
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Efficient Computation of Cohesive Subgraphs in
Uncertain Bipartite Graphs

Gengda Zhao†, Kai Wang†, Wenjie Zhang†, Xuemin Lin†, Ying Zhang‡, Yizhang He†
†University of New South Wales, ‡University of Technology Sydney

{gengda.zhao, kai.wang, wenjie.zhang, xuemin.lin, yizhang.he}@unsw.edu.au, ying.zhang@uts.edu.au

Abstract—Bipartite graphs are extensively used to model
relationships between two different types of entities. In many
real-world bipartite graphs, relationships are naturally uncertain
due to various reasons such as data noise, measurement error
and imprecision of data, leading to uncertain bipartite graphs.
In this paper, we propose the (α, β, η)-core model, which is the
first cohesive subgraph model on uncertain bipartite graphs.
To capture the uncertainty of relationships/edges, η-degree is
adopted to measure the vertex engagement level, which is the
largest integer k such that the probability of a vertex having at
least k neighbors is not less than η. Given degree constraints α
and β, and a probability threshold η, the (α, β, η)-core requires
that each vertex on the upper or lower level have η-degree no
less than α or β, respectively. An (α, β, η)-core can be derived
by iteratively removing a vertex with η-degree below the degree
constraint and updating the η-degrees of its neighbors. This
incurs prohibitively high cost due to the η-degree computation
and updating, and is not scalable to large bipartite graphs. This
motivates us to develop index-based approaches. We propose a
basic full index that stores (α, β, η)-core for all possible α, β,
and η combinations, thus supporting optimal retrieval of the
vertices in any (α, β, η)-core. Due to its long construction time
and high space complexity, we further propose a probability-
aware index to achieve a balance between time and space costs.
To efficiently build the probability-aware index, we design a
bottom-up index construction algorithm and a top-down index
construction algorithm. Extensive experiments are conducted
on real-world datasets with generated edge probabilities under
different distributions, which show that (1) (α, β, η)-core is an
effective model; (2) index construction and query processing are
significantly sped up by the proposed techniques.

I. INTRODUCTION

Bipartite graphs are a natural fit for modeling the interac-
tions between two distinct types of entities, such as user-page
networks [1], disease-symptom networks [2], [3], and protein-
interaction networks [4]. In many real-world applications, in-
teractions between entities are uncertain in nature [5], leading
to uncertain bipartite graphs, where each edge occurs with a
certain probability (i.e., existence probability). For instance,
in a disease-symptom network, each edge indicates that a
symptom associated with a disease occurs with a probability.
For Covid-19, the probability that a patient will have a fever
is 80%, and the probability for myocarditis is 1%. Cohesive
subgraph mining is a fundamental research topic in graph
analysis, which aims to find closely connected subgraphs
wherein vertices are highly engaged. Most existing cohesive
subgraph models on uncertain graphs are variants of those on
unipartite graphs [6]–[13]. For example, the (k, η)-core [6]–
[8] model is extended from k-core. While k-core only models
vertex engagement as degrees in a deterministic graph, the
η-degree in (k, η)-core can capture vertex engagement in an

𝑢2𝑢1 𝑢3 𝑢4

𝑣3𝑣2𝑣1 𝑣4 𝑣5

0.1 0.1

0.9

0.2

0.1

0.4

0.6 0.2
0.40.80.4

0.3

0.2
0.2

(3, 2, 0.04)-core (3, 2)-core

Fig. 1: Illustrating the (α, β, η)-core

uncertain graph where edges are associated with probability
values. On bipartite graphs, many cohesive subgraph models
are also studied, such as (α, β)-core [14], [15], k-bitruss [16],
[17], and all variants of bicliques [18], [19]. Among them,
(α, β)-core is a widely used model that requires the vertices
on the upper (lower) level to have at least α (β) neighbors.
For instance, in Fig. 1, {u1, u2, u3, u4, v2, v3, v4, v5} forms a
(3, 2)-core. However, none of the existing cohesive models on
bipartite graphs take the uncertainty of edges into account.

To fill this research gap, in this paper, we propose the
(α, β, η)-core model, which is the first cohesive subgraph
model on uncertain bipartite graphs. Given an uncertain bi-
partite graph G and a probability threshold η, we adopt the
η-degree from (k, η)-core to model the engagement of a vertex
u, which is the largest integer k such that the probability that
u has at least k neighbors is not less than η. Given degree
constraints α, β, the (α, β, η)-core is the maximal subgraph
of G such that the η-degree of each upper or lower vertex in
the subgraph is no less than α or β, respectively. The (α, β, η)-
core model can capture unique structures in uncertain bipartite
graphs because it not only ensures the structural cohesiveness
of the subgraph but also captures the probability information
of edges. As shown in Fig. 1, the subgraph in shade is the
(3, 2)-core. Since it directly imposes degree constraints on
the deterministic graph, it includes all vertices except v1. If
we set α = 3, β = 2, and η = 0.04, u1, u4, and v5 will
be excluded from the (α, β, η)-core because their η-degrees
violate the degree constraints. The subgraph surrounded by
blue dots is the (3, 2, 0.04)-core, which contains {u2, u3, v2,
v3, v4}. Note that it cannot be captured by any (α, β)-core.
Applications. Studying the (α, β, η)-core model has many
applications. We list some of them below.
Categorisation of new diseases. The relationships between
diseases and symptoms can be naturally modeled as an
uncertain bipartite graph, where each edge indicates that a

disease is associated with a symptom with a certain probability
[2], [3]. When a new disease (e.g., a different strain of the
coronavirus) is spreading, the probability distribution of its
common symptoms can be easily estimated from the data
of new patients [20]. We can augment the existing disease-
symptom uncertain bipartite graph by adding the edges and
probabilities of the new disease and compute the (α, β, η)-core
containing it. The (α, β, η)-core groups some existing diseases
(e.g., SARS and influenza) and the new disease based on their
shared and likely symptoms. These existing diseases in the
same (α, β, η)-core are vital to understanding the new disease
and devising effective pandemic prevention plans.
Fraud detection. On social media like Twitter, Facebook,
and Instagram, interactions between users and pages form a
bipartite graph [17], [21]. Each edge in this graph can be
associated with a probability with which a user likes a page.
Such probabilities can usually be estimated using machine
learning models based on past user behaviors [22], [23]. Some
fraudulent users give fake “likes” to the pages that they try
to promote. The probability associated with these users and
pages are significantly higher than average. Also, due to the
advancement of anomaly detection, these users cannot rely
on too many accounts for their activities [24]. Thus, these
closely connected groups formed by fraudsters and the pages
they promote can be captured by the (α, β, η)-core model.
Task-driven Team formation. For large corporations and uni-
versities to bid for a multidisciplinary research project, it is
essential to find a team of researchers with areas of expertise
relevant to a prescribed task [25]. To form such a team, it is
often worthwhile to identify the expertise profile of researchers
by investigating the track records in publication and research
projects. The interactions between researchers and expertise
form an uncertain bipartite graph, where each edge indicates
how likely a researcher is to be considered as an expert for
that area. These probabilities can be easily estimated based
on past publications and successful grants. For the prescribed
task, the (α, β, η)-core containing the most relevant expertise
and researchers can be used as a candidate list to build the
research team.
Motivations and challenges. To compute the (α, β, η)-core,
a straightforward method is to start from the input uncertain
bipartite graph and iteratively remove the vertices without
enough η-degrees. However, this online computation approach
fails inevitably when the input graph gets large, and it cannot
support high volumes of (α, β, η)-core queries with different
combinations of α, β and η values. Thus, we resort to
indexing-based methods in this paper.

Existing works on computing (k, η)-core on uncertain uni-
partite graphs build an index to store the maximum η value
such that a vertex is contained in (k, η)-core [6]. The index
has the following features. First, the index supports optimal
retrieval of vertices for given k and η values. Second, the
index size is linear to the size of the graph (i.e., the number
of edges). Likewise, to support (α, β, η)-core queries over
uncertain bipartite graphs, we can store the maximum η value
such that u is contained in (α, β, η)-core (i.e., the η-threshold
of u) in a basic index. In this way, this index can support
querying the vertices in arbitrary (α, β, η)-core by returning

the vertices in (α, β)-core with η-thresholds no less than η.
Such an index can also support retrieval of (α, β, η)-core
vertices in optimal time. Nevertheless, the two-layer feature
of bipartite graphs imposes extra challenges, and such a basic
index suffers from large space complexity and long build time
due to the large number of combinations of α and β. When
trying to make the indexing method practically applicable, we
face the following challenges.

1) Challenge 1. Designing an index with well-bounded
space complexity that supports efficient querying of
(α, β, η)-core is challenging.

2) Challenge 2. It is difficult to construct such an index
efficiently due to the large number of combinations of
α, β, and η that correspond to many (α, β, η)-cores.

Our solutions. To address Challenge 1, we propose the
probability-aware index by only storing the vertices in the
(α, β, η)-cores for some representative η values. For each
selected η, we build a sub-index (i.e., a η-index) that stores the
upper and lower vertices in the (α, β, η)-cores separately in a
space-compact manner as in [15]. For an incoming (α, β, η)-
core query, if the η-index is built, the query can be responded
to in optimal time. Otherwise, we find the closest two η
values in the index (η1 < η < η2) and use the vertices in
(α, β, η1)-core and (α, β, η2)-core to compute (α, β, η)-core,
which is much faster than computing (α, β, η)-core from the
input graph.

A natural question is: which η values should we build an
η-index for. We observe that the η values corresponding to
different sub-indexes are not distributed evenly. Thus, if we
choose a series of η values with fixed step size, it is very
likely that adjacent η values correspond to identically built
sub-indexes, which results in redundancy. It is worth noting
that as η increases, the number of vertices in the (α, β, η)-
cores that can be queried from the η-index (denoted as T (η))
is decreasing. Since T (η) can reflect the ability of the η-index
to answer queries, we gradually increase η such that T (η)
approximately halve in size to reduce redundancy. This results
in a well-bounded space complexity of the index (i.e., O(m ·
log(m)), where m is the total number of edges in the input
graph). As evaluated in the experiments, this probability-aware
index is able to strike a balance between index space cost and
query time.

