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Ventral and Dorsal Stream EEG Channels: Key
Features for EEG-Based Object
Recognition and Identification
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Abstract— Object recognition and object identification
are multifaceted cognitive operations that require various
brain regions to synthesize and process information. Prior
research has evidenced the activity of both visual and
temporal cortices during these tasks. Notwithstanding their
similarities, object recognition and identification are rec-
ognized as separate brain functions. Drawing from the
two-stream hypothesis, our investigation aims to under-
stand whether the channels within the ventral and dorsal
streams contain pertinent information for effective model
learning regarding object recognition and identification
tasks. By utilizing the data we collected during the object
recognition and identification experiment, we scrutinized
EEGNet models, trained using channels that replicate the
two-stream hypothesis pathways, against a model trained
using all available channels. The outcomes reveal that
the model trained solely using the temporal region deliv-
ered a high accuracy level in classifying four distinct
object categories. Specifically, the object recognition and
object identification models achieved an accuracy of 89%
and 85%, respectively. By incorporating the channels that
mimic the ventral stream, the model’s accuracy was further
improved, with the object recognition model and object
identification model achieving an accuracy of 95% and
94%, respectively. Furthermore, the Grad-CAM result of the
trained models revealed a significant contribution from the
ventral and dorsal stream channels toward the training of
the EEGNet model. The aim of our study is to pinpoint
the optimal channel configuration that provides a swift
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and accurate brain-computer interface system for object
recognition and identification.

Index Terms— Brain-computer interfaces (BCIs), object
identification, object recognition, electroencephalogram
(EEG), EEG-Net, deep learning, ventral stream, dorsal
stream.

I. INTRODUCTION

IN OUR daily routines, we are faced with the task of
decoding a large amount of changing visual informa-

tion. In order to effectively engage with our surroundings,
it is essential for our visual system to rapidly identify and
interpret the visual information present in our environment.
Impressively, our brains demonstrate an exceptional ability to
search for and perceive intricate images from nature with both
speed and precision. Despite numerous investigations aiming
to decode the functionality of our visual system, there is
still a lack of comprehensive understanding of this intricate
network. Nowadays, numerous theories and hypotheses have
been proposed to explain how our brains recognize objects.
The widely recognized two-streams hypothesis [1] is currently
regarded as the prevailing model that explains the brain’s
visual processing mechanisms. This hypothesis suggests that
when the occipital lobe, the brain’s visual processing region,
receives visual data, it splits it into two processing routes:
the ventral and dorsal streams. The ventral stream sends
its information to the temporal lobe, where the object is
identified and recognized. The dorsal stream, on the other
hand, is responsible for processing visual-spatial information
and determining the object’s location relative to the observer.
This information is then relayed from the occipital lobe to the
parietal lobe. Through fMRI and MEG studies, the activity of
the ventral stream has been observed, thus highlighting its role
in object recognition in the human brain [2].

Numerous EEG-based studies on object recognition have
similar research designs, where participants are expected to
respond by pressing a button when a target stimulus is
displayed. The main focus of these studies lies in these
target stimuli. They are often keywords related to the object,
such as its category [3], or they are used to assess the
object’s meaningfulness [4] or ambiguity [5]. Nevertheless,
a handful of studies have modified their experimental design
to focus on object identification in the brain instead of object
recognition. For example, some studies necessitate partici-
pants to view congruent and incongruent scenes where a
key object remains constant, and they are asked to identify
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that critical object among other objects in the scene [6], [7].
Another study requires participants to spot a target object
that is either semantically consistent or inconsistent within
a scene and press a button whenever the target object alters
its identity, location, or both [8]. These studies highlight that
the differentiation between object recognition and identifica-
tion primarily hinges on the number of objects a person is
presented with. When exposed to a single object, individu-
als will use object recognition. Conversely, when asked to
distinguish among multiple objects, they resort to object iden-
tification. Despite the similarities between object recognition
and identification, object identification is perceived as a unique
process, with different brain regions engaged in processing the
information [9].

