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Abstract— In recent years, the issue of predicting metro rid-
ership has gained traction within the intelligent transportation
systems community, due to its potential advantages for the
metro network system such as improving the service quality and
making informed decisions about infrastructure investments.
When it comes to metro station-level ridership forecasting, in
the literature this is often tackled by using recurrent neural
network (RNN)-based approaches. While RNNs have shown
promising results in providing station-level metro ridership
predictions over short-term prediction horizons, they are still
challenged when it comes to long-term prediction horizons.
Thus, in this work, we are introducing a novel approach,
the Inter-Station-Aware Transformer Networks framework, for
efficient and scalable station-level metro ridership forecasting
over both short and long-term prediction horizons. Our pro-
posed approach models and fuses both the temporal historical
ridership data and the metro network topology using an
encoder-decoder framework based on the transformer network
architecture. The proposed approach has been evaluated on
two publicly available datasets and compared against a number
of baseline approaches. We achieved superior results when it
comes to longer-prediction horizons when compared with state-
of-the-art methods from the literature, while we proved it is also
three times more efficient in terms of the number of model
parameters required.

I. INTRODUCTION

Metro systems are critical transportation infrastructure
in many urban areas, providing millions of people with
reliable and efficient mobility options. Furthermore, metro
systems can alleviate traffic congestion, enhance capacity
on heavily used routes, and decrease the emission of local
pollutants and greenhouse gases [1]. That being said and
given the immense number of ridership happening on the
metro system networks, the risk of citywide congestion still
exists if the service and management of the network are
inefficient. Thus, understanding and accurately predicting
metro ridership (e.g., passengers’ inflow and outflow) is
considered one of the key enablers for efficient operational
planning, resource allocation, and urban transportation man-
agement [2]. Metro ridership forecasting on the station level
particularly presents unique challenges due to the complexity
and dynamics of urban transportation systems. Despite the
challenges, accurate and reliable ridership forecasting on the
station level has significant benefits. It allows metro operators
to optimize resources, such as scheduling of trains, allocation
of staff, and maintenance planning, resulting in improved
service quality and cost-effective operations. Additionally,

it enables policymakers to make informed decisions about
station-specific infrastructure investments, such as platform
expansions, station renovations, and accessibility enhance-
ments, to meet the changing needs of passengers. Over the
past few years, various approaches have been proposed for
metro ridership forecasting which is mostly inspired by the
work on traffic state estimation problems (i.e. speed, flow or
demand). Those approaches range from traditional statistical
methods [3], [4] and machine learning methods [5]–[7] to
hybrid models that combine different methodologies [8],
[9]. These approaches utilize various data sources, including
historical ridership data, socio-demographic data, weather
data, and other relevant factors, to develop accurate and
reliable forecasting models. However, there is still a need
for further research and development to address the unique
challenges associated with station-level ridership forecasting.
One of the key challenges is how to achieve an efficient rep-
resentation and modelling of spatial and temporal dynamics
of the metro system networks that are scalable across dif-
ferent network topologies. Recently, machine-learning-based
techniques especially those based on Graph Convolution
Networks (GCN) [7], [10] have shown promising results
for both road and rail-based ridership forecasting problems.
However, given the spatio-temporal nature of the problem,
GCN is commonly paired with another type of machine
learning model (such as recurrent neural networks [11])
that can handle the temporal aspect of the problem because
GCN can only handle the spatial aspect. Consequently, this
over-complicates the final forecasting model and makes it
inefficient while handling large-scale ridership data.
Thus, in this work, we are proposing a novel single unified
data-driven approach based on transformer networks [12] that
can efficiently handle the inherent spatio-temporal nature of
the station-level metro ridership forecasting problem. The
proposed approach will model and fuse both the temporal
historical ridership data and the metro network topology us-
ing an encoder-decoder framework based on the transformer
network architecture. The remaining sections of the paper are
structured as follows. Section II provides a brief overview of
the relevant literature around the metro ridership forecasting
problem. Section III outlines the proposed approach and
methodology. Section IV presents the experimental results
and performance evaluation of the proposed approach. Fi-
nally, Section V concludes the paper.
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II. RELATED WORK