To address Challenge 2, we propose efficient algorithms to
construct the probability-aware index. For each selected η, we
build an η-index that records which vertices are contained
in the (α, β, η)-cores. Since the structure of each η-index
resembles the index for (α, β)-core [15], we devise a similar
bottom-up index construction algorithm that processes the
(α, β, η)-cores with smaller degree constraints (α or β) first.
However, in this approach, the vertices with high η-degrees
can be updated many times, especially when α or β is small.
This compromises the efficiency of index construction. To
address this issue, we present a top-down index construction
algorithm that prioritizes processing the (α, β, η)-cores with
large degree constraints, which contain many vertices with
high η-degrees. Immediately, these vertices with high η-
degrees in the (α, β, η)-cores with large α or β will occur
in the (α, β, η)-cores with smaller α or β as well. Thus, the

η-degrees of these vertices need not to be updated as we
visit the (α, β, η)-cores with smaller degree constraints. In this
manner, the total number of η-degree updates is significantly
decreased compared to the bottom-up approach, and the index
construction is sped up noticeably.
Contribution. Here we summarize our principal contributions.
• We propose the first cohesive subgraph model, (α, β, η)-

core, on uncertain bipartite graphs.
• We propose a probability-aware index with O(m·log(m))

space complexity, which is much smaller in practice (e.g.,
its space usage is only 1.03×-2.22× of the graph size
as evaluated in the experiments). In addition, it supports
efficient query processing.

• We devise efficient index construction algorithms that can
build the probability-aware index in bottom-up and top-
down manners.

• We conduct extensive experiments on 10 real bipartite
graphs with edge probabilities generated under different
distributions to validate the effectiveness of our (α, β, η)-
core model and the efficiency of the proposed algorithms.

Organization. The rest of the paper is organized as follows.
Section II presents the basic definitions and the problem
statement. Section III presents the basic full index. Sec-
tion IV presents the probability-aware index and the index
construction algorithms. Section V reports and analyzes the
experimental results. Section VI reviews the related works,
and Section VII concludes the paper.

II. PRELIMINARIES

In this section, we formally introduce the notations and
basic concepts for defining the (α, β, η)-core.

TABLE I: Summary of Notations
Notation Definition

G a deterministic bipartite graph
G an uncertain bipartite graph

degη(u,G) the η-degree of u in G
thresα,β(u) the η-threshold of u in G

αmax the maximal α such that the (α, 1)-core exists in G
βmax(α) the maximal β such that the (α, β)-core exists in G
If the full index of G
Ipa the probability-aware index of G

η-index the sub-index with probability η in Ipa
T (η) the number of vertices in the all (α, β, η)-cores
α-offset the maximal β value where u in an (α, β, η)-core
β-offset the maximal α value where u in an (α, β, η)-core

A. The definition of (α, β, η)-core
Our problem is defined over an uncertain bipartite graph

G(V = (U,L), E, p). V (G) is the set of vertices in G, U(G)
represents the set of upper layer vertices, and L(G) represents
the set of lower layer vertices, where U(G) ∩ L(G) = ∅,
V (G) = U(G) ∪ L(G). E(G) ⊆ U(G) × L(G) denotes
the set of edges in G, and p is a function that maps the
existence probability of each edge to a real value in [0, 1].
The probability of an edge e ∈ E(G) is denoted by pe. The
degree of u in G is denoted as deg(u,G). Assuming all the
vertices and edges in G exist, we have a deterministic graph
G∗. We use N(u,G) to denote the neighbor set of a vertex u

in G∗, and we use Deg(u,G) to denote the degree of u in G∗.
We use n and m to denote the number of vertices and edges
in G∗, respectively. Note that G is omitted when the context
is clear.

We first introduce the concept of (α, β)-core on determin-
istic bipartite graphs.

Definition 1. (α, β)-core. Given a bipartite graph G(V =
(U,L), E), and two degree constraints α and β, the (α, β)-
core is a subgraph G

′
which satisfies (1) deg(u,G

′
) ≥ α for

each u ∈ U(G
′
) and deg(v,G

′
) ≥ β for each v ∈ L(G

′
);

(2) G
′

is maximal, i.e., any supergraph G
′′ ⊃ G

′
is not an

(α, β)-core.

According to previous uncertain graph models and the
well-known possible-world semantics [6]–[8], we assume the
existence probability of each edge in G is independent. Based
on this assumption, there exist 2m possible graph instances
by given an uncertain bipartite graph G with m edges. Let
G(V =(U,L), E) denote a graph instance. The probability of
observing a graph instance G is denoted by Pr(G), which can
be calculated by:

Pr(G) =
∏

e∈E(G)

pe
∏

e∈E(G)\E(G)

(1− pe). (1)

Given an uncertain bipartite graph G, let G≥ku be the set of
all possible graph instances where u has a degree of at least
k, i.e., G≥ku = {G ⊆ G | deg(u,G) ≥ k}. Since different
possible graph instances are independent [8], we have the
following equation:

Pr[deg(u,G) ≥ k] =
∑

G∈G≥k
u

Pr(G). (2)

According to the above discussions, we introduce the con-
cepts of η-degree and (α, β, η)-core.

Definition 2. η-degree. Given an uncertain bipartite graph
G(V =(U,L), E, p), a vertex u ∈ G, and a proba-
bilistic threshold η ∈ [0, 1], the η-degree of a vertex
u, denoted by degη(u,G), is defined as degη(u,G) =
max{k | Pr[deg(u,G) ≥ k] ≥ η}.

Definition 3. (α, β, η)-core. Given an uncertain bipartite
graph G(V =(U,L), E, p), two integers α, β and a proba-
bilistic threshold η ∈ [0, 1], a subgraph G′ is the (α, β, η)-
core of G if (1) degη(u,G′) ≥ α for each u ∈ U(G′) and
degη(u,G′) ≥ β for each v ∈ V (G′); (2) G′ is maximal, i.e.,
any supergraph G′′ ⊃ G is not an (α, β, η)-core.

Problem Statement. Given an uncertain bipartite graph
G(V =(U,L), E, p), two integers α, β and a probabilistic
threshold η ∈ [0, 1], we study the problem of computing the
vertices in the (α, β, η)-core of G.

Example 1. Consider the graph G in Figure 1. Given query
parameters α = 3, β = 2, and η = 0.02, the (3, 2, 0.02)-
core of G contains {u2, u3, u4, v2, v3, v4, v5}. Given query
parameters α = 3, β = 2, and η = 0.04, the (3, 2, 0.04)-core
of G contains {u2, u3, v2, v3, v4}.

B. Warm up

To simplify the calculation of η-degree, Bonchi et al. [8]
propose several equations as follows.

Pr[deg(u,G) ≥ k] =
∑
i≥k

Pr[deg(u,G) = i]

= 1−
∑
i≤k-1

Pr[deg(u,G) = i].
(3)

Based on Equation 3, the problem of calculating η-degree is
converted to computing Pr[deg(u,G) = i] (i ≤ k−1). Let s =
Deg(u,G) and Eu(G) = {e1, e2, ..., es} be the set of edges
that incident to u in G. There are two possible situations: (i)
there are i-1 edges exist in {e1, e2, ..., es−1} and es exists; or
(ii) there are i edges exist in {e1, e2, ..., es−1} and es does not
exist. Let Ehu(G) = {e1, e2, ..., eh} be a subset that contains
the first h edges of Eu(G), where h ≤ s. Let Ghu denote
a subgraph of G that excludes the edges in Eu(G) \ Ehu(G)
(i.e., Ghu = (V =(U,L), E \(Eu(G)\Ehu(G)), p)). Let Xu(h, j)
be the probability of a vertex u that has a degree j in Ghu ,
j ≤ h ≤ s. Obviously, Xu(s, j) is equal to Pr[deg(u,G) = j].
Then we can get the dynamic programming recursive function
of calculating Xu(s, i) (i.e., Pr[deg(u,G) = i]):

Xu(h, j) = pehXu(h-1, j-1) + (1-peh)Xu(h-1, j). (4)

The initialization case are: (i) Xu(0, 0) = 1, (ii) for all h ∈
[0, s], Xu(h,−1) = 0, (iii) for all 0 ≤ h < j ≤ s, Xu(h, j) =
0. The time complexity for computing the η-degree of a vertex
u is O(Deg(u,G) · degη(u,G)).

[8] also proposes an updating technique to dynamically
update the η-degree when an edge is removed. Given an
edge e = (u, v) ∈ G. After removing e, we get a subgraph
G¬e = (V = (U,L), E \ e, p) of G. The η-degree of u
can be updated by computing Pr[deg(u,G¬e) = j], where
j ∈ [0, degη(u,G)]. To simplify, Pr[deg(u,G¬e) = j] is
denoted by p(u,¬e, j) and can be computed as follows.

p(u,¬e, j) =
Pr[deg(u,G = j]-pe(p(u,¬e, j-1)

1-pe
. (5)

Based on Equation 5 and the initial state Pr[deg(u,G¬e) =
0] = Pr[deg(u,G) = 0]/(1-pe), the time complexity of
computing Pr[deg(u,G¬e) = j] for all j ∈ [1, degη(u,G)]
is O(degη(u,G)) time.

III. BASELINE SOLUTIONS

In this section, we introduce the online computation algo-
rithm and the full index to retrieve (α, β, η)-core.

A. The online algorithm

In [26], the authors propose an online peeling algorithm
to compute the (α, β)-core on deterministic bipartite graphs
by iteratively removing the vertices that violate the degree
constraints). Using a similar peeling idea, we introduce an
online algorithm UC-Qo to compute the (α, β, η)-core in G.
We can directly have the following observation from Definition
1 and Definition 3.

