 0.003 23.33x 5.400 18.01x
O 0.007 42.86x 5.320 19.36x
HJ 0.004 20.00x 45.406 19.93x
A 0.053 31.47x 14.144 15.46x
IT 0.083 38.05x 22.706 18.24x
FS 0.139 50.13x 230.711 19.92x
SK 0.090 46.39x 37.216 17.33x
UK 0.193 48.20x 112.892 15.99x

(40) reports the 40-core runtime of PBKS in
seconds, and (1) reports PBKS’s relative speedup to

the serial BKS.

Speedup of Each Component. Figure 10 shows the speedup
ratio of each component with PBKS when 40 cores are used,
compared to the serial performance with BKS. CD is colored
in grey because we use existing solutions [20], [23], while
other components are proposed in our paper. For CD, parallel
core decomposition has the lowest speedup ratio among all
components due to the hardness of parallelism; For HCD, the
time cost of the construction algorithm would limit the overall
efficiency if it is not parallelized by our PHCD; For SC-A,
type-A score computation of PBKS is up to 50x faster than
BKS. The speedup ratio is over 40 as the proposed computing
framework of PBKS is effective. For SC-B, although the
computation of higher-order motifs is hard for parallelism,
type-B score computation of PBKS is up to 20x faster than
BKS’s counterpart.

LJ H O FS SK UK

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

CD HCD SC-A SC-B

s
p
e
e
d
u
p
 r

a
ti
o

 0

 10

 20

 30

 40

 50

 60

CD HCD SC-A SC-B

s
p
e
e
d
u
p
 r

a
ti
o

Fig. 10. PBKS’s Speedup to BKS by Component (40-core).

CD: Core Decomposition; HCD: Hierarchical Core Decomposition;
SC-A: Type-A Score Computation (Excluding Preprocessing Time).

VI. EXTENSIONS OF OUR SOLUTIONS

(Novel Subgraph Search Task) As reported in Section V-B,
PBKS is effective in the solution to approximate densest

subgraph search and maximum clique. PBKS can also facilitate
other novel tasks that search for high-quality communities
with both degree constraint and particular community score
guarantee. Users can apply the framework with other promis-
ing subgraph search strategies, e.g., using new or assembled
community scoring metrics.
(Efficient Subgraph Index) The HCD can compress the hierar-
chy of k-cores in O(n) space. Such a structure can facilitate
the solutions to many k-core related subgraph search problems.
For example, the structure has been applied to construct the
index for querying influential communities [11] and attributed
communities [12]. After the index construction, the desired
communities may be answered time-optimally.
(Finding the Best k) We can find the best parameter k for
k-core decomposition by computing the k-core set with the
highest scores on certain metrics [10]. Based on the paradigm
in Section IV, we (i) concurrently compute the contribution of
each vertex and obtain the primary value of every k-core set,
(ii) compute the community score of every k-core set from
primary value, and (iii) choose the k with the highest score.
(Other Cohesive Subgraph Model) Inspired by the framework
of PHCD and PBKS, we can propose parallel hierarchy con-
struction algorithms and parallel subgraph search algorithms
for other cohesive subgraph models with a hierarchical de-
composition, such as k-truss [39] and k-ECC [40].

VII. RELATED WORKS

Cohesive Subgraph Search. Different cohesive subgraph
models are studied in the literature including clique [41],
quasi-clique [42], nucleus [43], [44], k-core [8], [19], [45],
k-truss [39], [46], [47], k-plex [48], and k-ecc [40], [49].
Some of these models can also decompose a graph into a
hierarchical structure, e.g., core decomposition [19], [50], [51],
truss decomposition [47], [52], [53], and ecc decomposition
[40], [54]. Cohesive subgraph search is surveyed in [55]–[57],
and many methods can be applied to other graph models, such
as bipartite graph [58], [59] and heterogeneous information
networks [60], [61]. The challenges of processing large graphs
are summarized in [62]. Some community detection methods
can also generate the hierarchical relationships among com-
munities, e.g., label propagation [63] and Louvain [64].

k-Core and Core Decomposition. The CD algorithm [19]
can compute core decomposition in O(m) time. The efficient
implementation of core decomposition on a single PC is
studied in [45]. EM-Core [51] is an external core decompo-
sition algorithm that adopts a top-down paradigm. In case the
space limit is linear to the number of vertices, I/O efficient
core decomposition [50] can be used. The streaming core
decomposition is proposed in [65]. The variants of k-core
model are often used to find high-quality communities under
different scenes, e.g., (k, r)-core [66], influential k-core [11],
radius-bounded k-core [67], persistent k-core [68], and skyline
k-core [69]. Core decomposition has been widely applied to
various areas such as community discovery [66], [68]–[70],
influential spreader identification [71], [72], network analysis

