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A Connectivity-Aware Graph Neural Network for
Real-Time Drowsiness Classification
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Abstract— Drowsy driving is one of the primary
causes of driving fatalities. Electroencephalography (EEG),
a method for detecting drowsiness directly from brain
activity, has been widely used for detecting driver drowsi-
ness in real-time. Recent studies have revealed the great
potential of using brain connectivity graphs constructed
based on EEG data for drowsy state predictions. However,
traditional brain connectivity networks are irrelevant to
the downstream prediction tasks. This article proposes a
connectivity-aware graph neural network (CAGNN) using a
self-attention mechanism that can generate task-relevant
connectivity networks via end-to-end training. Our method
achieved an accuracy of 72.6% and outperformed other
convolutional neural networks (CNNs) and graph gen-
eration methods based on a drowsy driving dataset.
In addition, we introduced a squeeze-and-excitation (SE)
block to capture important features and demonstrated that
the SE attention score can reveal the most important
feature band. We compared our generated connectivity
graphs in the drowsy and alert states and found drowsi-
ness connectivity patterns, including significantly reduced
occipital connectivity and interregional connectivity. Addi-
tionally, we performed a post hoc interpretability analysis
and found that our method could identify drowsiness fea-
tures such as alpha spindles. Our code is available online
at https://github.com/ALEX95GOGO/CAGNN.
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I. INTRODUCTION

DROWSY driving is one of the leading causes of traffic
accidents [1]. As drowsiness is the first sign of falling

asleep, it is believed that early drowsiness detection could
be useful for preventing related traffic accidents. Camera-
based methods are widely used to monitor driver drowsiness.
However, these methods may lead to privacy concerns and are
susceptible to facial occlusion and illumination variations [2].
Electroencephalography (EEG) does not have these issues and
can be used to directly measure brain activity. Recently, EEG
has been integrated into driver monitoring systems for drowsi-
ness detection. For example, researchers at Mercedes-Benz
investigated driver fatigue detection with alpha spindles based
on the “Attention assist” system [3]. In drowsiness studies,
EEG has been used to indicate the transition between the
waking and sleeping states [4]. Compared with other frequency
bands, the alpha (8-14 Hz) and theta (4-8 Hz) bands have
repeatedly been shown to be more closely associated with
drowsiness [5], [6], [7], [8].

For instance, alpha spindles [6] and theta bursts [9], [10]
are two prominent features that occur before falling asleep.
In addition, increased theta and alpha activity and decreased
beta activity have been observed in cases of mental fatigue [7].
In particular, power oscillations in the theta and alpha bands
are highly associated with monotonous driving tasks [8].

The drowsy and alert states have been shown to be dis-
tinguishable via brain connectivity analysis. Brain functional
connectivity is defined as the temporal coincidence in neu-
ral activities between segregated regions of the brain [11].
Traditionally, functional connectivity graphs based on EEG
were constructed via statistical coupling between two differ-
ent time series using correlation metrics such as the phase
lag index (PLI) [12], amplitude locking value (ALV) [13],
and weighted phase lag index (WPLI) [14], and the drowsy
and alert states were classified using traditional machine
learning methods according to the connectivity information.
However, traditional machine learning methods usually require
handcrafted hyperparameters. This problem can be mitigated
through deep learning methods, which use nonlinear universal
approximation for feature extraction purposes.

Convolutional neural networks (CNNs) are popular deep
learning models in EEG analysis, including the commonly
used EEGNet [15] and ShallowConvNet [16]. Driver drowsi-
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ness levels have been successfully detected using CNN in
several studies [17], [18], [19]. In some driver drowsiness
studies, the reaction time could be forecasted with a CNN [19],
[20]. Cui et al. developed a compact single-channel CNN [17]
and a multichannel interpretable CNN [21] for drowsiness
detection, and these methods demonstrated better performance
than EEGNet and ShallowConvNet; however, their method
was designed for offline analysis only and real-time imple-
mentation using their method decreased the accuracy by
approximately 6% [17].

In recent years, researchers have explored graph neural
networks (GNNs) for EEG classification [22], [23], [24],
[25], [26] to address the limitations of CNNs, since the
natural geometries and brain networks in EEG studies are non-
Euclidean. The graph in a GNN developed for EEG analysis is
usually predefined based on some prior knowledge, such as the
distance between electrodes, and the correlation or covariance
between EEG channels [22], [24], [25], [26]. However, graphs
defined in this manner are not trainable or task-relevant.
Moreover, the input feature vectors are fed into the neural
network blindly as a black box. In this work, to address these
problems, we first applied a self-attention mechanism [27],
[28] to generate a task-relevant connectivity graph through
end-to-end GNN training. Then, we introduced a squeeze-
and-excitation (SE) block [29] to selectively highlight impor-
tant features, thereby improving the interpretability of our
model.