Observation 1. Given an uncertain bipartite graph G, for any
α,β, and η, (α, β, η)-core ⊆ (α, β)-core.

Based on Observation 1, we can compute the (α, β, η)-
core from the (α, β)-core by iteratively removing the vertices
without enough η-degree, as outlined in Algorithm 1. In Al-
gorithm 1, UC-Qo first removes all the vertices do not belong
to the (α, β)-core using the algorithm in [26]. After that, we
calculate the η-degree of the remaining vertices using Equation
4 (Line 2). Then, we iteratively remove the upper (lower)
vertices with η-degree less than α (β) (Lines 3-14). The
time complexity of Line 1, Line 2, and Lines 3-16 is O(m),
O(

∑
u∈V degη(u)·Deg(u)), O(

∑
u∈V

∑
v∈N(u) degη(v)), re-

spectively. Thus, the total time complexity of Algorithm 1 is
O(

∑
u∈V degη(u) ·Deg(u) +

∑
u∈V

∑
v∈N(u) degη(v)).

Algorithm 1: UC-Qo

Input: An uncertain graph G = (v = (U,L), E, p), two
integer α, β and a probability threshold η ∈ [0, 1]

Output: the (α, β, η)-core in G
1 remove all the vertices do not belong to the (α, β)-core;
2 compute degη(u) for all u ∈ V (G);
3 repeat
4 while ∃u ∈ U(G) s.t. degη(u) < α do
5 foreach v ∈ N(u) do
6 remove the edge (u, v) from G;
7 update degη(v);
8 U(G)← U(G)\{u};
9 while ∃v ∈ L(G) s.t. degη(v) < β do

10 foreach u ∈ N(v) do
11 remove the edge (u, v) from G;
12 update degη(u);
13 L(G)← L(G)\{v};
14 until U(G) and L(G) do not change;
15 return V (G)

B. The full index
Since the online computation algorithm needs to peel the

graph from scratch, it is time-consuming in many circum-
stances, especially when the bipartite graph is large. To support
efficient query processing, a general idea is to use index-based
approaches. In this subsection, we introduce the full index If
that can support retrieving the vertices in an arbitrary (α, β, η)-
core in optimal time. We can have the following lemma based
on the nested structure of (α, β, η)-core.

Lemma 1. Given parameters α, β, η, and η′, (α, β, η)-core
⊆ (α, β, η′)-core if η > η′.

Proof. This is immediate from Definition 3.

According to the above lemma, we only need to concern
the largest probability η for each vertex that can be in the
(α, β, η)-core. We call such η value the η-threshold, which is
formally defined as follows.

Definition 4. η-threshold. Given an uncertain bipartite graph
G(V =(U,L), E, p), two integers α, β, and a vertex u, the
largest η such that an (α, β, η)-core containing u exists is
called the η-threshold of u, denoted by thres(α,β)(u).

For each α and β combination, we can store the vertices
with non-zero η-thresholds along with their η-threshold values

into the index. Then, when querying an (α, β, η)-core, we can
just return each vertex u with thres(α,β)(u) ≥ η. Specifically,
If is a three-level index. The first and second levels of If are
arrays of pointers for α/β values. The third level of If contains
a list of vertex blocks. Each vertex block vb is associated with
a threshold vb.η and contains the set of vertices {u ∈ V (G) |
thres(α,β)(u) = vb.η}. We show an example of this full index
2 as follows.

Example 2. Consider the uncertain bipartite graph G in
Figure 1. We show the corresponding full index If in Figure 2.
In the index, all the pre-computed η-thresholds of all vertices
are stored and shown in the vertex blocks of the bottom level.
For example, (1, 3, 0.108)-core is {u2, u3, u4, v4} and it has
the largest η-threshold among all (1, 3, η)-cores. Thus, the
vertex block with {u2, u3, u4, v4} and the η-threshold 0.108
is pointed by the pointer in the third element of the first array
in β level. Because the η-threshold of u1 in (1, 3, η)-core is
0.1, u1 is stored in a different vertex block.

Query based on If . The query processing with the index If is
shown in Algorithm 2. Given query parameters α, β, and η, if
either If [α] or If [α][β] is empty, it returns ∅ as the result since
the (α, β, η)-core is empty (Lines 1-2). Otherwise, we retrieve
the vertex block referred by the pointer If [α][β] (Line 3). We
iteratively get all the vertices in the blocks with threshold large
than or equal to the given query value η. We can easily get
that the time complexity of Algorithm 2 is O(|C|), where
C is the set of all the vertices in (α, β, η)-core. Note that
Algorithm 2 is optimal, since its time complexity is bounded
by the result size. For example, to query the (2, 2, 0.12)-core
from If , we simply visit the corresponding pointers in each
level as shown in Figure 2. Then, we collect the vertices in
the vertex blocks with η-thresholds greater than or equal to
0.12. The (2, 2, 0.12)-core includes vertices with η-thresholds
0.168 and 0.124, which is {u1, u2, u3, u4, v2, v3, v4}.

Algorithm 2: Query based on If
Input: An uncertain graph G = (V = (U,L), E, p), two

integers α, β, a probabilistic threshold η, and If
Output: the (α, β, η)-core in G

1 if If .size() < α or If [α].size() < β then
2 return ∅ ;
3 vb← the vertex block pointed by If [α][β];
4 C ← ∅;
5 while vb.η ≥ η do
6 foreach u ∈ vb do
7 C ← C ∪ u;
8 vb← the next vertex block in If [α][β];
9 return C

Build the full index. Based on the structure of If , it is easy
to build the index if we know the η-threshold for each vertex
regarding all possible α and β combinations. Thus, we focus
on computing the η-threshold for each vertex u ∈ V (G). We
first give the following definition.

Definition 5. d-probability. Given an uncertain bipartite
graph G and two integers α, β, the d-probability prob(u,G) of
a vertex u is defined as follows. (1) if u ∈ U(G), prob(u,G)
is the probability that Pr[deg(u) ≥ α]; (2) if u ∈ L(G),

prob(u,G) is the probability that Pr[deg(u) ≥ β].

Based on Definition 5, the details of the algorithm that
computes the η-threshold of all the vertices regarding all
possible α and β combinations are shown in Algorithm 3,
which iteratively removes the vertex with the minimum d-
probability.

Algorithm 3: η-threshold Computation
Input: An uncertain graph G(V =(U,L), E, p)
Output: thres(α,β)(u) for each u ∈ V (G) regarding all

possible α and β
1 for α = 1 to αmax do
2 for β = 1 to βmax(α) do
3 G

′
← the (α, β)-core in G;

4 compute prob(u,G′) for each u ∈ V (G
′
);

5 while G
′

is not empty do
6 ηmin ← minv∈V (G′)prob(v,G

′);
7 u← the vertex with prob(u,G′) = ηmin;
8 thres(α,β)(u) ← ηmin;
9 V (G′)← V (G′)\{u};

10 foreach v ∈ N(u) do
11 update prob(v,G′);

12 return thres(α,β)(u) for each u ∈ V (G) regarding all
possible α and β;

In Algorithm 3, for each α and β combination, we first get
the (α, β)-core G′ from G (Line 3). Then, we compute the
d-probability prob(u,G′) for each vertex w.r.t. α and β (Line
4). The η-threshold for all vertices in G′ under α and β are
computed from Line 5 to Line 12. Specifically, we assign ηmin
as the minimum d-probability of the vertices in G′ and get a
vertex with the minimum d-probability in Lines 6-7. Then, we
assign the η-threshold of u as ηmin in Line 8. We then remove
the vertex u and update the d-probability of u’s neighbors in
Lines 10-11. At last, we return all η-threshold of all vertices
regarding all possible α and β in G.
Complexity analysis. For each α and β combination, running
Line 3 needs O(m) time [26]. The time complexity of line 4
is O(

∑
u∈V degη(u) ·Deg(u)), as discussed in Section II. We

use a min priority queue (implemented by heap) to maintain
all the vertices, and the keys are their d-probabilities. Thus,
Lines 6-9 totally take O(n · log n) time to find and remove the
vertex with the minimum d-probability. The time complexity
of Lines 10-11 is O(

∑
u∈V

∑
v∈N(u) degη(v)). If we use ∆

to represent the maximum η-degree over all the vertices, the
time complexity of Line 4 and Lines 9-11 can be simplify to
O(m ·∆). Thus, the total time complexity of Algorithm 3 is
O(

∑αmax

α=1

∑βmax(α)
β=1 (n · log n+m ·∆)).

Based on the result of Algorithm 3, we can easily build If .
We first put the vertices into vertex blocks based on their η-
threshold and (α, β) values. After that, If [α] stores the address
of the α-th array in SPT. If [α][β] saves the address of the first
vertex block which has the largest η-threshold for a (α, β) pair.
Constructing If from the result of Algorithm 3 can be done
in O(

∑αmax

α=1 βmax(α) · n) time, which is less than the time
complexity of Algorithm 3. Thus, the total time complexity of
constructing If is O(

∑αmax

α=1

∑βmax(α)
β=1 (n · log n+m ·∆)). In

addition, since the size of vertex blocks for a pair of (α, β) is
bounded by O(n), If takes O(

∑αmax

α=1 ·βmax(α) · n) space.