[16], [18], [73], anomaly detection [73], evaluating contagion
power of vertices [71], [74], and graph visualization [1], [75].
Distributed/Parallel Core Decomposition. MPM algorithm
[21] is a distributed core decomposition algorithm that con-
verges in itMCM < kmax � n rounds and runs in O(itMCMm)
time. ParK [24] is a shared-memory parallel algorithm for k-
core decomposition. Based on ParK algorithm, PKC [20] adds
more optimization techniques and has a lower synchronization
overhead, and thus achieves a better performance. Both ParK
and PKC algorithms run in O(nkmax+m) time. Using a single
machine with a terabyte of RAM and Julienne framework [22],
parallel k-core decomposition can be scaled to a graph with
128 billion edges [23]. A (2 + δ)-approximate algorithm for
k-core decomposition is proposed in [25]. The above studies
focus on the computation of vertex coreness and cannot be
used to compute the HCD.
Hierarchical Core Decomposition. LCPS [7] can build the
HCD of a graph in O(m) time. The algorithm of HCD
maintenance on large dynamic networks is proposed in [15].
HCD can be used to find the best k-core, and it can help solve
k-core related problems, e.g., finding the densest subgraph, the
maximum clique, and the size constrained k-core [10].
ShellStruct [76] is a structure equivalent to HCD,

which is proposed to efficiently handle the local query of k-
cores. CL-Tree [12] is used to efficiently search attributed
communities, and it contains a data structure equivalent to
HCD. Compared with above serial algorithms, our PHCD puts
emphasis on better parallelism, i.e., computational steps with
higher cohesion, less data race, and simpler data structure.
ICP-Index [11] is a HCD-like structure that can an-

swer influential communities time-optimally. The hierarchy
of nucleus decomposition generalizes the k-core and k-truss
decomposition [43], and it can compute the HCD. A par-
allel solution for local nucleus query (returning the nucleus
containing a given vertex) is proposed in [44], but there is
no parallel solution for the hierarchy construction of nucleus
decomposition. The above community search index algorithms
[12], [43], [76] related to HCD construction are all serial, and
they can be more efficient if parallelized.

VIII. CONCLUSION AND FUTURE WORK

The HCD has various applications on real-world networks,
but the existing solutions cannot efficiently handle massive
graphs. Despite the P-completeness of HCD construction, we
develop parallel algorithms that are efficient in both theory
and practice. We also propose the first parallel algorithm for
searching high-quality cohesive subgraphs from the HCD,
regarding different community scoring metrics, where the
score computation is work-efficient for all the studied metrics.
Extensive experiments are conducted on 10 networks with up
to billions of edges. The results confirm that our proposed
parallel algorithms largely outperform the existing solutions.
To the best of our knowledge, the approximation guarantees
of k-core on optimizing the metrics other than average degree
are still unclear. It is interesting to investigate the possible
approximation guarantees for these metrics in the future.

REFERENCES

[1] F. Zhao and A. K. H. Tung, “Large scale cohesive subgraphs discovery
for social network visual analysis,” PVLDB, vol. 6, no. 2, pp. 85–96,
2012.

[2] X. Chen, K. Wang, X. Lin, W. Zhang, L. Qin, and Y. Zhang, “Efficiently
answering reachability and path queries on temporal bipartite graphs,”
PVLDB, vol. 14, no. 10, pp. 1845–1858, 2021.

[3] J. Kim, T. Guo, K. Feng, G. Cong, A. Khan, and F. M. Choudhury,
“Densely connected user community and location cluster search in
location-based social networks,” in SIGMOD, 2020, pp. 2199–2209.

[4] Z. Yang, L. Lai, X. Lin, K. Hao, and W. Zhang, “Huge: An efficient and
scalable subgraph enumeration system,” in SIGMOD, 2021, pp. 2049–
2062.

[5] S. Wang and Y. Tao, “Efficient algorithms for finding approximate heavy
hitters in personalized pageranks,” in SIGMOD, 2018, pp. 1113–1127.