We designed a novel architecture for drowsiness detec-
tion as follows. First, we applied self-attention mechanisms
to take full advantage of the power of GNN to gener-
ate connectivity patterns. Self-attention mechanisms generate
importance scores that relate different positions in a sin-
gle sequence to an encoded sequence through end-to-end
training [30]. Due to its ability to capture long-range depen-
dencies, the self-attention mechanism has demonstrated good
performance in machine translation [31], [32] and computer
vision tasks [33]. Inspired by the attention mechanism [27],
[28], we designed a method to learn an adjacency matrix
based on a weighted feature vector, which can capture the
interdependencies between EEG channels through end-to-end
training.

Furthermore, we introduced an SE block to make the
network focus on more informative features in end-to-end
training. Originally, the SE block was designed for channel-
wise attention for image classification tasks, and it has been
shown to improve EEG classification accuracy in some stud-
ies [34], [35], [36]. Instead of exploring the interdependencies
between EEG channels, we applied the SE block to extract
the interdependencies between EEG features, which has been
overlooked in many previous studies. The results show that the
SE block not only improved the classification accuracy but also
enhanced the interpretability of our model by highlighting the
most important frequency features.

The main contributions of our work can be summarized as
follows:

1) We proposed a novel method to generate connectivity
patterns in GNNs that outperforms other state-of-the-art

CNNs and GNNs in drowsiness classification in both
balanced and imbalanced datasets.

2) We showed that the SE attention score of our model indi-
cated the most important frequency features; moreover,
when our model was retrained using the frequency band
with the highest attention score, the accuracy improved.

3) We demonstrated that our learned connectivity pat-
terns could provide some insights into neuroscience
and that our generated connectivity patterns showed
weaker parietal and occipital connectivity and decreased
intraregional connectivity, indicating local segregation
effects in drowsy states.

II. RELATED WORK

A. Popular Architectures for EEG Classification
Convolutional neural networks (CNNs) are the most popular

architectures for EEG classification thanks to their strong fea-
ture extraction abilities. The ShallowConvNet [16] architecture
consists of two convolutional layers (a (1, 13) temporal filter
and a (C, 1) spatial filter, with C representing the number
of channels) and has shown good performance based on
motor imaginary datasets. EEGNet [15] is an improved version
of ShallowConvNet that introduces a depthwise separable
convolutional layer, which reduces the number of parameters
and prevents overfitting, and decouples the relationship within
and across each feature map. Cui et al. [17], [21] developed
InterpretableCNN and further improved EEGNet by introduc-
ing a global average pooling (GAP) layer to replace the widely
used fully connected layer, which reduced the number of
parameters and prevented overfitting. They demonstrated that
InterpretableCNN outperforms EEGNet and ShallowConvNet
based on a drowsy driving dataset [37]. One of the limitations
of CNNs is that they are designed for regular and Euclidean
structured data [38], [39], and this is not sufficiently precise
since the natural geometry and connectivity of brain networks
in EEG data are non-Euclidean [22].

B. Graph Neural Networks for EEG Classification
In graph neural networks (GNNs), the convolutional layers

in CNNs are replaced with graph convolutional layers. GNNs
for EEG classification model the brain as a graph, with the
electrodes represented by nodes and the connectivity between
them represented by edges. One key challenge of GNNs is
selecting appropriate graph representations for EEG signals.
This is usually performed by exploring some prior knowledge
in the EEG data. For instance, EEG-GCNN [24] defined the
graph based on the electrode distance and spectral coherence
between different EEG channels. Similarly, Tang et al. [22]
constructed a graph based on the electrode distance and cor-
relations between spectral features. In contrast, Jingcong et al.
showed that a learnable graph generation method called the
self-organized graph neural network (SOGNN) [23] could
outperform the traditional correlation and covariance graph
representation. However, the graph learned by the SOGNN
was highly asymmetric, which might not be the case for
healthy individuals [40]. We note two key insights based
on these architectures. First, we aim to generate the GNN
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graph representation through end-to-end training to learn a
task-relevant graph for downstream tasks. Second, we aim
to generate a biologically meaningful graph that can offer
valuable insights into neuroscience.