𝛼 level

𝛽 level

vertex blocks 0.008

𝑢1, 𝑢2,
𝑢3, 𝑣2,
𝑣3,𝑣4

0.9

𝑢4, 𝑣4

0.8 0.0096

𝑢3, 𝑣2,
𝑣2, 𝑣3,
4, 𝑣5

𝑢3, 𝑣2

0.616
𝑣3

0.76
𝑢2

0.568
𝑢1

0.28

𝑣5

0.1

𝑣1

0.674
𝑢2, 𝑢3,
𝑢4, 𝑣2,
𝑣4

0.3472
𝑢1, 𝑣3

0.02
𝑣5

0.108
𝑢2, 𝑢3,
𝑢4, 𝑣4

0.1
𝑢1

0.096

𝑣2
0.0768
𝑣3

0.0108
𝑢1, 𝑢2,
𝑢3, 𝑢4,
𝑣4

0.064
𝑣3

0.36
𝑢3, 𝑢4,
𝑣2, 𝑣3,
𝑣4

0.344

𝑢2

0.28
𝑣5

0.1
𝑣1

0.124
𝑢1

0.168
𝑢2, 𝑢3,
𝑢4, 𝑣2,
𝑣3, 𝑣4

0.124
𝑢1

0.02

𝑣5

0.0768

𝑢1, 𝑢2,
𝑢3, 𝑢4,
𝑣2, 𝑣3,
𝑣4

0.0064

𝑢1, 𝑢2,
𝑢3, 𝑢4,
𝑣3, 𝑣4

0.1112

𝑢3, 𝑣2,
𝑣3, 𝑣4,
𝑣5

0.048
𝑢2

0.036
𝑢4

0.0196

𝑢1, 𝑣1

0.04

𝑢2, 𝑢3,
𝑣2, 𝑣3,
𝑣4

0.02
𝑢4, 𝑣5

0.008

𝑢1

0.0008
𝑢1, 𝑣1

1 2 3 4

1 2 3 4

1 2 3 11 2 3 4

Fig. 2: Illustrating the full index If of G in Fig.1

IV. THE PROBABILITY-AWARE INDEX

Motivation. Although the full index If can support optimal
queries, it is not practical due to its high space complexity and
time complexity as analyzed above. To address this issue, we
propose a probability-aware index Ipa that strikes a balance
between the indexing cost and query time. In Section IV-A, we
show the intuition of designing Ipa and provide an overview of
Ipa. The query processing algorithm based on Ipa is presented
in Section IV-B, and the index construction algorithms are
introduced in Section IV-C.

A. Index overview

In [15], Liu et al. propose the bicore index to support
retrieval of the vertices of an arbitrary (α, β)-core in optimal
time, which needs O(m) space.

It is intuitive that for a given η value, we can build an
η-index to store the vertices in all (α, β, η)-cores (with the
same η), whose structure is similar to the bicore index. In
this way, the vertices in any (α, β, η)-core can be retrieved
from the η-index in optimal time. Note that the size of the
η-index drops as η increases. Since we cannot afford to build
indexes for all the possible η values, we build the probability-
aware index (Ipa) that consists of a series of η-indexes for
some selected η values. In this way, given query parameters
α, β, and ηq , if the ηq-index is built, we can optimally find
the (α, β, ηq)-core in the index. Otherwise, we can compute
the (α, β, η)-core from the intermediate results fetched from
the constructed indexes and avoid searching from scratch. To
make such an index practically applicable, we still need to
address the following two major challenges.
Challenge 1. How to select η values for building the η-indexes.
The sizes of the η-indexes do not decrease proportionally as
η increases. Thus, if we simply build the η-indexes for some
η values with a fixed probability step (e.g., setting η = 0.1,
0.2, ..., 1.0), it is very possible that the adjacent η-indexes are
nearly identical, which leads to high redundancy. Thus, the
choice of η values will significantly affect the construction of
the probability-aware index and its ability to answer queries.
Challenge 2. Given query α, β, and ηq , how to efficiently
retrieve the results if the ηq-index is not built. If the ηq-index
is not built, it is intuitive to find the closest two η values with
indexes built (η1 < ηq < η2). However, the difference between
η1-index and η2-index can be very large, and it is not easy to
combine the information in these two indexes for retrieving
the (α, β, ηq)-core.

Select critical η values. To address Challenge 1, in this part,
we introduce how to select critical η values. We first provide
an overview the probability-aware index.

The probability-aware index (Ipa) consists of several
η-indexes. Same as the bicore index in deterministic graphs,
each η-index has two parts for vertices in U(G) and L(G),
denoted by η-IUpa and η-ILpa, respectively. Before presenting
the index structure, we first introduce the concept of α-/β-
offset.

Definition 6. α-/β-offset. Given a vertex u ∈ V (G), a prob-
abilistic threshold η, and an α value, its α-offset denoted as
sa(u, α, η) is the maximal β value where u can be contained
in an (α, β, η)-core. Symmetrically, the β-offset sb(u, β, η) of
u is the maximal α value where u can be contained in an
(α, β, η)-core.

Each η-index has three levels including two levels of pointer
tables and one level of vertex blocks. Specifically, in η-IUpa,
each block is associated with an (α, β) combination, which is
pointed by the pointer stored in η-IUpa[α][β]. Each vertex block
contains the vertices u ∈ U(G) with α-offset = β. η-ILpa also
has the similar structure with η-IUpa. We show the probability-
aware index in the following example.

𝛼 level

𝛽 level

vertex block

𝛽 level

𝛼 level

vertex block

1 2 3

1 2

𝑢1, 𝑢2,
𝑢3

1 21 2 3

𝑢1, 𝑢2,
𝑢3, 𝑢4

𝑢4

1 2 3

1 2

𝑣2, 𝑣3,
𝑣4, 𝑣5

𝑣2, 𝑣3,
𝑣4, 𝑣5

𝑣2, 𝑣3,
𝑣4

1 2 31 2 3 4

4

1

4

4 3 4

𝑢1, 𝑢2,
𝑢3, 𝑢4

3 1

𝑢1, 𝑢2,
𝑢3, 𝑢4

𝑇 𝜂 = 0 = 90

23

𝑣1 𝑣3, 𝑣4

𝛼 level

𝛽 level

vertex block

𝛽 level

𝛼 level

vertex block

1 2 3

11 21 2 3

1 2 3

1

𝑣2, 𝑣4

1 21 2 3

𝑇 𝜂 = 0.096 = 43

𝑣1

𝛼 level

𝛽 level

vertex block

𝛽 level

𝛼 level

vertex block

1 2

11 2

𝑢1, 𝑢2,
𝑢3, 𝑢4

1 2

𝑣2, 𝑣3,
𝑣4

𝑣2, 𝑣3,
𝑣4

11 2

𝑢2, 𝑢3,
𝑢4

𝑇 𝜂 = 0.344 = 20

𝑢1, 𝑢2,
𝑢3, 𝑢4

𝑣2, 𝑣3,
𝑣4, 𝑣5

𝑢3
𝑢1, 𝑢2,
𝑢3, 𝑢4

𝑣2, 𝑣3,
𝑣4

𝑣5

Fig. 3: The probability-aware index Ipa of G
Example 3. Consider the uncertain bipartite graph G in
Figure 1 and the probability-aware index Ipa in Figure 3.
We select three probabilistic thresholds η = 0, 0.096, and
0.344. Unlike If , we build an η-index for each probabilistic
threshold instead of storing them in the vertex blocks. Note
that the vertex blocks in η-IUpa and η-ILpa might share the same

(α, β, η) value, but their meanings are different. For example,
in the η-index with η = 0, u1 in the vertex block (1, 3) means
that u1 is in the (1, 3, 0)-core. In addition, v2 in the vertex
block (1, 3) means that v2 is in the (3, 1, 0)-core.

To find critical η values, we observe that the number of
vertices in the η-index is decreased with the increasing of η.
Based on this, although the contents in the η-indexes cannot be
foreknown, we can estimate the ability of answering queries
using the η-indexes (using T (η)) to avoid building η-indexes
with similar contents. Here T (η) denote the total number of
vertices in the (α, β, η)-cores that can be queried from the
η-index. The equation for calculating T (η) is as follows.

T (η) =
∑

u∈U(G)

∑
α∈[1,deg(u)]

sa(u, α, η)+

∑
v∈L(G)

∑
β∈[1,deg(v)]

sb(v, β, η)
(6)

However, the cost of computing all α-/β-offsets is relatively
large. This is equivalent to do an (α, β, η)-core decomposition
in the entire graph. The following observation allows us to
estimate an upper bound for T (η) without having to compute
all α-/β-offsets.

Lemma 2. Given an uncertain bipartite graph G, for an upper
vertex u, sa(u, α, η) ≤ maxv∈N(u)η-degree(v). For a lower
vertex v, sb(v, β, η) ≤ maxu∈N(v)η-degree(u).

Proof. This lemma is immediate according to Definition 2 and
Definition 6.

Based on the above lemma, we can use maxu∈N(v)degη(u)
to estimate sa(u, α, η) and simplify Equation 6 as follows:

T (η) ≤ T (η) =
∑

u∈V (G)

deg(u) ·maxv∈N(u)degη(v)

= m ·
∑

u∈V (G)

maxv∈N(u)degη(v)
(7)

To compute T (η) using Equation 7, we first compute the
η-degree for each vertex u ∈ V (G), which takes O(m·∆) time
in total. Then, for all the vertices, we can get the maximum
η-degree of their neighbors in O(m) time. Thus, the total
complexity of computing T (η) is O(m ·∆).

Computing T (η) allows us to manipulate the size of the
η-indexes. In other words, we can increase η until T (η)
significantly decreases, which indicates the shrink of the size
of the η-index. Specifically, we first build the η1-index with η1
= 0. Then, we use a binary search approach to find the smallest
η2 value with T (η2) ≤ 1

2 · T (η2). We repeat this process and
halve the value of T (η) each time to select a new η until the η-
index cannot support any (α, β, η)-core query with non-trivial
values of α and β (α > 1 or β > 1). Finally we will get
log(T (0)) number of η-indexes and the space complexity of
Ipa is bounded by O(m · log(m)) since T (0) is bounded by
O(m), and each η-index is bounded by O(m) as proved in
[15].