Several researchers have endeavoured to develop Brain-
Computer Interface (BCI) systems for object recognition and
identification by using salient EEG features. Event-Related
Potential (ERP), a prevalent EEG feature, is the brain’s
response to a specific event or stimulus. In the context of a
BCI system for object recognition, ERPs are recorded when
an object enters the participant’s visual field and subsequently
classified according to the object’s category ( [10], [11], [12]).
Conversely, an object identification BCI system relies on a
visual stimulus, such as a flash or multiple flashes over the
selected object, to provoke the ERP response. For instance,
the P3-based BCI identifies objects based on the P3 peak,
which occurs approximately 300-500 ms following event onset
( [13], [14]). Beyond the P3 peak, the steady-state visually
evoked potential (SSVEP) is another feature commonly used
in BCI-based object identification systems. This technique
involves placing a flicker at a specific frequency over the
chosen object ( [15], [16], [17]). However, despite the progress
made in developing BCI systems that distinguish between
object recognition and identification, the majority are not
yet ready for practical application. The challenge lies in
the systems’ inability to discern the user’s intention behind
targeting an object: whether the user intends for the BCI to
recognize the object or whether the user wants the BCI to
select an object from their environment.

While Event-Related Potential (ERP) is a prevalent fea-
ture utilized in EEG/BCI studies due to the insightful data
it provides about cognitive processes and neural activities
associated with specific events, its identification and recog-
nition by the naked eye can be challenging, as it can differ
significantly across individuals. As a result, machine learning
algorithms are employed to facilitate a more precise, effi-
cient, and objective analysis of ERP. Among all machine
learning algorithms applied to EEG data analysis, EEGNet
has displayed encouraging results in various EEG analysis
tasks [18]. EEGNet is a compacted convolutional neural
network incorporating depthwise and separable convolutions,
enabling the effective capture of both spatial and temporal
information in EEG signals. Several studies have confirmed
the effectiveness of EEGNet in analyzing object-related ERP
( [19], [20], [21], [22], [23]) and other EEG features such
as P300 [24]. Nonetheless, comprehending the effectiveness
of the EEGNet model requires an explanation of how the
model learned from EEG data. Consequently, the utiliza-
tion of explanation techniques has gained prominence as a
means to visualize EEGNet models. Notably, various studies

have utilized explanation techniques, including saliency
maps [25], [26] and Grad-CAM [27], [28], to highlight the
noteworthy EEG channels within the trained EEG models. For
better classification results of object-related ERP, researchers
often aim to utilize as many channels as possible within the
region of interest. However, increasing the number of channels
also escalates the complexity and latency of the BCI system,
which isn’t practical for real-time applications.

The objective of our study is to identify the best channel
configuration for a fast and accurate BCI system for object
recognition and identification. We examined the model trained
using channels that emulate the pathways of the two-stream
hypothesis compared to the model trained using all channels.
The aim is to determine whether the channels within the
ventral and dorsal streams contain information that could
facilitate effective learning of the model on tasks related to
object recognition and identification.

II. METHODOLOGY

A. Participant and Data Recording
In this study, a total of 25 participants, with an average age

of 32.5 ± 10.4 years and either normal or corrected-to-normal
vision, were involved. The participants undertook 600 trials
each, conducted at the Computation Intelligence and Brain-
Computer Interface (CIBCI) Centre situated at the University
of Technology Sydney (UTS). Prior to the experiment, the
participants were briefed on the instructions and were required
to sign a consent form after being informed. The University
of Technology Sydney granted ethical approval for this study
under the ethics ID ETH20-5519.

We recorded the brain activities of the participants using
a 64-channel EEG system produced by Neuroscan Com-
pumedics Australia. This medical-grade device, known for
its high-density EEG recordings and high precision, has
been extensively utilised in previous neuroscience and neu-
rodiagnostics research. The EEG electrodes were positioned
according to the extended 10-20 international system, and
the data was referenced to an electrode closest to the stan-
dard position FCZ. We maintained the electrode impedance
below 5 k� and digitally sampled the EEG recordings at a
rate of 1000 Hz.