III. MATERIALS AND METHODS

A. Dataset Description
The dataset in this article was collected at the Brain

Research Center (BRC) at National Chiao Tung University
(NCTU), Hsinchu, Taiwan. This study was performed in
strict accordance with the recommendations in the Guide
for the Committee of Laboratory Care and Use of the
National Chiao Tung University, Taiwan, with ethics approval
(2012-08-019BCY) from the Institutional Review Board
of the Veterans General Hospital, Taipei, Taiwan. This
dataset contains 32-channel EEG recordings (including one
ground electrode and one reference electrode), collected from
27 healthy subjects (age range: 22 to 28 years) in a driving
simulator over 62 sessions, with each recording occurring
over 90 minutes. The impedances of the EEG electrodes
were maintained at less than 5 k�, and the sampling rate
was 500 Hz. The experiment was conducted in a 360-degree
virtual reality (VR) lab [41]. The scenario was a monotonous
VR highway scene aiming to induce drowsiness [42]. During
the task, lane departure events were induced randomly to make
the car drift towards the left or right sides. The subjects were
instructed to respond as quickly as possible to move the car
back to the centre of the lane. Between two consecutive trials,
there was one resting period that lasted for a random amount
of time ranging from 5 − 10s to prevent participants from
anticipating a potential deviation. The reaction time (RT) was
measured to evaluate the driver’s performance. The RT was
defined as the latency between the onset of the deviation
and the onset of the response. A high RT indicates that the
participant is relatively drowsy, while a short RT indicates
that the participant is relatively alert. A detailed description of
this dataset can be found in [37]. The dataset is also publicly
available from figshare [43].

B. Data Processing
The dataset was preprocessed with the following steps. First,

the raw data were filtered with a finite impulse response (FIR)
filter with frequency cut-offs of 1 Hz and 50 Hz. Second, arte-
facts were automatically removed via the Automatic Artefact
Removal (AAR) plug-in for EEGLAB. The AAR method is
suitable for real-time applications [44], [45]. Third, all trials
with reaction times of less than 100 ms were removed. Because
human reaction times are unlikely to be less than 100 ms [46],
in these cases, the subjects might have turned the steering
wheel by chance instead of actually responding to the stimuli.
We then downsampled the EEG data to 128 Hz and extracted
the 5 seconds of samples prior to the stimuli presentation.
We included only sessions in which the motion function of
the simulator was disabled to minimize motion artefacts. The
drowsy samples and alert samples were labelled according to
the method proposed in [47]:

TABLE I
SUMMARY OF THE SELECTED NUMBER OF SAMPLES FOR EACH

SUBJECT IN THE BALANCED AND UNBALANCED DATASET

• The global reaction time (RT) was calculated by averag-
ing all the local RTs within a 90-second window before
the onset of deviation [48]. The alert RTs were calculated
as the 5th quantile of all the local RTs.

• The 5-second samples were labelled “Alert” if both the
local and global RTs were shorter than 1.5 times the alert
RT and were labelled “Drowsy” if both the local and
global RTs were greater than 2.5 times the alert RT.

The eligible trials were selected by the following procedures:
1) Sessions with fewer than 40 samples of either class were

discarded.
2) The samples from each session were balanced by choos-

ing the most representative samples with the shortest (for
the alert class) or longest (for the drowsy class) local
RT [17].

3) For multiple sessions with the same subject, we selected
the session with the most samples.

The first step was used to exclude sessions with too few
samples in one or both classes for neural network training.
The second step ensured a balanced dataset for both classes.
For the imbalanced dataset, this step was not used. The
third step was used to balance the number of subjects and
ensure that the sessions with the most samples were retained.
As summarized in Table I, we obtained 1880 samples from
11 subjects for the balanced dataset and 2848 samples for the
naturally imbalanced dataset. We obtained a balanced dataset
with a size of [1880 samples × 30 channels × 640 timepoints],
and an imbalanced dataset with a size of [2848 samples ×

30 channels × 640 timepoints].

C. Network Architecture
The architecture of the proposed method is shown in

Figure 1. The graph in the GNN can be formulated as a
set of nodes, edges and weights of edges G = (N , E,A).
The node N corresponds to the EEG data of each channel,
and the weights of the edges denoted by the adjacency matrix
A in the GNN represent the connectivity between the EEG
channels.

