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Abstract— Detecting concealed objects presents a significant
challenge for human and artificial intelligent systems. Detecting
concealed objects task necessitates a high level of human
attention and cognitive effort to complete the task successfully.
Thus, in this study, we use concealed objects as stimuli for our
decision-making experimental paradigms to quantify partici-
pants’ decision-making performance. We applied a deep learn-
ing model, Bi-directional Long Short Term Memory (BiLSTM),
to predict the participant’s decision accuracy by using their
electroencephalogram (EEG) signals as input. The classifier
model demonstrated high accuracy, reaching 96.1% with an
epoching time range of 500 ms following the stimulus event
onset. The results revealed that the parietal-occipital brain
region provides highly informative information for the classifier
in the concealed visual searching tasks. Furthermore, the
neural mechanism underlying the concealed visual-searching
and decision-making process was explained by analyzing serial
EEG components. The findings of this study could contribute to
the development of a fault alert system, which has the potential
to improve human decision-making performance.

I. INTRODUCTION

Decision-making is a ubiquitous aspect of daily life and
is crucial for human survival. The decision-making process
comprises three primary stages: decision-making preparation,
decision-making itself, and decision-making evaluation [1].
Early decision-making prediction means we predict the hu-
man decision in the decision-making preparation stage. Early
decision-making is also a critical component of a fault alert
system, which aims to identify the possibility of human error
before a decision is made. Task complexity and individual
variability both play a role in the decision-making process.
Neurocognitive research has made strides in quantifying
the decision-making process through behavioural parameters
such as reaction time and decision accuracy. Hierarchical
Drift Diffusion Models (HDDM) [2] are commonly em-
ployed in the analysis of decision-making behaviour. How-
ever, the HDDM model is primarily descriptive and lacks
explanatory power regarding the underlying mechanisms of
the decision-making process. Additionally, the HDDM model
is typically utilized in the context of discrimination-based
decision-making tasks.

Computer vision techniques divide the objects of detection
tasks into two categories: salient and concealed objects.
Salient objects, which are transparent and easy to detect,
contrast with concealed objects which pose a greater chal-
lenge for human observers and machine learning algorithms.
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Concealed objects are often similar to the image background
in terms of colour, texture, and shape. The most popular use
case of concealed object detection is in medical endoscopic
imaging, such as polyp segmentation and lung infection
segmentation [3]. Concealed object detection can also be
used for tasks such as detecting locusts to prevent invasions
and identifying rare species.

A number of decision-making studies have employed
visual searching tasks as a means of investigation. The Patrol
[4] paradigms utilize short videos in which participants are
required to detect whether a soldier is wearing a helmet or
a cap. The Realistic Search paradigm [5] employs multiple
objects images that contain penguins and possibly a polar
bear, and the participants’ task is detecting the presence of
a polar bear. The Suspect Detection experimental paradigm
[6] requires participants to detect human appearance in the
stimulus images. All of these experimental paradigms involve
discrimination tasks that use binary stimuli, where the target
either appears or does not appear in videos or images. Partic-
ipants are also required to make binary decisions (yes or no,
target or non-target). However, the use of binary stimuli can
lead to the decision-making results being influenced by the
randomness of participants’ responses, with a chance level
of 1/2, particularly if participants are not fully engaged in
the task. Our paradigm offers six options corresponding to
the six possible positions of an object within the image, with
a chance level of 1/6. As a result, the likelihood of correct
answers by chance is lower (1/6 < 1/2).

Neuroimaging techniques, such as electroencephalography
(EEG), functional magnetic resonance imaging (fMRI), and
electrocorticography (ECoG), have the potential to provide
insight to explain the decision-making process in the human
brain [7]. These methods are able to capture brain activity
while participants perform decision-making tasks. Further-
more, advanced data-driven techniques can be applied to neu-
roimaging data to classify or predict human decisions prior
to their actual realization. Therefore, in this research, we
employed concealed objects as stimuli in our experimental
paradigm to elicit such brain activity.