In the literature, the work done on the metro ridership
forecasting problem can be categorised into three main
categories, namely traditional statistical methods, machine
learning-based methods and hybrid model methods. One of
the early statistical methods work was presented by Li et
al. [3], where a multi-scale radial basis function (MSRBF)
network for predicting short-term subway passenger flow
during special events using smart card data was proposed.
Similarly, in [4] authors proposed statistical models for
modelling passenger flows based on smart card’s tap-on
and tap-off times. Then, they used Bayesian inference to
estimate parameters in these models. On the other hand,
machine learning-based (ML) methods utilise a purely data-
driven approach where, given relatively large-scale data sets,
the ML models are trained/optimised using this available
information. Gong et al. [5], proposed a customized online
non-negative matrix factorization (ONMF) method for short-
term prediction of crowd flow distribution across the entire
Sydney trains network in Australia. Given that their method
was optimised using querying average historic ridership data
of the day where the forecasting is performed, they have
developed two separate models that can provide ridership
forecasting during normal weekday operations and another
one during the peak/rush hours. On the contrary, in [6], they
have proposed a deep learning framework for only short-term
(next 15 minutes) metro network-wide passenger flow predic-
tion based on a long short-term memory (LSTM) model. In
their model, they only took into account historical ridership
data and time data without any spatial information about
the metro network topology itself. Similarly, in [7], another
deep learning-based method based on LSTM architecture
was proposed. However, unlike [6] they have considered
the physical metro network topology by complementing
the LSTM model with another machine learning model
based on the GCN architecture which has improved the
overall performance of their model for both short/long-term
prediction horizons. Other recent studies have also looked
into coupling train patronage prediction using CNNs-LSTMs
in conjunction with large Digital Twin Models powered
by mobile data as well as train real-time movements (see
[13]), or even integrating the patronage movement into a
dynamic passenger assignment (see [14]) or for studying the
impact of train disruptions on the train network patronage
and scheduling (see [15], [16]).

Rather than the purely statistical or machine learning-
based methods, in the hybrid model methods, a combination
of the two methods is performed. For example, in [8], a
framework that combines both Wavelet and SVM models
for short-time passenger flow prediction in Beijing’s subway
system. Similarly, in [17], another hybrid one-step subway
short-term ridership forecasting method was presented. Their
approach accounts for ridership dynamics and uncertain-
ties, using the autoregressive integrated moving average
(ARIMA) model, and the non-linear generalized autoregres-
sive conditional heteroskedasticity (GARCH) family model.

While all these methods can provide relatively good results
when it comes to metro ridership forecasting, however, as
we have highlighted they are either focus on short/long-
term prediction horizons and for those approaches how can
perform short and long-term predictions they are not efficient
enough to be deployable and scalable across different metro
network systems.

III. PROPOSED METHODOLOGY

In this section, a formal definition of station-level metro
ridership forecasting is first provided. Then, a brief overview
of the input metro network topology representation for our
proposed methodology will be discussed. Lastly, the full
details of our proposed novel topology-aware transformer
networks-based model will be presented.

A. Problem Statement

In our formulation for the station-level metro ridership
forecasting problem, on a high level, the problem is cast
as a time-series forecasting problem where, given an input
sequence (with the length of n) of historical metro rider-
ship data

(
DN

t−n+1,D
N
t−n+2, . . . ,D

N
t
)

along with the metro
network topology graph G, the goal is to predict the se-
quence (with the length of m) of future ridership data(
D̂N

t+1, D̂
N
t+2, . . . , D̂

N
t+m

)
. Based on this formulation, DN

t repre-
sents the ridership data for the total number of stations N at a
given time-step t, and this ridership data is composed of two
real values (D ∈R2) which correspond to the inflow/outflow
count of passengers for each station.