Each node in the GNN was constructed by the following
steps. First, the 5-second EEG sample was divided into ten
0.5-second EEG segments. Then, to model the EEG spectral
features, we used a fast Fourier transform (FFT) to transform
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Fig. 1. Architecture of the proposed connectivity-aware graph neural network. First, the frequency features were extracted from the EEG time series
through FFTs. Then an SE block was used to highlight important frequency features, and a self-attention mechanism was used to construct the
graph from the scaled features. Then, the scaled features and graph were fed into a GNN encoder and decoded via a GRU. Finally, a max-pooling
layer and a fully connected layer were applied for classification.

the time series segments into frequency spectra and retained
only the positive frequencies in the frequency spectrum to
remove redundancy. We included frequency bins only in delta,
theta, alpha, and beta bands since these bands are more
closely related to drowsiness features. With this approach,
we obtained ten frequency spectra with 16 frequency bins:
[X1, X2 . . . X16]. Next, we applied an SE block to obtain a
set of modulation weights for the input feature vectors. In the
SE block, first, a squeeze operation was applied to aggregate
the feature vectors [29]:

z f = Fsq(X f ) =
1

C × T ′

C∑
i=1

T ′∑
j=1

Xi, j, f (1)

where C and T ′ are the first two dimensions of the feature
vector X ∈ RC×T ′

×F , C is the channel dimension, T ′ is
the time dimension, and F is the frequency dimension. The
squeeze operation is a global pooling of the feature vector in
the channel and time dimensions. Then, an excitation block
was applied to learn the sample-specific activation for each
feature [29]:

s = Fex (z, W) = (σ (W2δ(W1z)) (2)

where δ(·) denotes the ReLU [49] function, σ(·) denotes the
sigmoid function, and W1 and W2 represent two fully con-
nected layers, where W1

∈ R
F
r ×F and W2

∈ RF×
F
r . In this

article, we set the squeeze ratio r to 8. Next, we designed a
method to learn the adjacency matrix based on the weighted
feature with a self-attention mechanism. The construction of
the edges can be expressed as:

A = σ( f (s ⊙ X) f (s ⊙ X)T

= σ(tanh(W3(s ⊙ X))(tanh(W3(s ⊙ X)))T ) (3)

where ⊙ denotes elementwise multiplication, X is the normal-
ized input feature vector of the EEG channels, a tanh function
was applied to map the input to (0, 1) and W3 denotes a fully
connected layer. The key and query are obtained from the same
feature vector, and σ denotes the sigmoid function, which is
applied to map the attention weight to (0, 1) while ensuring
a symmetric self-attention score. The self-attention score was
used as the adjacency matrix of the GNN.

The key and query are the same for the following reasons.
We generate the graph using the self-attention mechanism
to mimic the functional connectivity. Functional connectivity
represents the temporal coincidence of two spatial separate
neurophysiological events, which are nondirectional and sym-
metric [50]. To generate A = K QT as a symmetric functional
connectivity matrix, the key K and the query Q needed to be
the same.

Then, the normalized Laplacian of the GNN was computed
by:

L = I − D̂−1/2AD̂−1/2 (4)

where D is A diagonal degree matrix of the normalized
adjacency matrix with Di i =

∑
j Ai j and I is the identity

matrix. To capture the dynamic characteristics of functional
networks, in this work, we use a variant of the diffusion
convolutional recurrent neural network (DCRNN) [51] for
brain dynamics modelling, which can model temporal and
spectral dynamics at the same time.

The DCRNN has demonstrated impressive performance in
tasks such as traffic forecasting, with the model learning
complex spatiotemporal patterns and obtaining accurate pre-
dictions [51]. The DCRNN has also shown promise in brain
dynamics modelling, enabling researchers to understand the
complex interactions and dynamics of neural processes in the
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brain [22]. In the DCRNN, the encoder encodes the spatiotem-
poral dependencies of the EEG data as a feature representation
using diffusion convolutional gated recurrent units (DCGRUs).
Specifically, the encoder consists of two recurrent layers with
32 recurrent units in each layer, and the information is encoded
into a set of 30-channel node features (R30×32). The DCGRU
was used instead of matrix multiplication operations in the
gated recurrent unit (GRU) [52], with the diffusion convolution
defined as follows:

r(t)
= σ(2r⋆G[X(t), H(t−1)

] + br ), (5)

u(t)
= σ(2u⋆G[X(t), H(t−1)

] + bu), (6)

C(t)
= tanh(2C⋆G[X (t), (r(t) ⊙ H(t−1)

] + bc, (7)

H(t)
= u(t)

⊙ H(t−1)
+ (1 − ut ) ⊙ C(t) (8)

where X(t), H(t) are the input and output at time t of the
reccurent layer and r(t) and u(t) are the reset gate and update
gate at time t , ⊙ represents the Hadamard product, and ⋆G
denotes the ChebNet spectral convolution.