B. Experimental Design
In the course of the experiment, participants were asked

to undertake two tasks: object recognition and object identi-
fication. The object recognition task consisted of presenting
randomly selected images from four categories of the
Caltech-256 dataset [29], namely animals, flowers, food, and
vehicles. Each category contained five distinct objects, with
ten images per object, yielding a total of 200 images used in
the experiment. At the beginning of the trial, participants were
displayed a target image for a duration of 1 second and then
prompted to answer if it was part of the specified category
(see Figure 1). The objective of this task was to assess the
participant’s accuracy in recognizing the target image.

Following the object recognition task, participants were
asked to perform an object identification task. For this task,
four images were randomly chosen from the dataset and
presented in a four-image configuration (up, down, left, and
right). However, at least one of the objects displayed was
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Fig. 1. The structure of our experimental design consisted of the following steps: Every trial began with a 300 ms display of a fixation cross,
followed by a target image that remained visible for 1 second. Subsequently, participants were asked to identify the category of the object portrayed
in the target image, with a response time window of 2 seconds. Then, an additional set of 4 images was presented, with at least one image being
from the same category and subtype as the initial target image. Participants had 3 seconds to select the image they felt most closely resembled
the target object by pressing a button that corresponded with the direction of their selected image (up, down, left, or right). The upper section of the
figure illustrates a sample trial, which includes the correct response to the question (highlighted in red text) and the arrangement of the four object
choices. Conversely, the lower section of the figure represents a trial instance where two out of the four options belong to the same category and
subtype as the target object, thus presenting two closely matching alternatives to the target object.

from the same category and subtype as in the preceding object
recognition task. Participants were directed to select the image
most closely related to the target image by pressing a button
corresponding to the up, down, left or right directions within
3 seconds. Note that, due to the random selection of images,
more than one image from the same category and subtype
could be presented as options. Each trial lasted a total of
6 seconds, with a fixation cross appearing for 300 ms to mark
the start of the trial. An example trial is illustrated in Figure 1.
Each participant will perform 600 trials of the task, resulting
in a total of 15000 trials over 25 participants.

C. EEG Analysis
The processing of EEG signals was carried out using

EEGLAB v14.1.2 [30], a MATLAB toolbox. The unprocessed
EEG data underwent filtering through a finite impulse response
(FIR) filter, consisting of a 1 Hz high-pass and a 50 Hz
low-pass filter. Channels identified as noisy were excluded
using the EEGALB function ‘clean channels’ (3 ±2 channels
per subject removed), and the data was re-referenced to
the average. Following this, the adaptive mixed indepen-
dent component analysis (AMICA) was implemented on the
re-referenced data to decompose it into maximally independent
components (ICs). These ICs represent statistically indepen-
dent sources of EEG variance. Using the IClabel toolbox [31],
we removed ICs associated with eye movement and muscle
activity (3 ±1 ICs per subject removed). After discarding
these undesired components, epochs were extracted. Each
epoch spanned the entire trial duration, starting from 300 ms
prior to the appearance of the target image (i.e. the event
onset) and ending 5 seconds post-event onset. We identified
and removed bad epochs by examining their data values

and considering whether they exceeded the specified standard
deviation threshold of 150 uV (394 ±57 trials per subject
after removal). The epoched data were subsequently divided
into two categories based on the object-related tasks. For
both object recognition and identification tasks, a one second
segment post-stimulation was extracted, resulting in a matrix
of dimensions 60 (electrodes) × 1000(sampling points) x
number of epochs.