B. Metro Network Representation Graphs

One of the most recent and commonly utilised represen-
tation techniques for network topologies of both road and
rail networks is the graph representation, which was shown
to be effective in enhancing the modelling capabilities of
many traffic state estimation tasks [7], [18]–[20]. In this
representation, the network is organised as a set of nodes
interconnected by using a number of edges and each edge
has a corresponding weight to it. There are a number of
ways to build this graph representation, and one of the most
simple and straightforward methods is to directly build the
graph based on the geographical and physical topology of the
studied network system; however, this simple strategy was
proven to be sub-optimal when it comes to capturing the
inter-station flow patterns in a metro system network [7].
Thus, in this work, we will be adopting a similar approach
to [7] for the metro network representation graphs. In this
approach, the metro network is represented by the following
three different types of graphs as detailed below.

1) Physical Topology Graph: The first type represents
the actual physical topology of the network which focuses
on capturing the local spatial dependency between nearby
stations. Accordingly, the physical topology graph can be
represented by calculating the physical edge weight matrix
Mp(a,b) between each pair (a, b) of nodes/stations of the
total N stations that exist in the entire metro network as
follows:
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Fig. 1. Our proposed Inter-Station-Aware Transformer Networks framework. The framework consists of three main components, namely encoder, decoder
and intermediate fusion.

Mp(a,b) =
E(a,b)

∑
N
k=1 E(a,k)

(1)

where E(a,b) = 1 if a physical edge exits between station
(a,b), otherwise E(a,b) = 0

2) Semantic Similarity Graph: The second type of
graph is the similarity graph which is constructed based
on prior domain knowledge that can capture the semantic
similarity between each pair of stations/nodes regarding their
passengers’ flow. For example, two stations might not be
physically interconnected in the metro network, however,
both of them are business hub districts, so, in this case, it
would be beneficial to connect them in this newly semantic
similarity graph in order to capture the ridership flow patterns
across them. Consequently, the semantic similarity graph
is represented by calculating the semantic similarity edge
weight matrix Ms(a,b) as follows:

Ms(a,b) =
Fs(a,b)

∑
N
k=1 Fs(a,k)

(2)

where Fs(a,b) is the passenger flow similarity score between
station pair (a,b) which is computed by taking the warping
distance, Dynamic Time Warping (DTW) [21] between all
historical passenger flow between stations (a,b).

3) Correlation Graph: The third and last type of graph is
the correlation graph, constructed to capture any correlations
between stations. The rationale for constructing a correla-
tion graph is to capture scenarios where the majority of
inflow/outflow patterns are happening between two specific
stations, as this will have a major influence on the rela-
tionships/interactions between stations beyond their physical
interconnection. Accordingly, the correlation graph can be
represented by calculating the correlation edge weight matrix
Mc(a,b) as follows:

Mc(a,b) =
Rc(a,b)

∑
N
k=1 Rc(a,k)

(3)

where Rc(a,b) is the correlation ratio matrix between a
station pair (a,b) which is computed by counting the total
number of travels that started from station a and ended at
station b, normalised by the total number of travels between
each pair of stations in the entire metro network.

C. Inter-Station-Aware Transformer Networks Model
The backbone architecture of our proposed framework

for metro ridership forecasting is based on the transformer
network architecture [12] which recently has achieved state-
of-the-art results in both sequential learning and computer
vision tasks [22]–[25]. As can be shown in Fig. 1, the
proposed model consists of three main components, namely
the encoder, the intermediate fusion and the decoder. The
encoder and decoder take as input the historical metro rid-
ership data,

(
DN

t−n+1,D
N
t−n+2, . . . ,D

N
t
)

and the future metro
ridership data

(
D̂N

t+1, D̂
N
t+2, . . . , D̂

N
t+m

)
respectively. In order

to transform both the input historical/future metro ridership
data into a higher dimensional space ds, a linear embedding
layer exists at the beginning of both the encoder and decoder
components. Then, the output from the embedding layer (also
known as token embeddings) is concatenated with the output
from the positional encoding layer, which provides explicit
time-tagging/order to the sequential tokens. The encoding
technique used in our models is similar to the original
transformer network architecture, which is a set of sine and
cosine functions with different frequencies, that enables the
model to capture positional information at different scales.
The intermediate fusion component of our model is then
composed of only one type of layer, the feed-forward. As the
name implies, the intermediate fusion layer fuses the encoder
output and the three types of graphs, described in Section III-
B, together via a concatenation operation. Then, the feed-
forward layer applies a fully connected neural network to
each position in the fused input sequence independently.