B. Query with different probabilities

To address Challenge 2, in this section, we introduce a
local search algorithm to find the (α, β, η)-core based on Ipa.
Given query parameters α, β, and ηq , if the ηq-index is built,
we directly respond to the query by fetching the vertices of
the (α, β, ηq)-core from the ηq-index. Otherwise, the querying
process begins from the η1-index and the η2-index, which has
the closest two η values with ηq (η1 < ηq < η2). We use
these two indexes to find the vertices in (α, β, η1)-core and
(α, β, η2)-core to compute (α, β, η)-core. Before presenting
the algorithm, we first introduce the following two vertex sets
in the querying process.
• The vertex set S2 that contains the vertices must belong

to (α, β, ηq)-core. According to Lemma 1, (α, β, η2)-core
is a subset of (α, β, η)-core. Thus, we can initialize S2

as the vertices in (α, β, η2)-core.
• The vertex set S1 that contains the vertices may be-

long to in (α, β, ηq)-core. According to the Lemma 1,
(α, β, η)-core is a subset of (α, β, η1)-core. Thus, we can
initialize S1 as the vertices in (α, β, η1)-core excluding
the vertices in (α, β, η2)-core (i.e., S2).

Based on these two sets, the key to computing the (α, β, ηq)-
core is to verify the vertices in S1. The following lemmas can
help us achieve this efficiently.

Lemma 3. Consider a vertex u ∈ S1. Nub(u) denotes u’s
neighbors in S1 ∪ S2, and dub(u) denotes the upper bound
of ηq-degree of u, which is computed based on Nub(u) using
Equation 4. If dub(u) does not satisfy the degree constraint
(i.e., dub(u) < α if u ∈ U(G) or dub(u) < β if u ∈ L(G)),
then u cannot belong to the (α, β, ηq)-core.

Proof. According to Definition 3, all the neighbors of u that
can belong to the (α, β, ηq)-core must be contained in S1∪S2.
Thus, if dub(u) does not satisfy the degree constraint, it cannot
be contained in the (α, β, ηq)-core.

Lemma 4. Consider a vertex u ∈ S1. Nlb(u) denotes u’s
neighbors in S2, and dlb(u) denotes the lower bound of
ηq-degree of u, which is computed based on Nlb(u) using
Equation 4. If dlb(u) satisfy the degree constraint, then u must
belong to the (α, β, ηq)-core.

Proof. This lemma can be proved similarly as Lemma 3.

Based on the above lemmas, we can iteratively verify and
update the vertices in S1. Note that in each iteration, we only
need to check a small portion of vertices that are affected
due to the changes in the former iteration. The details of the
algorithm are shown in Algorithm 4. We first check whether
there exists a ηq-index in the probability-aware index in Line
1. Otherwise, in Lines 3-5 we initialize η1 and η2 as the closest
two η values with ηq that have η-indexes built in Ipa (η1 <
ηq < η2). We initialize S1 and S2 based on the η1-index and
η2-index. After that, in Line 6, we use Sub and Slb to store the
vertices whose upper/lower bounds need to be calculated. For
the main loop in Lines 7-24, we verify the vertices in Sub and
Slb. Specifically, we calculate the upper bound of ηq-degree
of u ∈ Sub in Line 11. According to Lemma 3, if dub(u)
violates the degree constraint, we remove u from S1 in Lines

Algorithm 4: Query based on Ipa
Input: An uncertain graph G = (V = (U,L), E, p), two

integers α, β, a probabilistic threshold ηq , and Ipa
Output: the vertices of (α, β, η)-core in G

1 if ηq-index is built in Ipa then
2 return (α, β, η)-core based on the ηq-index;
3 η1, η2 ← the closest two η values with ηq that have

η-indexes built in Ipa (η1 < ηq < η2);
4 S2 ← V ((α, β, η2)-core) based on η2-index;
5 S1 ← V ((α, β, η1)-core)\S2 based on η1-index;
6 Sub ← S1; Slb ← S1;
7 while Sub ∪ Slb 6= ∅ do
8 S′ub ← ∅; S′lb ← ∅;
9 foreach u ∈ Sub do

10 Nub(u)← N(u) ∩ (S1 ∪ S2);
11 dub(u)← the upper bound of ηq-degree of u w.r.t.

Nub(u);
12 if dub(u) does not satisfy the degree constraint then
13 S1.remove(u);
14 foreach v ∈ (N(u) ∩ S1) do
15 S′ub.add(v);
16 foreach u ∈ Slb do
17 Nlb(u)← N(u) ∩ S2;
18 dlb(u)← the lower bound of ηq-degree of u w.r.t.

Nlb(u);
19 if dlb(u) satisfies the degree constraint then
20 move u from S1 to S2;
21 foreach v ∈ (N(u) ∩ S1) do
22 S′lb.add(v);
23 Sub ← S′ub; Slb ← S′lb;
24 S2 ← S1 ∪ S2;
25 return S2

12-13. For each vertex v in N(u)∩S1, dub(v) can be affected
due to the removal of u and we add v in S′ub in Line 15, and
update the dub(v) in the next round. After that, we calculate
the lower bound of ηq-degree of u ∈ Slb in Line 18. Based on
Lemma 4, if dlb(u) satisfies the degree constraint, we move
u from S1 to S2 in Lines 19-21. Then, for each vertex v in
N(u) ∩ S1, we add v in S′lb in Line 23, and update dlb(v) in
the next iteration. We repeat this process until Sub ∪ Slb = ∅.
Note that at the end of the while loop, S1 may still contains
several vertices. We find that the upper bound of the η-degree
of the remaining vertices always meets the degree constraint.
Thus, we can directly put them into S2. Finally, we return S2

as the result.
Complexity analysis. The time complexity of Algo-
rithm 4 is O(

∑
u∈S1

Deg(u)2 · degη1(u)), where S1 =
V ((α, β, η1)-core)\V ((α, β, η2)-core). For each u ∈ S1, we
need to compute its η-degree in O(Deg(u) · degη(u)) time.
In addition, each vertex u ∈ S1 is removed at most once and
there are at most O(Deg(u)) vertices affected. Thus, the time
complexity of Algorithm 4 is O(

∑
u∈S1

Deg(u)2 · degη1(u)).

Example 4. Consider the uncertain bipartite graph G in
Figure 1 and the probability-aware index Ipa of G in Figure
3. Given query parameters α = 2, β = 1, and ηq = 0.3.
Since 0.3-index is not built in the Ipa, Algorithm 4 finds the
closest two η values with indexes built (i.e., η1 = 0.096 and
η2 = 0.344). Then, based on the η1-index and the η2-index,
we get S1 = {u1, v1, v5}, and S2 = {u2, u3, u4, v2, v3, v4}.
After that, we need to calculate the upper/lower bounds of the

ηq-degrees of the three vertices in S1. We first compute the
upper bounds. By considering the union of u1’s neighbors in
S1 and S2, Nub(u1) = {v1, v2, v3, v4} and dub(u1) = 2 w.r.t
Nub(u1). Since dub(u1) satisfies the degree constraint (i.e.,
dub(u1) ≥ 2), u1 is not removed from S1 in this iteration.
We can also get dub(v1) = dub(v5) = 0 < 1. Thus, these
two vertices are removed from S1, and we add u1 into S′ub
since it is a neighbor of v1 in S1. After that, we compute the
lower bounds. To compute dlb(u1), the algorithm finds u1’s
neighbors in S2 (i.e., Nlb(u1) = {v2, v3, v4}). Then, we can
compute dlb(u1) = 1. Since dlb(u1) < 2, the algorithm does
not move u1 from S1 to S2. In the second iteration, S1 only
contains u1 and dub(u1) = 1 < 2. Thus, we remove u1 from
S1. Finally, we return the vertices {u2, u3, u4, v2, v3, v4} in
S2 as the vertices in (2, 1, 0.3)-core.

C. Index construction

In this subsection, we present the algorithms for building
the probability-aware index Ipa.
A bottom-up approach. Since each η-index is actually a
bicore index under the η threshold, a straightforward way to
build the η-indexes is to adopt the algorithm in [15]. The
details of the algorithm ICpa-BU is shown in Algorithm 5.
We start from η1 = 1. To build the η1-index, we call the
Bottom-up Sub-index Construction function (Line 3). We set
δη as the maximum value s.t. (δη1 , δη1 , η1)-core 6= ∅. Then, for
α ∈ [1, δη1], we first obtain the (α, 1, η)-core using the online
computation algorithm (Line 15). Then, we follow a peeling
paradigm to compute the α-offsets of the upper vertices and
update some β-offsets of the lower vertices. In each iteration,
we remove the vertices s.t. their η1-degree does not satisfy the
degree constraint. Then, we run β from 1 to δη to compute
the remaining α/β-offsets in a similar way as Lines 15 - 34.
After that, we organize the α/β-offsets into the η1-index and
combine the η1-index into Ipa. To build the second sub-index
(the η2-index), we need to compute T (η1) based on Equation 7
at first. Then, η2 is the smallest η value s.t. T (ηj) ≤ 1

2 ·T (ηj−1)
and it can be easily found using the binary search. Note that
when finding the η2, we need to set a precision threshold γ
(e.g., 0.001) to avoid exhausting search. The other η-indexes
can also be built in a similar fashion.
Complexity analysis. The time complexity of Algorithm 5 is
bounded by O(log(m) · δ · ∆ · m). Since T (0) is bounded
by O(m), there are O(log(m)) sub-indexes to be built. Note
that the time complexity for building the bicore index is O(δ ·
m) [15] since there are δ iterations. Building each η-index
needs to compute the η-degree (which needs O(∆ ·m) time
in total for each iteration, and ∆ represents the maximum η-
degree in each iteration) rather than the vertex degree, the time
complexity of building the η-index is O(δ · ∆ ·m). In total,
the time complexity of Algorithm 5 is bounded by O(log(m) ·
δ ·∆ ·m).