[6] M. Altaf-Ul-Amine, K. Nishikata, T. Korna, T. Miyasato, Y. Shinbo,
M. Arifuzzaman, C. Wada, M. Maeda, T. Oshima, H. Mori et al.,
“Prediction of protein functions based on k-cores of protein-protein
interaction networks and amino acid sequences,” Genome Informatics,
vol. 14, pp. 498–499, 2003.

[7] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and
graph coloring algorithms,” J. ACM, vol. 30, no. 3, pp. 417–427, 1983.

[8] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[9] A. Clauset, C. Moore, and M. E. Newman, “Hierarchical structure and
the prediction of missing links in networks,” Nature, vol. 453, no. 7191,
p. 98, 2008.

[10] D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang,
“Finding the best k in core decomposition: A time and space optimal
solution,” in ICDE. IEEE, 2020, pp. 685–696.

[11] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.

[12] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[13] F. D. Malliaros and M. Vazirgiannis, “To stay or not to stay: modeling
engagement dynamics in social graphs,” in CIKM, 2013, pp. 469–478.

[14] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Global
reinforcement of social networks: The anchored coreness problem,” in
SIGMOD, 2020, pp. 2211–2226.

[15] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian, “Hierarchical core
maintenance on large dynamic graphs,” in PVLDB, vol. 14(5), 2021,
pp. 757–770.

[16] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases,” NHM, vol. 3, no. 2, pp. 371–393, 2008.

[17] F. Morone, G. Del Ferraro, and H. A. Makse, “The k-core as a predictor
of structural collapse in mutualistic ecosystems,” Nature Physics, vol. 15,
no. 1, p. 95, 2019.

[18] M. Daianu, N. Jahanshad, T. M. Nir, A. W. Toga, C. R. J. Jr., M. W.
Weiner, and P. M. Thompson, “Breakdown of brain connectivity between
normal aging and alzheimer’s disease: A structural k-core network
analysis,” Brain Connectivity, vol. 3, no. 4, pp. 407–422, 2013.

[19] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompo-
sition of networks,” CoRR, vol. cs.DS/0310049, 2003.

[20] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore
platforms,” in IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPS Workshops). IEEE Computer Society,
2017, pp. 1482–1491.

[21] A. Montresor, F. D. Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” TPDS, vol. 24, no. 2, pp. 288–300, 2013.

[22] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in SPAA,
2017, pp. 293–304.

[23] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient par-
allel graph algorithms can be fast and scalable,” in SPAA, C. Scheideler
and J. T. Fineman, Eds. ACM, 2018, pp. 393–404.

[24] N. S. Dasari, D. Ranjan, and M. Zubair, “Park: An efficient algorithm
for k-core decomposition on multicore processors,” in 2014 IEEE
International Conference on Big Data. IEEE, 2014, pp. 9–16.

[25] Q. C. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun, “Parallel batch-
dynamic k-core decomposition,” arXiv preprint arXiv:2106.03824,
2021.

[26] U. Meyer and P. Sanders, “δ-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[27] C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner:
Scalable graph partitioning in the cloud,” in ICDE. Ieee, 2017, pp.
1083–1094.

[28] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” TPDS, vol. 28, no. 9, pp. 2625–2638, 2017.

[29] R. E. Tarjan and J. Van Leeuwen, “Worst-case analysis of set union
algorithms,” J. ACM, vol. 31, no. 2, pp. 245–281, 1984.

[30] R. J. Anderson and H. Woll, “Wait-free parallel algorithms for the union-
find problem,” in STOC, 1991, pp. 370–380.

[31] S. V. Jayanti and R. E. Tarjan, “Concurrent disjoint set union,” Dis-
tributed Computing, pp. 1–24, 2021.

[32] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, “Metrics for
community analysis: A survey,” CSUR, vol. 50, no. 4, pp. 54:1–54:37,
2017.

[33] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” KAIS, vol. 42, no. 1, pp. 181–213, 2015.

[34] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026113,
2004.

[35] R. Anderson and E. W. Mayr, A P-complete problem and approximations
to it. Stanford University, 1984.

[36] F. E. Sevilgen, S. Aluru, and N. Futamura, “Parallel algorithms for tree
accumulations,” Journal of Parallel and Distributed Computing, vol. 65,
no. 1, pp. 85–93, 2005.

[37] Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin, “Efficient
algorithms for densest subgraph discovery,” PVLDB, vol. 12, no. 11, pp.
1719–1732, 2019.

[38] L. Chang, “Efficient maximum clique computation over large sparse
graphs,” in KDD, 2019, pp. 529–538.