D. EEGNet
1) EEGNet Structure: The EEGNet architecture utilized in

this study adheres to a standard block structure comprising
a temporal convolution layer, a depthwise convolution layer,
and a separable convolution layer. The first layer, the tem-
poral convolution layer, learns temporal filters by applying
convolution operations on the input EEG data over time.
It possesses filters that cover only a single EEG channel and
multiple time points, preventing any mixing of data from
different channels. The purpose of this layer is to learn time-
dependent features, such as oscillations in the EEG signal,
which represent changes in brain activity during object-related
tasks. The next layer, the depthwise convolution layer, carries
out depthwise convolutions. This layer applies a distinct set of
filters to each input channel separately, possessing filters that
span multiple channels and time points, allowing the model
to learn spatial filters across channels as they evolve over
time. This layer’s purpose is to learn spatial features, reflecting
the distribution of brain activity across various brain areas or
channels. These spatial features can aid in identifying patterns
associated with specific brain states or tasks. Following the
depthwise convolution layer, the model uses the separable
convolution layer. This layer applies a depthwise spatial
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Fig. 2. A comprehensive depiction of the EEGNet architecture is presented. The lines represent the connectivity facilitated by the convolution
kernel between the input and output.

convolution followed by a pointwise convolution. Essentially,
it applies a separate set of filters to each input channel and uses
a 1×1 convolution to mix the output channels. This approach
allows the model to learn more complex and abstract features
that combine spatial and temporal information. This layer adds
an extra layer of complexity to the learned features, potentially
enhancing the model’s accuracy.

Following the depthwise convolution and separable convo-
lution layers, batch normalization is used to boost the neural
networks’ speed, efficacy, and stability by normalizing the
output from the previous layer. This step aids in learning
stability and acceleration. Following batch normalization, the
model utilizes the exponential linear unit (ELU) activation
function. The ELU activation function’s ability to introduce
non-linearity into the model is vital for EEG data. Fur-
thermore, the ELU activation function can hasten learning
because it generates a balanced output with an average closer
to zero and can mitigate the dead neuron issue [32]. The
output of the ELU activation function is then subjected to
an average pooling operation that reduces its dimensionality
and offers a degree of translation invariance. A dropout layer
follows, which helps prevent overfitting by providing a form
of regularization. The output from the preceding layer is then
reshaped via the Flatten layer and passed through a dense
layer. This dense layer utilizes the features learned by the
preceding layers for the final classification. Ultimately, the
softmax function is applied to convert the network output
into probability scores for each class. The overall structure
is illustrated in Figure 2.

2) Training Procedure: After removing bad epochs, a total
of 9835 epochs remained from the collective pool of 25 par-
ticipants. This epoch dataset was divided into training, testing,
and validation sets, with the training set comprising 80% of
the entire dataset and the remaining 20% split evenly between

testing and validation sets. The model was initially com-
piled using the Adam optimizer [33] and the categorical
cross-entropy loss function [34], which provides the necessary
tools and standards to modify the model’s parameters during
its training phase. Despite the EEGNet structure already incor-
porating elements designed to help prevent model overfitting,
such as batch normalization and dropout, we introduced addi-
tional techniques to aid in model training. These included early
stopping and a learning rate schedule. Early stopping uses a
validation set to assess the model’s performance following
each epoch and halts the training when the performance on
the validation set begins to decline [35]. On the other hand,
learning rate schedules offer a mechanism for adjusting the
learning rate throughout training by reducing the learning rate
based on a predefined schedule, which for this training was an
exponential decay. After all, we ensured that the training loss
and validation loss were approximately equal and relatively
low before progressing to model prediction.