On the other hand, both the encoder and decoder, inter-
nally are composed of multiple identical layers. The encoder
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layers include a Multi-Head Attention layer, which computes
self-attention to capture the interactions between different
positions in the input sequence, a feed-forward layer, which
applies a fully connected neural network to each position in
the input sequence independently, and a Residual Connection
and a Layer Normalization technique to aid the training pro-
cess. Similarly, the decoder layers include a) a Self-Attention
layer, which computes self-attention and also attends to the
output of the encoder, b) a Multi-Head Attention layer with
both the encoder output layer and the intermediate fusion
output layer, which computes the attention between the
decoder input the encoder output and the intermediate fusion
output. Also, a feed-forward layer and Residual Connection
and Layer Normalization techniques exist in the decoder
component, which is the same as in the encoder block.
Finally, at the end of the decoder component, the output layer
exists which is responsible for auto-regressively producing
the future metro ridership predictions.

IV. EXPERIMENTS

In this section, we begin by introducing the datasets
that we used to train and evaluate the effectiveness of
our proposed method. Next, we describe the details of our
experimental setup, including the evaluation metrics and
the baselines from the literature that we compared against.
Finally, we analyze and discuss the results of our proposed
method on two real datasets from two different metro net-
works.

A. Datasets

To demonstrate the effectiveness of our proposed ap-
proach, we will train and evaluate our Inter-Station-
Aware Transformer Networks model on two recent datasets
which were made publicly available for bench-marking the
metro ridership forecasting tasks, namely SHMetro and
HZMetro [7]. The two datasets were collected based on
large-scale ridership transactions over two big metro net-
works in two different cities in China. The first dataset,
SHMetro is derived from Shanghai’s metro system, featuring
811.8 million transactions from July 1st to September 30th,
2016, with an average of 8.82 million daily passengers.
Every transaction record contains the passenger ID, the
entry/exit train station, and the timestamps. During this
period, 288 metro stations were operational, linked by 958
physical edges. Furthermore, the passenger inflow/outflow
was measured in 15-minute intervals starting from 5:15 in
the morning to 23:30 in the evening for each station within
the network. The first two months and the last three weeks
of the ridership data were used for training and testing, while
the rest was used for validation.

The HZMetro dataset, on the other hand, was collected
between the 1st to 25th of January 2019 from the Hangzhou
metro system, which covers 80 metro stations linked by
248 physical edges, with an average of 2.35 million daily
passengers. Similar to the SHMetro dataset, the time interval
for inflow/outflow recording is 15 minutes from 5:15 in the

morning to 11:30 in the evening and also the dataset is split
over time into three splits for training, validation and testing.

B. Experiment Setup
For our experiments, we started first by pre-processing

the two aforementioned datasets. In the first pre-processing
stage, we obtained the three metro network representation
graphs by computing their edge weight matrices according
to the equations described in Section III-B. Furthermore,
and similar to [7], for the SHMetro dataset we chose only
the highest k (where k=10) stations that have a high degree
of similarity scores or correlation rates for calculating their
corresponding semantic similarity and the correlation edge
weight matrices. The rationale behind this (as it was shown
in [7]) is to minimise the computational expenses involved
in SHMetro modelling and align with the standard practice
of baseline methods in assessing their performance on the
SHMetro dataset. Consequently, we ended up with 2880
edges for both the semantic similarity and the correlation
graphs. On the other hand, for the HZMetro dataset, we did
not adopt the strategy of selecting top k-stations given the
lower number of stations and physical edges in comparison to
the SHMetro dataset. As a result, we had a semantic similar-
ity graph with 2502 edges and a correlation graph with 1094
edges for the HZMetro dataset. In the second pre-processing
stage, we have constructed the passenger’s inflow/outflow
for each station across the training/validation/testing splits of
both the SHMetro and HZMetro to have the past historical
metro ridership data length n of 4 which corresponds to
60min given that the time interval for the ridership recording
for both two datasets is 15min. While the future metro
ridership data length m is also set to 4 during the training
and validation phase only, but during the inference/testing
stage, our model can auto-regressively forecast any predic-
tion horizon. Given that the future ridership predictions for
each metro station from our Inter-Station-Aware Transformer
Networks model are continuous values, our selected objective
function for training was the L2-loss function. The training
process used the Adam optimizer and lasted for 250 epochs.
In terms of the model’s hyper-parameters, we set the hidden
units of the input embedding layer to 512 and incorporated 8
self-attention heads into both the encoder and decoder stages.