Example 5. Consider the probability-aware index Ipa in
Figure 3. If the ICpa-BU algorithm is used to build Ipa, we
first initialize η1 to 0 and build the η1-index which is similar
as the bicore-index in [15] since the probability threshold
is zero. We compute T (0) = 90 and get η2 = 0.096 since
T (0.096) = 43 ≤ 1

2 · T (0). Then, given η2 = 0.096, we build

Algorithm 5: ICpa-BU
Input: An uncertain graph G = (V = (U,L), E, p)
Output: Ipa

1 η1 ← 0; j ← 1;
2 while ηj < 1 do
3 ηj-index ← Bottom-up Sub-index Construction(ηj , G);
4 if any (α, β, ηj)-core with α > 1 or β > 1 cannot be

queried from the ηj-index then
5 break;
6 Ipa ← Ipa ∪ ηj-index;
7 compute T (ηj) based on Equation 7;
8 j ← j + 1;
9 ηj ← the smallest η value s.t. T (ηj) ≤ 1

2
· T (ηj−1);

10 return Ipa
11 Function Bottom-up Sub-index Construction(η, G)
12 initialize all the α/β-offsets as zero;
13 δη ← the maximum value such that (δη, δη, η)-core 6= ∅;
14 for α = 1 to δη do
15 G′ ← the (α, 1, η)-core of G;
16 compute degη(u) for all u ∈ V (G′);
17 while ∃u ∈ U(G′) s.t. degη(u) < α do
18 foreach v ∈ N(u) do
19 update degη(v);
20 remove u from G′;
21 while G′ 6= ∅ do
22 β ← minv∈L(G′)degη(v);
23 while ∃v ∈ L(G′) s.t. degη(v) ≤ β do
24 foreach u ∈ N(v) do
25 update degη(u);
26 for i = 1 to β do
27 if sb(v, i, η) < α then
28 sb(v, i, η)← α;
29 while ∃u ∈ U(G′) s.t. degη(u) < α do
30 sa(u, α, η)← β;
31 foreach w ∈ N(u) do
32 update degη(w);
33 remove u from G′;
34 remove v from G′;
35 for β = 1 to δη do
36 G′ ← the (1, β, η)-core of G;
37 run Lines 14 - 32 by interchanging u with v, U with L,

α with β;
38 organize α-offset of each vertex u ∈ U(G) and β-offset of

each vertex v ∈ L(G) into the η-index;
39 return η-index

the η2-index in a bottom-up manner. We get η3 = 0.344 since
T (0.344) = 20 ≤ 1

2 · T (0.096), and the η3-index can be built
similarly. At last, since the η-index with larger η value cannot
support any (α, β, η)-core query with non-trivial values of α
and β (α > 1 or β > 1), we terminate the ICpa-BU algorithm.

A top-down approach. In ICpa-BU, we follow a bottom-up
manner to compute the α/β-offsets for each sub-index. In this
process, we fix α (or β) and compute the (α, β, η)-core from
the smallest β (or α) value. In this manner, the vertices with
high η-degrees can be updated many times. Since the update
of η-degree is expensive, this compromises the efficiency of
index construction. To address this issue, we present a top-
down index construction algorithm that prioritizes processing
the (α, β, η)-cores with large degree constraints, which contain
many vertices with high η-degrees. In this manner, the com-
putation of these vertices with high η-degrees can be limited

in a smaller subgraph compared with the original graph. In
addition, these vertices with high η-degrees in the (α, β, η)-
cores with large α or β will occur in the (α, β, η)-cores with
smaller α or β as well. Thus, the η-degrees of these vertices
do not have to be updated as we visit the (α, β, η)-cores with
smaller degree constraints. In this manner, the total number of
η-degree updates can be significantly decreased compared to
the bottom-up approach. Before presenting the algorithm, we
give the following lemma.

Lemma 5. Given α, β, and η, (α, β, η)-core ⊆ (α, β)-core.

Proof. This lemma is immediate according to Definition 1 and
Definition 3.

Based on the above lemma, when finding the (α, β, η)-core,
we can first obtain the (α, β)-core to limit the search space.
The details of the top-down index construction algorithm ICpa-
TD is shown in Algorithm 6. The main process of ICpa-
TD is the same as ICpa-BU and the only difference is that
we use the function Top-down Sub-index Construction to
compute each sub-index. When running the Top-down Sub-
index Construction, we first initialize all the α/β-offsets as
zero. Then, for α ∈ [1, δη], we set β from βmax(α) to 1 to
find the (α, β, η)-cores in a top-down manner. Here βmax(α)
is the maximal β value such that the (α, β)-core exists. In each
iteration, we first obtain the (α, β)-core from the deterministic
graph of G since (α, β, η)-core ⊆ (α, β)-core according to
Lemma 5. Note that for each α, all the non-empty (α, β)-
cores (β ∈ [1, βmax(α)]) can be pre-computed in O(m) time
by following the peeling paradigm [14]. Then, we put the
vertices and edges of (α, β)-core into G′ and compute degη(u)
for each u ∈ V (G′) incrementally (Lines 8-9). After that,
we use the similar peeling approach as ICpa-BU to find the
(α, β, η)-core (i.e., the α/β-offsets of the vertices). Note that
when removing a lower vertex v that does not satisfy the
degree constraint, we only need to update the η-degree of its
neighbor u with sa(u, α, η) < β. This rule ensures that we do
not need to update the η-degree of the vertices in the (α, β′, η)-
core (with β′ > β) when computing the (α, β, η)-core. Note
that it will also be applied when removing an upper vertex.
After obtaining the (α, β, η)-core, we assign the α/β-offsets to
the vertices in it (Lines 25-31). After the computation process
from Lines 5-32, we organize the α/β-offsets into the η-index.
Complexity analysis. Since T (0) is bounded by
O(m), there are O(log(m)) sub-indexes to be built.
The time complexity of building each sub-index is
O(

∑
α∈[1,δ],β∈[1,βmax(α)]

(|(α, β)-core| − |F |) · ∆α,β).
Here, |(α, β)-core| denotes the size of the (α, β)-core,
|F | denotes the number of vertices that do not need
η-degree updating in each iteration, and ∆α,β denotes
the maximum η-degree in the (α, β)-core. In total,
the time complexity of Algorithm 6 is bounded by
O(log(m) ·

∑
α∈[1,δ],β∈[1,βmax(α)]

(|(α, β)-core| − |F |) ·∆).

Example 6. Here we show how to construct the η-index
with η = 0.096 using the Top-down Sub-index Construction
function. We show the process when α = 1 and begin with
β = 4. Since there is no (1, 4, η)-core in G, we decrease
β by 1. When β = 3, we let G′ represent the (1, 3)-core

Algorithm 6: ICpa-TD
Input: An uncertain graph G = (V = (U,L), E, p)
Output: Ipa

1 run Lines 1-10 of Algorithm 5, use Top-down Sub-index
Construction in Line 3;

2 Function Top-down Sub-index Construction(η, G)
3 initialize all the α/β-offsets as zero;
4 δη ← the maximum value such that (δη, δη, η) 6= ∅;
5 for α = 1 to δη do
6 β = βmax(α);
7 while β > 0 do
8 G′ ← the (α, β)-core of G;
9 compute degη(u) for each u ∈ V (G′);

10 while ∃u ∈ U(G′) s.t. degη(u) < α do
11 for v ∈ N(u) do
12 if sb(v, β, η) < α then
13 update degη(v);
14 remove u from G′;
15 while ∃v ∈ L(G′) s.t. degη(v) < β do
16 foreach u ∈ N(v) do
17 if sa(u, α, η) < β then
18 update degη(u);
19 while ∃u ∈ U(G′) s.t. degη(u) < α do
20 foreach w ∈ N(u) do
21 if sb(w, β, η) < α then
22 update degη(w);
23 remove u from G′;
24 remove v from G′;
25 foreach vertex x in G′ do
26 if x ∈ U(G′) with unassigned α-offset then
27 sa(x, α, η)← β;
28 if x ∈ L(G′) then
29 for i = 1 to β do
30 if sb(x, i, η) < α then
31 sb(x, i, η)← α;

32 β ← β − 1;
33 for β = 1 to δη do
34 run Lines 6-32 by interchanging u with v, U with L, α

with β;
35 organize α-offset of each vertex u ∈ U(G) and β-offset of

each vertex v ∈ L(G) into the η-index;
36 return η-index

containing {u1, u2, u3, u4, v2, v3, v4}. We iteratively remove
the vertices in G′ until we get the (1, 3, η)-core containing
{u1, u2, u3, u4, v2, v4}. Then, we set sa(u1, 1, η), sa(u2, 1, η),
sa(u3, 1, η), sa(u4, 1, η) to 3. We also set sb(v2, i, η) and
sb(v4, i, η) to 1 (i ∈ [1, 3]). After that, when β = 2, we com-
pute the (1, 2, η)-core from the (1, 2)-core and set sb(v3, i, η)
and sb(v5, i, η) to 1 (i ∈ [1, 2]). Note that when removing the
vertices that violate the degree constraints, we do not need
to update the η-degree of its neighbors in the (1, 3, η)-core.
For instance, when removing v1 (degη(v1) = 1 < β = 2),
we can skip updating the η-degree of u1 since u1 belongs to
the (1, 3, η)-core. Finally, we compute the (1, 1, η)-core and
assign sb(v1, 1, η) = 1.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the uncertain (α, β, η)-core
model and the proposed algorithms through extensive experi-
ments. First, we validate the effectiveness of the (α, β, η)-core
model via a case study. Then, we evaluate the efficiency and
scalability of the proposed algorithms with different parameter

settings and datasets. We terminate an experiment process if
its running time exceeds 105 seconds.

A. Experiments setting
Algorithms. Our empirical studies are conducted against the
following designs: We evaluate the query performance of the
following algorithms: 1) the online query algorithm Qo; 2) the
full index-based query algorithm Qf ; and 3) the probability-
aware index-based query algorithm Qpa. We also analyze the
index construction time and sizes of the full index If and the
probability-aware index Ipa. All algorithms are implemented
in C++, and all experiments are tested on a Linux server with
Intel Xeon CPU E3-1231 3.4 GHz and 16GB main memory.