III. RESULTS

A. ERP of Object Recognition and Object Identification

Figure 3 presents the distinctive traits of the ERP signals for
both object recognition and object identification tasks. These
results were obtained by averaging the ERP outcomes from
all 25 participants, with scalp topography visualized using
EEGLAB’s topoplot function. The upper portion of the figure
demonstrates the average ERP throughout the trial for all
channels, with ERPs corresponding to channels O1, P7, and
T7 represented in blue, green, and red, respectively. The lower
half of the figure displays the scalp topography across the trial
for all four categories and their average. According to the scalp
topography, the occipital area appears to be the most active
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Fig. 3. Characteristics of the object recognition and object identification ERP signals. The top portion of the figure presents the average ERP
results derived from all 25 participants, with the ERPs highlighted in blue, green, and red corresponding to channels O1, P7, and T7, respectively.
The lower portion of the figure displays the scalp topography across the trial for all four categories, as well as their average. Each topography
visualizes a 65ms segment of the trial.

region, from 100ms to 450ms during object recognition and
from 300ms to 650ms during object identification.

B. Model Comparisons
Figure 4 presents a comparative analysis of the EEGNet

model trained with differing configurations of EEG chan-
nels for both the tasks of object recognition and object
identification at both group and participant levels. The chan-
nel configurations are grouped as follows: the visual region
(O1, OZ, O2), the temporal region (T7, TP7, TP8, T8),
the ventral stream (T7, T8, TP7, TP8, P7, P8, PO7, PO8,
O1, OZ, O2), the dorsal stream (CZ, CPZ, PZ, POZ, OZ),
combine both stream and all channels. Figure 4A shows the
model accuracy using the grouped data of every participant.
For object recognition, the results indicate an accuracy rate
of 64% when trained with the visual region, 89% with the

temporal region, 95% with the ventral stream, 79% with the
dorsal stream, 96% with the combined stream, and 99% when
trained with all channels. Regarding object identification, the
model reached an accuracy of 65% when trained using
the visual region, 85% with the temporal region, 94% with the
ventral stream, 82% with the dorsal stream, 96% with the
combined stream, and 96% when trained with all chan-
nels. Subsequent to the group analysis, an examination of
the EEGNet models at the individual participant level was
conducted. The outcomes of this examination are shown in
Figure 4B. For object recognition, the results demonstrate
an average accuracy with standard deviation, as follows:
73.4 ± 9.4% for models trained using the visual region, 80.7 ±

7.4% with the temporal region, 93.2 ± 5.8% with the ventral
stream, 84.7 ± 9.3% with the dorsal stream, 96.9 ± 3% with
the combined stream, and 99.6 ± 0.2% when utilizing all
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Fig. 4. Comparative result of the accuracy of various models at two distinct levels: group (A) and individual participants (B). Each trained using
distinct channel configurations for the task of object recognition (OR) and object identification (OI). Paired t-tests were used to check for significant
differences between models (∗ indicate p<0.05). A Topoplot is provided on the left side of the figure, emphasizing the specific channel configurations
utilized in the study.

channels. In terms of object identification, the model achieved
an accuracy of 72.04 ± 11.6% when trained with the visual
region, 79.5 ± 7% with the temporal region, 92.5 ± 6.1%
with the ventral stream, 88.3 ± 5.6% with the dorsal stream,
96.6 ± 2% with the combined stream, and 99.6 ± 0.2%
when all channels were utilized. A paired t-test was also
implemented to indicate the statistically significant differences
between the various EEGNet models.

Furthermore, the trained models were subjected to visual-
ization through the Grad-CAM technique [36]. The resultant
Grad-CAM findings were obtained by running the tech-
nique on the output generated by the temporal convolution
layer. It should be noted that the ERP corresponding to
tasks of object recognition and object identification occurs
at varying temporal intervals, as illustrated in Figure 3.
Consequently, we chose the time frames during which the
brain’s response exhibited maximum amplitude in both object
recognition and object identification tasks. For the model
focused on object recognition, data ranging from 0 ms
to 500 ms was selected, whereas for the object identifi-
cation model, the selected data spanned from 300 ms to
800 ms. Figure 5 presents the Grad-CAM visualizations
for both models across all channels, targeting four distinct
object categories. In the case of the object recognition model,

the Grad-CAM visualizations indicate significant gradient
scores primarily localized around the bi-lateral temporal and
parietal regions for all categories, barring the flower category,
where the significance is comparatively subdued. Conversely,
the object identification model reveals pronounced gradient
scores around the bilateral temporal and parietal regions for
all categories, except for the vehicle category, where the
significance is relatively reduced. Additionally, the results
demonstrate heightened gradient scores in the frontal brain
region across all categories, with the exception again being
the vehicle category, where the importance is less notable.