The objective of this study is to propose a novel vi-
sual searching experimental paradigm for decision-making
research. The paradigm involves participants detecting con-
cealed objects and making decisions regarding the object’s
location within the images. This approach aims to minimize
the number of arbitrary decisions and fortunate trials. In
addition, using a Bidirectional Long Short Term Memory
model with various EEG temporal epoch lengths allows early
prediction of the participant’s correct or incorrect decisions.

This work is licensed under a Creative Commons Attribution 3.0 License. 
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II. METHODS

A. Participants

This study recruited ten healthy participants (1 female,
aged 20-38 years, mean ± SD: 25.1 ± 4.2; 2 left-handed)
who all had normal or corrected-to-normal vision. All par-
ticipants provided informed consent, which was reviewed
and approved by the ethical committee of the University
of Technology Sydney, Australia (Approval Grant Number:
UTS HREC REF NO. ETH22-7038).

Participants took part in four block tests using the same
experimental paradigm with different object targets. Each
block test comprised 50 trials and took 10 minutes to
complete. Before the formal tests, participants completed a
practice test comprising 10 trials to familiarize themselves
with the task. Participants were given 5 minutes of break time
between each test. The entire experiment lasted 2.5 hours,
and participants received AUD 60 as compensation for their
time.

B. Image dataset and experimental paradigm

Two hundred fifty images were chosen from the publicly
available concealed image dataset COD10K [3]. These im-
ages contain only one animal object that is challenging to
detect. All images were resized to 1000 x 600 pixels in
order to enhance visual clarity during the experimental task
and to minimize head movement during the object-searching
process.

The experimental paradigm is illustrated in Figure 1. Each
trial began with the hint, which is the animal species, for
2 seconds, followed by a 1-second fixation period before
the image containing the hinted object was presented for
3 seconds. The thin grid lines divided the image into six
equally sized areas, and participants were instructed to locate
and indicate which area the object was located in. Another
fixation period of 1 second was presented before participants
had 2 seconds to indicate their decision by pressing one of
six keyboard buttons (1, 2, 3, 4, 5 and 6). The correct position
of the object in the image was subsequently highlighted for
2 seconds before a 2-second resting period; after that, the
next trial began. Each participant completed 200 trials, with
the entire testing session lasting 1 hour.

C. EEG data recording and pre-processing

The EEG data were recorded with Neuroscan Synamps
2 amplifier and 64-channels Quik-Cap (Compumedics, Aus-
tralia). The impedance in all channels was maintained below
5kΩ. The recorded EEG data sampling rate is 1000Hz.
A 29-inch screen was used, and the distance between the
screen and the participant’s chair was 40 cm. The image is
shown in the centre of the screen, and participants did not
need to move their heads when searching for the image’s
object. The EEGLAB toolbox v14.1.2 [8] was used for pre-
processing recorded EEG data (adapted from [9]). The EEG
data was first down-sampling to 250 Hz, a high-pass filter
at 1 Hz and a line-noise removal was applied. EEG data
were average referenced, and Adaptive Mixed Independent

Component Analysis (AMICA) was applied to remove the
artifacts during the data recording.

Stimulus events were recorded during the presentation
of the images and were subsequently employed to extract
two hundred stimulus-based epochs. These epochs were then
averaged (using the average method) for two conditions:
correct and incorrect responses. Figure 2 compares the
event-related potential (ERP) of the incorrect and correct
evoked responses. The epoching and evoking process was
implemented using the Python MNE toolbox v1.3.0 [10].

In order to investigate the effect of the epoching time
range on decision-making classification, three stimulus-based
epochs with time ranges of 125 ms, 250 ms, and 500 ms after
the stimulus event onset were extracted. Since the parietal-
occipital brain area processes the early visual information,
we extract another dataset based on the parietal-occipital
EEG channels (OZ, O1, O2, POZ, PO3, PO4, PZ, P1, P2)
from these data segments. Finally, both parietal-occipital and
whole brain (64-channels) datasets are used as the input for
the classifier model separately.