C. Evaluation Metrics
In accordance with earlier studies [6], [7], the performance

of our proposed approach will be assessed using two different
evaluation metrics, namely the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) which are
computed as follows:

RMSE =

√
1
n

n

∑
i=1

(
D̂i −Di

)2
,

MAE =
1
n

n

∑
i=1

∣∣D̂i −Di
∣∣ , (4)

where n is the training samples count, Di is the ground-truth
metro ridership and D̂i is the predicted metro ridership.
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TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED ISA-TF APPROACH IN COMPARISON TO A NUMBER OF BASELINE APPROACHES OVER THE SHMETRO

AND HZMETRO DATASETS [7]. THE REPORTED SCORES ARE SHOWN ACCORDING TO THE EVALUATION METRICS RMSE/MAE. LOWER SCORES ARE

BETTER. BEST SCORES ARE IN BOLD.

Dataset
Approach

SHMetro HZMetro
15 min 30 min 45 min 60 min 15 min 30 min 45 min 60 min

HM 136.97/48.26 136.81/47.88 136.45/47.26 135.72/46.40 64.19/36.37 64.10/36.37 63.92/36.23 63.72/35.99
GB 62.59/32.72 82.32/39.50 113.95/49.14 137.5/57.31 51.50/30.88 61.94/36.48 76.70/44.12 91.21/51.10

MLP 48.71/25.16 51.80/26.15 57.06/27.91 63.33/29.92 46.55/26.57 47.96/27.44 50.66/28.79 54.62/30.52
RNN-GRU 52.04/25.91 54.02/26.39 56.97/27.17 59.91/28.08 45.10/45.10 45.26/25.93 46.13/26.36 47.69/26.98

STG2Seq [26] 47.19/24.98 50.58/50.58 52.68/52.68 56.81/28.22 39.52/39.52 40.72/40.72 40.72/40.72 40.72/40.72
DCRNN [27] 46.02/24.04 49.90/49.90 54.92/26.76 58.83/28.01 40.39/40.39 42.57/25.22 46.26/26.97 49.35/28.47
PVCGN [7] 44.97/23.29 47.83/24.16 52.02/25.33 55.27/26.29 37.76/22.68 39.34/23.33 40.95/24.22 42.61/24.93

ISA-TF (ours) 45.85/23.05 46.51/23.27 47.38/23.55 48.43/23.87 38.64/23.53 39.56/24.06 40.27/24.21 41.68/24.91

D. Results and Discussion

In this section, we evaluate the performance of our pro-
posed Inter-Station-Aware Transformer Networks model (we
refer to it as ISA-TF) in Table I according to the afore-
mentioned evaluation metrics. Furthermore, we compare the
performance of our ISA-TF model against a number of
baseline approaches including the state-of-the-art (SOTA) ap-
proach (PVCGN) [7] on both the SHMetro and the HZMetro
datasets. The compared baseline approaches are as follows:

• HM: Historical Mean is a simple statistical model that
takes into account the k-historical ridership data of a
given time interval by computing their mean to predict
the future ridership data at the same time interval. For
the SHMetro, k was set to 4 and 2 for the HZMetro.