The DCRNN propagates messages between nodes through
diffusion convolution. In the case of an undirected graph,
diffusion convolutions were performed using ChebNet spectral
graph convolution [53]:

X:,m⋆G fθ =

k−1∑
k=0

θkLkX:,m =

k−1∑
k=0

θ̂k Tk(L̂)X:,m (9)

where θk reprensents the learnable weights for the kth order
Chbyshev polynomial approximation, and L is the renormal-
ized Laplacian matrix of the graph, T0(x) = 1, T1(x) =

x, Tk(x) = xTk−1(x) − T k − 2(x) are the bases of the
Chebyshev polynomial. The diffusion convolutional layer in
the encoder works by propagating node features across the
graph structure. The diffusion operation captures the local
and global dependencies of the nodes in the graph, allowing
the network to learn representations that capture the complex
interactions and correlations between the different EEG nodes.

Finally, the node features are aggregated through
max-pooling along the node dimension, followed by
two fully connected layers (32 × 16, 16 × 2) that output the
probabilities of the two classes. The binary cross-entropy loss
function was used for network training:

ln = −wn[yn · log σ(xn) + (1 − yn) · log (1 − σ(xn))] (10)

where xn denotes the nth sample of the network output, yn
denotes the nth sample of the label and σ(·) is the sigmoid
activation function. The optimization objective is to minimize
the binary cross-entropy loss between the network output and
the labels.

D. Implementation Details
All the code was implemented with Python 3.8.0. All the

models were implemented with PyTorch 1.9.0. The models
were trained on a computer with NVIDIA Quadro P5000
graphic cards. The Adam optimizer with an initial learning
rate of 1e−3 and a cosine annealing weight decay were used
to train the proposed CAGNN. All the models were trained
for 30 epochs.

Fig. 2. Attention score of the SE block over different frequency features
(upper panel) and frequency bands including delta, theta, alpha, and
beta bands (lower panel). (Error bar: standard deviation.)

Fig. 3. Training curve of the CAGNN, InterpretableCNN, EEGNet, and
ShallowConvNet. (Error bar: standard deviation.)

IV. RESULTS

A. Performance Analysis
We used leave-one-out cross-validation since the number of

subjects was small. During training, one subject was left out
for evaluation, and the data from other subjects were used
for training. All experiments were repeated five times with
five different random seeds. All the models were evaluated at
the 30th epoch, and all models converged at approximately
15 epochs, as shown in Figure 3. We compared the perfor-
mance of our CAGNN model with that of state-of-the-art
CNN models, including EEGNet and ShallowConvNet, and
a recently developed model called InterpretableCNN [21].
InterpretableCNN was originally developed only for offline
analysis, and the sample must be sent to the model as a
bundle during evaluation. This is not desirable for real-time
applications since new samples are usually obtained individ-
ually instead of as a bundle. In this article, all the methods
were implemented in such a way that real-time data could
be used. Note that InterpretableCNN was reimplemented to
handle real-time data by turning off the tracking of the
running mean and variance in evaluation mode. The results
are summarized in Table II, and the training curve is shown
in Figure 3. In addition to accuracy, we used the F1 score,
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TABLE II
PERFORMANCE COMPARISON OF THE CAGNN AND THREE BASELINE METHODS ON THE BALANCED DATASET

TABLE III
PERFORMANCE OF THE CAGNN IN DIFFERENT FREQUENCY BANDS BASED ON THE BALANCED DATASET

precision, and recall, which are commonly used evaluation
metrics for binary classification. The accuracy is defined as
the proportion of correct predictions made by the model; the
precision measures how many positively labelled instances
predicted by the classifier were actually true positives; the
recall, also known as the sensitivity, measures how many actual
positive instances were correctly identified by the classifier;
and the F1 score is the balanced mean of the precision
and recall. The accuracy, precision, recall, and F1 score are
formulated as follows:

Accuracy =
T P + T N

T P + T N + F P + F N
(11)

Precision =
T P

T P + F P
(12)

Recall =
T P

T P + F N
(13)

F1 =
2 × precision × recall

precision + recall

=
2 × T P

2 × T P + F P + F N
(14)

where TP denotes true positives, TN denotes true negatives,
FP denotes false positives, and FN denotes false negatives.

With the balanced dataset, our model (with the SE block)
outperformed the other three models in terms of overall
accuracy, with a mean accuracy of 70.5. We noticed that
without the SE block, the accuracy of our model dropped by
approximately 1% to 69.7%. In terms of individual subjects,
our model outperformed the other models in Subjects 1,
2 and 11 in accuracy and Subjects 1, 2, and 11 in F1
score. The accuracy of our model was all above 58%, while
all the other models had some participants with accuracies
below 58%.