TABLE II: Summary of Datasets
Dataset |E| |U | |L| dmax δ

Unicode-Lang (UL) 1.26K 0.87K 0.25K 141 4
Producers (PR) 207.27K 187.68K 48.83K 512 6
Youtube (YT) 293K 94K 30K 7592 20
Github (GH) 440K 56K 120K 3676 39

BookCrossing (BX) 1.15M 445.8K 105.3K 13,601 41
Stack-Overflow (SO) 1.30M 545.2K 96.7K 6,119 22

Teams (TM) 1.37M 935.6K 901.2K 2,671 9
Actor-Movies (AM) 1.47M 127K 383K 647 14

Wiki-en (WC) 3.80M 2.04M 1.85M 11,593 18
DBLP (DB) 12.3M 1.95M 5.62M 1386 48

Datasets. We use 10 real datasets in our experiments, which
are Unicode-Lang (UL), Producers (PR), Github
(GH), BookCrossing (BX), StackOverflow (SO),
Teams (TM), Actor-Moives (AM), Wiki-en (WC), and
DBLP (DB). These datasets can be downloaded from the web-
site KONECT (http://konect.cc/). Note that for each dataset,
the probabilities of edges are assigned to follow the exponen-
tial distribution by default, which has been widely used in
uncertain graph literature [6], [7], [27], [28]. Specifically, for
a given bipartite graph, we assign a random weight (chosen
from [1, 10]) to each edge and use the exponential distribution
with the expectation 2 to generate the probabilities of edges.

Table II includes the statistics of the 10 datasets. |E| is the
number of edges in the graph. |U | and |L| are the number
of vertices in the upper and lower layers of the graph. dmax
is the maximum degree in the graph, and δ is the maximum
integer such that the (δ, δ)-core exists in the graph. M denotes
106 and K denotes 103.

B. Effectiveness evaluation

TABLE III: Statistics of query results, α = 50 and β = 100
η |E(C)| |U(C)| |L(C)| degavg(U) degavg(L) pavg
0 562,781 721 1093 86.21 164.29 0.211

0.3 245,732 287 564 61.67 135.46 0.278
0.5 209,760 168 437 76.28 116.73 0.295
0.7 136,233 152 371 56.17 109.37 0.379
0.9 79,314 137 262 52.31 103.21 0.437

In this subsection, we conduct a case study using the
DBLP dataset (https://dblp.org/xml/). We extract a dataset
containing researchers, the paper written by the researchers,
and the name of venue where each paper is published and
obtain an uncertain bipartite graph formed by researchers
(U) and venues (L). To generate the edge probabilities, we
first assign the weight of each edge as the total number of

http://konect.cc/

papers published by a researcher in a venue. Then, we use
an exponential distribution with expectation 5 to the edge
weight to generate the probabilities of edges. We choose the
conference and journal papers since 2015, and we can get
a bipartite graph with |U | = 1,708,390, |L| = 7,746, and
|E| = 5,664,157.

To form a team with strong expertise to perform the
Electrical and Computer Engineering research, we query the
(α, β, η)-core by choosing the famous researcher H.Vincent
Poor in this field as the query seed. Table III shows the
statistics of query results. |E(C)|, |U(C)| and |L(C)| denote
the total number of edges, researchers and venues in the
resulting subgraph, respectively. degavg(U) and degavg(L)
denote the average η-degree on the researcher side and venue
side. pavg denotes the average probability of all the edges. We
can observe that with the increasing of the query probability
threshold η, (1) the size of the subgraph becomes smaller, (2)
the average probability of edges in the subgraph increases, and
(3) the average degree of researchers and venues decreases.
This case study validates that by considering edge probabili-
ties, we can form a research team with strong expertise using
the (α, β, η)-core model.

C. Evaluation of query performance

UL PR YT GH BX SO TM AM WC DB
Datasets

10 4
10 3
10 2
10 1
100
101
102
103
104

Ti
m

e

o pa f

Fig. 4: Retrieving the (α, β, η)-core

In this part, we evaluate the efficiency of the online peeling
algorithm (Qo) and index-based query algorithms (Qf and
Qpa). Firstly, we evaluate the query time of these algorithms
on 10 datasets with default parameters. By default, we set α
to 0.4 · δ and β to 0.6 · δ, and η = 0.4. Then we evaluate the
effect of parameters α, β and η on the query performance.
Evaluating the query time on all the datasets. In Figure
4, we evaluate the performance of Qo, Qpa, and Qf on all the
datasets with default parameters. As expected, the index-based
algorithms Qpa and Qf significantly outperform Qo on all the
datasets. We can observe that Qf is faster than Qo and Qpa on
small datasets UN, PR, YT, and GH. This is because Qf is an
algorithm using the full index that stores all the thres(α,β)(u)
of each vertex with different degree conditions and we only
need to identify whether a vertex satisfies the probabilistic
threshold η. However, for the datasets with more than 1 million
edges, the construction time of the full index If exceeds 105

seconds and only Qo and Qpa can retrieve the results for these
datasets. Note that Qpa is one to two orders of magnitude
faster than Qo on all the datasets. The experimental results
show that our probability-aware index Ipa achieves a better
trade-off between query efficiency and index construction cost.
Evaluating the effect of query parameter α and β. We also
investigate the query performance by varying parameter α, β
and fixing η = 0.4. In Figure 5(a) and (b), we vary α and β

0.1 0.3 0.5 0.7 0.9
c

10 3

10 2

10 1

100

101

Ti
m

e

o pa f

(a) YT, α, β = c · δ
0.1 0.3 0.5 0.7 0.9

c
101

102

103

104

Ti
m

e

o pa

(b) DB, α, β = c · δ

0.1 0.3 0.5 0.7 0.9
c

10 3

10 2

10 1

100

101

Ti
m

e

o pa f

(c) YT, α = 0.5 · δ, β = c · δ
0.1 0.3 0.5 0.7 0.9

c
101

102

103

104

Ti
m

e

o pa

(d) DB, α = c · δ, β = 0.5 · δ
Fig. 5: Retrieving the (α, β, η)-core, varying α and β

from 0.1 · δ to 0.9 · δ simultaneously. We can observe that Qpa

is one to two orders of magnitude faster than Qo. In Figure
5(c) and (d), we fix one of α and β at 0.5 · δ and vary the
other one from 0.1 · δ to 0.9 · δ. The index based querying
algorithms are noticeably faster than the online computation
algorithm. The Qf outperforms Qpa since it relies on a total
index of (α, β, η)-core results.

0.01 0.1 0.3 0.5 0.910 3

10 2

10 1

100

101
Ti

m
e

o pa f

(a) YT, α, β = 5

0.01 0.1 0.3 0.5 0.910 1

100

101

102

103

Ti
m

e

o pa

(b) WC, α, β = 5

0.01 0.1 0.3 0.5 0.910 3

10 2

10 1

100

101

102

Ti
m

e

o pa f

(c) GH, α, β = 5

0.01 0.1 0.3 0.5 0.9101

102

103

104

Ti
m

e

o pa

(d) DB, α, β = 5

Fig. 6: Retrieving the (α, β, η)-core, varying η

Evaluating the effect of query parameter η. We further
investigate the effect of probabilistic threshold η. We vary η
from 0.01 to 0.9 and fix α, β = 5. In Figure 6, we can observe
that the running time of Qo and Qf remain relatively stable
with the change of η. As show in Figure 6(b) and 6(d), since
the full index cannot be build on WC and DB within the time
limit, the performance of Qf is omitted. Qpa outperforms Qo

by at least one order of magnitude as expected.

D. Evaluation of indexing techniques

In this section, we evaluate the full index If and the
probability-aware index Ipa.
Evaluate the index construction time and the index size.
1) Index construction time. In Figure 7, we can observe that
not all indexes can be established within prescribed time in
ICf and ICpa-BU. Specifically, for ICf algorithm, the datasets
which are larger than GH cannot be established within 105

seconds. For ICpa-BU, the construction time of the datasets

UL PR YT GH BX SO TM AM WC DB
Datasets

100

101

102

103

104

105

Ti
m

e(
s)

f
pa-BU pa-TD

Fig. 7: Comparing index construction time

UL PR YT GH BX SO TM AM WC DB
Datasets

10 2
10 1

100
101

102
103
104

Si
ze

(M
B)

f pa

Fig. 8: Comparing index size

with a larger size than TM is also time out. By contrast, with
several carefully-designed optimizations, ICpa-TD outperforms
ICpa-BU and ICf , and the index of all the datasets can be
efficiently constructed by ICpa-TD.
2) Index size. In Figure 8, we evaluate the index size of
If and Ipa. Since the full index contains the η-threshold of
all the vertices in each (α, β)-core, it’s space is larger than
probability-aware index by one to two orders of magnitude.
Especially, the size of If for the YT graph is close to 1GB
while the size of Ipa in YT is only 10.33MB. In addition, the
size of Ipa is only 1.03×-2.22× to the graph size, which is
very space-compact in practice.

PR YT GH TM
Datasets

102

103

104

105

Ti
m

e

f-uni f-exp pa-BU-uni pa-BU-exp pa-TD-uni pa-TD-exp

(a) The influence of probability distribution on index construction

PR YT GH TM
Datasets

10 4

10 3
10 2
10 1

100
101

102

Ti
m

e

o-uni o-exp pa-uni pa-exp f-uni f-exp

(b) The influence of probability distribution on querying process

Fig. 9: The effect of probability distribution

Evaluate the effect of probability distribution. To study
the effect of probability distribution of edges, apart from the
exponential distribution, we also generate the probabilities of
edges under the [0, 1] uniform distribution as done in [7].
As shown in Fig. 9, the algorithms with the suffix “uni”
(“exp”) are applied on uncertain bipartite graphs with the edge
probabilities following the uniform (exponential) distribution.
For the index construction, ICf , ICpa-BU, and ICpa-TD have
similar performance under the uniform distribution and the
exponential distribution. For the querying process, by default,

we set α to 0.4 · δ and β to 0.6 · δ, and η = 0.4. As shown in
Fig. 9(b), different probability distributions do not have much
impact on the performance of Qo, Qpa, or Qf .