IV. DISCUSSION

Object recognition and object identification play a pivotal
role in numerous daily tasks. Both processes necessitate the
rapid and precise process of abundant dynamic visual infor-
mation coupled with the swift retrieval of information from
memory. This study delves into these cognitive processes by
analyzing EEGNet models trained using diverse EEG channel
configurations. The results indicate that models trained solely
on visual channels underperformed relative to other configura-
tions in both object recognition and object identification tasks.
Although the visual region primarily processes visual inputs
from the eyes, its interpretation focuses on basic features of the
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Fig. 5. The Grad-CAM outcomes of the object recognition (Left) and object identification (Right) model, incorporating all channels, were analyzed
for the following categories: Animal (A), Food (B), Flower (C), and Vehicle (D).

visual scene, such as edges, lines, and colours [37], [38]. Given
that the visual channels lacked comprehensive information
distinguishing between categories, the suboptimal performance
of this model was anticipated. Conversely, the temporal lobe
is instrumental in recognizing and identifying intricate visual
stimuli, including objects [39]. Thus, channels located within
the temporal region potentially contain data that aids the model
in distinguishing between distinct categories. Our findings
revealed a marked increase in accuracy when models were
trained exclusively on channels from the temporal region for
both object recognition and identification tasks compared to
models trained on visual channels.

Upon analyzing the ERP signals associated with object
recognition and object identification used for model train-
ing, we identified several notable traits. As depicted in
Figure 3, the average ERP within the visual channel for
object recognition exhibited a pronounced double-peak poten-
tial approximately between 100 ms and 350 ms post-event
onset. This double-peak potential can potentially be linked
with the P2a and P2b responses related to object recognition
as documented in prior research ([11], [12], [40]). A similar
response was identified in the average ERP within the visual
channel during object identification. Nonetheless, the temporal
scope of this double-peak potential was extended, ranging
from approximately 250 ms to 650 ms post-event onset.
Such a phenomenon might be attributable to the detection
of multiple images, extending the response duration since
participants were tasked with recognizing all displayed objects
and pinpointing the target image among the object choices.

Besides the visual channel, the temporal channel displayed
a negative potential coinciding with the time frame of the
double-peak potential. This is indicative of visual process-
ing pertinent to both object recognition and identification
([41], [42], [43]). Similar to the patterns observed in the
visual channel, the temporal region also showed a protracted
negative potential during the object identification task. In addi-
tion to ERP signals, scalp topography illustrated the cerebral
responses during object recognition and identification tasks.
Upon the onset of object-related ERP throughout the tasks,
a synchronized activity was evident in the scalp topography,
with the preponderance of the activity manifesting in the

brain’s occipital region. As the task progressed, activity was
also discerned in the parietal and occipitotemporal regions.
This observation accentuates the interrelation between ERP
and the information related to objects.

The Grad-CAM findings, as delineated in Figure 5, reveal
that multiple brain regions facilitated the training of the EEG-
Net model in distinguishing between four object categories.
For both the object recognition and identification models, all
categories exhibited pronounced gradient scores within the
occipitotemporal region. This region encompasses channels
from the ventral stream. Such a manifestation suggests that the
model effectively assimilated pertinent information regarding
the objects primarily through channels within the ventral
stream, especially the temporal channels. This observation
aligns with prior research indicating the significance of tem-
poral channels in processing intricate visual stimuli [44], [45],
[46]. Apart from the temporal channels, channels within the
parietal region also displayed considerable contributions to
the EEGNet model’s training. The parietal brain region is
widely recognized for its role in discerning an object’s spatial
attributes [47], [48], [49]. Given that objects were oriented in
four distinct directions in our study, the spatial information
is intrinsically vital for object identification. Hence, the pro-
nounced significance of the parietal region in the Grad-CAM
results of the object identification model aligns with expecta-
tions. However, the emergence of parietal significance in the
object recognition model was intriguing, particularly since the
target object consistently appeared at the centre of the screen.
This suggests that the parietal region’s significance might be
intricately linked to the spatial characteristics of the target
object itself.