We show the attention scores learned by the SE block in
Figure 3. Next, we calculated the average attention scores for
four feature bands: delta, theta, alpha, and beta. As shown
in Figure 3, the theta band had the highest attention score,
followed by the alpha, delta, and beta bands. We then retrained
our CAGNN model with different frequency features. Feature
clipping with the theta band yielded the highest accuracy,
72.6%, and F1 score, 70.7%, which correspond to the fre-
quency band with the highest SE attention score. Feature
clipping with the delta band and the alpha band resulted
in an accuracy of approximately 67%. Feature clipping in
the beta band resulted in the lowest accuracy, and the beta
features also had the lowest SE attention score. This might
be because the theta band features are unique to drowsi-
ness, and the alpha band features coexist in drowsy and
alert samples, as illustrated in Figure 6. We also evaluated
the performance of EEGNet, ShallowConvNet, and Inter-
pretableCNN with a 5th order Butterworth filter applied in
the delta, theta, alpha, and beta bands. However, the perfor-
mance of these comparison methods did not improve after
applying the filtering process. This may have been due to their
original design, which incorporated a temporal convolutional
layer with a size of (1, T) meant to handle a wide range
of EEG frequency bands. Specifically, ShallowConvNet was
inspired by the filter bank common spatial patterns (FBCSP)
pipeline [54], which involves separating an EEG signal into
different frequency bands for feature extraction. Similarly,
in ShallowConvNet [16], the first layer performed a temporal
convolution operation that mimicked the bandpass CSP filter
in FBCSP. This design has been adopted by many CNN
architectures for EEG classification, including EEGNet and
InterpretableCNN. In this case, bandpass filtering might have
disrupted their ability to capture spatial patterns across the
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TABLE IV
PERFORMANCE COMPARISON OF THE CAGNN AND THREE BASELINE METHODS BASED ON THE UNBALANCED DATASET

Fig. 4. Comparison of the accuracies of the CAGNN model and other
graph generation methods. (*, p < 0.05. **, p < 0.01. Middle dashed
line in the violin plot: median. Lower dash line: the 1st quantile. Upper
dashed line: 3rd quantile).

broader frequency spectra, as these models were designed to
work effectively without prior bandpass filtering.

We also compared the performance of the CAGNN model
with other models based on the naturally unbalanced dataset,
as shown in Table IV. Our method with feature clipping in
the theta band exhibited a slightly lower accuracy than Inter-
pretableCNN and ShallowConvNet. Nevertheless, our method
outperformed the other comparison methods in terms of var-
ious metrics for unbalanced datasets, such as the F1 score,
precision, and recall, outperforming the other models by more
than 5%. These results demonstrate the superior ability of
our method in identifying dangerous positive drowsy samples
compared to other approaches.

We then compared the accuracy of the CAGNN with the
accuracies of other graph generation methods, as shown in
Figure 4. We selected a static graph generation method using
the correlations between EEG segments proposed by [22]
and a learnable graph generation method (SOGNN) [23]. The
CAGNN had the highest average accuracy among the three
methods. Paired T-tests with Bonferroni correction were used
for statistical analysis. The accuracy of the CAGNN model was
significantly higher than those of the SOGNN (p = 0.029) and
the correlation graph generation method (p = 0.004), while
there was no significant difference between the accuracies of
the SOGNN and the correlation graph methods.

The SOGNN used a different weight matrix for the key and
query, which was the same as that of the transformer, to con-
struct the attention matrix. This alternation led to a suboptimal
result and can be attributed to the fact that the transformer
architecture was originally designed for large-scale datasets
such as those in language and image processing domains.
In such contexts, employing distinct key and query matrices
can introduce additional parameters and facilitate better fitting.
However, when working with smaller datasets such as EEG
data, this approach may lead to overfitting.

B. Interpretability Analysis
We next investigated the learned connectivity graphs gen-

erated by the CAGNN with features in the theta band in the
drowsy and alert conditions as shown Figure 5.

To compare the difference between drowsy and alert
connectivity, we performed a paired t-test with Bonferroni
correction and subtracted the alert connectivity from drowsy
connectivity. All the non-significant connectivity (p >= 0.05)
was set to 0. We found that there were some differences
between these two states in terms of connectivity. First, there
was lower connectivity in the occipital region in the drowsy
state. This finding was consistent with the findings in [55],
[56], [57], and [58], which might be an indication of fading
of consciousness [59]. Second, there was higher connectivity
in the parietal region in the alert state. This was consistent with
the findings in [13] and [60], where significantly weaker con-
nectivity was found within the parietal and occipital regions in
drowsy states. In addition, there was lower interregional (e.g.,
frontal-occipital) connectivity in the drowsy state, which might
be due to the local segregation effect and is consistent with
the findings in [12], this might indicate that brain connectivity
was transforming to a more efficient architecture to maintain
brain function in the drowsy states.