VI. RELATED WORK

Here we review the related works of cohesive subgraph
models on uncertain graphs and bipartite graphs.
Cohesive subgraph models on uncertain graphs Several
cohesive subgraph models are studied on uncertain graphs. To
extend k-core to uncertain graphs, Bonchi et al. [8] propose
(k, η)-core that uses η-degree to model vertex engagement
in uncertain graphs. Our paper adopts η-degree to measure
vertex engagement in uncertain bipartite graphs. Yang et al.
[6] design an index-based optimal algorithm for retrieving
(k, η)-core in uncertain graphs. Very recently, Dai et al. [7]
propose an algorithm to compute (k, η)-core that can reduce
inaccuracies from floating-point number divisions. In [29], a
multi-stage graph peeling algorithm is designed that focuses
on mining the dense subgraphs captured by (k, η)-core. Apart
from (k, η)-core, Peng et al. [30] propose (k, θ)-core that
requires the probability of a vertex appearing in the k-core
exceeds θ. Truss-based models are also proposed on uncertain
graphs [9], [10], [31]. Zou et al. [10] propose an algorithm to
find highly probable k-trusses of an uncertain graph. Huang et
al. [9] use dynamic programming to decompose an uncertain
graph into maximal k-trusses. Esfahani et al. define h-index
of edges to estimate the truss-values progressively. Mining
maximal cliques on uncertain graphs is also studied [12], [13].
Cohesive subgraph models on bipartite graphs. Various
cohesive subgraph models are proposed on bipartite graphs.
(α, β)-core [14], [15] is a representative model extended from
k-core, which imposes different degree constraints on vertices
of different layers. Specifically, a space-compact index is
proposed in [15], which stores the upper and lower vertices
of all (α, β)-cores separately. Variants of (α, β)-core are
also proposed in the literature [21], [32], [33]. Other models
rely on the butterfly [34] (i.e., (2x2)-biclique) structure to
ensure the structural cohesiveness of the subgraph, such as k-
bitruss [17], k-wing [35], [36], k-tip [35], and τ -strengthened
(α, β)-core [32]. In addition, different variants of biclique (a
complete bipartite graph) are among the densest and the most
cohesive subgraph models, including maximum edge biclique
[18], maximal biclique numeration [37], [38], and maximum
balanced biclique [39].

VII. CONCLUSION

In this paper, we propose a novel model (α, β, η)-core,
which is the first cohesive subgraph model on uncertain bipar-
tite graphs. To support efficient queries of (α, β, η)-core, we
design a basic full index that can fetch the vertices of arbitrary
(α, β, η)-core in optimal time complexity. In order to strike a
balance between index space cost and query processing time,
we propose a probability-aware index with bounded space
complexity. We also propose efficient algorithms to construct
this index in both bottom-up and top-down manner. Extensive
experiments validate the effectiveness of the (α, β, η)-core
model and the efficiency of the proposed algorithms.

REFERENCES

[1] C. M. O’Connor, J. U. Adams, and J. Fairman, “Essentials of cell
biology,” Cambridge, MA: NPG Education, vol. 1, p. 54, 2010.

[2] G. A. Pavlopoulos, P. I. Kontou, A. Pavlopoulou, C. Bouyioukos,
E. Markou, and P. G. Bagos, “Bipartite graphs in systems biology and
medicine: a survey of methods and applications,” Gigascience, vol. 7,
no. 4, p. giy014, 2018.

[3] X. Zhou, J. Menche, A.-L. Barabási, and A. Sharma, “Human
symptoms–disease network,” Nature communications, vol. 5, no. 1, pp.
1–10, 2014.

[4] Y. Li, M. T. Thai, Z. Liu, and W. Wu, “Protein-protein interaction and
group testing in bipartite graphs,” International journal of bioinformatics
research and applications, vol. 1, no. 4, pp. 414–419, 2005.

[5] C. Aggarwal, Managing and Mining Uncertain Data, 01 2009, vol. 35.
[6] B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R. Li, “Index-based

optimal algorithm for computing k-cores in large uncertain graphs,” in
ICDE, 2019.

[7] D. Qiangqiang, L. Rong-hua, W. Guoren, M. Rui, Z. Zhiwei, and Y. Ye,
“Core decompostion on uncertain graphs revisited,” in TKDE, 2021.

[8] B. Francesco, G. Francesco, K. Andreas, and V. Yana, “Core decompo-
sition of uncertain graphs,” in KDD, 2014.

[9] H. Xin, L. Wei, and L. V. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” pp. 77–90, 2016.

[10] Z. Zhaonian and Z. Rong, “Truss decomposition of uncertain graphs,”
knowl. Inf. Syst, vol. 50, pp. 197–230, 2017.

[11] Z. Zhaonian, L. Jianzhong, G. Hong, and S. Zhang, “Finding top-k
maximal cliques in an uncertain graph,” 2010.

[12] M. ArkoProvo, X. Pan, and T. Srikanta, “Mining maximal cliques from
an uncertain graph,” pp. 243–254, 2015.

[13] L. Rong-Hua, D. Qiangqiang, W. Guoren, M. Zhong, Q. Lu, and
Y. Jeffrey, Xu, “Improved algorithms for maximal clique search in
uncertain networks,” pp. 1178–1189, 2019.

[14] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-tolerant
group recommendation using alpha-beta-core,” in CIKM. ACM, 2017.

[15] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation: an index-based approach,” in WWW, 2019.

[16] Z. Zou, “Bitruss decomposition of bipartite graphs,” in DASFAA.
Springer, 2016.

[17] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient bitruss
decomposition for large-scale bipartite graphs,” in ICDE. IEEE, 2020.

[18] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum
biclique search at billion scale.” PVLDB, vol. 13, no. 9, 2020.

[19] S. Lehmann, M. Schwartz, and L. K. Hansen, “Biclique communities,”
Physical review E, vol. 78, no. 1, p. 016108, 2008.

[20] J. R. Larsen, M. R. Martin, J. D. Martin, P. Kuhn, and J. B. Hicks,
“Modeling the onset of symptoms of covid-19,” Frontiers in public
health, vol. 8, p. 473, 2020.

[21] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang, “Efficient
and effective community search on large-scale bipartite graphs,” in
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 85–96.

[22] J. Li, L. Wu, R. Hong, K. Zhang, Y. Ge, and Y. Li, “A joint neural model
for user behavior prediction on social networking platforms,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 11,
no. 6, pp. 1–25, 2020.

[23] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5941–5948.

[24] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos, “Copy-
catch: stopping group attacks by spotting lockstep behavior in social
networks,” in Proceedings of the 22nd international conference on World
Wide Web, 2013, pp. 119–130.

[25] A. P. Thurow, C. W. Abdalla, J. Younglove-Webb, and B. Gray, “The
dynamics of multidisciplinary research teams in academia,” The review
of higher education, vol. 22, no. 4, pp. 425–440, 1999.

[26] L. Danghao, L. Hio, H. Zhipeng, and M. Nikos, “Efficient fault-tolerant
group recommendation using α-β-core,” pp. 2047–2050, 2017.

[27] P. Michalis, B. Francesco, G. Aristides, and K. George, “k-nearest
neighbors in uncertain graphs,” National security agency technical
report, vol. 3, pp. 997–1008, 2010.

[28] L. Rong-Hua, Y. Jeffrey Xu, M. Rui, and J. Tan, “Recursive stratified
sampling: A new framework for query evaluation on uncertain graphs,”
vol. 28, no. 2, pp. 468–482, 2016.

[29] Y. Guo, X. Zhang, F. Esfahani, V. Srinivasan, A. Thomo, and L. Xing,
“Multi-stage graph peeling algorithm for probabilistic core decomposi-
tion,” arXiv preprint arXiv:2108.06094, 2021.

[30] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient proba-
bilistic k-core computation on uncertain graphs,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1192–1203.

[31] E. Fatemeh, D. Mahsa, S. Venkatesh, T. Alex, and W. Kui, “Truss
decomposition on large probabilistic networks using h-index,” SSDBM,
p. 145–156, 2021.

[32] Y. He, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Exploring cohesive
subgraphs with vertex engagement and tie strength in bipartite graphs,”
Information Sciences, vol. 572, pp. 277–296, 2021.

[33] Y. Zhang, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Pareto-optimal
community search on large bipartite graphs,” in Proceedings of the
30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 2647–2656.

[34] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Vertex priority based
butterfly counting for large-scale bipartite networks.” PVLDB, 2019.

[35] A. E. Sarıyüce and A. Pinar, “Peeling bipartite networks for dense
subgraph discovery,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, 2018, pp. 504–512.

[36] A. Abidi, L. Chen, R. Zhou, and C. Liu, “Searching personalized k-wing
in large and dynamic bipartite graphs,” arXiv preprint arXiv:2101.00810,
2021.

[37] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler,
and M. A. Langston, “On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological
data types,” BMC Bioinform., vol. 15, p. 110, 2014. [Online]. Available:
https://doi.org/10.1186/1471-2105-15-110

[38] A. Das and S. Tirthapura, “Incremental maintenance of maximal bi-
cliques in a dynamic bipartite graph,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 4, no. 3, pp. 231–242, 2018.

[39] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact
algorithms for maximum balanced biclique search in bipartite graphs,”
in SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos, and
D. Srivastava, Eds. ACM, 2021, pp. 248–260. [Online]. Available:
https://doi.org/10.1145/3448016.3459241

https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.1145/3448016.3459241

	2021 IEEE
	paper_uncertain_bipartite_graph.pdf
	Introduction
	Preliminaries
	The definition of (,,)-core
	Warm up

	Baseline Solutions
	The online algorithm
	The full index

	The probability-aware index
	Index overview
	Query with different probabilities
	Index construction

	Experimental evaluations
	Experiments setting
	Effectiveness evaluation
	Evaluation of query performance
	Evaluation of indexing techniques

	Related Work
	Conclusion
	References