It is evidenced that the dorsal visual pathway plays an
important role in supporting processes within the ventral
pathway [50], [51]. However, the specifics of this interre-
lation remain relatively obscure. Ayzenberg et al. posited
a hypothesis wherein the dorsal stream partakes in object
recognition by processing spatial relations of the features of
the object, subsequently constructing a global shape precept of
the object [52]. This synthesized information is then relayed
to the ventral pathway, bolstering object recognition processes.
Moreover, research by Jeong and Xu [53] proposes that the
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dorsal stream recognizes an abstract representation of object
identity, exhibiting a behaviorally pertinent role by closely
tracking the perceived facial-identity similarity obtained in
behavioural tasks. This involvement of dorsal channels in
object recognition might very well be echoed in our Grad-
CAM results.

The exploration of the ventral and dorsal streams is by no
means a novel undertaking, as many studies have endeavoured
to discern the relationship between these streams and object-
related tasks. These investigations span both anatomically [54],
[55], [56] and computational approaches via deep learning
algorithms [57], [58], [59]. Within the area of BCI research,
there have been extensive endeavours to decode object-related
information from the ventral stream using various EEG fea-
tures such as ERP [60], power spectral density [45], EEG
phase patterns [61], and independent components [62]. Our
study, inspired by the two-stream hypothesis, trained models
using channels reflecting the ventral and dorsal streams and
subsequently combined both streams.

Models emulating the ventral stream exhibited enhanced
accuracy in both object recognition and object identification
tasks when compared to models oriented around the visual and
temporal regions. This improvement underscores the intrinsic
value of information within the ventral stream, facilitating
more efficient model learning. Conversely, models mimicking
the dorsal stream didn’t achieve the same efficacy as their
ventral counterparts, although they outperformed the visual
region models. As mentioned earlier, there’s mounting evi-
dence advocating the role of the dorsal stream in object
recognition, suggesting that this stream encompasses visual
data instrumental for the model’s categorization capabili-
ties. Given the growing body of literature on the symbiotic
relationship between the ventral and dorsal streams, both
anatomically and functionally [63], [64], we developed a
model integrating channels from both streams. This composite
model demonstrated marginally enhanced accuracy relative to
the ventral stream model. Nevertheless, this slight enhance-
ment is arguably attributable to the augmented channel data
during model training rather than being a significant functional
outcome.

V. CONCLUSION

In this study, we embarked on a thorough examination of
several EEGNet models using the data we collected for both
object recognition and object identification tasks, each char-
acterized by different channel configurations, to understand
their effectiveness in object recognition and identification
tasks. The findings reveal that the model trained utilizing the
channels from the ventral stream outperforms those trained
using regional channels. Notably, its efficacy is marginally
surpassed by the model that was trained using all available
channels. Furthermore, a modest enhancement in the model’s
performance was noted when channels from both the ventral
and dorsal streams were combined. To delve into the intrica-
cies of this observation, we used the Grad-CAM visualization
technique on the trained model. The Grad-CAM result exposed
a pronounced gradient score around the channels that form the
ventral stream. Furthermore, a significant contribution from
the parietal channels toward the EEGNet model’s training
was evident. This reinforces the prevailing understanding that

the brain’s dorsal stream is essential in tasks relating to
object recognition and identification. Collectively, the results
from our investigation underscore that the ventral and dorsal
streams contain crucial information that can be harnessed
for the efficient training of models on object recognition
and identification tasks. This finding holds potential for the
development of a rapid and precise BCI system designed for
object recognition and identification.
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