D. Classification

A Bidirectional Long Short Term Memory (BiLSTM)
model was utilized to classify correct and incorrect decision-
making. Prior to this, the Standard Scaler method was applied
to transform the EEG features. For each participant, 80% of
the EEG dataset was randomly assigned as the training set,
with the remaining 20% used for testing. Ridge regression
(L2 regularization) was applied to the first Dense layer, and
two Dropout layers (with a 30% rate) were used after each of
the Bidirectional layers. Models were trained using the Adam
optimizer and a learning rate of 0.0005. Early stopping was
implemented with a patience of 15 epochs.

III. RESULTS AND DISCUSSION

As depicted in Figure 2, the comparison of ERP evoked
responses in the OZ and POZ channels revealed a similar
sequence of components (N170, P2, P3) in the EEG signal.
However, differences in temporal and amplitude character-
istics were observed. The N170 EEG component, which is
known to be related to error-related potentials (ErrP) [11],
reflects the moment when the participant has already detected
an object and is considering whether or not it is the hinted
object. The P2 EEG component has been theorized to reflect
the final stage of the decision-making process, indicating
the point at which sufficient action-related information has
been gathered before a response is emitted [12]. In this
experimental paradigm, the P2 EEG component may reflect
the point at which the participant makes a decision regarding
the location of the object in the image (positions 1 to 6).
Finally, The P3 EEG component, which is related to decision
confidence [13], reflects the point at which the participant
reconsiders the object’s position that they have made before.

Tables 1 and 2 present the classification results of all
10 participants, using three different epoch time ranges for
all 64 channels and for 9 channels of the parietal-occipital
region. Three epoch durations (0 - 125) ms, (0 - 250) ms,



Fig. 1. During a trial, participants were given a hint about an animal object they needed to find in the image. In this figure, the hinted object is a
hummingbird. Participants then searched for the hinted object, and made a decision about its location by pressing a button on the keyboard, numbered 1 to
6. The correct location of the object was revealed allowing participants to evaluate their responses. For example, the correct location of the hummingbird
was number 6; thus the green bounding box appears around that location.

Fig. 2. The evoked responses in the OZ and POZ channels during correct and incorrect trials revealed sequences of similar components (N170, P2, P3)
in the EEG signal. The N170 EEG component, which is known to be related to error-related potentials (ErrP), reflects the moment when the participant
has already detected an object and is considering whether or not it is the hinted object. The P2 EEG component reflects the point at which the participant
makes a decision regarding the location of the object in the image (positions 1 to 6). The P3 EEG component reflects the point at which the participant
reconsiders the object’s position that they have made before.

and (0-500) ms were selected as inputs for the Bidirectional
Long Short Term Memory models based on the analysis of
evoked comparisons. The period of (0 - 125) ms corresponds
to the point at which participants are actively searching
for the hinted object in the images, and it is likely that
they have not yet made any decisions about the object. The
period of (0 - 250) ms includes the N170 EEG component,
which reflects the moment when participants are considering
whether the detected object is the hinted object or not.
This period may have some impact on the final decision of
participants regarding the location of the observed object. By
the time period of (0 - 500) ms, the three components (N170,
P2, and P3) have already finished. Thus, the participant’s
final decision is almost completed at this point, and the
classification result of the detected object is fully reported.