• GB: Gradient Boosting [28] is an ensemble learning
method that combines multiple weak learners (in our
case decision trees) to form a strong predictive model.
It uses gradient descent optimization to find the optimal
weights for combining the weak learners. The hyper-
parameters for GB were set as follows: 100 for the
number of boosting stages and 4 for the max depth of
each estimator.

• MLP: Multiple Layer Perceptron is a fully-connected
neural network architecture which in our case consists of
2 layers with 256 hidden units in the first layer and 2304
and 640 hidden units respectively in the second layer,
based on the dataset in use (SHMetro or HZMetro).

• RNN-GRU: Gated Recurrent Unit is a recurrent neural
network (RNN) based architecture, and in our case, it
consists of two GRU layers with its hidden units set to
256.

• STG2Seq: Spatial-temporal Graph to Sequence is a
method that was first introduced in [26] for passenger
demand forecasting. It is a hierarchical graph con-
volutional model that is composed of two types of
encoders (short/long-term) and an attention mechanism
for fusion.

• DCRNN: Diffusion Convolutional Recurrent Neural
Network is a method that was first introduced in [27]
for traffic forecasting tasks which exploits random walks

on graphs to capture the spatial dependency and utilises
the encoder-decoder model for capturing the temporal
dependencies.

• PVCGN: Physical-Virtual Collaboration Graph Net-
work is the SOTA approach on both SHMetro and
HZMetro that was first introduced in [7]. It utilises
the same input as our proposed approach (i.e. historical
ridership and the three types of metro network graphs),
however, its model consists of two types of architec-
tures, namely graph convolution neural networks and
RNN-GRU to capture the spatio-temporal dependency
of the input data.

As can be seen from the reported results in Table I, our
proposed approach ISA-TF has outperformed the baseline
approaches over the SHMetro dataset in terms of RMSE
and MAE scores. For the HZMetro dataset, our proposed
approach has achieved comparable scores to the SOTA
approach, PVCGN with a slight improvement for PVCGN
over the short-term prediction horizon (i.e. 15 and 30 min),
while our ISA-TF achieved better results over the long-term
prediction horizon. Moreover, the proposed approach has
consistently achieved resilient scores over the long-term pre-
diction horizons across the two datasets, which further proves
the scalability of our proposed approach. More importantly,
the results also show a key unique property of our proposed
ISA-TF which is that it doesn’t suffer from the accumulation
of prediction errors over time which is quite prevalent with
the rest of the baseline approaches (especially those based
on graph and recurrent neural networks such as STG2Seq
and PVCGN). As a result, this would make our proposed
approach more suitable for long-time prediction horizons
which are crucial for robust metro ridership forecasting.
In order to further prove the efficiency of our proposed
approach, in Fig. 2 we highlight the number of parameters
required for both our proposed ISA-TF approach and the
PVCGN which was the SOTA approach on both SHMetro
and HZMetro. As can be seen from the plot, our ISA-TF
approach only required 47.6 million parameters for training,
while the PVCGN since is composed of two different types
of architectures (graph convolution and recurrent neural
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Fig. 2. The number of training parameters comparison between our
proposed approach and PVCGN [7]. M refers to million.

networks) requires more than 134 million parameters. This
means that our approach is roughly 3 times more efficient
when it comes to the number of parameters which plays a
critical role in the overall run-time performance of the metro
ridership forecasting models.

V. CONCLUSION

In this work, we proposed a novel single unified data-
driven approach, named Inter-Station-Aware Transformer
Networks framework for the metro ridership forecasting
problem. The performance of our approach has been eval-
uated on two publicly available datasets for the metro rid-
ership forecasting task. In comparison to the state-of-the-art
(SOTA) methods on both datasets, our approach has achieved
comparable and sometimes better results over the short-
term prediction horizons (i.e. 15 and 30 mins ahead), while
it achieved superior results over the long-term prediction
horizons (i.e. 45 and 60 mins ahead) in terms of both RMSE
and MAE scores. Moreover, the proposed approach is three
times more efficient than SOTA approach when it comes to
the number of training parameters.
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