[39] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National Security Agency Technical Report, vol. 16, pp. 3–1, 2008.

[40] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang, “Efficiently
computing k-edge connected components via graph decomposition,” in
SIGMOD, 2013, pp. 205–216.

[41] J. Cheng, Y. Ke, A. W. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” TODS, vol. 36, no. 4, pp. 21:1–21:34,
2011.

[42] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-cliques,”
in KDD, 2005, pp. 228–238.

[43] A. E. Sariyüce and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” PVLDB, vol. 10, no. 3, pp. 97–108, 2016.

[44] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms for
hierarchical dense subgraph discovery,” PVLDB, vol. 12, no. 1, pp. 43–
56, 2018.

[45] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo, “K-core decom-
position of large networks on a single PC,” PVLDB, vol. 9, no. 1, pp.
13–23, 2015.

[46] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in SIGMOD, 2014, pp. 1311–
1322.

[47] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
PVLDB, vol. 5, no. 9, pp. 812–823, 2012.

[48] Y. Wang, X. Jian, Z. Yang, and J. Li, “Query optimal k-plex based
community in graphs,” DSE, vol. 2, no. 4, pp. 257–273, 2017.

[49] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
maximal k-edge-connected subgraphs from a large graph,” in EDBT,
2012, pp. 480–491.

[50] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core
graph decomposition at web scale,” in ICDE, 2016, pp. 133–144.

[51] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in ICDE. IEEE, 2011, pp. 51–62.

[52] Y. Shao, L. Chen, and B. Cui, “Efficient cohesive subgraphs detection
in parallel,” in SIGMOD, 2014, pp. 613–624.

[53] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in SIGMOD, 2016, pp.
77–90.

[54] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “I/O efficient ECC
graph decomposition via graph reduction,” VLDB J., vol. 26, no. 2, pp.
275–300, 2017.

[55] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” VLDB J., vol. 29,
no. 1, pp. 353–392, 2020.

[56] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis,
“The core decomposition of networks: theory, algorithms and applica-
tions,” VLDB J., vol. 29, no. 1, pp. 61–92, 2020.

[57] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms
for dense subgraph discovery,” in Managing and Mining Graph Data.
Springer, 2010, pp. 303–336.

[58] Y. He, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Exploring cohesive
subgraphs with vertex engagement and tie strength in bipartite graphs,”
Information Sciences, vol. 572, pp. 277–296, 2021.

[59] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation: An index-based approach,” in WWW, 2019, pp.
1130–1141.

[60] X. Jian, Y. Wang, and L. Chen, “Effective and efficient relational com-
munity detection and search in large dynamic heterogeneous information
networks,” PVLDB, vol. 13, no. 10, pp. 1723–1736, 2020.

[61] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient
community search over large heterogeneous information networks,”
PVLDB, vol. 13, no. 6, pp. 854–867, 2020.

[62] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity
of large graphs and surprising challenges of graph processing,” PVLDB,
vol. 11, no. 4, pp. 420–431, 2017.

[63] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical review
E, vol. 76, no. 3, p. 036106, 2007.

[64] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[65] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek,
“Streaming algorithms for k-core decomposition,” PVLDB, vol. 6, no. 6,
pp. 433–444, 2013.

[66] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement
meets similarity: Efficient (k, r)-core computation on social networks,”
PVLDB, vol. 10, no. 10, pp. 998–1009, 2017.

[67] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin, “Efficient computing
of radius-bounded k-cores,” in ICDE, 2018, pp. 233–244.

[68] R. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community search
in temporal networks,” in ICDE, 2018, pp. 797–808.

[69] R. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng, “Skyline
community search in multi-valued networks,” in SIGMOD, 2018, pp.
457–472.

[70] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang, “Efficient
and effective community search on large-scale bipartite graphs,” in
ICDE. IEEE, 2021, pp. 85–96.

[71] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” Nature physics, vol. 6, no. 11, p. 888, 2010.

[72] F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis, “Locating influ-
ential nodes in complex networks,” Scientific reports, vol. 6, p. 19307,
2016.

[73] K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms,” in ICDM,
2016, pp. 469–478.

[74] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” PNAS, vol. 109, no. 16, pp. 5962–5966,
2012.

[75] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in NIPS, 2005, pp. 41–50.

[76] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and
effective community search,” Data mining and knowledge discovery,
vol. 29, no. 5, pp. 1406–1433, 2015.

	2021 IEEE
	paper (4).pdf