We conducted post hoc interpretability analysis via an
occlusion-based approach [61]. During each iteration, we set
one segment of EEG data (half a second per channel) to zero
and calculate the relative change in the model output. This
resulted in an occlusion map O ∈ RT ×C , with T = 10
corresponding to the 10 segments of EEG data and C = 30
corresponding to the number of channels. The occlusion map
was normalized to the range 0 to 1. The strength of the
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Fig. 5. Generated CAGNN connectivity in the drowsy state (upper
panel), alert state (middle panel), and the difference between the drowsy
and alert state. All the non-significant differences (p ≥ 0.05) were set
to 0.

occlusion map indicates the saliency of a specific EEG clip.
Four examples of selected occlusion maps are shown in
Figure 6. As shown in figure 6a, the CAGNN model could
recognize the alpha spindles and give a correct prediction of a
drowsy sample with a high probability of 0.92. In Figure 6b,
the CAGNN could capture the beta oscillation and predict an
alert sample with a probability of 0.7. In figure 6c, CAGNN
gave an incorrect prediction of a drowsy sample with a
low probability of 0.51 since there were also alert features,
which were the beta oscillations in this sample. In figure 6d,
the CAGNN gave an incorrect prediction since there were
also coexisting alpha spindles and beta oscillations in this
example. For the other subjects, the CAGNN successfully
captured alpha spindles in 10 of the 11 subjects with drowsy
samples, and identified beta oscillations in all 11 subjects
with alert samples, as demonstrated in the Supplementary
Materials.

In addition, we analyzed the band power of the highlighted
segments (occlusion map score > 0.5) in Supplementary
Figure 3. We found that when our model predicted drowsiness,
it focused on the segments with higher alpha power, with an

Fig. 6. Occlusion map analysis of the CAGNN for selected samples:
(a) correctly classified drowsy sample, (b) correctly classified alert
sample, (c) incorrectly classified drowsy sample, and (d) incorrectly
classified alert sample. The channels are ordered in the same way as in
Figure 5.

average alpha power of 2.43 dB when the model predicted
drowsiness and an average value of 2.05 dB when the model
predicted alertness; in contrast, when our model predicted
alertness, it highlighted segments with higher beta power,
with an average beta power of -0.60 dB when the model
predicted drowsiness and a value of -0.29 dB when the model
predicted alertness. A statistical analysis was performed via an
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TABLE V
PERFORMANCE COMPARISON AMONG DIFFERENT VARIANTS OF THE CAGNN

independent t-test, and both the alpha and beta power levels
were significantly different (p < 0.01).

V. DISCUSSION

In this article, we proposed a task-relevant graph-generation
method that can outperform other state-of-the-art CNN base-
lines in a driver drowsiness dataset. First, we applied a
self-attention mechanism to generate connectivity in the GNN
and showed that it can outperform other graph generation
methods. Second, we utilized an SE attention block to improve
the overall performance by 1% and showed that the SE
attention could indicate the informative features correctly since
when we retrained the model using the band with the highest
SE attention score the accuracy improved by 2%. In this work,
we first tested our model in the balanced dataset setting and
showed that our method can surpass other methods by 3%
in terms of accuracy, which helps researchers to establish
the baseline understanding of this technology. After that,
we tested on the imbalanced dataset and showed that our
model could surpass other methods in terms of unbalanced
dataset metrics including F1 score, precision, and recall, which
means our method identifies the dangerous positive drowsy
class well. Remarkably, the high precision and recall of our
method revealed that our method can avoid false positives and
false negatives effectively. By combining both balanced and
imbalanced data testing, we can gain a more comprehensive
understanding of the technology’s strengths, weaknesses, and
potential for real-world application. Finally, we showed that
our generated connectivity had lower occipital and parietal
connectivity and lower interregional connectivity and was
consistent with some neuroscience findings; it could provide
some biological insights into EEG research.