The mean classification accuracy when using all 64 chan-

nels (89.4± 1.9) is higher than when using only 9 parietal-
occipital channels (81.0 ± 2.0). In both channel configu-
rations, the mean classification accuracy increases as the
epoching time duration increases. When using 64 channels
as input for the classifier model, the highest classification
accuracy was 96.1% (participant SS07) for the epoch time
range (0 - 500) ms, while the highest accuracy for the shortest
epoch time range (0 - 125) ms was 88.6% (participant 10).
Similarly, when using 9 parietal-occipital channels as the
classification dataset, the highest accuracy was 86.3% with
an epoch time range (0 - 500) ms (participant 10). The
highest classification results were achieved by participants
SS07 (64 channels configuration) and SS10 (9 parietal-
occipital region channels configuration). The classification
results were more consistent when using 64 channels as
opposed to 9 parietal-occipital region channels, and when



the epoch time range was higher. The classification results
support the explanation of the effect of the three EEG
components (N170, P2, and P3) on the participants’ final
decision-making.

TABLE I
COMPARISON OF CLASSIFICATION RESULTS FOR ALL PARTICIPANTS

WITH VARIOUS EPOCHS TIME RANGE, USING ALL 64 CHANNELS

Participants Classifiers Accuracy (%)

[0-125]a ms [0-250]a ms [0-500]a ms mean

SS01 BiLSTM 83.5 85.5 90.5 86.5
SS02 BiLSTM 84.1 87.3 92.2 87.9
SS03 BiLSTM 87.3 90.0 95.4 90.9
SS04 BiLSTM 86.4 89.6 93.7 89.9
SS05 BiLSTM 87.8 89.4 94.6 90.6
SS06 BiLSTM 86.0 88.5 92.0 88.8
SS07 BiLSTM 88.2 91.6 96.1 92.0
SS08 BiLSTM 85.1 88.1 91.2 88.1
SS08 BiLSTM 85.4 87.6 90.1 87.7
SS10 BiLSTM 88.6 91.5 95.2 91.8

mean 86.2 88.9 93.1 89.4
std 1.7 1.9 2.2 1.9

a : The stimulus-based epochs’ time range

TABLE II
COMPARISON OF CLASSIFICATION RESULTS FOR ALL PARTICIPANTS

WITH VARIOUS EPOCHS TIME RANGE, USING 9 CHANNELS OF THE

PARIETAL-OCCIPITAL REGION

Participants Classifiers Accuracy (%)

[0-125]a ms [0-250]a ms [0-500]a ms mean

SS01 BiLSTM 74.5 79.1 81.4 78.3
SS02 BiLSTM 78.1 80.8 82.7 80.5
SS03 BiLSTM 77.3 82.0 84.1 81.1
SS04 BiLSTM 79.4 82.6 83.8 81.9
SS05 BiLSTM 78.5 81.4 84.6 81.5
SS06 BiLSTM 76.6 81.5 83.6 80.6
SS07 BiLSTM 79.9 84.6 85.1 83.2
SS08 BiLSTM 73.4 78.1 81.2 77.6
SS08 BiLSTM 78.1 82.6 84.1 81.6
SS10 BiLSTM 80.8 84.8 86.3 84.0

mean 77.7 81.8 83.7 81.0
std 2.3 2.1 1.6 2.0

a : The stimulus-based epochs’ time range

IV. CONCLUSIONS

In this study, we investigated the feasibility of participants’
performance prediction in concealed object visual searching
tasks using electroencephalography (EEG) signals. We em-
ployed a Bi-directional Long Short Term Memory (BiLTSM)
classification model and used three different epoching time
ranges (0 - 125 ms, 0 - 250 ms, and 0 - 500 ms) as input
datasets. The classification was performed using both all 64
EEG channels and 9 parietal-occipital region channels. The
results indicated that the mean classification accuracy was
89.4% when using all 64 channels and 81.0% when using
only the 9 parietal-occipital region channels, suggesting
the potential for early detection of human performance in
challenging visual searching tasks. This can be beneficial in
scenarios where people work in teams with other people or

artificial intelligence systems. For future work, we will use
different classification models with more epoch time ranges
and EEG channels configuration to increase the accuracy of
decision-making classification in the shortest time and with
the lowest number of EEG channels.
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