A. Effects of Each Building Block of the CAGNN
Our method leverages several deep learning architectures,

including self-attention, a graph neural network, and a gated
recurrent unit (GRU). To investigate the benefit of each
individual component of our network, we analyzed the perfor-
mance of several variants of our proposed method as shown in
Table V. First, we investigated the effect of self-attention by
replacing it with the correlation between channels, as proposed
in [22]. This substitution led to an observed decrease in accu-
racy of approximately 3%, which might have been due to the
self-attention mechanism that could explore the rich context
between EEG channels to adaptively learn the brain network
according to the downstream task. Second, we investigate the
effect of the graph neural network by replacing the encoder
with a CNN. The implementation followed the CNN-LSTM
proposed in [62], with a replacement of LSTM to a GRU. The

CNN encoder proposed in this work consists of two convolu-
tional layers (32 kernels of size 3×3) to extract features from
EEG time series. This decreased the accuracy significantly.
This outcome implies that the graph neural network performs
better when encoding the brain network because it has the
ability to effectively capture and encode the intricate relation-
ships between EEG channels. Third, we examine the effects
of GRU by removing GRU and directly perform classification
after the graph convolution via a feedforward network which
is two fully connected layers (32 × 16, 16 × 2). This also
decreased the accuracy significantly, which illustrated the GRU
was beneficial for EEG classification as it can model the
dynamic temporal information.

B. The Information Learned by the SE Block
In conventional graph neural networks [22], the input feature

vectors are fed into the graph convolutional layer directly.
In our approach, we introduced the SE block before the convo-
lutional layer, and thus the interdependencies between different
frequency features can be captured by the SE block, and the
sensitivity of the model to more informative features increases.
To exploit the dependencies between the features, the squeeze
part of the SE block has a global average pooling layer to learn
statistics between features, as depicted in equation (1). The
excitation part uses a bottleneck gating mechanism, as depicted
in equation (2) to generate the nonlinear interactions between
features. We visualized the attention weight learned by the SE
block and showed that it could be useful for feature selection.
The theta band feature had the highest SE attention score, and
when we retrained the model with only the theta band feature,
the accuracy improved by approximately 2%. Therefore, the
attention score of the SE block can reveal informative features.

C. Biological Insights of the Generated Connectivity and
Our Model

Our model could potentially reveal more connectivity infor-
mation than traditional CNNs through end-to-end training.
In contrast to static connectivity methods, our learnable con-
nectivity patterns are relevant to downstream tasks and thus
could increase classification accuracy. In addition, we found
some drowsy connectivity features were identifiable from
our generated connectivity. For instance, we found lower
connectivity in the occipital region in the drowsy state. This
fulfills our hypothesis since our task was visual sustained
attention, and the occipital lobe is strongly correlated with
visual information processing [63]. The lower connectivity in
the occipital region might suggest the cortical gate mechanism
that prevents the brain from the external sensory output [64].
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Furthermore, our model revealed lower interregional connec-
tivity in drowsiness, which might indicate that the state of the
brain network changed to allow more efficient local informa-
tion processing in drowsy states. This might indicate a local
segregation effect, as depicted in [65]. We also explained why
the model sometimes made a wrong prediction. As drowsy
features are very complex and the coexistence of drowsy and
alert features (e.g., alpha spindles and beta oscillations in
Figure 6c) is very common, sometimes the model becomes
confused and makes an incorrect decision. This may indicate
that the participant was struggling against drowsiness and tried
to perform the task well.

D. Challenges and Further Research Directions
EEG data is intrinsically more difficult to explain than image

or natural language data. Therefore, in the future, we will
explore some explainable model methods for graphs, such
as graph attention networks [66], to improve explainability.
Moreover, although our model had a smaller intersubject
variance than other CNN-based models, the subject variance
was still high. The leave-one-out accuracy in the balanced
dataset ranged from 58.3 to 87.1, which means there was still a
great difference in data distributions across different subjects.
Meta-learning may be a way to address this problem in the
future [67]. Furthermore, we only performed experiments on
one dataset. Thus, we will test whether our method can be
transferred to other neuroscience datasets as well. Another
limitation of our dataset is that only sessions without motion
have sufficient data for analysis. In the future, we will include
more sessions with motion to evaluate our model in a more
realistic setting. Additionally, in this work, to capture the entire
brain network, a high-density 32-channel EEG system was
utilized. After this study, we may limit EEG measurements to
only the most critical regions. This strategy has the potential to
significantly reduce the amount of setup time in future studies.

VI. CONCLUSION

In this work, we proposed a novel connectivity-aware graph
neural network (CAGNN) that is both connectivity-aware and
task-aware. Our method is a new state-of-the-art approach
for real-time drowsiness classification in both balanced and
imbalanced datasets. We introduced the SE block to highlight
the most important features, and we generated the graphs with
our GNN model through self-attention mechanisms via end-to-
end training. Furthermore, we showed that this approach not
only improved the performance of our model but also provided
meaningful neurophysiological explanations in terms of brain
connectivity (e.g., local segregation) in drowsy states. We also
demonstrated that our model could identify drowsy features
such as alpha spindles. Our method could be applied in
real-time driver drowsiness monitoring systems in the future.
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